
MAXIMAL OPERATORS WITH RESPECT
TO THE NUMERICAL RANGE

ROSARIO CORSO

Abstract. Let n be a nonempty, proper, convex subset of C. The n-maximal
operators are defined as the operators having numerical ranges in n and are
maximal with this property. Typical examples of these are the maximal sym-
metric (or accretive or dissipative) operators, the associated to some sesquilin-
ear forms (for instance, to closed sectorial forms), and the generators of some
strongly continuous semi-groups of bounded operators. In this paper the n-
maximal operators are studied and some characterizations of these in terms
of the resolvent set are given.
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1. Introduction

The numerical range of an operator T with domain D(T ) on a complex Hilbert
space H, with inner product 〈·|·〉 and norm ‖ · ‖, is the convex subset of C

nT := {〈Tξ|ξ〉 : ξ ∈ D(T ), ‖ξ‖ = 1}.

Consider a proper convex subset n of C. We say that T is n-maximal if nT ⊆ n
and T has no proper extension with this property. This concept has the maximal
symmetric, accretive and dissipative operators as special cases.

We know by von Neumann [20] that a (densely defined) symmetric operator T
is maximal symmetric if and only if either the half-plane {λ ∈ C : =λ > 0} or the
half-plane {λ ∈ C : =λ < 0} is contained in the resolvent set ρ(T ). This, in turn,
is equivalent to say that a defect index of T , dimR(T−iI)⊥ or dimR(T+iI)⊥, is
zero. Phillips proved a similar result in [22], i.e., that a densely defined dissipative
operator is maximal dissipative if and only if λ ∈ ρ(T ) for some <λ > 0, if and
only if {λ ∈ C : <λ > 0} ⊆ ρ(T ).

In this paper we deal with the analogue characterization for a general n-
maximal operator T , taking into account that the defect index of T is defined
for λ ∈ nc (i.e., the complement of the closure of n) as dimR(T − λI)⊥, and
is constant for all λ contained in a connected component of nc. If T is densely
defined and nT ⊆ n, then T is closable and its closure T has numerical range in n.
For this reason an assumption that we make, in order to have closed n-maximal
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operator, is that n is closed.
In particular, the new cases studied are given by Theorem 4.1 and Theorem 5.5,
where n is a closed subset of a sector or of a closed strip, respectively. The first one
is based on the Friedrichs extension of a densely defined sectorial operator, while
the second one uses the fact that a densely defined operator T with numerical
range in a horizontal strip is uniquely decomposable (like for bounded operator)
as T = S+ iB (Lemma 5.1), in which S and B are symmetric and B is bounded.
If the strip is closed, the sets of extensions of T and S are in a one-to-one
correspondence (Lemma 5.3).

For many classes of densely defined and n-maximal operators, the resolvent set
contains a connected component of nc. This property holds for generators of some
strongly continuous semi-groups (or groups) of bounded operators, for instance
of contractions. We give more examples of semi-groups and corresponding n-
maximal generator in Section 6. We also recall that for an operator T with
numerical range in n and satisfying nc ⊆ ρ(T ) it is possible to define a so-called
functional calculus developed in many work, for instance in [5, 6, 11, 14, 19].

In Section 7 we talk about correspondences (through a map like Cayley trans-
form) between extensions of an operator with particular numerical range and
bounded operators.

Another area where n-maximal operators occur concerns sesquilinear forms
on a Hilbert space. The operator T associated to a sesquilinear form Ω, with
dense domain D in H, has domain

D(T ) = {ξ ∈ D : ∃χ ∈ H,Ω(ξ, η) = 〈χ|η〉, ∀η ∈ D} (1.1)

and it is defined by Tξ = χ, for all ξ ∈ D(T ) and χ as in (1.1) (the density of D
ensures that this definition is well-posed). Hence, Ω is represented by T , i.e.,

Ω(ξ, η) = 〈Tξ|η〉, ∀ξ ∈ D(T ), η ∈ D. (1.2)

The domain of T might be very small, therefore one searches conditions so that
T is densely defined (and also closed). Representation theorems are studied by
Kato (who consider the closed sectorial forms) and then by several author (see
the references of [8]). Returning to the problem of the maximality, Kato’s result
says that the operator associated to a densely defined closed sectorial form is m-
sectorial, i.e., S-maximal, with S a sector containing the numerical range of Ω. In
Section 8 we consider solvable sesquilinear forms, which, with the representation
(1.2), have been defined and studied in [7]. The analysis of solvable forms has
been continued in [8, 9]. Here, for a general proper, convex subset n of C we
give some sufficient conditions for the n-maximality of the associated operator
in Theorem 8.3 and Corollary 8.4. However, if the numerical range of a solvable
form is contained in a strip, then the associated operator is always n-maximal
and, actually, we have the stronger result that nc ⊆ ρ(T ) (Theorem 8.5).
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2. n-maximal operators

In this paper we indicate by H a complex Hilbert space, with inner product 〈·|·〉
and norm ‖ · ‖. The domain and the range of a (linear) operator T are denoted
by D(T ) and R(T ), respectively. The set of bounded operators defined on the
whole of H is denoted by B(H).

For the notion and properties of the numerical range we refer the reader to [16,
Ch. V, Sect. 3], [23, Ch. 2] and also [13, 15] for bounded operators.
The numerical range of an operator T on H, with domain D(T ), is the convex
subset of the complex plane

nT := {〈Tξ|ξ〉 : ξ ∈ D(T ), ‖ξ‖ = 1}.

If T is densely defined and nT ⊆ R (or equivalently T ⊆ T ∗) then it is called
symmetric, while if nT ⊆ {λ ∈ C : <λ ≥ 0} then T is said accretive.
If T is bounded then nT is bounded, and the converse is true provided that T is
densely defined.

Suppose that nT 6= C. Since nT is a convex subset of C then the complement nT c

is connected or it consists of two half-planes (this second possibility holds if and
only if nT is a strip, i.e., a subset bounded by two parallel straight lines).
Assume that T is closable and λ ∈ nT

c, then the number dimR(T − λI)⊥ is
constant in each connected component of nT c, and it is called a defect index of T .
Therefore, for an operator whose numerical range is not C the defect indexes are
at least one and at most two (note that, actually, the defect index is defined and
is constant in each connected component of the so-called regularity domain [23,
Definition 2.1]; however, we are interested only in defect indexes defined outside
the numerical range).
Finally, we recall some results involving the numerical range, the resolvent and
the spectrum of an operator (see [15, Ch. 22] and [23, Ch. 2]).

Lemma 2.1. Let T be an operator on H, with numerical range nT , resolvent set
ρ(T ), point spectrum σp(T ), continuous spectrum σc(T ) and residual spectrum
σr(T ). Then, the following assertions hold:

1. σp(T ) ⊆ nT ;
2. σc(T ) ⊆ nT ;
3. each connected component of nT c is entirely contained in ρ(T ) or in σr(T );
4. if T ∈ B(H) then σr(T ) ⊆ nT , i.e., the spectrum of T is contained in nT ;
5. if λ ∈ nT

c ∩ ρ(T ), then ‖(T − λI)−1‖ ≤ (dist(λ, nT ))−1.

Now we give a new definition. Throughout this paper, if not otherwise specified,
we assume that n ⊂ C is a nonempty, convex, proper subset of C.

Definition 2.2. An operator T , with numerical range nT , is said to be n-maximal
if the following conditions hold:



4 ROSARIO CORSO

1. nT ⊆ n;
2. if T ′ is an operator, with numerical range nT ′ , such that T ⊆ T ′ and nT ′ ⊆ n,

then T = T ′.

Remark 2.3. Maximal accretive, and maximal symmetric operators are special
cases of n-maximal operators, that is they are obtained considering n = {λ ∈ C :
<λ ≥ 0} and n = R, respectively.

In [20] von Neumann proved the next celebrated characterization (see also [23,
Ch. 13]).

Theorem 2.4. Let T be a symmetric operator on H. The following statements
are equivalent:

1. T is maximal symmetric;
2. R(T − iI) = H or R(T + iI) = H (i.e., a defect index of T is 0);
3. a connected component of C\R is contained in the resolvent set ρ(T ) of T .

Moreover T is self-adjoint if, and only if, R(T − iI) = R(T + iI) = H if, and
only if, C\R ⊆ ρ(T ).

We notice here that a similar characterization of selfadjointness has been given in
[24, Theorem 5.1] which simultaneously concerns both real and complex Hilbert
spaces. The next characterization (which follows the framework of symmetric
operator) covers accretive operators and is due to Phillips [22]. Actually, Phillips
worked with dissipative operators T , i.e., operators with numerical range in {λ ∈
C : <λ ≤ 0}. But, since −T is accretive, the result for accretive operators follows
easily from the dissipative case.

Theorem 2.5 ([22, Ch. I]). Let T be an accretive operator on H. The following
statements are equivalent:

1. R(T − λI) = H for some λ ∈ C with <λ < 0;
2. the half-plane {λ ∈ C : <λ < 0} is contained in the resolvent set ρ(T ) of T

(i.e., the defect index of T is 0);
3. T is maximal accretive and densely defined;
4. T is maximal accretive and closed.

Remark 2.6. Let n′ ⊆ n ⊂ C be two proper, convex subsets of C. An operator T
on H, with numerical range in n′ and n-maximal is also n′-maximal. The converse
is not true in general. Indeed, consider n′ := {λ ∈ C : <λ = 0} contained in
n := {λ ∈ C : <λ ≥ 0}. Let T be a maximal symmetric operator, but not
self-adjoint. We can assume that, in particular, R(T − iI) 6= H. Thus T := iT is
densely defined, has numerical range in n′ (hence it is in particular accretive), it
is n′-maximal and one has R(T + I) 6= H. By Theorem 2.5, T is not n-maximal.

3. Case 1: general closed convex subset

Our goal in the ensuing sections is to extend Theorem 2.5 to n-maximal operators,
where n is a proper convex subset of C.
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Proposition 3.1. Let T be an operator on H with numerical range contained in
n and λ ∈ nc. If R(T−λI) = H, then T is densely defined, closed and n-maximal.

Proof. Since λ /∈ n, T − λI is injective and therefore λ ∈ ρ(T ) and T is closed.
Let T ′ be an extension of T , with numerical range nT ′ ⊆ n. Then also T ′ − λI is
injective; hence T ′ = T and T is n-maximal.
Now, we prove that T is densely defined. Let η ∈ H be such that 〈ξ|η〉 = 0 for
all ξ ∈ D(T ). Since λ ∈ ρ(T ), we have in particular that 〈(T − λI)−1η|η〉 = 0
and setting χ = (T − λI)−1η, we get 〈χ|(T − λI)χ〉 = 0. Hence χ = 0, because
λ /∈ n, and η = 0.

Example 3.2. Let α = {αn} be a sequence of complex numbers contained in a
closed convex set in n, and l2 be the Hilbert space of the complex sequences {ξn}
such that

∑∞
n=1 |ξn|2 <∞, with the usual inner product.

Consider the operator Mα on l2 with domain

D(Mα) =

{
{ξn} ∈ l2 :

∞∑
n=1

|αnξn|2 <∞

}

and given by Mα{ξn} = {αnξn}, for all {ξn} ∈ D(Mα).
The operator Mα has numerical range in n; moreover if λ ∈ nc, then λ ∈ ρ(Mα),
hence R(Mα − λI) = l2. By Proposition 3.1, Mα is n-maximal.

Proposition 3.3. If n is closed, then a densely defined, n-maximal operator on
H is closed.

Proof. Let T be a densely defined, n-maximal operator onH. T is closable by [16,
Ch. V, Th. 3.4], and it has a closure T with numerical range nT ⊆ nT ⊆ n = n.
Therefore, by the maximality of T and from T ⊆ T , we have T = T .

Resuming the results obtained, and using Lemma 2.1, we can formulate the
following theorem.

Theorem 3.4. Let n ⊆ C be a proper, closed, convex subset of C and let T be
an operator on H with numerical range in n.
For the following statements

1. R(T − λI) = H for some λ ∈ nc;
2. a connected component of nc is contained in the resolvent set ρ(T ) of T (i.e.

a defect index of T is 0);
3. T is n-maximal and densely defined;
4. T is n-maximal and closed;

the following implications hold 1.⇒ 2.⇒ 3.⇒ 4.

The statements indicated in the previous theorem are equivalent in the case
n = {λ ∈ C : <λ ≥ 0} (Theorem 2.5), but they are not equivalent in general (see
Example 4.6 below). If T is bounded, then the statements in Theorem 3.4 are
equivalent and moreover they hold if and only if T ∈ B(H).
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4. Case 2: closed convex subset of a sector

In this section we study the case in which n is a closed subset of a sector

S := {λ ∈ C : | arg(λ− γ)| ≤ θ}

where γ ∈ R, θ ∈ [0, π2 ), and we add other implications to Theorem 3.4.
We recall that an operator T with numerical range nT ⊆ S is said to be sectorial;
moreover, if the complement of S is contained in the resolvent set of T , then T
is said m-sectorial (see [16, Ch. V]).

Theorem 4.1. Let n ⊂ C be a closed, convex subset contained in a sector of
C, and let T be an operator on H with numerical range nT ⊆ n. The following
statements are equivalent:

1. T is n-maximal and densely defined;
2. R(T − λI) = H for some λ ∈ nc;
3. nc is contained in the resolvent set ρ(T ) of T (i.e., the defect index of T is

0).
If these conditions are satisfied, then T is closed.

Proof. By Theorem 3.4, we only have to prove that if T is n-maximal and densely
defined, then R(T − λI) = H for some λ ∈ nc.
Let T ′ be the (m-sectorial) Friedrichs extension of T . The numerical range nT ′ of
T ′ is contained in nT ⊆ n (see [16, Ch. VI]). Hence, from the n-maximality of T
and T ⊆ T ′, we have T = T ′. It follows that T is m-sectorial, i.e., R(T −λI) = H
for some λ ∈ nc.

The following theorem demonstrates that the n-maximality of an operator (where
n is contained in a sector) does not strictly depend on the chosen closed, convex
subset n.

Theorem 4.2. Let n1, n2 ⊂ C be two proper, closed, convex subsets of C, such
that n1 is contained in a sector of C and n1 ∩ n2 6= ∅. Let T be a densely defined
operator on H with numerical range nT ⊆ n1 ∩ n2. The following statements are
equivalent:

1. T is n1-maximal;
2. T is n2-maximal.

Proof. (1. ⇒ 2.) Since n1 is contained in a sector, we have nc1 ∩ nc2 6= ∅. By
Theorem 4.1, R(T − λI) = H for all λ ∈ nc1, hence R(T − λI) = H per some
λ ∈ nc2. Applying Theorem 3.4, T is n2-maximal.
(2.⇒ 1.) By Remark 2.6, T is (n1∩n2)-maximal, and then T is n1-maximal using
the first implication (n1 ∩ n2 is contained in a sector).

Remark 2.6 shows that Theorem 4.2 does not hold without the hypothesis that
n1 is contained in a sector of C. Another way to read Theorem 4.2 is the next
corollaries.
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Corollary 4.3. Let n ⊂ C be a closed, convex subset contained in a sector of C.
A n-maximal, densely defined operator T on H has no proper extension whose
numerical range is a proper subset of C.

Corollary 4.4. Let T be a densely defined, accretive operator and with numerical
range also contained in a closed subset n of a sector S of C. Then, T is maximal
accretive if and only if T is n-maximal.

The positive semi-line is contained in some sector of C. For this reason, we turn
our attention to the case in which T is positive, i.e., nT ⊆ [0 +∞). We prefer
to say that T is maximal positive if it is [0,+∞)-maximal. Before to show how
Theorem 3.4 is formulated in this case, we recall that a closed positive operator T
is said positively closable (see [1]) if lim

n→∞
〈Tξn|ξn〉 = 0 and lim

n→∞
Tξn = η implies

η = 0.

Theorem 4.5. Let T be a positive operator on H. The following statements are
equivalent:

1. T is maximal positive, closed and positively closable;
2. [0,+∞)c is contained in the resolvent set ρ(T ) of T (i.e., the defect index

of T is 0);
3. T is maximal positive and densely defined;
4. R(T − λI) = H for some λ ∈ [0,+∞)c.

Proof. Suppose that T is maximal positive, closed and positively closable. By
[1, Theorem 1], T admits a positive self-adjoint extension, that must concides
with T ; hence [0,+∞)c is contained in the resolvent set ρ(T ) of T . The other
implications follow by Theorem 3.4.

The next example shows that Theorem 4.5 does not hold without the hypothesis
that T is positively closable. That is the statements in Theorem 3.4 are not
equivalent in general.

Example 4.6. Let H = C2 and T be the operator on C2 with domain D(T ) =
{(x, 0) : x ∈ C} and defined by T (x, 0) = (0, x) for all x ∈ C. We have that T is
positive, closed and non densely defined, R(T − λI) 6= C2 for all λ ∈ [0,+∞)c.
Moreover, T is not positively closable, then by [1, Theorem 1] is maximal positive.

5. Case 3: closed strip

Now we study the case where the set n of Theorem 3.4 is a strip. More precisely,
we consider the following subsets of C:

1. for α ≥ 0, the horizontal strip Sα, i.e., a subset such that

{λ ∈ C : |=λ| < α} ⊆ Sα ⊆ {λ ∈ C : |=λ| ≤ α};

2. the horizontal closed strip Sα, i.e., a subset Sα := {λ ∈ C : |=λ| ≤ α},
where α ≥ 0;
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3. the strip S, i.e., a subset S := aSα + b, where a ∈ C\{0}, b ∈ R, α ≥ 0.
4. the closed strip S, i.e., a subset S := aSα+b, where a ∈ C\{0}, b ∈ R, α ≥ 0.

We recall some notions regarding sesquilinear forms (see [16, Ch. VI]), that are
useful in this section, but also in the last one.
Let D be a subspace of the Hilbert space H and let Ω be a sesquilinear form
defined on D. The adjoint Ω∗ of Ω is the form on D given by

Ω∗(ξ, η) = Ω(η, ξ), ∀ξ, η ∈ D.

If Ω = Ω∗ then Ω is said to be symmetric . The symmetric sesquilinear forms on
D defined by

<Ω =
1

2
(Ω + Ω∗) and =Ω =

1

2i
(Ω− Ω∗),

are called real and imaginary parts of Ω, respectively; then Ω = <Ω + i=Ω.
The numerical range is defined also for a sesquilinear form Ω and it is the convex
subset

nΩ := {Ω(ξ, ξ) : ξ ∈ D, ‖ξ‖ = 1}

of C. Note that Ω is bounded if and only if nΩ is bounded; Ω is symmetric if and
only if nΩ ⊆ R. If Ω is bounded and D = H, then there exists a unique operator
B ∈ B(H) such that Ω(ξ, η) = 〈Bξ|η〉, for all ξ, η ∈ H.
In order to prove Theorem 5.5 we firstly need the next lemma. The idea of the
proof is analogous to the argument used to prove Theorem 7.1.2 of [14].

Lemma 5.1. Let Sα be a horizontal strip of C and T be a densely defined operator
with numerical range nT ⊆ Sα. Then there exist unique symmetric operators
B ∈ B(H) and S such that D(S) = D(T ) and

T = S + iB. (5.1)

Moreover,
1. D(T ) ⊆ D(T ∗);
2. S = 1

2(T + T ∗) and B|D(T ) = 1
2i(T − T

∗).

Proof. Let Ω be the sesquilinear form on D(T ) given by

Ω(ξ, η) = 〈Tξ|η〉, ∀ξ, η ∈ D(T ).

Consider the real and imaginary parts <Ω, =Ω of Ω. The numerical range of Ω
is exactly the one of T , so, from Ω = <Ω + i=Ω, we have that <Ω and =Ω have
numerical ranges in R and in [−α, α], respectively.
Consequently, =Ω is bounded, and since it is densely defined, it can be extended
to a unique bounded form in whole H. Hence, there exists a unique (symmetric)
operator B ∈ B(H) such that =Ω(ξ, η) = 〈Bξ|η〉, for all ξ, η ∈ D(T ). Now set
S := T − iB, hence D(S) = D(T ). We have, for ξ ∈ D(S) with ‖ξ‖ = 1,

〈Sξ|ξ〉 = 〈Tξ|ξ〉 − i〈Bξ|ξ〉 = Ω(ξ, ξ)− i=(ξ, ξ) = <(ξ, ξ) ∈ R,
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therefore S is symmetric.
To prove 1. observe that T ∗ = S∗ − iB, so D(T ) = D(S) ⊆ D(S∗) = D(T ∗).
This implies that T + T ∗ is defined on D(T ) and

T + T ∗ = S + S∗ = 2S, on D(T ) = D(S),

hence S = 1
2(T+T ∗). In a similar way it can be verified that B|D(T ) = 1

2i(T−T
∗),

which proves statement 2.
Suppose now that T = S′+ iB′, with S′, B′ symmetric operators, D(S′) = D(T )
and B′ ∈ B(H). It follows that S−S′ = −i(B−B′), but both S−S′ and B−B′
are symmetric, therefore S = S′ and B = B′.

Denote by S(H) the family of symmetric operators on H and St(H) the family
of densely defined operators on H with numerical range in a strip Sα. Thus, with
the aid of the previous lemma, we can formulate the following correspondence
and its properties.

Corollary 5.2. The map S(H)×B(H)→ St(H) defined by (S,B) 7→ S + iB is
a bijection.

Lemma 5.3. Let Sα be a horizontal strip, T a densely defined operator with
numerical range nT ⊆ Sα and T = S + iB the decomposition (5.1).
The map S′ 7→ T ′ := S′ + iB defines

1. a one-to-one correspondence between all extensions S′ of S and all exten-
sions T ′ of T ;

2. a one-to-one correspondence between all symmetric extensions S′ of S and
all extensions T ′ of T with numerical range nT ′ ⊆ Sα.

Proof. The first statement is obvious. Let S′ be a symmetric extension of S,
then, clearly, T ′ := S′ + iB is an extension of T whose numerical range satisfies
nT ′ ⊆ Sα.
Now, let T ′ be an extension of T with numerical range nT ′ ⊆ Sα, and T ′ = S′+iB′

the decomposition given by Lemma 5.1. Since T ⊆ T ′ then, following the proof
of the same lemma, B = B′; hence S = T − iB ⊆ T ′ − iB = S′.

Corollary 5.4. Let Sα be a horizontal strip, T a densely defined operator with
numerical range nT ⊆ Sα and T = S + iB the decomposition (5.1).

1. If S is maximal symmetric, then T is Sα-maximal.
2. If Sα = Sα is closed, then T is Sα-maximal if and only if S is maximal

symmetric.

Theorem 3.4 is adapted to the case of a strip as follows.

Theorem 5.5. Let S be a closed strip of C and T an operator on H with numer-
ical range in S. The following statements are equivalent:

1. R(T − λI) = H for some λ ∈ S
c;

2. a connected component of S
c is contained in the resolvent set ρ(T ) of T

(i.e., a defect index of T is 0);
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3. T is S-maximal and densely defined.
If these conditions are satisfied, then T is closed.

Proof. We only have to prove the implication 3. ⇒ 1. by Theorem 3.4.
With a linear transformation (which does not change the maximality), we can
restrict ourselves to the case in which S is horizontal, i.e., S = {λ ∈ C : |=λ| ≤ α},
for some α ≥ 0.
Let T = S + iB be the decomposition (5.1). The case B = 0 is trivial. Assume
B 6= 0, hence α > 0. By Corollary 5.4 S is maximal symmetric, hence we
can find λ ∈ ρ(S) such that |=λ| > α. As proved in the proof of Lemma 5.1,
B has numerical range in [−α, α]; this implies that ‖B‖ ≤ α. We also have
‖(S − λI)−1‖ ≤ |=λ|−1, therefore ‖(S − λI)−1‖ ≤ |=λ|−1 < α−1 ≤ ‖B‖−1. By
[25, Theorem 5.11], λ ∈ ρ(T ).

Corollary 5.6. Let T be a densely defined operator with numerical range con-
tained in a closed strip S. Then D(T ) = D(T ∗) if and only if Sc ⊆ ρ(T ).

Proof. It is not restrictive that we consider S = {λ ∈ C : |=λ| ≤ α}, for some
α ≥ 0. Let T = S+iB be the decomposition (5.1). By Lemma 5.1D(T ) = D(T ∗)
if and only ifD(S) = D(S∗) if and only if S is self-adjoint. But, with an argument
like the one used in the proof of Theorem 5.5, S is self-adjoint, if and only if
S
c ⊆ ρ(T ).

Remark 5.7. The sufficient implication of Corollary 5.6, in the case of horizontal
strip, is also proved in [14, Theorem 7.1.2].

Proposition 5.8. Let n ⊂ C be a proper, convex subset of C, S be a closed
strip, such that n ∩ S 6= ∅ and n does not contain any of two half-planes which
constitute S

c. Moreover, let T be a densely defined operator on H with numerical
range nT ⊆ n ∩ S. If T is S-maximal, then T is n-maximal.

Proof. By Theorem 5.5, R(T − λI) = H for all λ contained in a connected
component of Sc (i.e., one of the two half-planes which constitute S

c). By the
hypothesis and applying Proposition 3.1, T is n-maximal.

Example 5.9. Let AC[a, b] be the set of absolutely continuous function on an
interval [a, b], J be one of the open intervals (0, 1), (0,∞),R, and

H1(J ) = {f ∈ L2(J ) : f ∈ AC[a, b] for all [a, b] ⊆ J and f ′ ∈ L2(J )}

H1
0 (0, 1) = {f ∈ H1(0, 1) : f(0) = f(1) = 0}

H1
0 (0,+∞) = {f ∈ H1(0,+∞) : f(0) = 0}.

Consider the densely defined differential operator T on L2(J ) given by

(Tf)(x) = i
(
f ′(x) + r(x)f(x)

)
, ∀f ∈ H1

0 (J ),

on the domain D(T ) = H1
0 (J ) if J = (0, 1) or J = (0,+∞), or on the domain

D(T ) = H1(J ) if J = R, where r : J → R is a bounded continuous function,
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i.e., there exists m > 0 such that |r(x)| ≤ m, for all x ∈ J .
The numerical range of T is contained in the strip Sm. Our goal is to find all
the S-maximal extensions T ′ of T , where S is a closed horizontal strip containing
Sm. Therefore, let k ≥ m and T ′ be a Sk-maximal extension of T .
Clearly, the decomposition of Lemma 5.1 is T = S+iB, where S is the symmetric
operator with domain D(T ) defined by

(Sf)(x) = if ′(x), ∀f ∈ D(T ),

and B is the bounded symmetric operator on L2(J ) given by

(Bf)(x) = r(x)f(x), ∀f ∈ L2(J ).

On the other hand, T ′ = S′ + B′ by Lemma 5.1 where, in particular, S′ is
maximal symmetric by Corollary 5.4. Since T ⊆ T ′, we have B = B′ and S ⊆ S′
by Lemma 5.3.
It is well-known (see [23, Sect. 13.2]) that S is closed and has defect indexes
d+ = dimR(S + iI)⊥ and d− = dimR(S − iI)⊥:

1. d+ = d− = 1, if J = (0, 1);
2. d+ = 1, d− = 0 (and hence S is maximal symmetric), if J = (0,+∞);
3. d+ = d− = 0 (i.e., S is self-adjoint), if J = (−∞,+∞).

It follows that T = S + iB is Sk-maximal in the cases J = (0,+∞) and J =
(−∞,+∞). Conversely, in the case J = (0, 1), all the maximal symmetric
extensions (that are also self-adjoint) of S are the operators Sθ (where θ is a
complex number of modulus 1) with domains D(Sθ) = {f ∈ H1(0, 1) : f(−1) =
θf(1)}, and given by (Sθf)(x) = if ′(x), for all f ∈ D(Sθ). Consequently, for
some θ ∈ C with |θ| = 1, T ′ is the operator defined on the domain D(T ′) = D(Sθ)
as

(T ′f)(x) = i
(
f ′(x) + r(x)f(x)

)
, ∀f ∈ D(Tθ).

Note that in all cases T ′ has numerical range in the smaller strip Sm, hence all
Sk-maximal extension of T are actually Sm-maximal.

6. n-maximal operators as generators of semi-groups

In this section we report some assertions (in part well-known) regarding genera-
tors of semi-groups on H which are n-maximal, with some proper, convex subsets
n.

Let {S(t)}t≥0 be a strongly continuous semi-group of bounded operators on H
and let A be its generator. We recall that ([21, Ch. I, Th. 2.2]) there exist
constants M ≥ 1, ω ≥ 0 such that

‖S(t)‖ ≤Meωt, ∀t ≥ 0. (6.1)

Moreover, if the semi-group extends to a strongly continuous group {S(t)}t∈R,
then there exist constants M ≥ 1, ω ≥ 0 such that

‖S(t)‖ ≤Meω|t|, ∀t ∈ R. (6.2)



12 ROSARIO CORSO

1. The Lumer-Phillips theorem ([21, Ch. I, Th. 4.3]) states that {S(t)}t≥0 is
a semi-group of contractions if and only if A is a densely defined maximal
dissipative.

2. An immediate consequence of point 1 is that a semi-group {S(t)}t≥0 satisfies
‖S(t)‖ ≤ eωt for some ω ∈ R and for all t ≥ 0 if and only if A is n-maximal
and densely defined, where n := {λ ∈ C : <λ ≤ ω} (see [12, Ch. II, Ex.
2.2]).

3. As proved in [22, Theorem 1.1.4], {S(t)}t≥0 is a semi-group of isometries
if and only if the numerical range of A is contained in n := {λ ∈ C :
<λ = 0} and A is maximal dissipative and densely defined. This implies,
in particular, that A is n-maximal.

4. Another consequence of Lumer-Phillips theorem establishes that {S(t)}t≥0

extends to a strongly continuous group {S(t)}t∈R and ‖S(t)‖ ≤ eω|t| for
all t ∈ R if and only if A is n-maximal, densely defined and such that
nc ⊆ ρ(A), where n := {λ ∈ C : |<λ| ≤ ω}.

5. A more general case of point 3 and 4 is that

eω1t ≤ ‖S(t)ξ‖ ≤ eω2t, ∀t ≥ 0, ∀ξ ∈ H, ‖ξ‖ = 1, (6.3)

for some ω1 ≤ ω2 if and only if A is n-maximal and densely defined where
n := {λ ∈ C : ω1 ≤ <λ ≤ ω2}. In fact we have for ξ ∈ H and t ≥ 0,

2<〈AS(t)ξ|S(t)ξ〉 =
∂

∂t
(‖S(t)ξ‖2),

i.e.,

<〈AS(t)ξ|S(t)ξ〉 = ‖S(t)ξ‖ ∂
∂t
‖S(t)ξ‖,

Hence, A has numerical range in n if and only if

ω1‖S(t)ξ‖ ≤ ∂

∂t
‖S(t)ξ‖ ≤ ω2‖S(t)ξ‖,

i.e., Ceω1t ≤ ‖S(t)ξ‖ ≤ Ceω2t, for some C ≥ 0. By S(0)ξ = ξ, we have
‖ξ‖eω1t ≤ ‖S(t)ξ‖ ≤ ‖ξ‖eω2t, for all ξ ∈ H, t ≥ 0.
Since A is a generator of a semi-group, then it is n-maximal and densely
defined by Theorem 5.5. Moreover, nc ⊆ ρ(A) if and only if {S(t)}t≥0

extends to a strongly continuous group, if and only if S(t) has range H for
all t ≥ 0 (all S(t) are injective by (6.3)).

6. Assume that n ⊆ (−S), where S is a sector of C. Thus, in particular, −A is
m-sectorial by Theorem 4.1, and hence A generates a bounded holomorphic
semi-group on H (see [14, Corollary 7.3.5]).

We can also state the following proposition that holds for a semi-group (resp.
group) {S(t)}t≥0 that does not satisfy condition (6.1) (resp. (6.2)) necessarily
with M = 1.

Proposition 6.1. Let A be an operator with numerical range nA 6= C.
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1. If A is the generator of a strongly continuous semi-group of bounded opera-
tors and nA does not contain any half-plane {λ ∈ C : <λ > ω} with ω ≥ 0,
then A is nA-maximal.

2. If A is the generator of a strongly continuous group of bounded operators,
then A is nA-maximal.

Proof. 1. By [12, Ch. II, Th. 3.8] the resolvent of A contains the half-plane
Hω := {λ ∈ C : <λ > ω}, with a certain ω ≥ 0, and by hypothesis
Hω ∩ ncA 6= ∅. An application of Proposition 3.1 shows that A is nA-
maximal.

2. This proof is analogous to the previous one. The difference is that the
resolvent of A contains the half-planes −Hω and Hω, where Hω := {λ ∈
C : <λ > ω} and ω ≥ 0 (see [12, Ch. II, Sect. 3]). The fact that
(−Hω∪Hω)∩ncA 6= ∅ and Proposition 3.1 imply that A is nA-maximal.

Lemma 5.1 establishes a decomposition of an operator in sum of real and imag-
inary parts. We mention [14, Theorem 7.2.8], which states that if A is the
generator of a strongly continuous group {S(t)}t≥0 with ‖S(t)‖ ≤Meω0|t|, for all
t ∈ R, and ω > ω0, then there exists a inner product 〈·|·〉◦, inducing a norm ‖ · ‖◦
equivalent to ‖ · ‖, and with respect to 〈·|·〉◦ the following statements hold:

1. A has numerical range in Sω (i.e., 〈Aξ|ξ〉◦ ∈ Sω, for all ξ ∈ H, ‖ξ‖◦ = 1);
2. denoting by A◦ the adjoint of A with respect to 〈·|·〉◦, we have A = iB+C

where
• B = 1

2i(A−A
◦) and C|D(A) = 1

2(A+A◦);
• B is self-adjoint and D(B) = D(A);
• C ∈ B(H) and it is symmetric.

SinceA is the generator of a group, A is Sω-maximal considering the inner product
〈·|·〉◦. By [14, Lemma C.5.2], we conclude the following (see also [11, Theorem
2.4]).

Proposition 6.2. The generator of a strongly continuous group of bounded op-
erators is similar to a Sω-maximal operator, where Sω is a horizontal closed strip.

In several works, like [5, 6, 11, 14, 19], the authors defined a so-called functional
calculus for a densely defined operator with spectrum contained in a subset n
which is a sector, a half-plane or a strip, and with resolvent operators satisfying
some condition of boundedness. As particular case, it is possible to define a
functional calculus for an operator T with numerical range in n and that satisfies
nc ⊆ ρ(T ) (see [5, Example 2.2.4, Section 2.3] and [11, Theorem 2.4]).

7. Correspondences with bounded operators

It is worth mentioning that Phillips [22] proved Theorem 2.5 with the aid of the
transform of an accretive operator T

τ(T ) = (T − I)(T + I)−1, (7.1)
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where τ(T ) has domainD(τ(T )) = R(T+I) and range R(τ(T )) = R(T−I). Also
von Neumann’s Theorem 2.4 can be proved with a similar map, more precisely
with the Cayley transform of a symmetric operator T

κ(T ) = (T − iI)(T + iI)−1,

with domain D(κ(T )) = R(T + iI) and range R(κ(T )) = R(T − iI) (see [23, Ch.
13]). Properties of transform (7.1) are settled in the next theorem.

Theorem 7.1 ([22, Sect. 1.1]). The transform T 7→ τ(T ) defines a one-to-one
correspondence, which preserves extensions, between all accretive operators on H
and all contractions J of H such that I − J is invertible.
In particular, the transform T 7→ τ(T ) defines a one-to-one correspondence be-
tween all densely defined, accretive operators on H and all contractions J of H
with R(I − J) dense in H.

Let T be an operator with domain D(T ) and numerical range contained in a
proper, convex, subset n of C. We want to apply the method of the transform
to T . Since n is contained in a half-plane, then, up to linear transformation, we
can assume that n is contained in {λ ∈ C : <λ ≥ 0} (i.e., we can assume that T
is accretive). Therefore, we can apply Theorem 7.1: the operator

τ(T ) = (T − I)(T + I)−1

with domain D(τ(T )) = R(T+I) and range R(τ(T )) = R(T−I) is a contraction,
I − τ(T ) is invertible and T = (I + τ(T ))(I − τ(T ))−1.
In general, τ(T ) has an additional property, i.e., from

〈(I + τ(T ))(I − τ(T ))−1ξ|ξ〉 = 〈Tξ|ξ〉 ∈ n, ∀ξ ∈ D(T ), ‖ξ‖ = 1

it follows that

〈(I + τ(T ))η|(I − τ(T ))η〉 ∈ n, ∀η ∈ R(T + I), ‖(I − τ(T ))η‖ = 1.

Now, let K be an operator on H such that I −K is invertible and

〈(I +K)η|(I −K)η〉 ∈ n, ∀η ∈ D(K), ‖(I −K)η‖ = 1. (7.2)

We note that K is in particular a contraction since n ⊆ {λ ∈ C : <λ ≥ 0}. Thus,
we have that the operator T = (I+K)(I−K)−1 with domain D(T ) = R(I−K)
is well-defined, has numerical range in n and τ(T ) = K. Hence, Theorem 7.1 has
the following result as particular case.

Theorem 7.2. Let n be a proper, convex subset of the half-plane {λ ∈ C : <λ ≥
0} of C. Then the transform T 7→ τ(T ) defines a one-to-one correspondence,
which preserves extensions, between all operators on H with numerical range in n
and all the operators K on H such that I −K are invertible and satisfying (7.2).
In particular, the transform T 7→ τ(T ) defines a one-to-one correspondence be-
tween all densely defined operators on H with numerical range in n and all oper-
ators K on H satisfying (7.2) and with R(I −K) dense in H.
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Corollary 7.3. An operator T on H with numerical range n is n-maximal if and
only if the operator τ(T ) = (T − I)(T + I)−1 is maximal in the set of operators
K satisfying (7.2) and such that I −K are invertible.

For particular subsets n (7.2) can be simplified. First of all, let us note that

<〈(I +K)η|(I −K)η〉 = ‖η‖2 − ‖Kη‖2

=〈(I +K)η|(I −K)η〉 =
1

i
(〈Kη|η〉 − 〈η|Kη〉) = 2=〈Kη|η〉,

for all η ∈ D(K). Moreover, for a positive homogeneous subset n (i.e., such that
µn = n for all µ > 0) condition (7.2) is equivalent to

〈(I +K)η|(I −K)η〉 ∈ n, ∀η ∈ D(K).

• If n = {λ ∈ C : <λ ≥ 0,=λ ≥ 0}, then (7.2) holds if and only if

‖Kη‖ ≤ ‖η‖ and =〈Kη|η〉 ≥ 0 for all η ∈ D(K),

i.e., if and only if K is a contraction with numerical range in the upper
semi-plane of C.

• If α > 0 and n = {λ ∈ C : 0 ≤ <λ ≤ α}, then (7.2) holds if and only if

0 ≤ ‖η‖2 − ‖Kη‖2 ≤ α

for all η ∈ D(K), ‖(I −K)η‖ = 1. This condition is equivalent to

0 ≤ ‖η‖2 − ‖Kη‖2 ≤ α‖(I −K)η‖2 for all η ∈ D(K).

If, moreover, α = 1, then (7.2) holds if and only if

0 ≤ ‖η‖2 − ‖Kη‖2 ≤ ‖(I −K)η‖2 = ‖η‖2 − 2<〈Kη|η〉+ ‖Kη‖2

for all η ∈ D(K), i.e.,

‖Kη‖ ≤ ‖η‖ and <〈Kη|η〉 ≤ ‖Kη‖2 for all η ∈ D(K).

• If n = {λ ∈ C : <λ = 0}, then (7.2) holds if and only if ‖Kη‖ = ‖η‖ for all
η ∈ D(K), i.e., if and only if K is an isometry.
This case is not surprising since we have, up to a rotation, exactly the
Cayley transform of a symmetric operator (see [23, Theorem 13.5]).
• If n = {λ ∈ C : <λ ≥ 0,=λ = 0}, then (7.2) holds if and only if

‖Kη‖ ≤ ‖η‖ and 〈Kη|η〉 = 〈η|Kη〉 for all η ∈ D(K),

i.e., if and only if K is a symmetric contraction.
In this case, the correspondence of Theorem 7.2 is that given by Proposition
13.22 of [23], and the mapping T 7→ τ(T ) is called Krein transform.
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• If n is a sector n = {λ ∈ C : | arg(λ)| ≤ θ}, where 0 < θ < π
2 , then (7.2)

holds if and only if ‖ sin(θ)Kη ± i cos(θ)η‖ ≤ ‖η‖, for all η ∈ D(K).
In particular, if D(K) = H then (7.2) is equivalent to

‖ sin(θ)K ± i cos(θ)I‖ ≤ 1. (7.3)

The class C(θ) of operators K ∈ B(H) satisfying (7.3) has been studied
in [2, 3, 17]. It has been used in descriptions of maximal sectorial exten-
sions of sectorial operators and in the study of one-parameter semigroups
of contractions U(t) = exp(−tT ), t ≥ 0, generated by maximal sectorial
operators T .

8. Operators associated to solvable sesquilinear forms

In this section we deal with the n-maximality of operators associated to sesquilin-
ear forms. In particular, we work with solvable forms, that have been studied in
[7, 8, 9]. For reader’s convenience we recall some important notions and results
about them.

We assume that D is a dense subspace of H and we denote by ι the sesquilinear
form which corresponds to the inner product, i.e., ι(ξ, η) = 〈ξ|η〉, with ξ, η ∈ H.
A sesquilinear form Ω on D is called q-closed with respect to a norm on D denoted
by ‖ · ‖Ω if

1. there exists α > 0 such that ‖ξ‖ ≤ α‖ξ‖Ω, for all ξ ∈ D, i.e., the embedding
D[‖ · ‖Ω]→ H is continuous;

2. D[‖ · ‖Ω] is a reflexive Banach space;
3. there exists β > 0 such that |Ω(ξ, η)| ≤ β‖ξ‖Ω‖η‖Ω, for all ξ, η ∈ D, i.e., Ω

is bounded on D[‖ · ‖Ω].

Let Ω be a q-closed sesquilinear form on D with respect to a norm ‖ · ‖Ω and
EΩ := D[‖ · ‖Ω]. Let E×Ω be the conjugate dual of EΩ. If the set P(Ω) of bounded
sesquilinear forms Υ on H satisfying

1. if (Ω + Υ)(ξ, η) = 0 for all η ∈ D then ξ = 0;
2. for all Λ ∈ E×Ω there exists ξ ∈ EΩ such that the action of Λ on ξ is given

by 〈Λ|η〉 = (Ω + Υ)(ξ, η), for all η ∈ EΩ,
is not empty, then Ω is said to be solvable with respect to ‖ · ‖Ω.

The following result gives the representation theorem of solvable forms, whose
first version is in [7].

Theorem 8.1 ([8, Theorem 4.6], [9, Theorem 2.7]). Let Ω be a solvable sesquilin-
ear form on D with respect to a norm ‖ · ‖Ω. Then there exists a closed operator
T , with dense domain D(T ) ⊆ D in H, such that the following statements hold.

1. Ω(ξ, η) = 〈Tξ|η〉, for all ξ ∈ D(T ), η ∈ D.
2. D(T ) is dense in D[‖ · ‖Ω].
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3. A bounded form Υ(·, ·) = 〈B ·|·〉 belongs to P(Ω) if and only if 0 ∈ ρ(T+B).
In particular, if Υ = −λι, with λ ∈ C, then Υ ∈ P(Ω) if and only if
λ ∈ ρ(T ).

The operator T is uniquely determined by the following condition. Let ξ, χ ∈ H.
Then ξ ∈ D(T ) and Tξ = χ if and only if ξ ∈ D and Ω(ξ, η) = 〈χ|η〉 for all η
belonging to a dense subset of D[‖ · ‖Ω].

The operator T in Theorem 8.1 is called associated to Ω.

Proposition 8.2 ([8, Proposition 4.13]). The numerical range of the operator
associated to a solvable sesquilinear form is a dense subset of the numerical range
of the form.

Many sesquilinear forms studied in the literature are solvable (we refer to Section
7 of [8]). In particular, the forms considered by Kato [16, Theorem VI.2.1] and
McIntosh [18, Theorem 3.1] are solvable (see [7, Example 5.8] and [8, Theorem
7.8]).
Kato and McIntosh’s theorems establish also that the associated operators are
maximal sectorial and maximal accretive, respectively. Hence, a natural ques-
tion arises: is the operator associated to a solvable form with numerical range
contained in n (different from C) n-maximal? By [8, Corollary 4.14], the opera-
tors associated to symmetric solvable forms are self-adjoint, then, in particular,
maximal symmetric. In the following we formulate other results on maximality
of the associated operators.

Theorem 8.3. Let n be a proper, convex subset of C and let Ω be a solvable
sequilinear form on D, with numerical range nΩ ⊆ n and associated operator T .
If a sesquilinear form Υ ∈ P(Ω) has numerical range nΥ such that n∩(−nΥ) = ∅,
then T is n-maximal. In particular, if there exists λ ∈ nc such that −λι ∈ P(Ω),
then T is n-maximal.

Proof. The numerical range nT of T is contained in n. Let B the operator asso-
ciated to Υ and nB be the numerical range of B. By Theorem 8.1, T + B is a
bijection. Let T ′ be an extension of T with numerical range contained in n. Thus
T ′+B is injective, because nT ′ ⊆ n, nB = nΥ and n∩ (−nΥ) = ∅. Consequently
T = T ′, i.e., T is n-maximal.

Corollary 8.4. Let n be a proper, convex subset of C and let Ω be a q-closed
sequilinear form on D, with numerical range nΩ ⊆ n. Assume that one of the
following statements holds.
(i) If {ξn} is a sequence in D such that lim

n→∞
‖ξn‖ = 0 and lim

n→∞
|Ω(ξn, ξn)| = 0,

then lim
n→∞

‖ξn‖Ω = 0.
(ii) There exists a bounded form Υ on H such that nΩ ∩ (−nΥ) = ∅, where nΥ

is the numerical range of Υ, and (ii’) or (ii”) below holds
(ii’) if {ξn} is a sequence in D such that sup

‖η‖Ω=1
|(Ω + Υ)(ξn, η)| → 0, then

‖ξn‖Ω → 0;
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(ii”) there exists a constant c > 0 such that

c‖ξ‖Ω ≤ sup
‖η‖Ω=1

|(Ω + Υ)(ξ, η)|, ∀ξ ∈ D.

Then Ω is solvable and its associated operator T is n-maximal.

Proof. This is an application of [8, Theorem 5.2, Corollary 5.3, Theorem 5.4] and
of Theorem 8.3.

The n-maximality of operators associated to solvable forms holds in any case if
the numerical range of the form is contained in a strip.

Theorem 8.5. Let Ω be a solvable sesquilinear form on D with respect to a norm
‖ · ‖Ω and with numerical range nΩ contained in a strip S. Let T be its associated
operator with numerical range nT . Then nT

c ⊆ ρ(T ) and T is n-maximal, where
n is any proper, convex subset of C containing nT .

Proof. We can assume again, without loss of generality, that S = Sα := {λ ∈ C :
|=λ| ≤ α}, for some α ≥ 0.
Consider the real and imaginary parts <Ω, =Ω of Ω. Since

Ω(ξ, ξ) = <Ω(ξ, ξ) + i=Ω(ξ, ξ), ∀ξ ∈ D, (8.1)

and nΩ ⊆ S, then =Ω has numerical range in [−α, α], so it is bounded and it
extends to a bounded sesquilinear form Ψ on H. Moreover, <Ω is solvable with
respect to ‖ · ‖Ω, being a difference of a solvable form and a bounded form.
Let S be the operator associated to <Ω and B be the bounded operator such that
Ψ(ξ, η) = 〈Bξ|η〉, for all ξ, η ∈ H. From (8.1) it follows that S+ iB is exactly the
operator associated to Ω, i.e., T = S + iB. But S is self-adjoint by [8, Corollary
4.14], and B is, too. Therefore, T = S + iB is the decomposition of Lemma
5.1. With the same argument of the resolvent set under perturbation used in
Theorem 5.5, nT c ⊆ ρ(T ), and the rest of the statement follows by Proposition
3.1.

We recall that ([9, Definition 4.1]) a solvable sesquilinear form Ω on D with asso-
ciated operator T is said hyper-solvable if D = D(|T |

1
2 ). Under this condition one

has the following Kato’s second type representation (see [16, Theorem VI.2.23]
and [9, Theorem 4.17])

Ω(ξ, η) = 〈U |T |
1
2 ξ||T ∗|

1
2 η〉, ∀ξ, η ∈ D,

where T = U |T | = |T ∗|U is the polar decomposition of T .
For hyper-solvable sesquilinear forms the converse of Theorem 8.5 holds as follows.

Proposition 8.6. Let T be a densely defined n-maximal operator, where n is
contained in a strip S, and in particular nc ⊆ ρ(T ). Then there exists a unique
hyper-solvable sesquilinear form with associated operator T .
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Proof. It is a direct consequence of Corollary 5.6 and [9, Theorem 5.1].

Moreover, next result simplifies the criterion of Lemma 4.14 of [9] when the
numerical range of the form is contained in a strip (see also Corollary 4.16 of [9]).

Corollary 8.7. If Ω is a solvable sesquilinear form on D with respect to an
inner product and with associated operator T . If the numerical range nΩ of Ω is
contained in a strip, then the following statements are equivalent.

1. D = D(|T |
1
2 ), i.e., Ω is hyper-solvable;

2. D ⊆ D(|T |
1
2 );

3. D ⊇ D(|T |
1
2 ).

Proof. By Theorem 8.5 and Corollary 5.6, D(T ) = D(T ∗). Hence [10, Corollary
1.3] implies that D(|T |

1
2 ) = D(|T ∗|

1
2 ). Therefore we conclude with Lemma 4.14

of [9].

Finally, by Theorem 4.1, it is also possible to make more precise the correspon-
dence, given by [16, Theorem VI.2.6], between densely defined, closed, sectorial
forms and m-sectorial operators as follows.

Corollary 8.8. Let n ⊂ C be a closed, convex subset of a sector of C. There
exists a one-to-one correspondence between all closed, densely defined sesquilinear
forms with numerical range in n and all n-maximal, densely defined operators on
H.
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