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Abstract 11 

CFD predictions of the effects of a fiber bundle porosity on shell-side hydrodynamics and mass 12 

transfer under conditions of steady laminar flow were obtained. Fluid was assumed to flow 13 

around regular hexagonal or square arrays of cylindrical fibers of different pitch to diameter 14 

ratios, yielding bundle porosities ranging from the theoretical minimum up to ~1. A large 15 

number of axial, transverse and mixed flow combinations were simulated by letting the axial 16 

and transverse flow Reynolds numbers and the transverse flow attack angle vary. Both fully 17 

developed and developing conditions (entrance effects) were considered. The continuity and 18 

momentum equations, along with a transport equation for the concentration of a high-Schmidt 19 

number solute, were solved by a finite volume CFD code. Fully developed conditions were 20 

simulated by the well-established “unit cell” approach, in which the computational domain is 21 

two-dimensional and includes a single fiber with the associated fluid, periodic boundary 22 

conditions are imposed between all opposite sides and compensative terms are introduced to 23 

account for large-scale longitudinal or transversal gradients. Developing flow was studied by 24 

using a fully three-dimensional computational domain. Predictions were validated against 25 

experimental, computational and analytic literature results. 26 
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1. Introduction 30 

Hollow fiber membranes are becoming increasingly common in many areas of membrane 31 

separation processes, such as direct capture of CO2 [1], air humidification [2] extraction, for 32 

example, of heavy metals [3] or nitrogen-based liquid fertilizer [4] from wastewaters and gas 33 

separation [5], or in the wide field of water treatment and desalination processes [6], such as 34 

ultrafiltration, reverse osmosis and membrane distillation but also in several biomedical 35 

applications [7,8] (e.g., hemodialysis and blood oxygenators). 36 

These membranes are typically used in bundles [9] of several thousand hollow fibers, enclosed 37 

in cylindrical modules as showed in Figure 1. The polymeric shell of a module can be made 38 

of polycarbonate or polypropylene. The bundle is bonded by means of an epoxy resin potting 39 

compound, which permits the two fluids to be segregated. Modules are provided with 40 

appropriate inlet/outlet ports for both the lumen- and the shell-side fluids and usually operate 41 

in counter-current flow to maximize mass transfer efficiency. The most common configuration 42 

foresees that the feed flows in the lumen side while the permeate flows in the shell side but 43 

also the opposite arrangement may be used. 44 

 45 

 46 

Figure 1: Schematic of a typical hollow fiber membrane module operating in counter-current flow. 47 

 48 

The modelling of the lumen side flow is quite simple and is typically studied by the elementary 49 

Hagen-Poiseuille theory in regard to fluid dynamics and by semi-empirical correlations for 50 

mass transfer [10]. 51 

Due to the complexity of the geometry and of the resulting flow, the modelling of the shell side 52 

flow and mass transfer requires more than simple correlations. In particular, for mass transfer 53 

coefficients, several correlations [11–15] were developed in the past, but they yielded broadly 54 

dispersed values and were generally limited to few specific cases. 55 
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The study of hydrodynamics and mass transfer on the shell side is anything but trivial since it 56 

depends on many parameters.  57 

The first parameter is the fiber arrangement, which can be described as a regular (hexagonal, 58 

square or, less commonly, rectangular) or irregular (random) lattice. Günther et al. [16] studied 59 

phenomena involving fluid flow and mass transfer in hexagonal fiber arrays while  60 

Eloot et al. [17] carried out simulations of a twelfth part of a fiber, always considering the 61 

bundle arranged in a hexagonal lattice. Also Cancilla et al. [18] simulated fluid flow and mass 62 

transfer around straight, axially indefinite, fibers arranged in regular square and hexagonal 63 

lattices. Dierickx et al. [19] studied three different configurations: in-line square, staggered 64 

square and equilateral triangle fiber arrays. The modelling of the fiber bundle in irregular arrays 65 

are less common in the literature. Zhang et al. [20] conducted numerical simulations in square, 66 

diagonal and random lattices and also Buetehorn et al. [21] assumed irregular fiber 67 

arrangements. Effects of the randomness on friction coefficients were also accounted for by 68 

Chen and Hlavacek [22]; Rogers and Long [23] and Wu and Chen [24] used the same approach 69 

also for mass transfer coefficients.  70 

The second important parameter is the porosity of the bundle, i.e. the void fraction occupied 71 

by the shell side fluid. It is a continuous parameter and can vary from its theoretical minimum 72 

(when the center-to-center distance between two fibers is equal to their external diameter) to 73 

the theoretical maximum of 1. As early as in the 1920s, Emersleben [25] presented a theoretical 74 

analysis of the fluid dynamics of an infinite fluid surrounding a single fiber (porosity=1). 75 

Sullivan [26,27] studied experimentally the influence of the porosity on hydrodynamics for 76 

parallel and perpendicular flow around bundles of cotton fibers and of aligned cylinders. More 77 

recently, the effects of porosity were also investigated by various authors, via both numerical 78 

[28–30] and experimental [31–34] approaches. 79 

The third and fourth parameters to be considered are the Reynolds numbers both in the direction 80 

of the fibers and in that perpendicular to them; their magnitude determines the fluid dynamics 81 

regime (e.g. laminar vs. turbulent), while their ratio specifies the relative importance of 82 

transverse velocity components with respect to the axial one. In regard to the former aspect, 83 

most operations using hollow fiber membranes are limited to laminar and stationary conditions; 84 

therefore, studies involving turbulence will not be discussed here. In regard to the latter aspect, 85 

most researchers limited their work only to axial flow [28,35–38], while less common are 86 

studies of transverse [39–41] or mixed flow [18,42].  87 

A fifth controlling parameter is the transverse flow attack angle, whose influence characterizes 88 

the isotropy or anisotropy of the fiber lattice in regard both to hydrodynamics and mass transfer. 89 
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In [18] the angular dependence for both square and hexagonal lattices, in purely transverse and 90 

in mixed flow, was studied at a fixed porosity of 50%. 91 

The sixth parameter, relevant only in the presence of mass (or heat) transfer, is the Schmidt (or 92 

Prandtl) number. Wilk [43] reported experimental results on mass and heat transfer processes 93 

occurring in mini-channels with small hydraulic diameters, along with many literature results, 94 

for different values of the Schmidt (or Prandtl) number. Antonopoulos [42], using a finite-95 

difference method, solved the flow and heat transport governing equations for different values 96 

of the Prandtl number. 97 

The seventh controlling parameter is the distance from inlet, often expressed in dimensionless 98 

form as a Graetz number: in fact, the development of velocity and concentration / temperature 99 

boundary layers (entrance effects) may heavily affect friction and mass / heat transfer. Few 100 

researchers investigated entry mass / heat transfer effects for laminar flow around regular 101 

[38,44] and random [45] arrays, while most studies have been limited to fully developed 102 

conditions [22,28,35,36]. As will be discussed in detail in Section 3.1.1, entry effects can be 103 

important in the presence of large Schmidt numbers, typical of most mass transfer processes.  104 

Finally, the influence of the boundary conditions on mass / heat transfer (e.g., constant wall 105 

flux or constant wall concentration / temperature) deserves attention. For example, Miyatake 106 

and Iwashita [38,44] and Bao and Lipscomb [29,37] carefully investigated mass transfer 107 

around randomly arranged fiber bundles in axial flow, for both the uniform wall flux and the 108 

uniform wall concentration conditions. 109 

Table 1 summarizes the above parameters and indicates (on the basis of the results obtained in 110 

the present work) the quantity or quantities more affected by their individual variation. 111 

 112 

Table 1: Controlling parameters and affected quantities. 113 

N. Controlling parameter Main quantities affected 

1 Lattice type (square / hexagonal / random) Hydrodynamics, mass transfer 

2 Bundle porosity,  Friction and mass transfer coefficients 

3 Axial Reynolds number, Rez Friction coefficient 

4 Transverse Reynolds number, Ret Friction and mass transfer coefficients 

5 Transverse flow attack angle,  Friction and mass transfer coefficients 

6 Schmidt number, Sc Mass transfer coefficient 

7 Distance from inlet (entry effects) Friction and mass transfer coefficients 

 114 
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The picture resulting from a combination of the above parameters is quite complex. Despite 115 

the large number of works concerning fluid flow and mass transfer around fiber arrays, a 116 

thorough study which takes into account most of the above mentioned parameters is still 117 

lacking.  118 

In a previous paper [18], the influence of most of the above mentioned parameters was studied 119 

for a specific value of the bundle porosity  (0.5). In the present work, the study is extended to 120 

different values of . The shell-side flow and mass transfer characteristics of both square and 121 

hexagonal regular lattices at different porosities will be illustrated. In addition, the influence of 122 

entry effects will be considered for selected configurations.  123 

 124 

2. Models and methods 125 

2.1 Modelling approach and general assumptions 126 

Simulations of fluid flow and mass transfer around bundles of hollow fibers were conducted 127 

by means of the commercial finite volume (FV) code Ansys CFX-18®.  128 

The fiber bundle was modelled based on the following simplifying assumptions: 129 

1. All the fibers are the same in dimensions and properties; 130 

2. Fibers are arranged in regular hexagonal or square arrays; 131 

3. Fibers are straight along the longitudinal z axis; 132 

4. In the fully developed region, no flow/concentration feature larger than a single unit-133 

cell exists; 134 

5. Fluid physical properties (density, dynamic viscosity) are constant (changes, associated 135 

with changes in concentration were estimated to be negligible); 136 

6. Fluid flow is laminar and steady. 137 

Assumptions (1)-(4) allowed simulations to be carried out by using the unit cell approach, in 138 

which the computational domain was a repetitive periodic unit of the bundle including a single 139 

fiber. This approach was already used by the authors in previous studies, e.g. [18].  140 

Based on the above assumptions, the governing equations can be written as follows: 141 

 0u 
�

�

 (1) 142 

 2u u p u f      
�� �

� � �

 (2) 143 

in which u
�

 is the velocity, p is the pressure,  and μ are the density and the dynamic viscosity 144 
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of the fluid and f
�

 is a forcing term (driving pressure gradient) compensating the large-scale 145 

pressure loss. Eqs. (1) and (2) are, respectively, the steady-state continuity and momentum 146 

equations for the flow of a Newtonian incompressible fluid. 147 

The convection-diffusion transport equation governing the concentration field is: 148 

 2
C

u C D C S   
�

�

 (3) 149 

C being the concentration of the solute and D its diffusion coefficient in the fluid. SC is a source 150 

term compensating the large-scale C gradient. 151 

The fluid properties were set equal to those of pure water at 25°C (density =997 kg·m-3 and 152 

dynamic viscosity μ=8.89·10-4 Pa·s [46]). The diffusion coefficient of the solute in the fluid 153 

was computed by assuming a Schmidt number Sc=μ/(·D)=500. This value was selected as 154 

representative of a vast class of ionic (e.g. NaCl) and molecular (e.g. urea) solutes in water 155 

[47,48]. 156 

By using the above unit-cell approach, the computed u
�

, p and C are the periodic components 157 

of velocity, pressure and concentration so that periodic boundary conditions can be imposed to 158 

these variables between opposite boundaries of the computational domains. On the cylindrical 159 

wall of the fibers, the no slip condition was imposed to the velocity field and a Neumann 160 

boundary condition to the concentration field, with an arbitrary value of 10-5 mol m-2 s-1 for the 161 

wall mass flux. This choice, with respect to the possible alternative boundary condition (e.g. 162 

Dirichlet), better approaches the real operating conditions in a hollow fiber bundle: in most 163 

applications concerning membrane separation processes (e.g., hemodialysis), the resistance 164 

associated with the membrane is far larger than the others (lumen- and shell-side) and is 165 

circumferentially uniform around a fiber. Accordingly, the wall mass flux is expected to be 166 

almost uniform. 167 

The simulations reported in this work were performed in double precision. A very tight 168 

convergence criterion was adopted: the dimensionless residuals of all quantities were imposed 169 

to be reduced below 10-12 for the solver to stop. 170 

 171 

2.2 Definitions 172 

In the present work, the porosity  is defined as: 173 

 
tot

V

V
  (4) 174 
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where V is the volume of the fluid and Vtot is the total volume, resulting by adding the volume 175 

of the fiber to V. The hydraulic diameter Deq is defined as: 176 

 
4 


eq

V
D

S
 (5) 177 

in which S is the wet surface in the computational domain. It is easy to verify that, for any 178 

lattice, one has 179 

 
1

eq
D

d







 (6) 180 

in which d is the diameter of the fibers. Eq. (6) shows that the hydraulic diameter diverges for 181 

1. 182 

Let u
�

 be the superficial velocity vector (porosity  local velocity). For consistency with our 183 

previous work and with most of the literature on the subject, only the superficial velocity will 184 

be adopted throughout this paper and no use will be made of the local, or interstitial, velocity. 185 

The Reynolds number Re along the generic direction of unit vector 
�

 is defined as: 186 

 Re
eq

u D






  (7) 187 

in which u  is the volume average of the superficial velocity component along the generic 188 

direction . In particular, Rez will denote the Reynolds number along the axial direction z, while 189 

Ret will denote the Reynolds number along a generic direction t lying in the cross-sectional 190 

plane. 191 

Let now /f f 
� �

�

 be the unit vector characterizing the direction of the imposed forcing term 192 

and /u u 
� � �

 the unit vector characterizing the direction of the mean (volume-averaged) 193 

superficial velocity. In general (hydrodynamically anisotropic medium), the directions 
�

 and 194 


�

 will not coincide. 195 

The Darcy permeability K along the direction 
�

of the imposed forcing term f
�

 is 196 

conventionally defined here as: 197 

 
u

K
f






 �  (8) 198 

In particular, Kz will denote the permeability along the axial direction, while Kt will denote the 199 
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permeability along a generic direction lying in the cross-sectional plane.  200 

In purely axial flow, the only imposed forcing term is fz. In purely transverse flow, forcing 201 

terms in different directions lying in the bundle’s cross sectional (xy) plane are imposed; the 202 

cross flow attack angle θ is conventionally defined as the angle between the forcing term f
�

 203 

and the x axis (Figure 2). The transverse flow Reynolds number Ret was computed on the basis 204 

of the mean (superficial) velocity t
u  projected on the direction of the forcing term: 205 

 cos sin
t x y

u u u    (9) 206 

in which x
u  and 

yu  are the mean (superficial) velocities along the x and y directions. 207 

In order to obtain mixed flow conditions, both an axial and a transverse forcing terms were 208 

imposed. 209 

The average mass transport coefficient U is defined as: 210 

 
w b

J
U

C C
 (10) 211 

where � ̅ is the wall-averaged molar flux at the wall, wC  is the wall-averaged solute 212 

concentration at the wall and Cb is the mass flow-weighted average of the solute concentration 213 

on an arbitrary cross section, i.e. the bulk concentration. 214 

In the present work, two different definitions of the average Sherwood number were used, 215 

based to the fact that this quantity was made dimensionless on the basis of either the hydraulic 216 

diameter, 
eqD

Sh : 217 

 
eq

eq

D

D
Sh U

D
 (11) 218 

or the fiber diameter, Shd: 219 

 
d

d
Sh U

D
 (12) 220 

This second definition of the Sherwood number can be viewed as a porosity-independent 221 

dimensionless form of the mass transfer coefficient U. 222 

 223 
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 224 

 (a) (b) 225 

 226 

 (c) (d) 227 

Figure 2: Geometries of (a, c) a hexagonal regular lattice with porosity ε=0.7 and (b, d) a square 228 
regular lattice with porosity ε=0.3. (a), (b) 3-D unit cells (computational domains); (c), (d) 229 
2-D cross sections. The dimensions specified are for a typical hemodialysis module. The 230 

direction of the forcing term f
�

and the cross-flow attack angle θ are also indicated. 231 

 232 

2.3 Computational domains and finite volume grids 233 

The simulations conducted in the present work can be divided into two categories, according 234 

to whether fully developed or developing conditions were imposed. These two different 235 

conditions imply a different dimensionality of the computational domains.  236 

The former ones, aimed at studying the effects of different porosities on Darcy permeability 237 

and mass transfer coefficient, were essentially two-dimensional and the extent of the 238 

computational domains along the longitudinal direction was irrelevant. For compatibility with 239 
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the computational code, it was arbitrarily set to 500 μm and was discretized by three finite 240 

volumes. 241 

The computational grids were composed of hexahedral volumes only, known to provide more 242 

accurate results than tetrahedral or hybrid grids [49]. As reported in [18], grids of 10,000 243 

volumes in the xy plane provided results for the friction and mass transfer coefficients differing 244 

less than 1% from those obtained with the finest grid tested (128,000 volumes in the xy plane). 245 

Conservatively, grids having up to ~100,000 volumes in the xy plane were adopted. 246 

Developing flow simulations, focused on the study of entry effects, were intrinsically three-247 

dimensional. Thus, the geometry was appropriately extended along the z direction so as to reach 248 

the fully developed flow and mass transfer limits. The grid was limited to 10,000 volumes in 249 

the xy plane and included ~400 volumes along the axial direction z and was selectively refined 250 

near the channel inlet. Thus, the overall number of finite volumes was ~4·106. 251 

Figure 2 shows, as an example, two among the geometries used to carry out the following 252 

simulations, respectively for the hexagonal array of porosity 70% and for the square array of 253 

porosity 30%. The dimensions of the unit-cell and the outer diameter d of the fibers (arbitrarily 254 

set to 280 μm, a value typical of hemodialysis), are reported.  255 

 256 

3. Results 257 

In order to facilitate the comparison with the literature, in the present work K is expressed in 258 

dimensionless form as a normalized Darcy permeability K/d2, where d is the fiber diameter. 259 

Values for Kz/d2, Kt/d2 and the average Sherwood numbers were computed by CFD for regular 260 

hexagonal and square arrays of different porosities, in order to assess the influence of this 261 

parameter on the results. Results are presented according to the considered flow condition 262 

(axial, transverse or mixed flow). In axial flow, entry effects were also accounted for. In 263 

transverse and mixed flow, the complex influence of the cross flow attack angle was carefully 264 

investigated. 265 

 266 

3.1 Purely axial flow 267 

In purely axial flow, only a forcing term along the longitudinal (z) direction was applied. In 268 

this parallel flow condition, neither the Darcy permeability nor the Sherwood number depend 269 

on the longitudinal Reynolds number (Rez). Therefore, the simulations in purely axial flow 270 

were carried out at the arbitrary value Rez=10, typical of several applications (e.g. hemodialysis 271 
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modules). 272 

 273 

3.1.1 Hydrodynamics in purely axial flow 274 

Figure 3 reports in a semi-logarithmic chart the normalized Darcy permeability in the axial 275 

direction z (Kz/d2) as a function of the porosity () for both the hexagonal and the square lattices. 276 

Note that the curves start from two different values of porosity: according to the geometrical 277 

configuration of the fiber bundle arranged in the hexagonal and square arrays, the minimum  278 

-value (corresponding to a center-to-center distance between two fibers equal to the fiber 279 

diameter) is ≈0.09 for the hexagonal lattice and ≈0.22 for the square lattice. The maximum 280 

value of  was arbitrarily set to 0.99 in both cases. 281 

For both lattices, the normalized axial Darcy permeability grows about exponentially with  up 282 

to ≈0.8-0.9 and overexponentially for larger , and diverges for →1. In the range of  283 

investigated, for the hexagonal lattice Kz/d2 ranges between 7.61×10-5 and 8.36 and, for the 284 

square lattice, between 1.27×10-3 and 19.8. The two curves practically merge for >~0.7.  285 

 286 

 287 

Figure 3: Normalized Darcy permeability along the axial direction predicted by CFD as a function 288 
of the porosity for regular hexagonal (solid line) and square (broken line) fiber arrays. 289 
Experimental and CFD results from the literature (symbols) are also reported for 290 
comparison purposes. 291 

 292 
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Results for square arrays exhibit an excellent agreement with numerical solutions reported by 293 

Sangani and Yao [50] and Bao and Lipscomb [29]. In [34] Skartsis et al. carried out 294 

experiments in axial flow using a special test section with aligned cylinders arranged in a square 295 

array and a porosity of ~44%. The relevant experimental value is reported in Figure 3 as a 296 

solid symbol and is also in good agreement with the present CFD predictions. 297 

 298 

3.1.2 Mass transfer in purely axial flow 299 

In regard to mass transfer in purely axial flow, Figure 4 reports, for both the hexagonal and 300 

the square lattices, the Sherwood number predicted as a function of the porosity, as defined on 301 

the basis of (a) the fiber diameter, Eq. (12) and (b) the hydraulic diameter, Eq. (11).  302 

The curves of Shd, Figure 4(a), show bell-shaped behaviors, with a maximum of ~12 at ≈0.38 303 

for the hexagonal lattice and of ~5 at ≈0.6 for the square lattice. The reason is that, at low 304 

porosities, the fibers are so close to one another that mass transfer is impaired; at high 305 

porosities, the thickness of the concentration boundary layer surrounding each fiber (and thus 306 

the mass transfer resistance) is very large. Therefore, in order to maximize the shell-side mass 307 

transfer, a good practice would be to choose porosities in the intermediate range between ~0.3 308 

and ~0.5 for hexagonal arrays and between ~0.5 and ~0.7 for square arrays.  309 

On the other hand, curves of 
eqD

Sh  start at very low values (even < 1) for the lowest porosities 310 

and increase monotonically as the porosity increases, as a consequence of the increase in Deq, 311 

Eq. (6). In particular, up to a porosity ≈0.8-0.9 the curve for the hexagonal lattice lies 312 

significantly above that for the square lattice, whereas for larger values of  the two curves 313 

collapse into a single behavior. As the permeability, also the Sherwood number 
eqD

Sh  diverges 314 

for →1. 315 

 316 
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  317 

 (a) (b) 318 

Figure 4: Sherwood number predicted by CFD as a function of the porosity for regular hexagonal 319 
(solid line) and square (broken line) fiber arrays. (a) Shd, defined on the basis of the fiber 320 
diameter; (b) 

eqD
Sh , defined on the basis of the hydraulic diameter. Computational results 321 

from the literature for regular hexagonal and square arrays (triangular and square symbols, 322 
respectively) are also reported for comparison purposes. 323 

 324 

Figure 4(a) shows also the comparison between the present predictions (solid line for 325 

hexagonal lattice, broken line for square lattice) and some computational results reported by 326 

various authors (symbols). In particular, for the hexagonal lattice the predictions agree very 327 

well with results by Bao and Lipscomb [37], Miyatake and Iwashita [38] and Dwyer and Berry 328 

[28]. Also for the square lattice, the present predictions are in good agreement with the results 329 

of Bao and Lipscomb [37] and Miyatake and Iwashita [38]. 330 

 331 

3.1.3 Entry effects in purely axial flow (square lattice) 332 

Hydrodynamic entry effects for laminar flow in ducts have been for several decades the subject 333 

of intense research based either on experiments or on analytical or semi-analytical solutions of 334 

different simplified forms of the governing equations. Shah [51] proposed an empirically-based 335 

correlation for the friction coefficient in the entry region of circular, rectangular, equilateral 336 

triangular and annular ducts. Sparrow and co-workers [52,53], Langhaar (reported in [54]) and 337 

several other authors developed approximate solutions based on neglecting axial momentum 338 

diffusion and/or nonlinear terms in the Navier-Stokes equations. 339 

Since the present geometry (fiber bundle) is significantly different from those considered the 340 
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above mentioned works, CFD simulations of developing flow were run to estimate 341 

hydrodynamic entry effects in fiber bundles. For simplicity, the study was limited to the square 342 

lattice. 343 

For this purpose, the computational domain was obtained by extruding a square-lattice unit cell 344 

like that shown in Figure 2(b). CFD simulations in developing flow were performed with 345 

computational domains having porosities of 0.31, 0.50 and 0.69. Periodic boundary conditions 346 

were imposed to all the lateral surfaces of the domain, while a uniform velocity was imposed 347 

at the inlet and an arbitrary pressure at the outlet. The cylindrical surface of the fiber was treated 348 

as a no slip wall.  349 

Results for Rez=10 are reported in Figure 5 in the form of the ratio between the axial Darcy 350 

permeability and its fully developed value (Kz/Kz∞) as a function of the dimensionless distance 351 

from inlet (z/(Rez∙Deq)). It can be observed that the hydrodynamic entry effects depend on the 352 

porosity, with a more marked influence of this parameter for the lower values. In particular, at 353 

=0.69 one has Kz/Kz=0.99 for z/(Rez∙Deq)0.05, a length which corresponds to ~5 Deq  354 

(≈3 mm in a bundle of fibers with diameter d=0.3 mm). At =0.50 the same value of Kz/Kz is 355 

reached for z/(Rez∙Deq)0.15, corresponding to ~15 Deq (≈4 mm). Finally, at =0.31 the 356 

condition Kz/Kz=0.99 is touched for a value that is further forward along the z axis 357 

(z/(Rez∙Deq)0.5, corresponding to z50 Deq (≈6 mm). Note that, for any given d, values of 358 

Deq are different for each porosity considered.  359 

Therefore, hydrodynamic entry effects were found to be limited to a small region of the bundle, 360 

between 3 and 6 mm, a length utterly negligible with respect to the module length in most 361 

applications. 362 

 363 
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  364 

Figure 5: Axial Darcy permeability (Kz), normalized by its fully developed value (Kz∞), as a function 365 
of the dimensionless distance from inlet (z/(Rez∙Deq)) for three different values of the 366 
porosity at Rez≈10. 367 

 368 

In regard to mass transfer, entry effects are particularly important in the presence of large 369 

Schmidt numbers, because in this case the Péclet number may well be very large, so that the 370 

entry length becomes comparable or even larger than the size of the mass exchange unit. 371 

For pipes and other straight channels with uniform cross section, entry effects on heat / mass 372 

transfer have been extensively studied on the basis of different analytical [54,55], 373 

computational [56–58] and experimental [56] results. Solutions differ according to whether 374 

hydrodynamically fully developed conditions (Graetz problem proper) or simultaneously 375 

developing flow and concentration / temperature fields are assumed, and to the boundary 376 

conditions imposed (uniform wall concentration / temperature, uniform wall mass / heat flux 377 

or more complex ones). In general, solutions depend also on the Péclet number Pez=Rez·Sc. 378 

However, once the Sherwood number is reported as a function of the dimensionless variable 379 

1/Gz=z/(Pez·Deq) (reciprocal of the Graetz number), entry effects become independent of the 380 

Péclet number (and, a fortiori, of Rez and Sc separately) for Pez>~100. The reason is that, at 381 

large Pez, the axial conduction term in the mass transport equation, which is the only term 382 

depending on Pez (as 1/Pez
2), becomes negligible. 383 

For the present fiber bundle configuration, CFD simulations were performed for the three 384 

porosities investigated. The (irrelevant) Rez and Sc numbers were arbitrarily assumed to be 10 385 
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and 500, respectively (typical of a hemodialysis module), yielding Pez=5000. Results in  386 

Figure 6 report the dependence of the Sherwood number based on the hydraulic diameter  387 

(
eqD

Sh ) upon the dimensionless variable 1/Gz. 388 

 389 

 390 

Figure 6: Sherwood number 
eqD

Sh , defined on the basis of the hydraulic diameter, as a function of 391 

the reciprocal of the Graetz number (1/Gz), for three different values of the porosity . 392 

 393 

In the whole range of 1/Gz, higher value of 
eqD

Sh  are attained for higher porosities ; the 394 

influence of  is largest at high values of 1/Gz (fully developed conditions). In the double-395 

logarithmic charts, the curves for all porosities exhibit the same linear trend with slope = -1/3 396 

in the range 10-4<1/Gz<2∙10-3, which corresponds to the region very close to the inlet. The 397 

dimensionless mass transfer development length, defined as the distance at which 
eqD

Sh  is 1% 398 

larger than its fully developed value, decreases from ~0.2 to ~0.1 and ~0.04 as  increases from 399 

0.31 to 0.50 and 0.69, respectively. For the reference dimensions reported in Figure 2 and 400 

Pez=5000, these values correspond at all porosities to a physical development length of  401 

~0.13 m; for most commercial hemodialysis modules, this is a large fraction of the total length. 402 

Consistently, the fully-developed values of 
eqD

Sh  reached as results of the above simulations 403 

in developing flow coincide exactly with results from unit-cell simulations in a square array at 404 

the same porosity (cf. broken line of Figure 4(a)). They are 1.14, 5.15 and 10.6 for porosities 405 

of 0.31, 0.50 and 0.69, respectively. 406 
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 407 

3.2 Purely transverse flow 408 

In order to establish purely transverse flow, a forcing term lying in the xy cross sectional plane 409 

was applied.  410 

 411 

3.2.1 Hydrodynamics in purely transverse flow 412 

As far as the hydraulic permeability Kt is concerned, at sufficiently low values (<~10) of the 413 

transverse flow Reynolds number Ret (defined in Section 2.2), Kt does not depend on Ret nor 414 

on the flow attack angle  (i.e., the medium is Darcian and is isotropic with respect to directions 415 

lying in a cross-sectional plane). In this range, the dependence of Kt on the porosity was 416 

investigated at an arbitrary transverse flow Reynolds number of 1 and an arbitrary flow attack 417 

angle of 0°. 418 

Figure 7 reports in a semi-logarithmic chart the Darcy permeability in the transverse direction 419 

t as a function of the porosity () for both the hexagonal and the square lattices. As for the axial 420 

permeability in Figure 3, Kt is normalized by the square of the fiber diameter d. 421 

For both the square and the hexagonal lattices, Kt/d2 rises about exponentially with the porosity 422 

from ≈0.6 to ≈0.8, underexponentially for <0.6 and overexponentially for >0.8; as 423 

expected, it diverges for →1. Unlike the longitudinal permeability (Figure 7), the transverse 424 

permeability is larger at all porosities for the hexagonal lattice than for the square one; the 425 

difference is larger at low porosities, whereas the two curves practically coincide for >~0.6. 426 

The present CFD predictions were compared with literature experimental results (symbols in 427 

Figure 7) reported by Bergelin et al. [31] and by Kirsch and Fuchs [32]: for both the square 428 

and the hexagonal arrays the curves obtained by CFD agree very well with the experiments. 429 

Skartsis et al. [34] carried out experiments in transverse flow using a special test section with 430 

aligned cylinders arranged in a square array and a porosity of ~46%. Also this experimental 431 

value is shown as a solid symbol in Figure 7 and is in excellent agreement with the CFD 432 

predictions for this porosity. 433 

The behavior of the normalized transverse Darcy permeability is qualitatively similar to that of 434 

the longitudinal permeability in Figure 3. However, transverse permeabilities are lower at all 435 

porosities than longitudinal permeabilities, the difference being largest at low .  436 

 437 
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 438 

Figure 7: Normalized Darcy permeability along the transverse direction predicted by CFD as a 439 
function of the porosity for regular hexagonal (solid line) and square (broken line) fiber 440 
arrays in purely transverse flow. Experimental results from the literature (symbols) are also 441 
reported for comparison purposes. 442 

 443 

3.2.2 Mass transfer in purely transverse flow 444 

In regard to mass transfer in purely transverse flow, even at very low transverse flow Reynolds 445 

numbers Ret, the Sherwood number is a function both of Ret and of the flow attack angle . 446 

Figure 8 shows the predicted Sherwood number, based on the fiber diameter d, as a function 447 

of the porosity for the hexagonal and square lattices at Ret=1. In both cases, the cross-flow 448 

attack angle θ is 0°; qualitatively similar behaviors are obtained for other angles and transverse 449 

flow Reynolds numbers. The influence of Ret and  will be better illustrated in Section 3.3 450 

(mixed flow). 451 

As for the purely axial flow condition, Figure 4(a), also in purely transverse flow the curves 452 

of Shd exhibit a maximum. In particular, for the hexagonal lattice the maximum value of Shd 453 

is ~12.6 and is attained at ≈0.25. For the square lattice, Shd attains a maximum of ~5.5 at 454 

≈0.45. The reasons for the occurrence of a maximum are the same discussed for the purely 455 

axial flow case. As in that case, the Sherwood numbers based on the hydraulic diameter exhibit 456 

a monotonic increasing behaviour and have not been reported. 457 
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 459 

Figure 8: Sherwood number Shd, defined on the basis of the fiber diameter, as a function of the 460 
porosity in purely transverse flow for regular hexagonal and square fiber arrays for a 461 
transverse flow Reynolds number Ret=1 and a cross-flow attack angle θ=0°. 462 

 463 

3.3 Mixed flow 464 

Under mixed flow conditions, the number of parameters to be considered rises: for each lattice 465 

type, the parameters involved are the porosity ε, the axial and transverse flow Reynolds 466 

numbers Rez and Ret along with the cross-flow attack angle θ.  467 

A full parametrical study was prohibitive. Therefore, simulations were run for only three values 468 

of the porosity (31%, 50% and 69% for the square lattice, 30%, 50% and 60% for the hexagonal 469 

lattice), a few combinations of axial and transverse Reynolds numbers (in particular, Rez=0, 470 

i.e. purely transverse flow, or Rez=100 and 10-3<Ret<30) and three different flow attack angles 471 

θ (0°, 22.5° and 45° for the square lattice, 0°, 15° and 30° for the hexagonal lattice). The values 472 

of θ were chosen so as to include, for each lattice, the two main directions of symmetry and an 473 

intermediate one. 474 

Notably, as it is well-known from the literature [59], for Ret49 phenomena of vortex shedding 475 

start to occur in the fluid and the assumption of steady-state flow fails. In order to avoid the 476 

complications of time-dependent solutions, only values of Ret30 were considered in the 477 

present study. 478 
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3.3.1 Hydrodynamics in mixed flow 480 

Figure 9 reports the normalized values of the Darcy permeability as a function of the transverse 481 

flow Reynolds number for a regular square lattice in mixed flow with Rez=100 at different 482 

cross-flow attack angles θ. In particular, graph (a) is for Kz/d2 (axial direction) and graph (b) is 483 

for Kt/d2 (transverse direction).  484 

 485 

  486 

 (a) (b) 487 

Figure 9: Square fiber arrays: normalized Darcy permeability along (a) the axial (Kz/d2) and (b) the 488 
transverse (Kt/d2) direction predicted by CFD as a function of the transverse flow Reynolds 489 
number Ret in mixed flow at Rez=100. Three flow attack angles are considered: θ=0° (solid 490 
line), θ=22.5° (dotted line) and θ=45° (broken line). 491 

 492 

Let us first discuss the way in which the simultaneous presence of the transverse flow affects 493 

the axial Darcy permeability, Figure 9(a). In general, the higher the porosity, the higher the 494 

ratio Kz/d2. For each porosity, the curve departs from its constant low-Reynolds number value 495 

only for Ret>~1. The most important influence of the presence of cross flow is observed at the 496 

lowest porosity (ε=0.31): the simultaneous presence of a transverse flow with Ret=10 reduces 497 

Kz/d2 by ~2.5 times. At ε=0.50 this reduction is only ~1.6 times and at ε=0.69 is ~1.2 times. 498 

The effects of the cross-flow angle θ are very small and can be appreciated only for the lowest 499 

porosity investigated.  500 

Consider now Figure 9(b), which reports the normalized transverse Darcy permeability Kt/d2, 501 

still as a function of the transverse Reynolds number Ret, in mixed flow at Rez=100 for three 502 

porosities. For the three porosity considered, Kt/d2 departs from its constant value only for 503 

Ret>~10; for Ret≈30 it decreases by ~25% at ε=0.31 and by ~10% at ε=0.50 or 0.69. The 504 
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influence of the cross-flow attack angle is negligible. 505 

The corresponding curves computed in the absence of axial flow are completely coincident 506 

with those reported, showing that the transverse Darcy permeability Kt, is completely 507 

unaffected by the presence of an axial flow despite the significant value of Rez (=100), in the 508 

whole Ret range considered and for all values of  and θ investigated. In particular, for Ret<~10, 509 

values of Kt/d2 coincide with those reported for purely transverse flow in Figure 7 at the 510 

corresponding porosity.  511 

Equivalent graphs for the hexagonal lattice are reported in Figure 10.  512 

 513 

  514 

 (a) (b) 515 

Figure 10: Hexagonal fiber arrays: normalized Darcy permeability along (a) the axial (Kz/d2) and (b) 516 
the transverse (Kt/d2) direction predicted by CFD as a function of the transverse flow 517 
Reynolds number Ret in mixed flow at Rez=100. Three flow attack angles are considered: 518 
θ=0° (solid line), θ=15° (dotted line) and θ=30° (broken line). 519 

 520 

Qualitatively similar behaviors to those of the square lattice are obtained also for the hexagonal 521 

lattice and similar considerations apply. In regard to the influence of cross flow on the 522 

longitudinal permeability, Figure 10(a), values of Kz/d2 are constant up to Ret≈1 and then tend 523 

to decrease. The most evident cross-flow influence is observed for the lowest porosity (ε=0.30), 524 

when, for Ret≈30, Kz/d2 decreases by ~36%; at ε=0.50 and ε=0.60 the decrease is less marked 525 

(~15% and 12%, respectively). The influence of cross flow is much less important than in the 526 

square lattice. 527 

In regard to the transverse permeability Kt/d2, Figure 10(b), the curves for the hexagonal lattice 528 

are qualitatively very similar to those obtained for the square lattice. The departure from the 529 
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constant low-Reynolds number values (Kt/d2≈4.0×10-4 for ε=0.30, 4.5×10-3 for ε=0.50 and 530 

1.0×10-2 for ε=0.60) starts at Ret≈10. For Ret≈30, values of Kt/d2 decrease by ~38% at ε=0.30, 531 

by ~21% at ε=0.50 and by ~18% at ε=0.60. 532 

The effects of θ on both the axial and transverse Darcy permeability are negligible: also the 533 

hexagonal lattice is hydraulically isotropic for the values of Rez, Ret and porosity investigated. 534 

From the results in Figures 9-10 one may conclude that for both lattices, in the parameter range 535 

investigated, the axial permeability is not affected by the axial Reynolds number Rez but is 536 

significantly affected by the transverse Reynolds number Ret provided Ret>~1, especially at 537 

low porosities. On the other hand, the transverse permeability is not affected by the axial flow 538 

Reynolds number Rez and is only marginally affected by the transverse flow Reynolds number 539 

Ret provided Ret>~10. 540 

 541 

3.3.2 Mass transfer in mixed flow 542 

Figure 11 reports in log-log scale the Sherwood number as a function of the transverse flow 543 

Reynolds number for a regular square lattice for Rez=100 (mixed flow) and Rez=0 (purely 544 

transverse flow), for the three porosities analyzed and θ=0°. In particular, in graph (a) the 545 

Sherwood number is normalized by the hydraulic diameter as 
eqD

Sh  while, in graph (b), it is 546 

normalized by the fiber diameter as Shd. 547 

Let us first discuss the behavior of 
eqD

Sh  in Figure 11(a). Both in mixed flow and in purely 548 

transverse flow, and for all porosities, 
eqD

Sh  grows as the transverse Reynolds number 549 

increases. 
eqD

Sh  does not follow a power law trend but exhibits a larger increase for Ret>~1; 550 

the rate of increase is higher the lower the porosity. For given Ret and Rez, 
eqD

Sh increases 551 

monotonically with the porosity. Consider, for example, the cases of purely transverse flow 552 

(Rez=0, solid lines): at Ret=10, CFD predicts 
eqD

Sh ≈4 at ε=0.31, 
eqD

Sh ≈6.8 at ε=0.50 and  553 

eqD
Sh ≈10 at ε=0.69. 554 

The simultaneous presence of an axial flow leads to an increase of the Sherwood number with 555 

respect to the purely transverse flow case; the increase depends little on the Reynolds number 556 

Ret. When Rez increases from 0 to 100, 
eqD

Sh exhibits the largest increase at the intermediate 557 

porosity (0.50); for example, for Ret=1, it increases by ~20% at ε=0.31, by ~35% at ε=0.50 and 558 

by ~30% at ε=0.69. 559 

 560 
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 561 

 (a) (b) 562 

Figure 11: Square fiber arrays: Sherwood number as a function of the transverse flow Reynolds 563 
number Ret for Rez=100 (mixed flow, dotted line) and Rez=0 (purely transverse flow, solid 564 
line) and θ=0°. The Sherwood number is defined on the basis of the hydraulic diameter  565 
(

eqD
Sh ) in graph (a) and of the fiber diameter (Shd) in graph (b). 566 

 567 

Figure 11(b) reports the Sherwood number defined on the basis of the fiber diameter (Shd). Of 568 

course, when a specific porosity is considered, the considerations made above on 
eqD

Sh  also 569 

apply to Shd since, in a log-log chart, the corresponding curves are simply translated with 570 

respect to each other by the constant factor d/Deq=(1-)/, see Eq. (6). In particular, the curves 571 

for =0.50 do not change since, in this case, d=Deq.  572 

However, the relative magnitude of the Sherwood numbers relevant to different porosities 573 

change, and their monotonic dependence on the porosity is lost. For example, for Rez=0, at 574 

Ret=0.001 one has (Shd)=0.69>(Shd)=0.50>(Shd)=0.31; at Ret=1 one has 575 

(Shd)=0.50>(Shd)=0.31>(Shd)=0.69; and at Ret=10 one has (Shd)=0.31>(Shd)=0.50>(Shd)=0.69. In the 576 

intermediate range 0.01<Ret<1, the highest Shd values are obtained for the intermediate 577 

porosity =0.50; this is consistent with the behavior reported in Figure 4(b) and Figure 8 for 578 

purely axial flow and purely transverse flow at Ret=0.5-1, where, unlike 
eqD

Sh , Shd presents 579 

maxima when reported as a function of porosity. 580 

Equivalent graphs for the hexagonal lattice are reported in Figure 12. A behavior of the 581 

Sherwood number qualitatively similar to that reported above for the square lattice can be 582 
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observed, and similar considerations apply. The Sherwood number grows slowly with Ret until 583 

Ret≈1 and then increases more steeply. The simultaneous presence of an axial flow always 584 

results in the enhancement of mass transfer. As in the square lattice, for any Ret and Rez the 585 

Sherwood number 
eqD

Sh  increases monotonically with the porosity ε. However, unlike in the 586 

square lattice case, here Shd decreases monotonically with ε, thus exhibiting a behavior 587 

opposite to that of 
eqD

Sh . For the lowest porosity (0.30) the influence of the axial flow is much 588 

more marked than in the square lattice; for example, at =0.30 and Ret=0.01, Shd increases 589 

from ~7 to ~17 as Rez increases from 0 to 100.  590 

 591 

 592 

 (a) (b) 593 

Figure 12: Hexagonal fiber arrays: Sherwood number as a function of the transverse flow Reynolds 594 
number Ret for Rez=100 (mixed flow, dotted line) and Rez=0 (purely transverse flow, solid 595 
line) and θ=0°. The Sherwood number is defined on the basis of the hydraulic diameter  596 
(

eqD
Sh ) in graph (a) and of the fiber diameter (Shd) in graph (b). 597 

 598 

3.3.3 Influence of the cross flow attack angle θ in mixed flow 599 

Figure 13 reports the Sherwood number defined on the basis of the fiber diameter Shd as a 600 

function of the transverse Reynolds number Ret, for different values of the flow attack angle θ. 601 

Each graph reports curves both for purely transverse flow (Rez=0) and for mixed flow 602 

(Rez=100). 603 

In the figure, the left column (a, c, e) reports the graphs for the square lattice and the right 604 
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column (b, d, f) those for the hexagonal lattice. 605 

It can be observed that, independently of the flow condition (mixed or purely transverse flow), 606 

for θ=0° Shd increases only moderately attaining values between ~5 and ~45 for Ret=30, the 607 

highest values being attained at the lowest porosities (ε=0.3-0.31 according to the lattice). 608 

The steepest increase and the highest values of Shd are attained for flow attack angles of 22.5° 609 

(square lattice) and 15° (hexagonal lattice). An intermediate behavior is obtained at θ=45° 610 

(square lattice) and θ=30° (hexagonal lattice). Therefore, the Sherwood number is lower in the 611 

symmetry directions (0° and 45° for the square lattice, 0° and 30° for the hexagonal lattice) and 612 

higher at intermediate angles (22.5° and 15°, respectively, for the square and hexagonal 613 

lattices). 614 

The reason for the Sherwood number being larger at flow attack angles which are not symmetry 615 

directions of the fiber array is illustrated in Figure 14 and Figure 15, respectively for a square 616 

and a hexagonal lattice. These show the distribution of the normalized concentration C*: 617 

 * 




b

w b

C C
C

C C
 (13) 618 

in which, as discussed in Section 2.2, 
w

C  is the wall-averaged solute concentration at the wall 619 

and Cb is the mass flow-weighted average of the solute concentration on an arbitrary cross 620 

section, i.e. the bulk concentration. 621 

One can observe that, when the flow attack angle coincides with a symmetry direction of the 622 

fiber array (0° or 45° for the square lattice and 0° or 30° for the hexagonal one), the central 623 

impingement of the flow that separates from a fiber on the subsequent fiber causes a large 624 

stagnant-flow wake region to be formed and a thick concentration boundary layer to develop 625 

around each fiber. On the contrary, for non-symmetry flow attack angles (22.5° for the square 626 

lattice and 15° for the hexagonal lattice in the present examples), the separating flow reattaches 627 

farther downstream after “meandering” between fibers, the stagnant flow region is small and 628 

the concentration boundary layer is thin, which amounts to a larger mass transfer coefficient 629 

(Sherwood number) being attained. Note also that, for intermediate flow attack angles, Figures 630 

14(b) and 15(b), the directions of the applied forcing term (arrow) and of the mean flow (as 631 

indicated by the wake) do not coincide.  632 
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                   633 
 (a) (b) 634 

                   635 
 (c) (d) 636 

                   637 
 (e) (f) 638 
Figure 13: Sherwood number Shd, defined on the basis of the fiber diameter, as a function of the 639 

transverse flow Reynolds number Ret in mixed flow at Rez=100 (dotted line) and in purely 640 
transverse flow (solid line), for different values of θ. Left column (a, c, e): square arrays; 641 
right column (b, d, f): hexagonal arrays.  642 
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 643 

 (a) (b) (c) 644 

Figure 14: Maps of the normalized concentration in a cross-sectional plane for a square lattice,  645 
Rez=0, Ret=10, =0.69 and flow attack angles  of 0° (a), 22.5° (b) and 45° (c). 646 

 647 

 648 

 (a) (b) (c) 649 

Figure 15: Maps of the normalized concentration in a cross-sectional plane for a hexagonal lattice, 650 
Rez=0, Ret=10, =0.60 and flow attack angles  of 0° (a), 15° (b) and 30° (c). 651 

 652 

4. Conclusions 653 

The hydraulic and mass transfer characteristics of bundles of straight cylindrical fibers were 654 

investigated by Computational Fluid Dynamics. Both square and hexagonal regular fiber arrays 655 

were considered. The bundle porosity was made to vary between a value close to the theoretical 656 

minimum and a very high value close to the theoretical maximum of 1. Purely axial, purely 657 

transverse and mixed flows were investigated under the assumption of steady laminar 658 

conditions and the influence of the transverse flow attack angle was studied. In most cases, the 659 

flow and concentration fields were assumed to be fully developed and a two-dimensional 660 

computational domain was adopted. For some configurations, entry effects were also studied 661 

using a fully three-dimensional domain.  662 
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In purely axial flow, the axial Darcy permeability was found to increase strongly with the 663 

porosity , especially for large , and to be slightly larger for a square lattice than for a 664 

hexagonal one, especially at low porosities; the difference decreased with increasing  and 665 

became negligible for >0.7.  666 

In purely transverse flow, the transverse permeability also increased strongly with the porosity; 667 

up to 0.6 it was larger for a hexagonal than for a square lattice (a behaviour opposite to that 668 

of the axial permeability), the difference becoming negligible for larger porosities.  669 

In mixed flow, the axial permeability Kz was not affected by the axial Reynolds number Rez 670 

(as expected for a Darcy medium), but decreased significantly with the transverse Reynolds 671 

number Ret provided this exceeded a value of ~1; the effect was larger at low porosities and 672 

larger for a square than for a hexagonal lattice. On the other hand, both for square and 673 

hexagonal lattices the transverse permeability Kt was not affected by the axial flow Reynolds 674 

number Rez. Provided the transverse flow Reynolds number Ret did not exceed the value of 675 

~10, Kt was not affected either by Ret (i.e., the medium was Darcian) or by the flow attack 676 

angle  (i.e., the medium was isotropic with respect to directions lying in a cross-sectional 677 

plane). 678 

In regard to mass transfer, in purely axial flow the Sherwood number Shd based on the fiber 679 

diameter d (and thus the mass transfer coefficient), once plotted as a function of the porosity, 680 

exhibited a bell-shaped behaviour, with a maximum of ~12 at ≈0.38 for the hexagonal lattice 681 

and of ~5 at ≈0.6 for the square lattice. On the other hand, the Sherwood number 
eqD

Sh  based 682 

on the hydraulic diameter Deq exhibited a monotonically increasing behaviour and diverged for 683 

1.  684 

In purely transverse flow, a qualitatively similar dependence of Shd from the porosity was 685 

obtained. In particular, for a flow attack angle =0°, in a hexagonal lattice the maximum value 686 

of Shd was ~12.6 and was attained at ≈0.25 while, in a square lattice, Shd attained a maximum 687 

of ~5.5 at ≈0.45. Unlike the Darcy permeability, the Sherwood number was found to depend 688 

strongly on the flow attack angle even at transverse Reynolds numbers as low as 0.01, denoting 689 

a strong anisotropy of the medium in regard to mass transfer. In particular, for both lattices Shd 690 

exhibited absolute or relative minima at values of  corresponding to directions of symmetry 691 

(0° and 45° for a square lattice and 0° and 30° for a hexagonal one), while it was much larger 692 

at some intermediate angle (~22.5° for a square lattice and ~15° for a hexagonal one). 693 

In mixed flow, superimposing an axial flow at Rez=100 on a pre-existing transverse flow 694 
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caused the Sherwood number to increase significantly, in complex dependence on geometry 695 

(square vs. hexagonal lattice), porosity and transverse flow Reynolds number Ret. 696 

For the case of purely axial flow, a square lattice, and a few values of the porosity, entry effects 697 

were also investigated by assuming simultaneously developing flow and concentration 698 

boundary layers. The Darcy permeability Kz was computed as a function of the dimensionless 699 

distance from the inlet, z/(Rez∙Deq), and the Sherwood number Shd was computed as a function 700 

of z/(Rez∙Sc·Deq) (reciprocal of the Graetz number). 701 

Hydrodynamic entry effects were found to be limited to a small inlet region of the bundle, 702 

between 5 and 50 hydraulic diameters, a length utterly negligible with respect to the module 703 

length in most applications. In regard to mass transfer, entry effects were found to be important 704 

in the presence of large Schmidt numbers, because in this case the Péclet number may well be 705 

very large, so that the entry length becomes comparable or even larger than the size of a typical 706 

mass transfer module. 707 

Several of the present predictions (notably pertaining to the Darcy permeability in both axial 708 

and transverse flow and to the Sherwood number in axial flow) were compared with 709 

experimental or computational results from the literature; in all cases a good agreement was 710 

observed. 711 

 712 

  713 
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 718 

Nomenclature 719 

C solute concentration (mol m-3) 720 

C* normalized concentration (-) 721 

D solute diffusion coefficient (m2 s-1) 722 

Deq hydraulic diameter (m) 723 

d outer diameter of the fiber (m) 724 

f
�

 forcing term compensating the large-scale pressure gradient (Pa) 725 

Gz Graetz number 726 

J local mass flux at the wall (mol m-2 s-1) 727 

K Darcy permeability based on the superficial velocity (m2) 728 

p pressure (Pa) 729 

Pe Péclet number 730 

Rez longitudinal Reynolds number (-) 731 

Ret transverse Reynolds number (-) 732 

S wet surface of the computational domain (m2) 733 

SC source term compensating the large-scale concentration gradient (mol m-3 s-1) 734 

Sc Schmidt number (-) 735 

Shd Sherwood number defined on the basis of the fiber diameter (-) 736 

eqD
Sh  Sherwood number defined on the basis of the hydraulic diameter (-) 737 

t cross-flow direction (m) 738 

U local shell-side mass transfer coefficient (m s-1) 739 

��⃗  superficial velocity vector (m s-1) 740 

V volume (m3) 741 

x, y Cartesian coordinates in cross section orthogonal to the fibers (m) 742 

z Cartesian coordinate parallel to the fibers (m) 743 

 744 

Greek symbols 745 

�⃗ unit vector characterizing the direction of the mean superficial velocity (-) 746 
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ε porosity (-) 747 

θ cross-flow attack angle (between �⃗ and the x axis) (°) 748 

μ dynamic viscosity (Pa s) 749 


�

 unit vector of the generic direction (-)  750 

ρ density (kg m-3) 751 

�⃗ unit vector characterizing the direction of the imposed forcing term (-)  752 

 753 

Subscripts 754 

b bulk (mass flow averaged) 755 

d fiber diameter 756 

Deq hydraulic diameter 757 

t transverse (lying in a plane orthogonal to the fibers) 758 

tot total 759 

w wall (external surface of the fibers) 760 

x, y, z coordinates 761 

� direction of the imposed forcing term 762 

 fully developed value 763 

 764 

Averages 765 

	  surface average 766 

 volume average 767 

 768 

Acronyms 769 

CFD Computational Fluid Dynamics 770 

FV Finite volume 771 

 772 

References 773 

[1] M.H. Ibrahim, M.H. El-Naas, Z. Zhang, B. Van Der Bruggen, CO2 Capture Using 774 

Hollow Fiber Membranes: A Review of Membrane Wetting, Energy and Fuels. 32 775 

(2018) 963–978. https://doi.org/10.1021/acs.energyfuels.7b03493. 776 

[2] L.Z. Zhang, Z.X. Li, T.S. Zhong, L.X. Pei, Flow maldistribution and performance 777 

deteriorations in a cross flow hollow fiber membrane module for air humidification, J. 778 

Memb. Sci. 427 (2013) 1–9. https://doi.org/10.1016/j.memsci.2012.09.030. 779 



32 
 

[3] C.H. Yun, R. Prasad, A.K. Guha, K.K. Sirkar, Hollow Fiber Solvent Extraction Removal 780 

of Toxic Heavy Metals from Aqueous Waste Streams, Ind. Eng. Chem. Res. 32 (1993) 781 

1186–1195. 782 

[4] M. Sheikh, M. Reig, X. Vecino, J. Lopez, M. Rezakazemi, C.A. Valderrama, J.L. 783 

Cortina, Liquid–Liquid membrane contactors incorporating surface skin asymmetric 784 

hollow fibres of poly(4-methyl-1-pentene) for ammonium recovery as liquid fertilisers, 785 

Sep. Purif. Technol. 283 (2022) 120212. https://doi.org/10.1016/j.seppur.2021.120212. 786 

[5] X.Y. Chen, S. Kaliaguine, D. Rodrigue, Polymer hollow fiber membranes for gas 787 

separation: A comparison between three commercial resins, AIP Conf. Proc. 2139 788 

(2019) 1–15. https://doi.org/10.1063/1.5121669. 789 

[6] Y. Dou, X. Dong, Y. Ma, P. Ge, C. Li, A. Zhu, Q. Liu, Q. Zhang, Hollow fiber 790 

ultrafiltration membranes of poly ( biphenyl-trifluoroacetone ), J. Memb. Sci. 659 791 

(2022) 120779. https://doi.org/10.1016/j.memsci.2022.120779. 792 

[7] C. Ronco, W.R. Clark, Haemodialysis membranes, Nat. Rev. Nephrol. 14 (2018) 394–793 

410. 794 

[8] O.O. Teber, A.D. Altinay, S.A.N. Mehrabani, R.S. Tasdemir, B. Zeytuncu, E.A. 795 

Genceli, E. Dulekgurgen, K. Pekkan, İ. Koyuncu, Polymeric hollow fiber membrane 796 

oxygenators as artificial lungs: A review, Biochem. Eng. J. 180 (2022). 797 

https://doi.org/10.1016/j.bej.2022.108340. 798 

[9] C.F. Wan, T. Yang, G.G. Lipscomb, D.J. Stookey, T.S. Chung, Design and fabrication 799 

of hollow fiber membrane modules, J. Memb. Sci. 538 (2017) 96–107. 800 

https://doi.org/10.1016/j.memsci.2017.05.047. 801 

[10] E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Ed., Cambridge 802 

University Press, 2009. 803 

[11] M. ‐C Yang, E.L. Cussler, Designing hollow‐fiber contactors, AIChE J. 32 (1986) 1910–804 

1916. https://doi.org/10.1002/aic.690321117. 805 

[12] S.R. Wickramasinghe, M.J. Semmens, E.L. Cussler, Mass transfer in various hollow 806 

fiber geometries, J. Memb. Sci. 69 (1992) 235–250. https://doi.org/10.1016/0376-807 

7388(92)80042-I. 808 

[13] R. Prasad, K.K. Sirkar, Dispersion‐free solvent extraction with microporous hollow‐809 

fiber modules, AIChE J. 34 (1988) 177–188. https://doi.org/10.1002/aic.690340202. 810 

[14] M.J. Costello, A.G. Fane, P.A. Hogan, R.W. Schofield, The effect of shell side 811 

hydrodynamics on the performance of axial flow hollow fibre modules, J. Memb. Sci. 812 

80 (1993) 1–11. https://doi.org/10.1016/0376-7388(93)85127-I. 813 



33 
 

[15] H. Kreulen, C.A. Smolders, G.F. Versteeg, W.P.M. van Swaaij, Microporous hollow 814 

fibre membrane modules as gas-liquid contactors. Part 1. Physical mass transfer 815 

processes. A specific application: Mass transfer in highly viscous liquids, J. Memb. Sci. 816 

78 (1993) 197–216. https://doi.org/10.1016/0376-7388(93)80001-E. 817 

[16] J. Günther, P. Schmitz, C. Albasi, C. Lafforgue, A numerical approach to study the 818 

impact of packing density on fluid flow distribution in hollow fiber module, J. Memb. 819 

Sci. 348 (2010) 277–286. https://doi.org/10.1016/j.memsci.2009.11.011. 820 

[17] S. Eloot, D. De Wachter, I. Van Tricht, P. Verdonck, Computational flow modeling in 821 

hollow-fiber dialyzers, Artif. Organs. 26 (2002) 590–599. 822 

https://doi.org/10.1046/j.1525-1594.2002.07081.x. 823 

[18] N. Cancilla, L. Gurreri, G. Marotta, M. Ciofalo, A. Cipollina, A. Tamburini, G. Micale, 824 

CFD prediction of shell-side flow and mass transfer in regular fiber arrays, Int. J. Heat 825 

Mass Transf. 168 (2021) 120855. 826 

[19] P.W. Dierickx, D.S. De Wachter, P.R. Verdonck, Two-dimensional finite element 827 

model for oxygen transfer in cross-flow hollow fiber membrane artificial lungs, Int. J. 828 

Artif. Organs. 24 (2001) 628–635. https://doi.org/10.1177/039139880102400904. 829 

[20] J. Zhang, X. Chen, J. Ding, K.H. Fraser, M.E. Taskin, B.P. Griffith, Z.J. Wu, 830 

Computational Study of the Blood Flow in Three Types of 3D Hollow Fiber Membrane 831 

Bundles, J. Biomech. Eng. 135 (2013) 1–12. https://doi.org/10.1115/1.4025717. 832 

[21] S. Buetehorn, D. Volmering, K. Vossenkaul, T. Wintgens, M. Wessling, T. Melin, CFD 833 

simulation of single- and multi-phase flows through submerged membrane units with 834 

irregular fiber arrangement, J. Memb. Sci. 384 (2011) 184–197. 835 

https://doi.org/10.1016/j.memsci.2011.09.022. 836 

[22] V. Chen, M. Hlavacek, Application of Voronoi tessellation for modeling randomly 837 

packed hollow‐fiber bundles, AIChE J. 40 (1994) 606–612. 838 

https://doi.org/10.1002/aic.690400405. 839 

[23] J.D. Rogers, R.L. Long, Modeling hollow fiber membrane contactors using film theory, 840 

Voronoi tessellations, and facilitation factors for systems with interface reactions, J. 841 

Memb. Sci. 134 (1997) 1–17. https://doi.org/10.1016/S0376-7388(97)00074-4. 842 

[24] J. Wu, V. Chen, Shell-side mass transfer performance of randomly packed hollow fiber 843 

modules, J. Memb. Sci. 172 (2000) 59–74. 844 

[25] O. Emersleben, Das Darcysche Filtergesetz, Phys. Z. 26 (1925). 845 

[26] R.R. Sullivan, Further study of the flow of air through porous media, J. Appl. Phys. 12 846 

(1941) 503–508. https://doi.org/10.1063/1.1712932. 847 



34 
 

[27] R.R. Sullivan, Specific surface measurements on compact bundles of parallel fibers, J. 848 

Appl. Phys. 13 (1942) 725–730. https://doi.org/10.1063/1.1714824. 849 

[28] O.E. Dwyer, H.C. Berry, Laminar-Flow Heat Transfer for in- Line Flow Through 850 

Unbaffled Rod Bundles, Nucl. Sci. Eng. 42 (1970) 81–88. 851 

https://doi.org/10.13182/nse70-a19330. 852 

[29] L. Bao, G.G. Lipscomb, Mass transfer in axial flows through randomly packed fiber 853 

bundles with constant wall concentration, J. Memb. Sci. 204 (2002) 207–220. 854 

https://doi.org/10.1016/S0376-7388(02)00043-1. 855 

[30] A.S. Sangani, A. Acrivos, Slow flow past periodic arrays of cylinders with application 856 

to heat transfer, Int. J. Multiph. Flow. 8 (1982) 193–206. https://doi.org/10.1016/0301-857 

9322(82)90029-5. 858 

[31] O. Bergelin, G. Brown, H. Hull, F. Sullivan, Heat transfer and fluid friction during 859 

viscous flow across banks of tubes: III–a study of tube spacing and tube size, ASME 860 

Trans. 72 (1950) 881–888. 861 

[32] A.A. Kirsch, N.A. Fuchs, Studies on fibrous aerosol filters-ii. pressure drops in systems 862 

of parallel cylinders, Ann. Occup. Hyg. 10 (1967) 23–30. 863 

https://doi.org/10.1093/annhyg/10.1.23. 864 

[33] L. Skartsis, J.L. Kardos, B. Khomami, Resin flow through fiber beds during composite 865 

manufacturing processes. Part I: Review of newtonian flow through fiber beds, Polym. 866 

Eng. Sci. 32 (1992) 221–230. https://doi.org/10.1002/pen.760320402. 867 

[34] L. Skartsis, B. Khomami, J.L. Kardos, Resin flow through fiber beds during composite 868 

manufacturing processes. Part II: Numerical and experimental studies of newtonian flow 869 

through ideal and actual fiber beds, Polym. Eng. Sci. 32 (1992) 231–239. 870 

https://doi.org/10.1002/pen.760320403. 871 

[35] E.M. Sparrow, A.L. Loeffler, Longitudinal laminar flow between cylinders arranged in 872 

regular array, AIChE J. 5 (1959) 325–330. https://doi.org/10.1002/aic.690050315. 873 

[36] I. Noda, C.C. Gryte, Mass Transfer in Regular Arrays of Hollow Fibers in 874 

Countercurrent Dialysis, AIChE J. 25 (1979) 113–122. 875 

[37] L. Bao, G.G. Lipscomb, Well-developed mass transfer in axial flows through randomly 876 

packed fiber bundles with constant wall flux, Chem. Eng. Sci. 57 (2002) 125–132. 877 

https://doi.org/10.1016/S0009-2509(01)00368-2. 878 

[38] O. Miyatake, H. Iwashita, Laminar-flow heat transfer to a fluid flowing axially between 879 

cylinders with a uniform wall heat flux, Int. J. Heat Mass Transf. 34 (1991) 322–327. 880 

[39] J. Happel, Viscous flow relative to arrays of cylinders, AIChE J. 5 (1959) 174–177. 881 



35 
 

https://doi.org/10.1002/aic.690050211. 882 

[40] T. Miyagi, Viscous Flow at Low Reynolds Numbers past an Infinite Row of Equal 883 

Circular Cylinders, J. Phys. Soc. Japan. 13 (1958) 493–496. 884 

https://doi.org/10.1143/JPSJ.13.493. 885 

[41] K. Ishimi, S. Koroyasu, H. Hikita, Mass transfer in creeping flow past periodic arrays 886 

of cylinders, J. Chem. Eng. Japan. 20(5) (1987) 492–498. 887 

[42] K.A. Antonopoulos, Heat transfer in tube assemblies under conditions of laminar axial, 888 

transverse and inclined flow, Int. J. Heat Fluid Flow. 6 (1985) 193–204. 889 

https://doi.org/10.1016/0142-727X(85)90010-4. 890 

[43] J. Wilk, Heat/mass transfer analogy in the case of convective fluid flow through 891 

minichannels, Int. J. Therm. Sci. 156 (2020) 106467. 892 

https://doi.org/10.1016/j.ijthermalsci.2020.106467. 893 

[44] O. Miyatake, H. Iwashita, Laminar-flow heat transfer to a fluid flowing axially between 894 

cylinders with a uniform surface temperature, Int. J. Heat Mass Transf. 33 (1990) 417–895 

425. https://doi.org/10.1252/kakoronbunshu.13.152. 896 

[45] L. Bao, B. Liu, G.G. Lipscomb, Entry mass transfer in axial flows through randomly 897 

packed fiber bundles, AIChE J. 45 (11) (1999) 2346–2356. 898 

https://doi.org/10.1016/S0927-5193(03)80004-9. 899 

[46] D.W. Green, R.H. Perry, Perry’s Chemical Engineers’ Handbook, 8th ed., McGraw-900 

Hill, New York, 2008. 901 

[47] V. Vitagliano, P.A. Lyons, Diffusion Coefficients for Aqueous Solutions of Sodium 902 

Chloride and Barium Chloride, J. Am. Chem. Soc. 78 (1956) 1549–1552. 903 

https://doi.org/10.1021/ja01589a011. 904 

[48] E. Klein, F. Holland, A. Lebeouf, A. Donnaud, J.K. Smith, Transport and mechanical 905 

properties of hemodialysis hollow fibers, J. Memb. Sci. 1 (1976) 371–396. 906 

https://doi.org/10.1016/S0376-7388(00)82283-8. 907 

[49] A. Tamburini, G. La Barbera, A. Cipollina, M. Ciofalo, G. Micale, CFD simulation of 908 

channels for direct and reverse electrodialysis, Desalin. Water Treat. 48 (2012) 370–909 

389. https://doi.org/10.1080/19443994.2012.705084. 910 

[50] A.S. Sangani, C. Yao, Transport processes in random arrays of cylinders. II. Viscous 911 

flow, Phys. Fluids. 31 (1988) 2435–2444. https://doi.org/10.1063/1.866596. 912 

[51] R.K. Shah, A Correlation for Laminar Hydrodynamic Entry Length Solutions for 913 

Circular and Noncircular Ducts, J. Fluids Eng. 100 (1978) 177–179. 914 

[52] D.P. Fleming, E.M. Sparrow, Flow in the hydrodynamic entrance region of ducts of 915 



36 
 

arbitrary cross section, J. Heat Transfer. 91 (1969) 345–354. 916 

https://doi.org/10.1115/1.3580173. 917 

[53] E.M. Sparrow, S.H. Lin, T.S. Lundgren, Flow development in the hydrodynamic 918 

entrance region of tubes and ducts, Phys. Fluids. 7 (1964) 338–347. 919 

https://doi.org/10.1063/1.1711204. 920 

[54] W.M. Kays, M.E. Crawford, Convective heat and mass transfer, Third Edit, McGraw-921 

Hill, 1993. https://doi.org/10.1017/CBO9780511800603. 922 

[55] R. Siegel, E.M. Sparrow, T.M. Hallman, Steady Laminar Heat Transfer in a Circular 923 

Tube with Prescribed Wall Heat Flux, Appl. Sci. Res. 7 (1958) 386–392. 924 

https://doi.org/10.1252/kakoronbunshu1953.38.144. 925 

[56] P.S. Lee, S. V. Garimella, D. Liu, Investigation of heat transfer in rectangular 926 

microchannels, Int. J. Heat Mass Transf. 48 (2005) 1688–1704. 927 

https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.019. 928 

[57] P.S. Lee, S. V. Garimella, Thermally developing flow and heat transfer in rectangular 929 

microchannels of different aspect ratios, Int. J. Heat Mass Transf. 49 (2006) 3060–3067. 930 

https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.011. 931 

[58] M.L. La Cerva, M. Di Liberto, L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. 932 

Ciofalo, Coupling CFD with a one-dimensional model to predict the performance of 933 

reverse electrodialysis stacks, J. Memb. Sci. 541 (2017) 595–610. 934 

https://doi.org/10.1016/j.memsci.2017.07.030. 935 

[59] C.H.K. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech. 28 936 

(1996) 477–539. https://doi.org/10.1146/annurev.fl.28.010196.002401. 937 

 938 


