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A B S T R A C T

Families of symmetric embedded solitary waves of a perturbed Fifth-order Korteweg–de Vries (FKdV) system
were treated in Choudhury et al. (2022) using perturbative and reversible systems techniques. Here, the
stability of those solutions, which was not considered in the earlier paper, is detailed. In addition, the results
of Choudhury et al. (2022) are extended to the case of asymmetric solitary waves, as well as their stability.
Finally, other novel multi-humped regular solitary waves of this system are derived using convergent infinite
series solutions for the homoclinic orbits of the FKdV-traveling wave equation.
1. Introduction

The Korteweg–de Vries (KdV) equation

𝜕𝑣
𝜕𝑡

+ 𝑐 𝜕𝑣
𝜕𝑥

+ 𝛼𝑣 𝜕𝑣
𝜕𝑥

+ 𝛽 𝜕
3𝑣
𝜕𝑥3

= 0, (1.1)

is a very well-known model for the description of weakly-nonlinear
long waves (in shallow water) in media with small dispersion (see, for
instance, [1–3]). It is employed in the theory of long internal waves,
and describes the main properties of even large-amplitude nonlinear
waves. It has also been employed as the earliest and simplest model in-
corporating both nonlinear and dispersive effects, and has both periodic
and solitary wave solutions. The KdV equation is completely integrable,
and possesses many remarkable properties, which are summarized in
the references cited above.

However, the KdV equation does not include many important fea-
tures of nonlinear waves observed in experiments, such as the large-
amplitude flat-top solitary waves or the non-monotonic dependence of
their wave speed on amplitude [4]. The first natural extension of the
KdV model retains the next-order nonlinear and dispersive terms in the
asymptotic expansion of the solutions to the full Euler equations, with
boundary conditions appropriate for oceanographic applications in the
case of the ocean gravity waves. Many authors [5–7] have considered
the extended fifth-order KdV equation:

𝜕𝑣
𝜕𝑡

+ 𝑐 𝜕𝑣
𝜕𝑥

+ 𝛼1𝑣
𝜕𝑣
𝜕𝑥

+ 𝛽1
𝜕3𝑣
𝜕𝑥3

+ 𝜖
(

𝛼2𝑣
2 𝜕𝑣
𝜕𝑥

+ 𝛾1𝑣
𝜕3𝑣
𝜕𝑥3

+ 𝛾2
𝜕𝑣
𝜕𝑥

𝜕2𝑣
𝜕𝑥2

+ 𝛽2
𝜕5𝑣
𝜕𝑥5

)

= 0. (1.2)

∗ Corresponding author.
E-mail address: gaetana.gambino@unipa.it (G. Gambino).

This equation, written in a coordinate frame moving with the speed
𝑐, combines the quadratic (∼ 𝛼1) and cubic (∼ 𝛼2) nonlinear terms,
linear dispersion of the third (∼ 𝛽1) and fifth (∼ 𝛽2) orders, and also
higher-order nonlinear dispersion terms with coefficients 𝛾1 and 𝛾2; the
expansion parameter 𝜖 ≪ 1 is presumed to be small.

Particular cases of the fifth-order KdV equation, with one or more
coefficients being zero, have also been derived in a variety of applica-
tions [8,9].

In general, Eq. (1.2) is not integrable, but for particular choices of
coefficients it reduces to one of a set of equations that are completely
integrable. These are the Gardner equation (when 𝛽2 = 𝛾1 = 𝛾2 = 0)
or its particular case the standard KdV/mKdV equation (when either
𝛼1 = 0 or 𝛼2 = 0), as well as the Sawada–Kotera and Kaup–Kupershmidt
equations (when 𝛼1 = 𝛽1 = 0) [3].

Unlike the KdV equation, the higher-order model (1.2) is not a
Hamiltonian equation and does not, in general, preserve the energy.
However, in the particular cases when it reduces to completely inte-
grable models, it clearly becomes Hamiltonian.

Many other properties of the higher-order models are discussed and
summarized in [9–11].

In this paper we will analyze the following FKdV equation:

𝜕𝑣
𝜕𝑡

+ 𝛼1𝑣
𝜕𝑣
𝜕𝑥

+ 𝑏 𝜕
3𝑣
𝜕𝑥3

+ 𝛼2𝑣2
𝜕𝑣
𝜕𝑥

+ 𝛼3𝑣
𝜕3𝑣
𝜕𝑥3

+ 𝛼4
𝜕𝑣
𝜕𝑥

𝜕2𝑣
𝜕𝑥2

+ 𝑎 𝜕
5𝑣
𝜕𝑥5

= 0, (1.3)

where we have used the roman letters 𝑎, 𝑏 for the coefficients of linear
terms and 𝛼𝑗 , 𝑗 = 1,…4 are the coefficients of the nonlinear terms. All
the coefficients are real.
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Families of symmetric embedded solitary waves of this system
were recently derived in [11] using a combination of perturbative and
reversible systems techniques in a manner analogous to [10]. Here we
will consider the stability of those solutions, which was not done in
the earlier paper. In addition, we will extend the results of [11] to the
case of asymmetric solitary waves, and the stability of these solitary
structures will be also addressed. Finally, we will employ infinite series
solutions for the homoclinic orbits of the FKdV-traveling wave equation
to derive convergent multi-humped solitary waves of this system.

Section 2 considers the traveling waves of (1.3), including the
bifurcation of possible solutions as the system parameters are varied.
This lays the groundwork for both the perturbative solitary wave
solutions, as well as those derived subsequently using multi-infinite
series. Section 3 briefly summarizes the results of [11], while Sections 4
and 5 employ them to derive embedded soliton solutions. Section 6
then significantly generalizes the results of [11] to the case of asym-
metric nonlocal solitary waves. Next, Section 7 considers the dynamics
and stability of both symmetric and asymmetric embedded solitons in
detail. Note that [11] did not treat asymmetric solitary waves at all, and
did not consider the dynamics and stability of either the symmetric or
asymmetric embedded solitons. Section 8 then derives other families of
regular solitary waves using multi-infinite series, and many numerical
tests are performed in different parameter regimes to corroborate the
analytical results, showing the convergence and continuity of the multi-
infinite series solutions. Finally, Section 9 summarizes the results of the
paper. A few key background results from [11] are summarized in the
Appendixes.

2. Traveling wave equation and bifurcation analysis

The Eq. (1.3) can be written in the following form:

𝜕𝑣
𝜕𝑡

+ 𝜕
𝜕𝑥

[

𝛼1
𝑣2

2
+ 𝑏 𝜕

2𝑣
𝜕𝑥2

+ 𝛼2
𝑣3

3
+ 𝛼3𝑣

𝜕2𝑣
𝜕𝑥2

+
(𝛼4 − 𝛼3)

2

( 𝜕𝑣
𝜕𝑥

)2
+ 𝑎 𝜕

4𝑣
𝜕𝑥4

]

= 0, (2.1)

We look for stationary traveling wave solutions. Substituting

𝑣(𝜁 ) = 𝑣(𝑥 − 𝑐𝑡) (2.2)

in (2.1), integrating one time with respect to 𝜁 and setting the constant
of integration to zero, we obtain:

𝑎𝑣′′′′ + 𝑏𝑣′′ − 𝑐𝑣 = −𝛼1
𝑣2

2
− 𝛼2

𝑣3

3
− 𝛼3𝑣𝑣′′ +

(𝛼3 − 𝛼4)
2

𝑣
′2

(2.3)

where ′ = 𝑑
𝑑𝜁

.
The Eq. (2.3) is invariant under the transformation 𝜁 → −𝜁 , which

eans that it is a reversible system [12].
The equilibria of Eq. (2.3) are the solutions of the following equa-

ion:

2
𝑣3

3
+ 𝛼1

𝑣2

2
− 𝑐𝑣 = 0, (2.4)

therefore the trivial equilibrium exists for any choice of the parameters:

𝑣 = 𝑣′ = 𝑣′′ = 𝑣′′′ = 0. (2.5)

If 𝛼2 = 0 there exists also the equilibrium 𝑣 = −2𝑐∕𝛼1; if 𝛼2 ≠ 0 and
𝛼21 + 48𝛼2𝑐 > 0, the following two equilibria also exist in addition to
he origin:

∗
± =

−3𝛼1 ±
√

9𝛼21 + 48𝛼2𝑐

4𝛼2
. (2.6)

These will be considered further later in the context of multi-infinite
solutions, including possible heteroclinic connections or orbits joining
one of these equilibria to the other.
2

We linearize Eq. (2.3) as follows:

𝑎𝑣′′′′ + 𝑏𝑣′′ − 𝑐𝑣 = 0. (2.7)

hose corresponding characteristic equation is:

𝜆4 + 𝑏𝜆2 − 𝑐 = 0. (2.8)

The solutions of Eq. (2.8), and consequently the solutions of
q. (2.3), strictly depend on the value of the discriminant 𝛥 = 𝑏2 + 4𝑎𝑐
nd on the sign of the coefficients 𝑎, 𝑏 and 𝑐. Restricting our interest to
he case 𝑎 ≠ 0 (in fact we are considering a fifth order KdV equation),
e can distinguish the following cases:

(𝑖) 𝑏 = 𝑐 = 0: all the eigenvalues are equal to zero 𝜆1 = 𝜆2 = 𝜆3 =
𝜆4 = 0.

(𝑖𝑖) 𝑐 = 0 and

(𝑖𝑖.1) 𝑎, 𝑏 ≠ 0 of the same sign: Eq. (2.8) admits the solutions
𝜆1 = 𝜆2 = 0, 𝜆3−4 = ±𝑖

√

− 𝑏
𝑎 ;

(𝑖𝑖.2) 𝑎, 𝑏 ≠ 0 of opposite sign: Eq. (2.8) admits the solutions
𝜆1 = 𝜆2 = 0, 𝜆3 =

√

− 𝑏
𝑎 ∈ R+ and 𝜆4 = −

√

− 𝑏
𝑎 ∈ R−.

(𝑖𝑖𝑖) 𝛥 = 0, 𝑐 ≠ 0 and

(𝑖𝑖𝑖.1) 𝑎, 𝑏 ≠ 0 of the same sign: Eq. (2.8) admits the solutions
𝜆1 = 𝜆2 = 𝑖

√

− 𝑏
2𝑎 and 𝜆3 = 𝜆4 = −𝑖

√

− 𝑏
2𝑎 ;

(𝑖𝑖𝑖.2) 𝑎, 𝑏 ≠ 0 of opposite sign: Eq. (2.8) admits the solutions
𝜆1 = 𝜆2 =

√

− 𝑏
2𝑎 ∈ R+ and 𝜆3 = 𝜆4 = −

√

− 𝑏
2𝑎 ∈ R−.

In what follows, to better understand the behavior of the solutions
of the characteristic equation (2.8) as described above, we fix the coef-
ficient 𝑎 and display the bifurcation diagram Figure 1(𝑎) corresponding
to the linearized equation (2.7) in the plane (𝑏, 𝑐). Analogously, we then
fix the parameter 𝑏 and draw the bifurcation diagram Figure 1(𝑏) in
he plane (𝑎, 𝑐). The conditions (𝑖)–(𝑖𝑖𝑖) will arise along codimension-one
urves in the (𝑏, 𝑐) or (𝑎, 𝑐) plane.

CASE 1: Let the parameter 𝑎 be fixed. We define the following co-
dimension one curves:

If a > 0 ∶ 𝐶0 ∶ 𝑐 = 0, 𝑏 > 0, 𝐶1 ∶ 𝑐 = 0, 𝑏 < 0, (2.9)

𝐶2 ∶ 𝑐 = − 𝑏
2

4𝑎
, 𝑏 > 0, 𝐶3 ∶ 𝑐 = − 𝑏

2

4𝑎
, 𝑏 < 0;

If a < 0 ∶ 𝐶0 ∶ 𝑐 = 0, 𝑏 < 0, 𝐶1 ∶ 𝑐 = 0, 𝑏 > 0, (2.10)

𝐶2 ∶ 𝑐 = − 𝑏
2

4𝑎
, 𝑏 < 0, 𝐶3 ∶ 𝑐 = − 𝑏

2

4𝑎
, 𝑏 > 0.

CASE 2: Let the parameter 𝑏 be fixed. We assume 𝑏 > 0. We define the
following co-dimension one curves:

If b > 0 ∶ 𝐶0 ∶ 𝑐 = 0, 𝑎 > 0, 𝐶1 ∶ 𝑐 = 0, 𝑎 < 0, (2.11)

𝐶2 ∶ 𝑎𝑐 = − 𝑏
2

4
, 𝑎 > 0, 𝐶3 ∶ 𝑎𝑐 = − 𝑏

2

4
, 𝑎 < 0;

If b < 0 ∶ 𝐶0 ∶ 𝑐 = 0, 𝑎 < 0, 𝐶1 ∶ 𝑐 = 0, 𝑎 > 0, (2.12)

𝐶2 ∶ 𝑎𝑐 = − 𝑏
2

4
, 𝑎 < 0, 𝐶3 ∶ 𝑎𝑐 = − 𝑏

2

4
, 𝑎 > 0.

In both Cases 1 and 2, the curve 𝐶0 is that one along which the
eigenvalues are as in (𝑖𝑖.1), the curve 𝐶1 is that one along which the
eigenvalues are as in (𝑖𝑖.2), the curve 𝐶2 is that one along which the
eigenvalues are as in (𝑖𝑖𝑖.1) and, finally, the curve 𝐶3 is that one along
which the eigenvalues are as in (𝑖𝑖𝑖.2). The eigenvalues are as in (𝑖)
at the origin of the plane. In Fig. 1, we display the curves 𝐶𝑖 in two
illustrative cases. In particular, we choose 𝑎 = 1 (corresponding to
(2.9)) and 𝑏 = 1 (corresponding to (2.11)), respectively. Fig. 1 thus
shows the curves along which the eigenvalues of Eq. (2.8) change their
structure. In Appendix A we briefly review how this change of structure
define the orbits homoclinic to the fixed point of (2.7) which in turn
correspond to pulse solitary waves of the FKdV5 equation (1.3).
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Fig. 1. Bifurcation diagram corresponding to the characteristic equation (2.8). (a) Co-dimension one curve 𝐶𝑖 , 𝑖 = 0,… , 4 corresponding to definition in (2.9). The parameter 𝑎 = 1.
b) Co-dimension one curve 𝐶𝑖 , 𝑖 = 0,… , 4 corresponding to definition in (2.11). The parameter 𝑏 = 1.
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−

. Background theory

In this Section we shall consider the following perturbed FKdV
quation:

𝜕𝑣
𝜕𝑡

+𝛼1𝑣
𝜕𝑣
𝜕𝑥

+ 𝑏 𝜕
3𝑣
𝜕𝑥3

+ 𝑐1𝑣
𝜕3𝑣
𝜕𝑥3

+ 𝑐2
𝜕𝑣
𝜕𝑥

𝜕2𝑣
𝜕𝑥2

+ 𝑐3𝑣2
𝜕𝑣
𝜕𝑥

+𝑎 𝜕
5𝑣
𝜕𝑥5

= 𝜀𝐹 (𝑣), (3.1)

here:

(𝑣) = −
{

𝑎1𝑣
𝜕3𝑣
𝜕𝑥3

+ 𝑎2
𝜕𝑣
𝜕𝑥

𝜕2𝑣
𝜕𝑥2

+ 𝑎3𝑣2
𝜕𝑣
𝜕𝑥

}

, (3.2)

is the perturbation term with 𝜀 ≪ 1 and 𝑎, 𝑏, 𝑐𝑖, 𝑎𝑖 are constant coeffi-
cients. As in [10], we include perturbations from the integrable case in
the dispersion and nonlinearities.

The Eq. (3.1) belongs to the class of Eq. (1.3) with:

𝛼2 = 𝑐3 + 𝜀𝑎3, 𝛼3 = 𝑐1 + 𝜀𝑎1, 𝛼4 = 𝑐2 + 𝜀𝑎2. (3.3)

Therefore, looking for traveling wave solution 𝑣(𝜁 ) = 𝑣(𝑥 − 𝑐𝑡) and
proceeding as in the previous Section 2, we obtain the following
fourth-order ODE equation:

𝑣′′′′ + 𝑏𝑣′′ − 𝑐𝑣 = −3𝑣2 − 𝑐3
𝑣3

3
− 𝑐1𝑣𝑣′′ +

(𝑐1 − 𝑐2)
2

𝑣
′2
+ 𝜀𝐺(𝑣), (3.4)

with:

𝐺(𝑣) = −
{

𝑎1𝑣𝑣
′′ + 1

2
(𝑎2 − 𝑎1)𝑣

′2
+ 1

3
𝑎3𝑣

3
}

. (3.5)

In what follows, we shall study nonlocal solitary waves and analytically
establish the existence of embedded solitons to Eq. (3.1). To minimize
the number of parameters in the problem we will choose the parameter
set corresponding to the KdV hierarchy:

𝑎 = 1, 𝛼1 = 6, 𝑐1 = 10, 𝑐2 = 20, 𝑐3 = 30. (3.6)

with wave speeds 𝑐 < 0.
Notice that in [10] the coefficient 𝑏 was set equal to 1 (correspond-

ing to the third-order dispersive term in the original PDE), while 𝑏 is
left arbitrary here. While that may seem a minor feature, as we shall
see in the next sections, it leads to entirely new classes of embedded
solitary waves based on perturbations of a disjoint family of solitary
wave solutions to the unperturbed equation and existing in completely
different regions of the parameter space. Since we have fixed the pa-
rameters as in (3.6), the bifurcation analysis of the linearized equation
corresponding to (3.4) is given as in Case 1 of Section 2. Notice that
we shall restrict our discussions to Regions 1, 2 and 4 in Fig. 1(a)
corresponding to 𝑐 < 0.

4. Symmetric nonlocal solitary waves

In this Section we briefly review some essential results on symmetric
nonlocal solitary waves solutions from [11]. Some details are reported
in Appendix B.

For 0 ≠ 𝜀 ≪ 1, we propose the solution 𝑣 of Eq. (3.4) as a regular
perturbation series:

𝑣(𝑧) = 𝑣 (𝜁 ) + 𝜀𝑣 (𝜁 ) + 𝜀2𝑣 (𝜁 ) + 𝜀3𝑣 (𝜁 ) +⋯ . (4.1)
3

0 1 2 3
Once substituted (4.1) into (3.4)–(3.5), a family of equations for 𝑣𝑖
are obtained at each power of 𝜀. The solution for 𝑣0(𝜁 ) is obtained
as in (B.1). The coefficient 𝑣1(𝜁 ) (and therefore the solution 𝑣(𝜁 )) is
nonlocal, as discussed in Appendix B. At infinity the nonlinear terms
decay. Hence, as in [11], these waves behave, asymptotically, as

𝑣1(𝜁 ) → ±𝑅 sin (𝑝𝜁 ± 𝜙), 𝜁 → ±∞, (4.2)

where 𝑅 is the tail amplitude and 𝜙 is the phase of the nonlocal wave.
If we add any multiple of 𝛹3 (given in (B.9)) to 𝑣1, the new function
still remains a symmetric nonlocal solution (see Eq. (B.6)). Hence, there
must be a free parameter in the 𝑣1 solution. In (4.2), there are two
parameters, 𝑅 and 𝜙; however, only one of them is a free parameter.

Going back to Eq. (B.6), and recalling that 𝐿 is self-adjoint, we find
that

⟨𝐺(𝑣0), 𝛹3⟩ =
(

𝑣′′′1 𝛹3 − 𝑣′′1𝛹
′
3 + 𝑣

′
1𝛹

′′
3 − 𝑣1𝛹 ′′′

3 − 𝑏𝑣′1𝛹3 + 𝑏𝑣1𝛹 ′
3
)

|

|

|

∞

−∞
.

(4.3)

Considering only the asymptotic behaviors of 𝑣1 and 𝛹3 [10], we
an conclude that

sin (𝜙 − 𝜙3) = −𝑅 cos (𝜙 − 𝜙2) =
⟨𝐺(𝑣0), 𝛹3⟩

𝑝(4𝑝2 − 1 + 𝑏)
. (4.4)

The formula (4.4) relates the tail amplitude and phase, through the
quantity ⟨𝐺(𝑣0), 𝛹3⟩, which we have already obtained in Eq. (B.16). If
⟨𝐺(𝑣0), 𝛹3⟩ ≠ 0, then 𝑅 ≠ 0. Therefore the solution 𝑣1, as well as 𝑣, is
ruly nonlocal.

When 𝜙−𝜙3 = ±𝜋∕2, or 𝑣1 and 𝛹3 are ninety degrees out of phase,
he tail amplitude is smallest, while it has a simple pole singularity
nd takes its maximum value when 𝜙 − 𝜙3 = ±𝜋. In the latter case, 𝑣1
nd 𝛹3 are exactly in phase or out of phase, as deduced via a resonance
xplanation for infinite tail amplitudes seen in the numerical treatment
n [13]. Higher order corrections to the tail amplitude may be sys-
ematically constructed by calculating later terms in our perturbation
xpansion (4.1).

Eq. (4.4) for the tail amplitude for arbitrary wavespeeds 𝑐 may
e related to similar expressions obtained via exponential asymptotics
pproaches [13–16] in the limit of small wavespeed 𝑐. This may be
een for 𝑐 → 0− and 𝑐 < 0, we have 𝑘 → (𝑐∕𝑏)1∕2, 𝑝→ 𝑏1∕2, and 𝜙3− > 0.
ence, to leading order, (4.4) yields

sin (𝜙) =
−9𝜋|𝑏|5∕2(1 − 𝑏)(2𝑎1 + 𝑎2 − 𝑎3).𝑒−𝑏𝜋∕|𝑐|

1∕2

5(1 − 5𝑏)
. (4.5)

As in [10], we next analyze the existence of truly nonlocal solitary
aves and embedded solitons using (4.5).

. Embedded solitons

When ⟨𝐺(𝑣0), 𝛹3⟩ = 0, that is

2𝑎3(4𝑘2 + 𝑝2)(−6 + 125𝑘2 + 𝑝2 + 5𝑏)

− 𝑎1
(

270𝑘4 − 4𝑝2(−6 + 𝑝2 + 5𝑏) + 𝑘2(6 − 476𝑝2 − 5𝑏)
)

+ 𝑎
(

−1270𝑘4 + 2𝑝2(−6 + 𝑝2 + 5𝑏) + 𝑘2(42 + 218𝑝2 − 35𝑏)
)

= 0, (5.1)
2
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Fig. 2. Isolated curves in the (𝑏, 𝑐) plane where solitons can exist. 𝑐2 is shown dashed.

or

2(2𝑎1 + 𝑎2 − 𝑎3)
[

𝑝4 − 𝑝2(−5𝑏 + 6)
]

− (𝑎1 − 7𝑎2 − 8𝑎3)𝑘2(−5𝑏 + 6)

− 10(27𝑎1 + 127𝑎2 + 100𝑎3)𝑘4 + 2(238𝑎1 + 109𝑎2 − 129𝑎3)𝑘2𝑝2 = 0, (5.2)

the tail amplitude 𝑅 goes to zero. In this case 𝑣1(𝜁 ) is a localized
solution and 𝑣(𝜁 ) is a symmetric solitary wave (to order 𝜀). Higher order
corrections in (4.1) may be systematically calculated to slightly modify
condition (5.2), while leaving 𝑣(𝜁 ) localized. Although we would need
to check this separately, such localized solutions embedded within seas
of delocalized solitary waves with non-zero tail amplitudes typically
reside within, or are embedded inside, the continuous spectrum of
the linearized operator (B.7). Hence they are referred to as embedded
solitons, or ES’s for short [10,13].

Two distinct cases when condition (5.2) is satisfied can be directly
identified, and lead to distinct families of embedded solitons.

1. A one-parameter family of ES’s: After some algebra, condition (5.2)
may be shown to have solutions with 𝑎2 = −𝑎1, 𝑎3 = 𝑎1, 𝑝2 = −𝑘2 = 𝑏∕2,
and parametrized by the free variable 𝑏. This leads to a family of
isolated solitons moving at arbitrary wavespeed 𝑐family = −𝑏2∕4.

2. Isolated embedded soliton families for two distinguished wavespeeds:
When 𝑎3 = 2𝑎1 + 𝑎2, (5.2) yields

−5(𝑎1 + 𝑎2)𝑘2(454𝑘2 + 8𝑝2 − 3(6 − 5𝑏)) = 0. (5.3)

Solving for 𝑝2 gives

𝑝2 = 1
8
(18 − 454𝑘2 − 15𝑏). (5.4)

Then, using that 𝑐 = 𝑏𝑘2 + 𝑘4 and 𝑐 = 𝑝4 − 𝑏𝑝2, or what is the same

𝑘2 + 𝑘4 − 𝑝4 + 𝑏𝑝2 = 0,

e can solve for 𝑘2:
2 = 3

446
(6 − 5𝑏), 𝑘2 = 1

462
(18 − 23𝑏). (5.5)

Therefore, one gets two isolated soliton families moving at wave
peeds:

1 =
3
446

𝑏(6 − 5𝑏) +
(9(6 − 5𝑏)2)
198916

, 𝑐2 =
1
462

𝑏(18 − 23𝑏) +
(18 − 23𝑏)2

213444
.

(5.6)

Contrary to the first case, these wave speeds are valid only up through
(𝜀), and may be refined by computing further terms in the expansion

4.1). Future work will compare these wave speeds to the exact ones
omputed in [17].

In Fig. 2 the curves representing these results are presented in the
𝑏, 𝑐) plane.
4

⟨

Clearly, since 𝑐1 and 𝑐2 remain negative in the region of the (𝑏, 𝑐)
plane shown, with the exception of a very small 𝑏 values, both solitary
wave families correspond to leftward going waves in most of region of
the (𝑏, 𝑐) plane shown in this figure.

Also, note that both curves lie above the boundary curve parabola
𝑐 = − 𝑏2

4 of Fig. 1(a). These are the curves labeled 𝐶2 and 𝐶3 in that
igure. Hence, the solitary waves which we have constructed here lie
n Regions 2 and 4 of Fig. 1(a). Finding embedded solitary waves in
egion 4 is particularly significant, since neither homoclinic orbits (cor-
esponding to regular solitary waves of the original NLPDE) or families
f homoclinics to small periodic solutions (corresponding to solitary
aves with small tails for the original NLPDE) are widely known or
iscussed in the literature in that region of Fig. 1(a) [12]. Solitary
aves in Region 1 are more widely known and have been reported in
arious models [9,12,18], including some created by a so-called orbit
lip bifurcation which creates an infinite family of homoclinic orbits in
his region. For our particular system (3.4), our results here reveal an
nfinite family of homoclinics to small periodic solutions corresponding
o solitary waves with exponentially small tails as shown in [10] for
he special parameter value 𝑏 = 1, with embedded solitons for isolated
arameter sets on the right halves of the 𝑐1 and 𝑐2 curves in Fig. 2.

Next, let us contrast the embedded solitary waves we have derived
bove with those derived by a very similar treatment in [10] using
erturbations of a different family of unperturbed solutions given by
B.5) and only for the specific parameter value 𝑏 = 1. The unique
mbedded solitary waves derived in [10] have wave speeds lying in
he range 𝑐 ∈

(

−∞, 1
4

)

with the parameter 𝑏 = 1. Hence they lie along
he lower half of the vertical line at 𝑏 = 1 shown in red in Fig. 2. It is
traightforward to check that this line starts on the curve 𝐶2 in Fig. 1(a)
nd stretches straight up from there. Hence those embedded solitary
aves in [10] lie along that vertical line at 𝑏 = 1 in regions 3 or 4 of
ig. 1(a).

By contrast, the embedded solitary waves derived in this paper
ased on perturbations of a family of unperturbed solutions (B.1)
disjoint from those used in [10]) are clearly entirely different, and lie
n the parameter curves 𝑐1 and 𝑐2 in Fig. 2 lying in regions 3 and 4 of
ig. 1(a).

. Asymmetric nonlocal solitary waves

Symmetric nonlocal solutions have already been discussed in [11].
ence, we next consider asymmetric nonlocal solitary waves. We start
y revisiting the first-order perturbation solution 𝑣1 in Eq. (B.6). In this
eneral case, the 𝑣1 solution is

1(𝜁 ) = 𝑣1𝑠(𝜁 ) + 𝛾𝛹2(𝜁 ), (6.1)

here 𝑣1𝑠 is the symmetric inhomogeneous solution studied in [11],
2 is the antisymmetric homogeneous solution given in (B.8), and 𝛾 is
n arbitrary constant. This way, 𝑣1 is now antisymmetric if 𝛾 ≠ 0. For

asymptotic behaviors of solution 𝑣1𝑠 given by (4.2), 𝑅 and 𝜙 are related
through (4.4).

We calculate higher order corrections in the perturbation expansion
(4.1) to determine if the asymmetric solution 𝑣(𝜁 ) with 𝑣1 given in (6.1)
can exist. At order 𝜀2, the equation for 𝑣2 is:

𝐿𝑣2 = 𝑊 , (6.2)

here

= −{𝑎1(𝑣0𝑣′′1 + 𝑣1𝑣′′0 ) + (𝑎2 − 𝑎1)𝑣′0𝑣
′
1

+ 𝑎3𝑣20𝑣1 + 3𝑣21 + 10𝑣1𝑣′′1 + 5𝑣
′′2
1 + 30𝑣0𝑣21}. (6.3)

For the solution 𝑣2 to be bounded at infinity, the right hand side
f Eq. (6.2) must be orthogonal to the localized homogeneous solution
′
0. Hence,

′
𝑊 , 𝑣0⟩ = 0. (6.4)
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To calculate the inner product ⟨𝑊 , 𝑣′0⟩, we must recall the form of
operator 𝐿, which implies

⟨𝐿𝑣1, 𝑣
′
1⟩ =

[

𝑣′′′1 𝑣
′
1 +

𝑎2
2
𝑣
′2
1 − 1

2
𝑣
′′2
1 −

𝑎3
2
𝑣21
]

|

|

|

|

∞

−∞

− ∫

∞

−∞

(

3𝑣21 + 5𝑣
′2
1 + 10𝑣1𝑣′′1 + 30𝑣0𝑣21

)

𝑣′0 𝑑𝜁, (6.5)

and recalling Eq. (B.6), we have

⟨𝐿𝑣1, 𝑣
′
1⟩ = ∫

∞

−∞

[

𝑎1(𝑣0𝑣′′1 + 𝑣′′0 𝑣1) + (𝑎2 − 𝑎1)𝑣′0𝑣
′
1

+ 𝑎3𝑣20𝑣1 − 3(2𝑎1 − 𝑎2)𝑣′′0 𝑣1
]

𝑣′0 𝑑𝜁. (6.6)

When Eqs. (6.5) and (6.6) are equated, and 𝑣1 in (6.1) and the
asymptotic behaviors (4.2) and (B.10) of 𝑣1𝑠 and 𝛹2 utilized, we find

⟨𝑊 , 𝑣′0⟩ = 𝛾
[

−𝑐 − 𝑝2(−𝑏 + 3𝑝2)
]

𝑅 cos(𝜙 − 𝜙2)

+ 3(2𝑎1 − 𝑎2)∫

∞

−∞
𝑣′0𝑣

′′
0𝛹2 𝑑𝜁. (6.7)

The integral above can be computed with the help of Mathematica,
and the result is

∫

∞

−∞
𝑣′0𝑣

′′
0𝛹2 𝑑𝜁 = −

𝑝(𝑘2 + 𝑝2)
70

[

6120𝑘2

+ 𝑝4(−216 + 180𝑏 + 17𝑝2) + 𝑘2𝑝2(972 − 810𝑏 + 3373𝑝2)

− 4𝑘4(54 − 45𝑏 + 7390𝑝2)
]

𝜋 csch
(𝜋𝑝
𝑘

)

. (6.8)

Next, substituting Eqs. (B.16), (4.4), and (6.8) into (6.7), yields

𝑊 , 𝑣′0⟩ = −

[

𝛾(−𝑐 + 𝑏𝑝2 − 3𝑝4)𝑅 cos(𝜙 − 𝜙2)

−
3𝛾(2𝑎1 − 𝑎2)

70
𝑝(𝑘2 + 𝑝2)

{

6120𝑘6 + 𝑝4
(

−216 + 180𝑏 + 17𝑝2
)

+ 𝑘2𝑝2
(

972 − 810𝑏 + 3373𝑝2
)

−4𝑘4
(

54 − 45𝑏 + 7390𝑝2
)

}

𝜋 csch
(𝜋𝑝
𝑘

)

]

. (6.9)

Eq. (6.9) is an important intermediate result. We discuss its im-
lications for the existence of asymmetric nonlocal solitary waves
ext.

.0.1. For Hamiltonian perturbations, 𝑎2 = 2𝑎1.
Under such perturbations, if condition (5.1) for localized solitary

waves does not hold, ⟨𝑊 , 𝑣0𝑧⟩ = 0 if either of two conditions are met:

𝛾 = 0 (6.10)

corresponding to symmetric nonlocal waves which have already been
treated earlier;
OR

− 𝑐 + 𝑏𝑝2 − 3𝑝4 = 0, (6.11)

which, together with 𝑐 = 𝑏𝑘2+𝑘4 and 𝑐 = 𝑝4−𝑏𝑝2, result in wavespeeds
𝑐 = −𝑝4 = −𝑏2∕4, 𝑝2 = 𝑏∕2.
OR

𝑅 cos (𝜙 − 𝜙2) = −
⟨𝐺(𝑣0), 𝛹3⟩

𝑝(4𝑝2 − 1 + 𝑏)
= 0 (6.12)

which corresponds to the localized embedded solitary wave families
with:
a. 𝑎2 = −𝑎1, 𝑎3 = 𝑎,1 𝑝2 = −𝑘2 = 𝑏∕2, and arbitrary wavespeed
𝑐𝑓𝑎𝑚𝑖𝑙𝑦 = −𝑏2∕4. However, this is inconsistent with the requirement
𝑎2 = 2𝑎1 for Hamiltonian perturbations.
OR
b. the isolated embedded soliton families with 𝑝 given by (5.4), and
the wavespeeds in (5.6) with the additional requirement 𝑎2 = 2𝑎1 for
Hamiltonian perturbations.
5

t

6.0.2. For non-Hamiltonian perturbations, 𝑎2 ≠ 2𝑎1.
For non-Hamiltonian perturbations, if condition (5.1) for localized

solitary waves does not hold, ⟨𝑊 , 𝑣′0⟩ = 0 if any of three conditions are
met:

− 𝑐 + 𝑏𝑝2 − 3𝑝4 = 0, 𝑝2 = −𝑘2, (6.13)

which imply

𝑏 = 1
2
, 𝑘2 = −𝑝2 = −1

4
, 𝑐𝐴𝑊 = − 1

16
, (6.14)

with the subscript denoting asymmetric waves;
OR

− 𝑐 + 𝑏𝑝2 − 3𝑝4 = 0, 𝑝 = 0, 𝑘2 = 0, 𝑜𝑟 − 𝑏 (6.15)

hich yields standing waves with wavespeed 𝑐 = 0;
R

𝑐 + 𝑏𝑝2 − 3𝑝4 = 0, and
6120𝑘6 + 𝑝4

(

−216 + 180𝑏 + 17𝑝2
)

+ 𝑘2𝑝2
(

972 − 810𝑏 + 3373𝑝2
)

4𝑘4
(

54 − 45𝑏 + 7390𝑝2
)

}

= 0 (6.16)

sing 𝑐 = 𝑏𝑘2 + 𝑘4 = 𝑝4 − 𝑏𝑝2, this yields the distinguished or isolated
ets of 𝑏 values and associated asymmetric wave speeds:

𝑎. 𝑐𝐴𝑊 = −0.0045177, 𝑏 = −0.134398, (6.17)

𝑏. 𝑐𝐴𝑊 = −2.4497, 𝑏 = 2.40807, (6.18)

AND

𝑐. 𝑐𝐴𝑊 = −34.0021, 𝑏 = 11.6623. (6.19)

7. Dynamics of ESs

In this section we follow the treatment in [10] to study the evolu-
tion of FKdV solitons under general perturbations. We apply dynamic
soliton perturbation theory to Eq. (3.4), while heavily utilizing results
from the previous sections.

When 𝜀 = 0, Eq. (3.4) is the integrable FKdV equation, which
supports a family of solitons given by (2.2) and (B.1). These move at
constant speed 𝑐 and are stationary. When perturbations are imposed,
that is, when 0 ≠ 𝜀 ≪ 1, this velocity changes depending on the slow
time scale 𝑇 = 𝜀2𝑡. Moreover, energy radiation rises as well, and so it
is appropriate to introduce the spatial coordinate

𝜁 = 𝑥 − ∫

𝑡

0
𝑐 𝑑𝑇 , (7.1)

which moves with the soliton.
Then

𝑣(𝑥, 𝑡) = 𝑣
(

𝑥 − ∫

𝑡

0
𝑐 𝑑𝑇

)

≡ 𝑣(𝜁 ).

Considering this, Eq. (3.4) becomes,

𝑣𝑡 − 𝑐𝑣′ + 6𝑣𝑣′ + 𝑏𝑣′′′ + 𝑣′ + 10𝑣𝑣′′′ + 20𝑣′𝑣′′ + 30𝑣2𝑣′ = 𝜀𝐹 (𝑣), (7.2)

ith the ′ denoting a derivative with respect to 𝜁 .
We propose a solution with the form

𝑣(𝜁, 𝑡) = 𝑣0(𝜁, 𝑇 ) + 𝜀𝑣1(𝜁, 𝑡, 𝑇 ) + 𝜀2𝑣2(𝜁, 𝑡, 𝑇 ) +⋯ . (7.3)

Here, 𝑣0 is given in Eq. (B.1) but because 𝑐 = 𝑐(𝑇 ), we have 𝑘 = 𝑘(𝑇 ),
nd 𝑣0 depends on the slow time 𝑇 as well.

At 𝜖 order, the following equation is obtained:
𝜕𝑣1
𝜕𝑡

= (𝐿𝑣1)′ = 𝐺′(𝑣0) = 𝐹 (𝑣0). (7.4)

he nonhomogeneous term in (7.4) continuously excites the continuous
ave (cw) tails that propagate into the far field. A significant observa-

ion is that these cw tails only appear ahead of the soliton, not behind
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it. This is due to the fact that the group velocity of the cw waves in 𝑣1
relative to the moving frame is positive for all 𝐶 > 0. Consequently, for
𝑡 ≫ 1,

𝑣1(𝜁, 𝑡) →
{

𝑅̃ sin (𝑝𝜁 + 𝜙̃), 𝑥 ≫ 1,
0, 𝑥 ≪ −1.

(7.5)

As 𝑡 tends to infinity, the solution 𝑣1 approaches a steady state
with the asymptotic behavior described in (7.5). In this case, the time
derivative in Eq. (7.4) can be neglected. Integrating once with respect
to 𝜁 , and utilizing the asymptotic behavior (7.5) of 𝑣1 at negative
infinity, we find that the steady-state solution satisfies (B.6) and the
boundary condition (7.5).

Furthermore, by exploiting the self-adjoint property of 𝐿 and using
Eqs. (B.13) and (4.3), along with the asymptotic behaviors described in
Eqs. (B.10), (B.11), and (7.5), the following results can be derived:

⟨𝐺(𝑣0), 𝛹2⟩ = 𝑝(2𝑝2 − 𝑏)𝑅̃ sin (𝜙̃ − 𝜙2) = 0, (7.6)

⟨𝐺(𝑣0), 𝛹3⟩ = 𝑝(2𝑝2 − 𝑏)𝑅̃ sin (𝜙̃ − 𝜙3). (7.7)

Therefore, the amplitude 𝑅̃ and phase 𝜙̃ can be determined as follows:

𝑅̃ =
⟨𝐺(𝑣0), 𝛹3⟩

𝑝(2𝑝2 − 𝑏)
, 𝜙̃ = 𝜙2 (7.8)

It is important to note that ⟨𝐺(𝑣0), 𝛹3⟩ has been provided in
Eq. (B.16). It should also be mentioned that the alternative solution to
Eqs. (7.6)–(7.7) is 𝜙̃ = 𝜙2 ± 𝜋, and 𝑅̃ is the negative of the expression
given in (7.8). However, this solution leads to the same tail behavior
(7.5) as (7.8), and therefore can be disregarded.

Eq. (7.9) represents another significant result of this article. Firstly,
𝜙̃ = 𝜙2 indicates that the phase of the cw tail ahead of the soliton is
the same as the phase of the antisymmetric homogeneous solution at
infinity. At this phase, 𝑅̃ is minimized, as can be observed by checking
Eqs. (B.13) and (7.7). Hence, when perturbed, the soliton emits the
minimal possible cw tail radiation [10]. Secondly, the tail amplitude 𝑅̃
of the one-sided nonlocal solitary wave is twice that of the symmetric
nonlocal wave with the same phase, as verified in Eqs. (4.4) and (7.7).

The steady-state solution 𝑣1 can be decomposed as follows:

𝑣1(𝜁 ) = 𝑣1𝑠(𝜁 ) +
1
2
𝑅̃𝛹2(𝜁 ), (7.9)

where 𝑣1𝑠 represents the symmetric component and exhibits the follow-
ing asymptotic behavior:

𝑣1𝑠(𝜁 ) → ±1
2
𝑅̃ sin (𝑝𝜁 ± 𝛹2), 𝜁 → ±∞. (7.10)

Therefore, the tail amplitude 𝑅̃ of 𝑣1 is twice that of the symmetric
nonlocal wave 𝑣1𝑠.

With the first-order solution 𝑣1 fully determined, we can proceed to
order 𝜖2. The equation for 𝑣2 is given by:
𝜕𝑣2
𝜕𝑡

+ (𝐿𝑣2)′ = 𝑊 ′ −
𝜕𝑣0
𝜕𝑇

, (7.11)

where the expression for 𝑊 is provided in Eq. (6.3). By using (7.11),
t can be found that:
𝜕⟨𝑣2, 𝑣0⟩

𝜕𝑡
= ⟨𝑊 ′ −

𝜕𝑣0
𝜕𝑇

, 𝑣0⟩, (7.12)

which implies that we must satisfy ⟨𝑊𝜁−𝑣0𝑇 , 𝑣0⟩ = 0 to suppress secular
growth in 𝑣2.

Using the above result, together with the relation 𝑐 = 𝑏𝑘2+𝑘4 yields

𝑑𝑐
𝑑𝑇

= − 2
15𝑘

(2𝑘2 + 𝑏)⟨𝑊 , 𝑣′0⟩ (7.13)

for the slow or long-time modulation of the wavespeed. The fixed points
of this equation yield the possible solitary waves, both symmetric and
asymmetric ones, and their stability allows us to deduce the stability of
the corresponding wave solutions. We now proceed to employ (7.13) to
investigate the dynamics of both the embedded solitons and non-local
solitary waves of our system.
6

v

Fig. 3. Stability diagram for (7.14) and (6.13).

Fig. 4. Stability diagram for (6.17)–(6.19).

First, note that the pre-factor (2𝑘2 + 𝑏) on the right hand side of
(7.13) introduces an additional condition

2𝑘2 + 𝑏 = 0, (7.14)

or the existence of a solitary wave, over and above conditions (6.11),
6.13), (6.15), and (6.17)–(6.19) discussed at the end of the previous
ection. Of these, it is easy to check that conditions (7.14) and (6.13)
re in fact equivalent. The plot of 𝑑𝑐

𝑑𝑇
versus 𝑐 is shown below for a

representative parameter set 𝑎1 = 0.5, 𝑎2 = 0.7, 𝑎3 = 2, 𝛾 = 0.1. (See
Fig. 3.)

Clearly, the solitary wave with speed 𝑐 = −1∕16 is stable, with the
flow returning any perturbation from that fixed point of the wavespeed
back to the stationary value. Note also that these stability results remain
valid for the corresponding symmetric solitary waves with 𝛾 = 0 because
he first term inside the square bracket in (6.9) is identically zero even with
≠ 0 in this case.

Next, for the cases in (6.17)–(6.19), the plot of 𝑑𝑐
𝑑𝑇

versus 𝑐 is shown
below for the representative parameter set 𝑎1 = 0.5, 𝑎2 = 0.7, 𝑎3 = 2, 𝛾 =
.1. (See Fig. 4.)

So from the sign of 𝑑𝑐
𝑑𝑇

, the stationary points corresponding to soli-
tary waves with wavespeeds 𝑐 = −34.0021,−1.4497 and 𝑐 = −0.0045157
are respectively unstable, stable, and unstable, with the flow below and
above bringing it back to the stable point for the second case, and the
flow below and above being away from the unstable fixed points in the
first and third cases.

For the case (6.15), 𝑑𝑐
𝑑𝑇

= 0 for all 𝑏 for the subcase 𝑘 = 0, and
hence this is a degenerate case. For the other subcases in (6.15) with
𝑘2 = −𝑏, it is straightforward to check that the fixed point of 𝑑𝑐

𝑑𝑇
or

solitary waves have wavespeed 𝑐 = 0, or are stationary. Their stability
around this stationary value is shown in Fig. 5.

Clearly, the flow is away from the stationary value or solitary
wavespeed 𝑐 = 0. Hence these solitary waves are unstable.

For the first Hamiltonian case (6.11) with the representative param-
eter set 𝑎1 = 0.5, 𝑎2 = 0.7, 𝑎3 = 2, 𝛾 = 0.1, the wavespeeds may be real
for a little perturbation 𝛿𝑏 around any value of 𝑏 as shown in Fig. 6.

However, numerical evaluation yields imaginary values of 𝑑𝑐
𝑑𝑇

,
hence the fixed point or possible solitary wave at 𝑏 = 0, 𝛿𝑏 = 0 is not a
alid one.
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Fig. 5. Stability diagram for (6.15).

Fig. 6. Wavespeed for perturbation 𝛿𝑏 around various values of 𝑏 for the case in (6.11).

Next, we consider the Hamiltonian case in (6.12). As discussed in
the paragraph following (6.12), the only consistent possibilities are
the isolated embedded soliton families with 𝑝 given by (5.4), and the
wavespeeds in (5.6) with the additional requirement 𝑎2 = 2𝑎1 for
Hamiltonian perturbations.

Considering these numerically for the representative parameter set
𝑎1 = 1.5, 𝑎2 = 3, 𝑎3 = 5, 𝛾 = 0.1, and the first wavespeed 𝑐1 = 3

446
𝑏(6 −

5𝑏) +
(9(6 − 5𝑏)2)
198916

in (5.6), 𝑑𝑐
𝑑𝑇

takes imaginary values for small devia-
tions around its fixed point or possible solitary wave at 𝑏 = 2.92917.
Hence this is not a genuine possibility for a solitary wave solution.
However, for the second wavespeed 𝑐2 = 1

462
𝑏(18 + 23𝛽) +

(18 − 23𝑏)2

213444
in (5.6), 𝑑𝑐

𝑑𝑇
has zeros, corresponding to possible solitary waves, at

various values, including 𝑏 = −0.136276,−0.463727,−1.13942,… . The
corresponding stability diagram is shown in Fig. 7.

Clearly, stability switches in this case, with solitary waves at any
root 𝑐 = 𝑐𝑖 of 𝑑𝑐

𝑑𝑇
being stable(unstable) if 𝑑𝑐

𝑑𝑇
> 0 just below(above)

𝑐 = 𝑐𝑖, and 𝑑𝑐
𝑑𝑇

< 0 just above(below) it.
Finally, we briefly explicitly discuss the stability and dynamics of

the three families of localized embedded solitary waves discussed in the
paragraphs following (5.2). Asymmetric solutions with 𝛾 ≠ 0 may exist
for several cases. However, only two cases of non-trivial fixed points of
(7.13), or solitary waves, need to be discussed separately.

The first is the same as those in (6.15) and (6.13) which have
already been considered earlier in detail for both symmetric (𝛾 = 0) and
7

Fig. 7. Stability diagram for (6.11) and the second wavespeed in (5.6).

asymmetric (𝛾 ≠ 0) localized embedded solitary waves. The second non-
trivial fixed-point of (7.13), or solitary wave, corresponds to 𝑝2 = −𝑘2.
In this second case, this fixed point or the corresponding solitary wave
may be either stable or unstable depending not just on 𝑏, but also on
the asymmetry parameter 𝛾 as well as 𝑎1 and 𝑎2. Hence, stability needs
to be worked out on a case by case basis for each set of values of these
four parameters.

In the next section we change gears and employ infinite series to
compute homoclinic orbits of the traveling wave ODE (2.3) correspond-
ing to traveling pulse solutions of the FKdV equation.

8. Analytic and numerical regular pulse solutions

In this Section we shall look for pulse solutions of Eq. (1.3). To this
aim we shall compute Shil’nikov-type homoclinic orbits at the origin of
the corresponding traveling wave equation (2.3), as given below:

𝑣(𝜁 ) =

⎧

⎪

⎨

⎪

⎩

𝑣+(𝜁 ) =
∑∞
𝑘=1 𝑎𝑘𝑒

𝑘𝛼𝜁 + 𝑐.𝑐., if 𝜁 > 0
𝑣0, if 𝜁 = 0
𝑣−(𝜁 ) =

∑∞
𝑘=1 𝑏𝑘𝑒

𝑘𝛽𝜁 + 𝑐.𝑐.. if 𝜁 < 0
(8.1)

The solution 𝑣(𝜁 ) in (8.1) should tend to zero when 𝜁 → ±∞, therefore
𝛼 and 𝛽 should be such that the following conditions hold:

Re(𝛼) < 0 and Re(𝛽) > 0. (8.2)

Moreover, the value 𝑣(0) = 𝑣0 will be the maximum of the solitary
solution. The coefficients 𝑎𝑘 and 𝑏𝑘, with 𝑘 ≥ 1 are arbitrary coefficients
to be determined.

We firstly determine the solution 𝑣+(𝜁 ) for 𝜁 > 0. Once substituted
𝑣+(𝜁 ), as defined in (8.1), into Eq. (2.3), we obtain:
∞
∑

𝑘=1

(

𝑎(𝑘𝛼)4 + 𝑏(𝑘𝛼)2 − 𝑐
)

𝑎𝑘𝑒
𝑘𝛼𝜁 = 𝐹1 + 𝐹2, (8.3)

where:

𝐹1 =

{

0 if 𝑘 = 1
∑∞
𝑘=2 𝐹

(𝑘)
1 if 𝑘 > 1

, 𝐹2 =

{

0 if 𝑘 = 1, 2
∑∞
𝑘=3 𝐹

(𝑘)
2 if 𝑘 > 2

,

(8.4)
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n
c

n
o

(

with:

𝐹 (𝑘)
1 =

𝑘−1
∑

𝑖=1

(

−𝛼3(𝑘 − 𝑖)2𝛼2 +
1
2
(𝛼3 − 𝛼4)𝑖𝛼2 −

𝛼1
2

)

𝑎𝑘−𝑖𝑎𝑖𝑒
𝑘𝛼𝜁 , (8.5)

𝐹 (𝑘)
2 =

𝑘−1
∑

𝑗=2

𝑗−1
∑

𝑙=1
−
𝛼2
3
𝑎𝑘−𝑗𝑎𝑗−𝑙𝑎𝑙𝑒

𝑘𝛼𝜁 . (8.6)

We now compare in (8.3) the coefficients of 𝑒𝑘𝛼𝑧 for each 𝑘, so that a
sequence of equations, in the unknowns 𝛼 and 𝑎𝑘, is obtained.

For 𝑘 = 1 we have:
(

𝑎𝛼4 + 𝑏𝛼2 − 𝑐
)

𝑎1 = 0. (8.7)

Assuming 𝑎1 ≠ 0, Eq. (8.7) is satisfied when 𝛼 is a solution of the
characteristic equation (2.8). We look for a root of Eq. (2.8) which
satisfies condition in (8.2). As reviewed in Appendix A, in Region 1
depicted in Fig. 1, the solutions of the characteristic equation (2.8) are
of the form ±𝜆±𝑖𝜔. We thus select the system parameters in such Region
1, so that condition (8.2) holds choosing the following solution:

𝛼 = −𝜆 + 𝑖𝜔. (8.8)

The coefficient 𝑎1 is still undetermined at this level.
For 𝑘 > 1, we obtain:

𝑝(𝑘𝛼)𝑎𝑘 = 𝐹 (𝑘)
1 + 𝐹 (𝑘)

2 , (8.9)

where:

𝑝(𝑘𝛼) = 𝑎(𝑘𝛼)4 + 𝑏(𝑘𝛼)2 − 𝑐. (8.10)

Notice that 𝑝(𝑘𝛼) ≠ 0 for 𝑘 > 1.
For 𝑘 = 2, Eq. (8.9) reads:

𝑝(2𝛼)𝑎2 = −1
2
(

(𝛼3 + 𝛼4)𝛼2 + 𝛼1
)

𝑎21, (8.11)

where 𝑝(𝑘𝛼) is defined in (8.10).
Therefore, 𝑎2 can be given in terms of 𝑎1 in the form:

𝑎2 = 𝜑2𝑎
2
1 (8.12)

where:

𝜑2 = −
(𝛼3 + 𝛼4)𝛼2 + 𝛼1

2𝑝(2𝛼)
(8.13)

is a known coefficient, computed in terms of the parameters of Eq. (2.3)
and the exponent 𝛼 obtained at order 𝑘 = 1.

Let us iterate the analysis computing Eq. (8.9) for 𝑘 = 3:

𝑝(3𝛼)𝑎3 = −1
2
(

(7𝛼3 + 3𝛼4)𝛼2 + 2𝛼1
)

𝑎1𝑎2 −
𝛼2
3
𝑎31. (8.14)

Taking into account the expression for 𝑎2 in terms of 𝑎1 obtained in
(8.12), Eq. (8.14) gives 𝑎3 in terms of 𝑎1:

𝑎3 = 𝜑3𝑎
3
1, with 𝜑3 = −

3
(

(7𝛼3 + 3𝛼4)𝛼2 + 2𝛼1
)

𝜑2 + 2𝛼2
6𝑝(2𝛼)𝑝(3𝛼)

. (8.15)

In general, for 𝑘 > 3, the series coefficients 𝑎𝑘 have the following
expression:

𝑎𝑘 =
𝐹 (𝑘)
1 + 𝐹 (𝑘)

2
𝑝(𝑘𝛼)

, (8.16)

and 𝐹 (𝑘)
1 and 𝐹 (𝑘)

2 can be inductively obtained as the product of 𝑎𝑘1
with a known quantity, computed in terms of the exponent 𝛼 and the
parameters of Eq. (2.3), so that the coefficients 𝑎𝑘 have the following
expression for all 𝑘 > 1:

𝑎𝑘 = 𝜑𝑘𝑎
𝑘
1 . (8.17)

Using the solution in (8.8) for 𝛼 and the coefficients 𝑎𝑘, with 𝑘 > 1,
given in (8.17), then the first part 𝑣+(𝜁 ) of the homoclinic orbit (8.1)
has been computed in terms of the coefficient 𝑎1:

𝑣+(𝜁 ) = 𝑎1𝑒
𝛼𝜁 +

∞
∑

𝜑𝑘𝑎
𝑘
1𝑒
𝑘𝛼𝜁 + 𝑐.𝑐.. (8.18)
8

𝑘=2
w

Proceeding as above to compute the solution 𝑣−(𝜁 ) in (8.1), we get:

𝛽 = 𝜆 + 𝑖𝜔 and 𝑣−(𝜁 ) = 𝑏1𝑒
𝛽𝜁 +

∞
∑

𝑘=2
𝜓𝑘𝑏

𝑘
1𝑒
𝑘𝛽𝜁 + 𝑐.𝑐.. (8.19)

We recall that Eq. (2.3) is reversible, therefore the solution 𝑣(𝜁 )
in (8.1) should be symmetric with respect to 𝜁 = 0. Therefore, from
expressions (8.18) and (8.19), it follows that:

𝜑𝑘 = 𝜓𝑘. (8.20)

Since the solution in (8.1) should be continuous in 𝜁 = 0, we impose:

𝑣+(0) = 𝑣0 = 𝑣−(0), (8.21)

so that it is sufficient to choose 𝑎1 = 𝑏1, with 𝑎1 satisfying:

𝑎1 +
∞
∑

𝑘=2
𝜙𝑘𝑎

𝑘
1 + 𝑐.𝑐. = 𝑣0. (8.22)

In order to determine 𝑎1, we truncate the sum in (8.22) at some 𝑘 =𝑀 ,
so that 𝑎1 is a solution of 𝑀−degree polynomial. This truncation can be
done because the series in (8.1) converges. In fact, following the same
lines as in [19], it is straightforward to obtain the following bound for
the series coefficients:

|𝑎𝑘| < 𝑙(𝛼3, 𝛼4, 𝜉)−(𝑘+1)|𝑎1|
𝑘, (8.23)

where the constant 𝑙(𝛼3, 𝛼4, 𝜉) depends on the parameters 𝛼3 and 𝛼4
of Eq. (2.3) and also on the Euler’s constant 𝜉. The bound given in
(8.23) validates the steep fall-off in the magnitude of the late terms
of the series solution (8.1).

We thus numerically compute the solution of the truncated
𝑀−degree polynomial corresponding to (8.22). This solution is not
unique, therefore also the homoclinic orbit in (8.1) is not unique.

8.1. Numerical investigation of regular pulse solutions

We now test the above analytical results specifying the parameters
of the traveling wave equation corresponding to the FKdV equation
(2.3) in some cases already known in literature and for which traveling
wave solutions have been already investigated.

Choosing the parameters as in the numerical tests given below, we
obtain that the bound in (8.23) can be evaluated as:

|𝑎𝑘| < 10−(𝑘+1)|𝑎1|
𝑘, 𝑘 > 4. (8.24)

Therefore, the coefficients |𝑎𝑘|, with 𝑘 > 4, can be bounded by some
constant 𝐿 > 0. The series of absolute values associated to 𝑣+(𝜁 ) and
𝑣−(𝜁 ), given in (8.1), can be bounded by 𝐿 times a convergent expo-
ential (geometric) series, so that the series solution (8.1) is absolutely
onvergent, and hence convergent due to the Comparison Test.

We underline that the later coefficients, computed in the following
umerical tests drop off sharply in magnitude. In particular, we have
bserved that the coefficients 𝜑𝑘 and 𝜓𝑘, with 𝑘 > 20, are order 10−16.
Numerical test 1 We firstly re-obtain the regular solitons found

in [9]. The authors look for stationary solutions of the FKdV in the form
of traveling waves for the following fourth-order ODE (see the Eq. (13)
in [20]):

𝐵𝑣′′′′ + 𝑣′′ − 𝑉 𝑣 = −𝑣
2

2
− 𝑠

3
𝑣3 −

𝐺1
2
𝑣𝑣′′ + 1

2
(3𝐺1 − 𝐺2)𝑣

′2, (8.25)

where ′ = 𝑑
𝑑𝜁

. Notice that Eq. (8.25) has exactly the same terms as in
(2.3) with:

𝑎 = 𝐵, 𝑏 = 1, 𝑐 = 𝑉 , 𝛼1 = 1, 𝛼2 = 𝑠, 𝛼3 = 𝐺1, 𝛼4 = 𝐺2. (8.26)

The bifurcation diagram is as in Fig. 1(b) considered in the plane
𝐵, 𝑉 ). We choose the parameters as in Fig. 9(a) of the paper [20],
here the case of negative cubic term 𝑠 = −1 is investigated. With
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Fig. 8. Series solutions (8.1) for the traveling wave equation (8.25). The parameters 𝐵 = 8∕5, 𝐺1 = 𝐺2 = 0 and 𝑠 = −1 are chosen as in Fig. 9(a) of the paper [20]. (a) For
= −0.25, we have 𝛼 = −0.2035 ± 𝑖0.5949, we choose 𝑣0 = −0.25 and truncate the continuity condition (8.22) at 𝑀 = 20. The solid line corresponds to the solution (8.1) choosing

1 = −0.125 which solves the truncated equation (8.22). For 𝑉 = −0.5, we have 𝛼 = −0.3511± 𝑖0.6601, we choose 𝑣0 = −0.65 and truncate the continuity condition (8.22) at 𝑀 = 20.
he dotted line corresponds to the solution (8.1) choosing 𝑎1 = −0.3297 which solves the truncated equation (8.22). For 𝑉 = −1, we have 𝛼 = −0.4889± 𝑖0.7427, we choose 𝑣0 = −1.3
nd truncate the continuity condition (8.22) at 𝑀 = 20. The dashed line corresponds to the solution (8.1) choosing 𝑎1 = −0.6631 which solves the truncated equation (8.22).(b)
he series solution (8.1) for 𝑉 = −0.25 choosing other values of 𝑎1 which satisfy the continuity condition (8.22).
Fig. 9. Series solutions (8.1) for the traveling wave equation (8.25). (a) The parameters 𝐵 = 1∕5, 𝐺1 = 𝐺2 = 0 and 𝑠 = −1 are chosen as in Fig. 10(a) of the paper [20]. For
𝑉 = −1.3, we choose 𝑣0 = −0.5 and truncate the continuity condition (8.22) at 𝑀 = 20. The solid line corresponds to the solution (8.1) choosing 𝑎1 = −0.2477 which solves the
truncated equation (8.22). For 𝑉 = −1.6, we choose 𝑣0 = −1.25 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing
1 = −0.6617 which solves the truncated equation (8.22). (b) The parameters 𝐵 = 1, 𝑉 = −0.5, 𝐺2 = 3𝐺1 and 𝑠 = −1 are chosen as in Fig. 13(a) of the paper [20]. For 𝐺1 = 0,
e choose 𝑣0 = −0.7 and truncate the continuity condition (8.22) at 𝑀 = 20. The solid line corresponds to the solution (8.1) choosing 𝑎1 = −0.3526 which solves the truncated

quation (8.22). For 𝐺1 = −3, we choose 𝑣0 = −0.8 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = −0.4104
hich solves the truncated equation (8.22). For 𝐺1 = 3, we choose 𝑣0 = −0.5 and truncate the continuity condition (8.22) at 𝑀 = 20. The dashed line corresponds to the solution

8.1) choosing 𝑎1 = −0.28 which solves the truncated equation (8.22). For 𝐺1 = 12, we choose 𝑣0 = −0.15 and truncate the continuity condition (8.22) at 𝑀 = 20. The solid line
orresponds to the solution (8.1) choosing 𝑎1 = −0.0863 which solves the truncated equation (8.22).
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= 8∕5 and 𝐺1 = 𝐺2 = 0, we should choose 𝑉 < −1∕(4𝐵) = −0.1563 in
uch a way to consider a parameter set in Region 1 (below the curve 𝐶2
n Fig. 1(b)). The value 𝑉 = −0.25, chosen in the numerical simulation
n Fig. 9(a) of [20], satisfies this condition, in fact the solution of the
haracteristic equation (2.8) are ±0.2035 ± 𝑖0.5949. We thus choose
= −0.2035 ± 𝑖0.5949, fix 𝑣0 = −0.25, truncate the series solution at
= 20 and solve Eq. (8.22), which has four real solutions 𝑎1 = −0.125

r 𝑎1 = −6.2098 or 𝑎1 = 10.0266 or 𝑎1 = −14.9554. Choosing 𝑎1 =
0.125, we draw the series solution as the solid line in Fig. 8(a) which

eproduce the regular soliton obtained in Fig. 9(a) of the paper [20].
he solutions corresponding to the other values of 𝑎1 which satisfy the
runcated continuity condition (8.22) are the homoclinic orbits drawn
n Fig. 8(b). We also reconstruct, using the series solution (8.1), the
egular solitons for 𝑉 = −0.5 and 𝑉 = −1 (see Fig. 8(a)).

In the following Fig. 9(a) we choose the parameters as in Fig. 10(a)
f the paper [20]. With 𝐵 = 1∕5, the suitable values of 𝑉 , so that
he convergent series solution approach works, should be chosen less
han 1∕(4𝐵) = −1.25 (in Region 1 below the curve 𝐶2 in Fig. 8(b)).
oth the values 𝑉 = −1.3 and 𝑉 = −1.6 chosen in Fig. 10(a) of [20]
atisfy this condition, therefore we compute the series solutions shown
n Fig. 9(a) corresponding to the regular solitons obtained in Fig. 10(a)
f the paper [20] (see details into the caption of Fig. 9(a)).

Finally, we investigate the regular solitons arising for values of 𝐺1
nd 𝐺2 different form zero, choosing the parameters as in Fig. 13(a) of
he paper [20]. Since 𝐵 = 1, the value of 𝑉 should be chosen less than
1∕(4𝐵) = −0.25 so that the eigenvalues of the characteristic equation
9

2.8) are as in Region 1 below the curve 𝐶2 in Fig. 8(b). In Fig. 13(a)
f [20] the value of the parameter 𝑉 is −0.5, therefore the convergent
eries solution (8.1) can be computed. The resulting regular soliton is
iven in Fig. 9(b) and the details are all reported into the caption of
he same figure.
Numerical test 2 Let us now consider the following equation:

2
15
𝑣′′′′ + 𝑏𝑣′′ − 𝑐𝑣 = −3

2
𝑣2 − 𝜇𝑣𝑣′′ + 3

2
𝜇𝑣

′2, (8.27)

hich has been investigated in [12,18]. The Eq. (8.27) corresponds to
2.3) with:

= 2
15
, 𝛼1 = 3, 𝛼2 = 0, 𝛼3 = 𝜇, 𝛼4 = 4𝜇. (8.28)

he bifurcation diagram of Eq. (8.27) is qualitatively equal to that
ne drawn in Fig. 1(a), with 𝑎 fixed positive (in this case the concave
arabola has the equation 𝑐 = −15

8
𝑏2). The homoclinic orbits as in (8.1)

can be therefore computed in Region 1 (below the parabola) where the
origin is a saddle-focus. In Fig. 10(a) we fix 𝑏 = −4∕3 and 𝑐 = −3.34 or
= −3.5 so that the solutions of the characteristic equation (2.8) are

s in Region 1 (below the curve 𝐶2), finding the two regular solitons
hown in Fig. 10(a). In Fig. 10(b) we show the regular solitons arising
nce we choose the parameters so that the eigenvalues are as in Region
, but below the curve 𝐶3.
Numerical test 3 We consider the traveling wave equation corre-

ponding to the FKdV as given in [10]:

′′′′ + 𝑣′′ − 𝑐𝑣 = −3𝑣2 − 𝑐 𝑣3 − 𝑐 𝑣𝑣′′ +
(𝑐1 − 𝑐2)𝑣

′2
. (8.29)
3 3 1 2
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Fig. 10. Series solutions (8.1) for the traveling wave equation (8.27). (a) The parameters are chosen as 𝜇 = 1, 𝑏 = − 4
3
. For 𝑐 = −3.34, we choose 𝑣0 = 1.5 and truncate the continuity

condition (8.22) at 𝑀 = 20. The solid line corresponds to the solution (8.1) choosing 𝑎1 = 1.6375 which solves the truncated equation (8.22). For 𝑐 = −3.5, we choose 𝑣0 = −0.5
and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = −0.2280 which solves the truncated equation (8.22). (b)
The parameters are chosen as 𝜇 = 1, 𝑏 = 1.5. For 𝑐 = −4.44, we choose 𝑣0 = 1.5 and truncate the continuity condition (8.22) at 𝑀 = 20. The solid line corresponds to the solution
(8.1) choosing 𝑎1 = 0.6216 which solves the truncated equation (8.22). For 𝑐 = −6, we choose 𝑣0 = −0.5 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line
corresponds to the solution (8.1) choosing 𝑎1 = 0.6734 which solves the truncated equation (8.22).
Fig. 11. Series solutions (8.1) for the traveling wave equation (8.29). (a) The parameters are chosen as (𝑐1 , 𝑐2 , 𝑐3) =
( 110

19
, 230
19

,− 60
19

)

. For 𝑐 = −0.26, we choose 𝑣0 = 0.6 and
truncate the continuity condition (8.22) at 𝑀 = 20. The solid line corresponds to the solution (8.1) choosing 𝑎1 = 0.2457 which solves the truncated equation (8.22). For 𝑐 = −1,
we choose 𝑣0 = −0.6 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = −0.3446 which solves the truncated
equation (8.22). For 𝑐 = −1.5, we choose 𝑣0 = 0.8 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = 0.3730
which solves the truncated equation (8.22).(b) The parameters are chosen as (𝑐1 , 𝑐2 , 𝑐3) = (10, 20, 30). For 𝑐 = −0.26, we choose 𝑣0 = 0.6 and truncate the continuity condition (8.22)
at 𝑀 = 20. The solid line corresponds to the solution (8.1) choosing 𝑎1 = 0.1996 which solves the truncated equation (8.22). For 𝑐 = −1, we choose 𝑣0 = −0.6 and truncate the
continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = −0.3862 which solves the truncated equation (8.22). For 𝑐 = −1.5, we choose
𝑣0 = 0.8 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = 0.3733 which solves the truncated equation (8.22).
This equation belongs to the class of Eq. (2.3) with:

𝑎 = 1, 𝑏 = 1, 𝛼1 = 6, 𝛼2 = 𝑐3, 𝛼3 = 𝑐1, 𝛼4 = 𝑐2.

(8.30)

The bifurcation diagram of Eq. (8.29) is qualitatively as in Fig. 1(a),
with also 𝑏 = 1. We therefore compute series solution (8.1) for
homoclinic orbits in Region 1. In Fig. 11(a) we choose the parameters
so that Eq. (8.29) describes irrotational gravity waves, i.e. (𝑐1, 𝑐2, 𝑐3) =
( 110
19

, 230
19

,−60
19

)

.
In Fig. 11(b) we choose the parameters so that Eq. (8.29) describes

the KdV hierarchy, i.e. (𝑐1, 𝑐2, 𝑐3) = (10, 20, 30).
In Fig. 12(a) we choose the parameters so that Eq. (8.29) describes

the Sawada–Kotera equation, i.e. (𝑐1, 𝑐2, 𝑐3) = (15, 15, 45).
In Fig. 12(b) we compare the series solution of Eq. (8.29) ob-

tained in the three parameter sets corresponding to the irrotational
gravity waves (solid line), the KdV hierarchy (dotted line) and the
Sawada–Kotera equation (dashed line) for the same values of 𝑐 and 𝑣0.

9. Summary

In this paper, we have significantly generalized the results of [11]
to the case of asymmetric nonlocal solitary waves. In addition, the
dynamics and stability of both symmetric and asymmetric embedded
solitons were treated in detail. Note that asymmetric solitary waves
were not considered at all in [11]. Although [11] considered symmetric
10
embedded solitary waves, it did not consider their stability. Moreover,
the paper derives other novel families of regular solitary waves using
multi-infinite series solutions.
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Appendix A. Solitary waves and local bifurcations

Fig. 1 shows the regions of the parameters (in particular, Fig. 1(a) in
the plane (𝑏, 𝑐) and Fig. 1(b) in the plane (𝑎, 𝑐)) where the eigenvalues of
the characteristic equation (2.8) have different structure. These regions
are labeled 1−4. While defining the structure of the orbits homoclinic to
the fixed point of (2.3), we review the boundary curves of these regions
and their neighborhoods, marked 𝐶0-𝐶3, and the possible occurrence
and multiplicities of homoclinic orbits of (2.3), which correspond to
pulse solitary waves of Eq. (1.3) in the regions 1 through 4.

ear 𝐶0: The eigenvalue structure on this curve is 𝜆1−4 = 0, 0,±𝑖
√

− 𝑏
𝑎

(see (𝑖𝑖.1) in Section 3), and it can be shown by analysis of
a four-dimensional normal form [21] that on the side of 𝐶0
corresponding to region 3 in Fig. 1 there is a sech2 homoclinic
orbit.
However, in region 1, where the eigenvalue structure is that of a
saddle-center, the fixed point (2.5) is non-hyperbolic. It may be
proved [22,23] that there are classes of orbits in region 1 which
are homoclinic to periodic orbits as 𝜁 → ±∞. These are so-called
delocalized solitary waves [13]. Depending on the form of the
nonlinear terms of the equation, this family of periodic orbits
has amplitudes varying from zero to a size of order 𝜀

1
2 . Also,

on isolated curves in region 3, the amplitude of these periodic
solutions as 𝜁 goes to zero, thus yielding truly localized solitary
waves. These are known as embedded solitons [24] and will be
investigated for our system (3.4) in Section 5.

ear 𝐶1: On this curve the eigenvalues have the structure given in (𝑖𝑖.2)
of Section 3, i.e. 𝜆1−4 = 0, 0,±

√

− 𝑏
𝑎 . 𝐶1 and its vicinity have been

considered via reversible systems theory in [21,25]. In this region,
a standard analysis yields the normal form on the center manifold

𝑥̇1 = 𝑥2,

𝑥̇2 = sign(𝜇)𝑥1 −
3
2
𝑥21,

where 𝜇 is an unfolding parameter [21]. For 𝜇 > 0, it yields a
unique, symmetric homoclinic solution

𝑥1(𝑡) = sech2 𝑡
2

in the vicinity of 𝐶1. One may also show persistence of this
homoclinic solution in the original system (2.7) for 𝜇 > 0 [21].
11
ear 𝐶2: In this region, where 𝜆1−4 = ±𝑖
√

− 𝑏
2𝑎 ,±𝑖

√

− 𝑏
2𝑎 (see (𝑖𝑖𝑖.1)

in Section 3), derivation and analysis of a complicated normal
form [26,27] shows the possible occurrence of so-called ‘en-
velope’ homoclinic solutions of the form sech 𝑘𝑡𝑒𝑖𝛾𝜃 (and with
oscillating tails) in the so-called ‘subcritical’ form. However, oc-
currence or persistence of these solutions in the full nonlinear
system (1.3) is a non-trivial issue (and each system must be an-
alyzed separately [27,28]). The persistence in (1.3) is considered
in various ways in [27–29]. This is relatively straightforward for
solutions having ‘‘one hump or peak’’. The open problem is for
non-symmetric solutions.

ear 𝐶3: There is no small-amplitude bifurcation on this curve, on
which 𝜆1−4 = ±

√

− 𝑏
2𝑎 ,±

√

− 𝑏
2𝑎 (see (𝑖𝑖𝑖.2) in Section 3) and

the fixed point (2.7) remains hyperbolic. However, there is a
bifurcation across it causing the creation of an infinite multiplicity
of homoclinic orbits.

Next, we look at the each of the regions 1–4 in Fig. 1 to discuss the
possible occurrence and multiplicity of homoclinic orbits in each.

Region 1: The generic situation in this region has already been con-
sidered in the discussion above pertaining to the region near
curve 𝐶1. As mentioned there, the structure and multiplicity
of the delocalized solitons in Region 1, as well as the existence
of embedded solitons on isolated curves, will be investigated
for Eq. (3.4) in Section 5.

Region 2: In this region the eigenvalues are of the type 𝜆1−4 = ±𝜆1,±𝜆2
and the fixed point (2.5) is a hyperbolic saddle point. Thus,
there is no ’a priori’ reason for multiplicity of homoclinic orbits
in this region. However, depending on the actual form of the
nonlinear term, a symmetric homoclinic orbit to (1.3) may
exist (see [26,27]). Also, depending on further conditions [28,
29], a further ’orbit-flip’ bifurcation may cause complex dy-
namics in its neighborhood. These issues will need further
investigation to establish possible existence of solitary wave
solutions of (1.3) in this region.

Region 3: In this region the structure of the eigenvalues is 𝜆1−4 =
±𝜆,±𝑖𝜔 and the fixed point (2.5) is a saddle-focus. Using a
Shil’nikov type analysis, one may show [30,31] for general
reversible systems such as (1.3) that the existence of one
symmetric homoclinic orbit implies the existence of an infinity
of others. Hence, we expect our system to admit an infinity of
such symmetric 𝑁-pulses for each 𝑁 > 1. Here, a symmetric
𝑁-pulse oscillates 𝑁 times in phase-space for 𝜁 ∈ (−∞,∞) (or,
more technically, crosses a transversal section to the primary
symmetric 1 pulse 𝑁 times). In the context of Eq. (1.3), these
would be 𝑁-peaked solitary waves, and we expect an infinite
Fig. 12. Series solutions (8.1) for the traveling wave equation (8.29). (a) The parameters are chosen as (𝑐1 , 𝑐2 , 𝑐3) = (15, 15, 45). For 𝑐 = −0.26, we choose 𝑣0 = 0.6 and truncate
the continuity condition (8.22) at 𝑀 = 20. The solid line corresponds to the solution (8.1) choosing 𝑎1 = 0.1980 which solves the truncated equation (8.22). For 𝑐 = −1, we
choose 𝑣0 = −0.6 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = −0.3869 which solves the truncated
equation (8.22). For 𝑐 = −1.5, we choose 𝑣0 = 0.8 and truncate the continuity condition (8.22) at 𝑀 = 20. The dotted line corresponds to the solution (8.1) choosing 𝑎1 = 0.3757
which solves the truncated equation (8.22).(b) Comparison between the series solutions of Eq. (8.29) for 𝑐 = −1.5 and 𝑣0 = 0.8: the solid line is the solution of (8.29) with
(𝑐1 , 𝑐2 , 𝑐3) =

( 110
19

, 230
19

,− 60
19

)

, the dotted line is the solution of (8.29) with (𝑐1 , 𝑐2 , 𝑐3) = (10, 20, 30) and the dashed line is the solution of (8.29) with (𝑐1 , 𝑐2 , 𝑐3) = (15, 15, 45).
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Fig. B.13. The mutual position of the curves 𝑐 = − 𝑏2

4
, representing the two branches

𝐶2 and 𝐶3 in Fig. 1(a), and 𝑐 as given in (B.4).

family for all 𝑁 > 1 once chosen the parameters 𝑎, 𝑏 and 𝑐 in
Region 1 of Fig. 1.

Region 4: In this region, the structure of the eigenvalues is 𝜆1−4 =
±𝑖𝜔1,±𝑖𝜔2 and (2.5) is a focus. No homoclinic orbits are known
to exist in general here, although complex dynamics may
occur [30,31]. Special results exist for 𝜔1 ≈ 𝜔2.

Appendix B. Nonlocal solitary waves and embedded solitons in
the perturbed KdV5 equation

When 𝜀 = 0, Eq. (3.4) has a parametric family of solitons

𝑣0(𝜁 ) =
3
2
𝑘2 sech2

𝑘𝜁
2
, (B.1)

where 𝑐 = 𝑏𝑘2 + 𝑘4, and 𝑘2 = −(3 − 𝑏)∕10.
Therefore, in terms only of 𝑏 it can be written in a standard squared

hyperbolic secant form for 𝑏 > 3

𝑣0(𝜁 ) = − 3
20

(3 − 𝑏) sech2
√

−(3 − 𝑏)𝜁

2
√

10
, (B.2)

and, for 𝑏 < 3, in the alternative ‘gap soliton-like’ form

𝑣0(𝜁 ) = − 3
20

(3 − 𝑏) sec2
√

3 − 𝑏𝜁

2
√

10
. (B.3)

Also, eliminating 𝑘 in terms of 𝑏 yields

𝑐 = 1
100

(

11𝑏2 − 36𝑏 + 9
)

. (B.4)

Note that 𝑐𝑚𝑖𝑛 = −0.2045 at 𝑏 = 18∕11, and so the graph of 𝑐 as a
function of 𝑏, and the corresponding solution (B.3), falls in either of
regions 3 or 4 of Fig. 1(a). See Fig. B.13:

Also note that the parametric family of solitons

𝑣0(𝜁 ) =
1
2
𝑘2 sech2

𝑘𝜁
2
, (B.5)

considered in [10] does not belong within our family of solutions for
any 𝑏 value, and is a disjoint family which solves Eq. (3.4) for 𝜀 = 0 only
for the single special value of the dispersion coefficient 𝑏 = 1 considered
in that paper. As we shall see, this will lead to entirely distinct families
of embedded solitary waves from those derived in [10], even though
our techniques are direct generalizations of those developed in that
seminal treatment.

For 0 ≠ 𝜀 ≪ 1, we propose the solution 𝑣 of Eq. (3.4) as a regular
perturbation series (4.1). If we substitute (4.1) back into (3.4)–(3.5),
we obtain a family of equations corresponding to the different powers
of 𝜀. At order 𝜀0, one obtains an equation for 𝑣0(𝜁 ), which reproduces
Eq. (3.4) for 𝜀 = 0.

At order 𝜀, the equation for 𝑣1(𝜁 ) is

𝐿𝑣1 = 𝐺(𝑣0), (B.6)

where the linear operator 𝐿 is

𝐿 = 𝑑4 + 𝑏 𝑑
2

− 𝑐 + 6𝑣0 + 10𝑣′′ + 30𝑣2 + 10 𝑑
(

𝑣0
𝑑

)

, (B.7)
12

𝑑𝜁4 𝑑𝜁2 0 0 𝑑𝜁 𝑑𝜁
which is self-adjoint.
To solve the inhomogeneous equation (B.6), we must determine the

solutions of the homogeneous equation 𝐿𝛹 = 0, which is a fourth order
equation and, therefore, has four linearly independent solutions. One
of them, the localized solution, is easy to find: it is 𝛹1 = 𝑣′0, which
is antisymmetric. The nonlocal solutions are harder to find, and the
reader can check the process to find the other two bounded solutions
in [11,32]. They are:

𝛹2 =
𝛾
4

{

sin 𝑝𝜁
[

105𝑘2𝑝 + 4𝑝3 − 105𝑘2𝑝 tanh2
𝑘𝜁
2

]

+ cos 𝑝𝜁
[

(−18𝑘 + 720𝑘3 + 30𝑘𝑝2 + 15𝑘𝑏) tanh
𝑘𝜁
2

− 210𝑘3 tanh3
𝑘𝜁
2

]}

, (B.8)

and

𝛹3 =
𝛾
4

{

sin 𝑝𝜁
[

(−18𝑘 + 720𝑘3 + 30𝑘𝑝2 + 15𝑘𝑏) tanh
𝑘𝜁
2

− 210𝑘3 tanh3
𝑘𝜁
2

]

− cos 𝑝𝜁
[

105𝑘2𝑝 + 4𝑝3 − 105𝑘2𝑝 tanh2
𝑘𝜁
2

]}

, (B.9)

where 𝑝 is defined via the equation 𝑐 = 𝑝4−𝑏𝑝2, and 𝛾 is a normalization
constant. The fourth solution is unbounded, and will not be relevant in
the following analysis.

Also, notice that 𝛹2 is antisymmetric and 𝛹3 is symmetric, and so
at infinity, the asymptotic behavior of these solutions is

𝛹2 → sin (𝑝𝜁 ± 𝜙2), 𝜁 → ±∞, (B.10)

𝛹3 → ± sin (𝑝𝜁 ± 𝜙3), 𝜁 → ±∞, (B.11)

where

tan𝜙2 =
4𝑝3

−18𝑘 + 510𝑘3 + 30𝑘𝑝2 + 15𝑘𝑏
, (B.12)

tan𝜙3 =
−18𝑘 + 510𝑘3 + 30𝑘𝑝2 + 15𝑘𝑏

4𝑝3
,

and it is easy to see that

𝜙3 − 𝜙2 =
𝜋
2
. (B.13)

At this point we can solve the inhomogeneous equation (B.6). If 𝑣1
should be localized, the inhomogeneous term 𝐺(𝑣0) must be orthogonal
to the bounded solutions 𝛹1, 𝛹2 and 𝛹3 of the homogeneous equation,
i.e.,

⟨𝐺(𝑣0), 𝛹1⟩ = ⟨𝐺(𝑣0), 𝛹2⟩ = ⟨𝐺(𝑣0), 𝛹3⟩ = 0, (B.14)

where the inner product ⟨∗, ∗⟩ is defined in the usual way

⟨𝑓 (𝑥), 𝑔(𝑥)⟩ ≡ ∫

∞

−∞
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥. (B.15)

By looking at Eqs. (3.5) and (B.1), it is clear that 𝐺(𝑣0) is symmetric.
Therefore, it will be orthogonal to 𝛹1 and 𝛹2; however, in general it is
not orthogonal to 𝛹3. With the help of Mathematica one can get the
expression

⟨𝐺(𝑣0), 𝛹3⟩ =
3𝛾𝜋
40

𝑝2(𝑘2 + 𝑝2)
{

−2𝑎3(4𝑘2 + 𝑝2)(−6 + 125𝑘2 + 𝑝2 + 5𝑏)

− 𝑎1
(

270𝑘4 − 4𝑝2(−6 + 𝑝2 + 5𝑏) + 𝑘2(6 − 476𝑝2 − 5𝑏)
)

(B.16)

+ 𝑎2
(

−1270𝑘4 + 2𝑝2(−6 + 𝑝2 + 5𝑏) + 𝑘2(42 + 218𝑝2 − 35𝑏)
)}

csch
𝑝𝜋
𝑘
,

which is, indeed, generally nonzero. Hence, the 𝑣1 solution is nonlocal,
and so is 𝑣(𝜁 ).
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