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MAXIMAL OPERATORS WITH RESPECT
TO THE NUMERICAL RANGE
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ABSTRACT. Let n be a nonempty, proper, convex subset of C. The n-maximal
operators are defined as the operators having numerical ranges in n and are
maximal with this property. Typical examples of these are the maximal sym-
metric (or accretive or dissipative) operators, the associated to some sesquilin-
ear forms (for instance, to closed sectorial forms), and the generators of some
strongly continuous semi-groups of bounded operators. In this paper the n-
maximal operators are studied and some characterizations of these in terms
of the resolvent set are given.
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1. INTRODUCTION

The numerical range of an operator T' with domain D(T') on a complex Hilbert
space H, with inner product (-|-) and norm || - ||, is the convex subset of C

np = {(T¢[€) - £ € D(T), [[¢]l = 1}

Consider a proper convex subset n of C. We say that T is n-maximal if np Cn
and T has no proper extension with this property. This concept has the maximal
symmetric, accretive and dissipative operators as special cases.

We know by von Neumann [20] that a (densely defined) symmetric operator T’
is maximal symmetric if and only if either the half-plane {\ € C : I\ > 0} or the
half-plane {\ € C : I\ < 0} is contained in the resolvent set p(7°). This, in turn,
is equivalent to say that a defect index of T, dim R(T —iI)* or dim R(T+iI)*, is
zero. Phillips proved a similar result in [22], i.e., that a densely defined dissipative
operator is maximal dissipative if and only if A € p(T) for some RA > 0, if and
only if {A € C: RA > 0} C p(T).

In this paper we deal with the analogue characterization for a general n-
maximal operator 7', taking into account that the defect index of T is defined
for A € n° (i.e., the complement of the closure of n) as dim R(T — AI)*, and
is constant for all A contained in a connected component of n. If T is densely
defined and ny C n, then T is closable and its closure T has numerical range in 1.
For this reason an assumption that we make, in order to have closed n-maximal
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operator, is that n is closed.

In particular, the new cases studied are given by Theorem 4.1 and Theorem 5.5,
where n is a closed subset of a sector or of a closed strip, respectively. The first one
is based on the Friedrichs extension of a densely defined sectorial operator, while
the second one uses the fact that a densely defined operator T" with numerical
range in a horizontal strip is uniquely decomposable (like for bounded operator)
as T = S+iB (Lemma 5.1), in which S and B are symmetric and B is bounded.
If the strip is closed, the sets of extensions of 7" and S are in a one-to-one
correspondence (Lemma 5.3).

For many classes of densely defined and n-maximal operators, the resolvent set
contains a connected component of n°. This property holds for generators of some
strongly continuous semi-groups (or groups) of bounded operators, for instance
of contractions. We give more examples of semi-groups and corresponding n-
maximal generator in Section 6. We also recall that for an operator T' with
numerical range in n and satisfying n° C p(7T') it is possible to define a so-called
functional calculus developed in many work, for instance in [5, 6, 11, 14, 19].

In Section 7 we talk about correspondences (through a map like Cayley trans-
form) between extensions of an operator with particular numerical range and
bounded operators.

Another area where n-maximal operators occur concerns sesquilinear forms
on a Hilbert space. The operator T' associated to a sesquilinear form ), with
dense domain D in H, has domain

D(T) ={¢ € D:3Ix e H,Q& n) = (x|n),Vn € D} (1.1)

and it is defined by T¢ = , for all £ € D(T') and x as in (1.1) (the density of D
ensures that this definition is well-posed). Hence, Q2 is represented by T, i.e.,

Q&n) = (T¢ln),  v&e D(T),neD. (1.2)

The domain of 7" might be very small, therefore one searches conditions so that
T is densely defined (and also closed). Representation theorems are studied by
Kato (who consider the closed sectorial forms) and then by several author (see
the references of [3]). Returning to the problem of the maximality, Kato’s result
says that the operator associated to a densely defined closed sectorial form is m-
sectorial, i.e., S-maximal, with S a sector containing the numerical range of 2. In
Section 8 we consider solvable sesquilinear forms, which, with the representation
(1.2), have been defined and studied in [7]. The analysis of solvable forms has
been continued in [3, 9]. Here, for a general proper, convex subset n of C we
give some sufficient conditions for the n-maximality of the associated operator
in Theorem 8.3 and Corollary 8.4. However, if the numerical range of a solvable
form is contained in a strip, then the associated operator is always n-maximal
and, actually, we have the stronger result that n® C p(7") (Theorem 8.5).
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2. n-MAXIMAL OPERATORS

In this paper we indicate by H a complex Hilbert space, with inner product (-|-)
and norm || - ||. The domain and the range of a (linear) operator 7" are denoted
by D(T') and R(T'), respectively. The set of bounded operators defined on the
whole of H is denoted by B(H).

For the notion and properties of the numerical range we refer the reader to |10,
Ch. V, Sect. 3|, [23, Ch. 2| and also |13, 15] for bounded operators.

The numerical range of an operator T' on H, with domain D(T), is the convex
subset of the complex plane

ny = {(T¢[€) - € € D(T), [[¢]l = 1}

If T is densely defined and np C R (or equivalently 7" C T™) then it is called
symmetric, while if np C {A € C: R\ > 0} then T is said accretive.

If T' is bounded then ny is bounded, and the converse is true provided that T is
densely defined.

Suppose that np £ C. Since ny is a convex subset of C then the complement np®
is connected or it consists of two half-planes (this second possibility holds if and
only if ny is a strip, i.e., a subset bounded by two parallel straight lines).
Assume that T is closable and A € n7¢, then the number dim R(T — AI)* is
constant in each connected component of iy, and it is called a defect index of T
Therefore, for an operator whose numerical range is not C the defect indexes are
at least one and at most two (note that, actually, the defect index is defined and
is constant in each connected component of the so-called regularity domain [23,
Definition 2.1|; however, we are interested only in defect indexes defined outside
the numerical range).

Finally, we recall some results involving the numerical range, the resolvent and
the spectrum of an operator (see [15, Ch. 22| and [23, Ch. 2|).

Lemma 2.1. Let T be an operator on H, with numerical range ny, resolvent set
p(T), point spectrum op(T), continuous spectrum o.(T') and residual spectrum
o.(T). Then, the following assertions hold:

1. Gp(T) Cnap;
UC(T) Cnr;
each connected component of np® is entirely contained in p(T') or in o,.(T);
if T € B(H) then o.(T) C nyp, i.e., the spectrum of T is contained in Wr;
if X €nrc N p(T), then ||(T — M)~ < (dist(\,nr)) L.

Crds o e

Now we give a new definition. Throughout this paper, if not otherwise specified,
we assume that n C C is a nonempty, convex, proper subset of C.

Definition 2.2. An operator T, with numerical range ny, is said to be n-mazimal
if the following conditions hold:
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1. np Cny
2. if T" is an operator, with numerical range nyv, such that 7' C 7" and nyv C n,
then T'=T".

Remark 2.3. Maximal accretive, and maximal symmetric operators are special
cases of n-maximal operators, that is they are obtained considering n = {\ € C:
RA > 0} and n = R, respectively.

In [20] von Neumann proved the next celebrated characterization (see also |23,
Ch. 13)).

Theorem 2.4. Let T be a symmetric operator on H. The following statements
are equivalent:

1. T is mazimal symmetric;

2. R(T —il)=H or R(T+il) =H (i.e., a defect index of T is 0);

3. a connected component of C\R is contained in the resolvent set p(T') of T.
Moreover T is self-adjoint if, and only if, R(T —iI) = R(T +iI) = H if, and
only if, C\R C p(T').

We notice here that a similar characterization of selfadjointness has been given in
[24, Theorem 5.1] which simultaneously concerns both real and complex Hilbert
spaces. The next characterization (which follows the framework of symmetric
operator) covers accretive operators and is due to Phillips [22]. Actually, Phillips
worked with dissipative operators T, i.e., operators with numerical range in {\ €
C : ®X < 0}. But, since —T is accretive, the result for accretive operators follows
easily from the dissipative case.

Theorem 2.5 (|22, Ch. I|). Let T be an accretive operator on H. The following
statements are equivalent:
1. R(T — XI) =H for some A € C with RA < 0;
2. the half-plane {\ € C: R\ < 0} is contained in the resolvent set p(T) of T
(i.e., the defect index of T is 0);
3. T is maximal accretive and densely defined;
4. T is mazrimal accretive and closed.

Remark 2.6. Let ' C n C C be two proper, convex subsets of C. An operator T’
on H, with numerical range in n’ and n-maximal is also n’-maximal. The converse
is not true in general. Indeed, consider n’ := {A € C : R\ = 0} contained in
n:={\ € C: R\ > 0}. Let T be a maximal symmetric operator, but not
self-adjoint. We can assume that, in particular, R(T' —il) # H. Thus 7 := T is
densely defined, has numerical range in n’ (hence it is in particular accretive), it
is n’-maximal and one has R(T + I) # H. By Theorem 2.5, T is not n-maximal.

3. CASE l: GENERAL CLOSED CONVEX SUBSET

Our goal in the ensuing sections is to extend Theorem 2.5 to n-maximal operators,
where n is a proper convex subset of C.
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Proposition 3.1. Let T be an operator on H with numerical range contained in
nand X\ € n¢. If R(T—M\I) = H, then T is densely defined, closed and n-mazimal.

Proof. Since A ¢ n, T'— A is injective and therefore A € p(T') and T is closed.
Let T" be an extension of T', with numerical range n7» C n. Then also T" — I is
injective; hence T/ = T and T is n-maximal.

Now, we prove that T is densely defined. Let n € H be such that (¢|n) = 0 for
all ¢ € D(T). Since A € p(T), we have in particular that (T — \)~1n|n) = 0
and setting x = (T — M)~ n, we get (x|(T — AI)x) = 0. Hence x = 0, because
A¢n, and n=0. O

Example 3.2. Let a = {a,,} be a sequence of complex numbers contained in a
closed convex set in n, and Iy be the Hilbert space of the complex sequences {,, }
such that >°°0 | [£,]? < oo, with the usual inner product.

Consider the operator .#, on ly with domain

D(AMy) = {{gn} €h: ) lombl* < oo}

n=1

and given by Zy{n} = {anén}, for all {&,} € D(A4,).
The operator .#, has numerical range in n; moreover if A € n¢, then \ € p(.4,),
hence R(.#y — AI) = k. By Proposition 3.1, .#,, is n-maximal.

Proposition 3.3. If n is closed, then a densely defined, n-maximal operator on
H is closed.

Proof. Let T be a densely defined, n-maximal operator on H. T is closable by |16,
Ch. V, Th. 3.4], and it has a closure T with numerical range nmCnr Cn=n
Therefore, by the maximality of 7' and from T'C T, we have T'=T. O

Resuming the results obtained, and using Lemma 2.1, we can formulate the
following theorem.

Theorem 3.4. Let n C C be a proper, closed, convex subset of C and let T be
an operator on H with numerical range in n.
For the following statements
1. R(T — X\I) =H for some X € n;
2. a connected component of n° is contained in the resolvent set p(T) of T' (i.e.
a defect index of T' is 0);
3. T is n-mazimal and densely defined;
4. T is n-mazximal and closed;
the following implications hold 1. = 2. = 3. = 4.

The statements indicated in the previous theorem are equivalent in the case
n={X€C: R\ >0} (Theorem 2.5), but they are not equivalent in general (see
Example 4.6 below). If T is bounded, then the statements in Theorem 3.4 are
equivalent and moreover they hold if and only if T' € B(H).
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4. CASE 2: CLOSED CONVEX SUBSET OF A SECTOR
In this section we study the case in which n is a closed subset of a sector
S:={\eC:|arg(A—v)| <6}

where v € R, 6 € [0, §), and we add other implications to Theorem 3.4.

We recall that an operator 1" with numerical range ny C S is said to be sectorial,
moreover, if the complement of § is contained in the resolvent set of T', then T’
is said m-sectorial (see [16, Ch. V]).

Theorem 4.1. Let n C C be a closed, convex subset contained in a sector of
C, and let T be an operator on H with numerical range ny C n. The following
statements are equivalent:
1. T is n-maximal and densely defined;
2. R(T — \I) =H for some X € n®;
3. n€ is contained in the resolvent set p(T') of T (i.e., the defect index of T is
0).

If these conditions are satisfied, then T is closed.

Proof. By Theorem 3.4, we only have to prove that if T' is n-maximal and densely
defined, then R(T — AI) = H for some X € n°.
Let 7" be the (m-sectorial) Friedrichs extension of 7. The numerical range ny of

T' is contained in ny C n (see [16, Ch. VI]). Hence, from the n-maximality of T
and T C T, we have T = T". Tt follows that T' is m-sectorial, i.e., R(T—\) = H
for some A € n°. O

The following theorem demonstrates that the n-maximality of an operator (where
n is contained in a sector) does not strictly depend on the chosen closed, convex
subset n.

Theorem 4.2. Let ny,ne C C be two proper, closed, convex subsets of C, such
that ny is contained in a sector of C and ny Nng # &. Let T be a densely defined
operator on H with numerical range np C ny Nng. The following statements are
equivalent:

1. T is ny-mazximal;

2. T is ng-mazimal.

Proof. (1. = 2.) Since n; is contained in a sector, we have n§{ N n§ # @. By
Theorem 4.1, R(T — AI) = H for all A € n§, hence R(T — A\I) = H per some
A € n§. Applying Theorem 3.4, T is ny-maximal.

(2. = 1.) By Remark 2.6, T" is (n; Nng)-maximal, and then 7" is n;-maximal using
the first implication (n; N ny is contained in a sector). O

Remark 2.6 shows that Theorem 4.2 does not hold without the hypothesis that
n; is contained in a sector of C. Another way to read Theorem 4.2 is the next
corollaries.
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Corollary 4.3. Let n C C be a closed, convex subset contained in a sector of C.
A n-mazximal, densely defined operator T on H has no proper extension whose
numerical range is a proper subset of C.

Corollary 4.4. LetT be a densely defined, accretive operator and with numerical
range also contained in a closed subset n of a sector S of C. Then, T is maximal
accretive if and only if T is n-maximal.

The positive semi-line is contained in some sector of C. For this reason, we turn
our attention to the case in which T is positive, i.e., np C [0 4 00). We prefer
to say that T is maximal positive if it is [0, +00)-maximal. Before to show how
Theorem 3.4 is formulated in this case, we recall that a closed positive operator T'
is said positively closable (see [1]) if lim (T¢,|&,) = 0 and lim T'E, = n implies
n _ O. n— o0 n—oo

Theorem 4.5. Let T be a positive operator on H. The following statements are
equivalent:
1. T is mazimal positive, closed and positively closable;
2. [0,400)¢ is contained in the resolvent set p(T) of T (i.e., the defect index
of T is 0);
3. T is maximal positive and densely defined;
4. R(T — XI) =H for some X\ € [0, +00)°.

Proof. Suppose that T' is maximal positive, closed and positively closable. By
[I, Theorem 1], T'" admits a positive self-adjoint extension, that must concides
with T'; hence [0, +00)¢ is contained in the resolvent set p(T') of T. The other
implications follow by Theorem 3.4. O

The next example shows that Theorem 4.5 does not hold without the hypothesis
that T is positively closable. That is the statements in Theorem 3.4 are not
equivalent in general.

Example 4.6. Let H = C? and T be the operator on C? with domain D(T) =
{(z,0) : x € C} and defined by T'(x,0) = (0,z) for all x € C. We have that T is
positive, closed and non densely defined, R(T — A\I) # C? for all A € [0, +00)°.
Moreover, T is not positively closable, then by |1, Theorem 1| is maximal positive.

5. CASE 3: CLOSED STRIP

Now we study the case where the set n of Theorem 3.4 is a strip. More precisely,
we consider the following subsets of C:
1. for a > 0, the horizontal strip S., i.e., a subset such that

{AeC: I8N <a} CS, C{AeC: |3\ <al;

2. the horizontal closed strip S, i.e., a subset S, := {\ € C : |3\ < o},
where o > 0;
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3. the strip S, i.e., a subset S := aS,, + b, where a € C\{0},b € R, > 0.

4. the closed strip S, i.e., a subset S := aS,+b, where a € C\{0},b € R, > 0.
We recall some notions regarding sesquilinear forms (see [16, Ch. VI]), that are
useful in this section, but also in the last one.

Let D be a subspace of the Hilbert space H and let € be a sesquilinear form
defined on D. The adjoint Q* of Q is the form on D given by

@ (§,n) =QMm,8),  VEneD.

If Q = QF then  is said to be symmetric . The symmetric sesquilinear forms on

D defined by

1 1
RQ=-(2+ Q) and IN=—(Q-Q"),
2 24
are called real and imaginary parts of €2, respectively; then Q = RQ + 3.
The numerical range is defined also for a sesquilinear form 2 and it is the convex
subset

ng = {Q(¢,¢) : £ € D, [|€] =1}

of C. Note that 2 is bounded if and only if ng is bounded; 2 is symmetric if and
only if ng C R. If Q is bounded and D = H, then there exists a unique operator
B € B(H) such that Q(&,n) = (B&|n), for all £,n € H.

In order to prove Theorem 5.5 we firstly need the next lemma. The idea of the
proof is analogous to the argument used to prove Theorem 7.1.2 of [14].

Lemma 5.1. Let S, be a horizontal strip of C and T be a densely defined operator
with numerical range np C S,. Then there exist unique symmetric operators
B € B(H) and S such that D(S) = D(T) and

T=S+iB. (5.1)

Moreover,
1. D(T) € D(T);
2. S=3(T+T*) and Bipry = 5;(T —T*).

Proof. Let Q be the sesquilinear form on D(T) given by

Q& n) = (T¢[n),  V&n € D(T).

Consider the real and imaginary parts £Q, SQ of 2. The numerical range of (2
is exactly the one of T, so, from Q = RO + i3, we have that RO and IN have
numerical ranges in R and in [—a, ], respectively.

Consequently, 3 is bounded, and since it is densely defined, it can be extended
to a unique bounded form in whole H. Hence, there exists a unique (symmetric)
operator B € B(H) such that IQ(E,n) = (BE|n), for all §,n € D(T). Now set
S :=T —iB, hence D(S) = D(T). We have, for £ € D(S) with ||£|| =1,

(5¢1€) = (T¢[€) —i(BEIE) = Q(E,§) —i3(8,€) = R(E, ) €R,
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therefore S is symmetric.
To prove 1. observe that 7% = S* —iB, so D(T) = D(S) C D(S*) = D(T%).
This implies that 7'+ 7™ is defined on D(T) and

T+T*=S+S5"=28, on D(T) = D(9),

hence S = 1(T+T*). In a similar way it can be verified that Bipry = 5 (T=T%),
which proves statement 2.

Suppose now that T'= S’ +iB’, with S’, B’ symmetric operators, D(S") = D(T)
and B’ € B(H). It follows that S —S" = —i(B— B’), but both S— S’ and B— B’
are symmetric, therefore S = S’ and B = B'. O

Denote by S(#H) the family of symmetric operators on H and St(H) the family
of densely defined operators on H with numerical range in a strip S,. Thus, with
the aid of the previous lemma, we can formulate the following correspondence
and its properties.

Corollary 5.2. The map S(H) x B(H) — St(H) defined by (S,B) — S +iB is

a bijection.

Lemma 5.3. Let S, be a horizontal strip, T a densely defined operator with
numerical range np C S, and T'= S + iB the decomposition (5.1).
The map S' — T' := S' +iB defines
1. a one-to-one correspondence between all extensions S’ of S and all exten-
sions T' of T';
2. a one-to-one correspondence between all symmetric extensions S’ of S and
all extensions T' of T with numerical range nyr C S,.

Proof. The first statement is obvious. Let S’ be a symmetric extension of S,
then, clearly, 7" := S’ + iB is an extension of T' whose numerical range satisfies
ny C S,.

Now, let T' be an extension of 7' with numerical range np» C S, and 77 = S’ 4iB’
the decomposition given by Lemma 5.1. Since T' C T" then, following the proof
of the same lemma, B = B’; hence S =T —tBCT' —iB = 5. O

Corollary 5.4. Let S, be a horizontal strip, T a densely defined operator with
numerical range np C S, and T' = S + iB the decomposition (5.1).
1. If S is maximal symmetric, then T is Sq-mazimal.
2. If Sy = S, is closed, then T is Sqo-mazimal if and only if S is mazimal
symmetric.

Theorem 3.4 is adapted to the case of a strip as follows.

Theorem 5.5. Let S be a closed strip of C and T an operator on H with numer-
ical range in' S. The following statements are equivalent:
1. R(T — XI) =H for some A\ € S;
2. a connected component of S° is contained in the resolvent set p(T) of T
(i.e., a defect index of T is 0);
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3. T is S-mazximal and densely defined.
If these conditions are satisfied, then T is closed.

Proof. We only have to prove the implication 4. = 1. by Theorem 3.4.

With a linear transformation (which does not change the maximality), we can
restrict ourselves to the case in which S is horizontal, i.e., S = {\ € C : |S)\| < a},
for some o > 0.

Let T'= S + iB be the decomposition (5.1). The case B = 0 is trivial. Assume
B # 0, hence a« > 0. By Corollary 5.4 S is maximal symmetric, hence we
can find A € p(S) such that |IA| > a. As proved in the proof of Lemma 5.1,
B has numerical range in [—a,a]; this implies that ||B]] < «. We also have
(S — A7 < |SA| 7L, therefore [|[(S — A7 < |SA™F < o7t < ||B||7L. By
[25, Theorem 5.11], A € p(T). O

Corollary 5.6. Let T' be a densely defined operator with numerical range con-
tained in a closed strip S. Then D(T) = D(T*) if and only if S° C p(T).

Proof. Tt is not restrictive that we consider S = {\ € C : |S\| < a}, for some
a > 0. Let T'= S+iB be the decomposition (5.1). By Lemma 5.1 D(T") = D(T™)
if and only if D(S) = D(S*) if and only if S is self-adjoint. But, with an argument
like the one used in the proof of Theorem 5.5, S is self-adjoint, if and only if
S°C p(T). O

Remark 5.7. The sufficient implication of Corollary 5.6, in the case of horizontal
strip, is also proved in |14, Theorem 7.1.2].

Proposition 5.8. Let n C C be a proper, convex subset of C, S be a closed
strip, such that nN'S # @ and n does not contain any of two half-planes which
constitute S°. Moreover, let T be a densely defined operator on H with numerical
range ny C nNS. If T is S-mazimal, then T is n-mazimal.

Proof. By Theorem 5.5, R(T — M) = H for all A contained in a connected
component of S° (i.e., one of the two half-planes which constitute SC). By the
hypothesis and applying Proposition 3.1, T is n-maximal. O

Example 5.9. Let AC[a,b] be the set of absolutely continuous function on an
interval [a, b], J be one of the open intervals (0, 1), (0, 00), R, and

HYJ)={fe€L*J): f € ACla,b] for all [a,b] C T and f’ € L*(J)}
Hy(0,1) = {f € H'(0,1) : £(0) = f(1) = 0}
Hg(0,400) = {f € H'(0,+00) : f(0) = 0}.
Consider the densely defined differential operator T' on L?(J) given by
(Tf)(x) =i (f'(x) +r(@)f(x), VfeH(T),

on the domain D(T) = H}(J) if J = (0,1) or J = (0,+00), or on the domain
D(T) = H'(J) if 7 = R, where r : J — R is a bounded continuous function,
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i.e., there exists m > 0 such that |r(z)| < m, for all z € J.

The numerical range of T is contained in the strip S,,. Our goal is to find all
the S-maximal extensions 7" of T, where S is a closed horizontal strip containing
S,. Therefore, let k > m and T” be a Si-maximal extension of T

Clearly, the decomposition of Lemma 5.1 is T' = S+iB, where S is the symmetric
operator with domain D(T") defined by

(SHx) =if'(x),  Vfe D),
and B is the bounded symmetric operator on L?(J) given by

(Bf)(@) =r(@)f(x),  VfeL*J).

On the other hand, 7" = S’ + B’ by Lemma 5.1 where, in particular, S’ is
maximal symmetric by Corollary 5.4. Since T'C T’, we have B = B’ and S C 5’
by Lemma 5.3.
It is well-known (see [23, Sect. 13.2]) that S is closed and has defect indexes
dy = dim R(S +il)* and d_ = dim R(S —iI)*:

1. dy =d_=1,if J = (0,1);

2. dy =1,d_ =0 (and hence S is maximal symmetric), if J = (0, +00);

3. dy =d_ =0 (ie., S is self-adjoint), if J = (—o0, +00).
It follows that T = S + iB is Si-maximal in the cases J = (0,400) and J =
(—o00,+00). Conversely, in the case J = (0,1), all the maximal symmetric
extensions (that are also self-adjoint) of S are the operators Sp (where 6 is a
complex number of modulus 1) with domains D(Sg) = {f € H*(0,1) : f(—-1) =
0f(1)}, and given by (Sgf)(x) = if'(x), for all f € D(Sp). Consequently, for
some 6 € C with |§] = 1, T" is the operator defined on the domain D(T") = D(Sp)
as

(T'f)(@) =i (f'(x) +r(x)f(z)),  Vfe DTy
Note that in all cases 7' has numerical range in the smaller strip S,,, hence all
Si-maximal extension of T' are actually S,,-maximal.

6. N-MAXIMAL OPERATORS AS GENERATORS OF SEMI-GROUPS

In this section we report some assertions (in part well-known) regarding genera-
tors of semi-groups on H which are n-maximal, with some proper, convex subsets
n.

Let {S(t)}+>0 be a strongly continuous semi-group of bounded operators on H
and let A be its generator. We recall that (|21, Ch. I, Th. 2.2|) there exist
constants M > 1,w > 0 such that

S| < Me¥t, vt >0. (6.1)

Moreover, if the semi-group extends to a strongly continuous group {S(t)}ser,
then there exist constants M > 1,w > 0 such that

IS@)| < Me*, vt eR. (6.2)
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1. The Lumer-Phillips theorem (|21, Ch. I, Th. 4.3]) states that {S(¢)}+>0 is
a semi-group of contractions if and only if A is a densely defined maximal
dissipative.

2. Animmediate consequence of point 1 is that a semi-group {S(¢) };>0 satisfies
[|S(t)|| < et for some w € R and for all ¢ > 0 if and only if A is n-maximal
and densely defined, where n := {\ € C : R\ < w} (see [12, Ch. II, Ex.

2.9)).
3. As proved in |22, Theorem 1.1.4], {S(¢)}+>0 is a semi-group of isometries
if and only if the numerical range of A is contained in n := {A € C :

RA = 0} and A is maximal dissipative and densely defined. This implies,
in particular, that A is n-maximal.

4. Another consequence of Lumer-Phillips theorem establishes that {S(t)}+>0
extends to a strongly continuous group {S(t)}ser and ||S(t)|| < el for
all t € R if and only if A is n-maximal, densely defined and such that
n¢ C p(A), where n:= {A € C: |R)\ <w}.

5. A more general case of point 3 and 4 is that

e < Sl < e, Wz 0vEEH el =1, (63)

for some w1 < ws if and only if A is n-maximal and densely defined where
n:={Ae€C:w; <RA<ws}. In fact we have for £ € H and t > 0,

2R(AS(EIS(E) = o (ISDEIP),

R(AS(1)E[S(t)E) = HS(t)é\I;IIS(t)SIL

Hence, A has numerical range in n if and only if

0
willSOEN < ISl < w2l S )],

ie., Ce“tt < ||S(t)¢| < Cev?t, for some C > 0. By S(0)¢ = &, we have
[€lle< " < [IS(#)E]l < [|€]|e=", for all £ € H, ¢ > 0.

Since A is a generator of a semi-group, then it is n-maximal and densely
defined by Theorem 5.5. Moreover, n® C p(A) if and only if {S(¢)}i>0
extends to a strongly continuous group, if and only if S(¢) has range H for
all t > 0 (all S(t) are injective by (6.3)).

6. Assume that n C (—S8), where S is a sector of C. Thus, in particular, —A is
m-sectorial by Theorem 4.1, and hence A generates a bounded holomorphic
semi-group on H (see [14, Corollary 7.3.5]).

We can also state the following proposition that holds for a semi-group (resp.
group) {S(t)}+>0 that does not satisfy condition (6.1) (resp. (6.2)) necessarily
with M = 1.

Proposition 6.1. Let A be an operator with numerical range na # C.
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1. If A is the generator of a strongly continuous semi-group of bounded opera-
tors and na does not contain any half-plane {\ € C : RA > w} with w > 0,
then A is ng-mazimal.

2. If A is the generator of a strongly continuous group of bounded operators,
then A is ng-mazimal.

Proof. 1. By [12, Ch. II, Th. 3.8| the resolvent of A contains the half-plane
H, := {\ € C: R\ > w}, with a certain w > 0, and by hypothesis
H,Nn% # <. An application of Proposition 3.1 shows that A is ngs-
maximal.

2. This proof is analogous to the previous one. The difference is that the
resolvent of A contains the half-planes —H,, and H,,, where H, := {\ €
C: RN > w} and w > 0 (see [12, Ch. II, Sect. 3|). The fact that
(—H,UH,)Nn% # @ and Proposition 3.1 imply that A is n4-maximal. [

Lemma 5.1 establishes a decomposition of an operator in sum of real and imag-
inary parts. We mention |1/, Theorem 7.2.8], which states that if A is the
generator of a strongly continuous group {S(t)}+>0 with ||S(¢)]| < Me<oltl, for all
t € R, and w > wyp, then there exists a inner product (-|-),, inducing a norm || - [|o
equivalent to || - ||, and with respect to (:|-), the following statements hold:
1. A has numerical range in S, (i.e., (A¢|€), € S, for all £ € H, ||€]lo = 1);
2. denoting by A° the adjoint of A with respect to (-|-)o, we have A =iB+C
where
e B = Q%(A — A°) and C\D(A) = %(A—i— A°);
e B is self-adjoint and D(B) = D(A);
e C € B(H) and it is symmetric.
Since A is the generator of a group, A is S,-maximal considering the inner product
(|'o. By [14, Lemma C.5.2], we conclude the following (see also [11, Theorem
2.4]).

Proposition 6.2. The generator of a strongly continuous group of bounded op-
erators is similar to a S,,-mazimal operator, where S, is a horizontal closed strip.

In several works, like [5, 6, 11, 14, 19], the authors defined a so-called functional
calculus for a densely defined operator with spectrum contained in a subset n
which is a sector, a half-plane or a strip, and with resolvent operators satisfying
some condition of boundedness. As particular case, it is possible to define a
functional calculus for an operator 7" with numerical range in n and that satisfies
n¢ C p(T) (see |5, Example 2.2.4, Section 2.3] and [1 1, Theorem 2.4]).

7. CORRESPONDENCES WITH BOUNDED OPERATORS

It is worth mentioning that Phillips [22] proved Theorem 2.5 with the aid of the
transform of an accretive operator T’

(T)= (T -I)(T+1)"1, (7.1)
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where 7(7T') has domain D(7(T")) = R(T+1) and range R(7(T")) = R(T'—1I). Also
von Neumann’s Theorem 2.4 can be proved with a similar map, more precisely
with the Cayley transform of a symmetric operator T

w(T) = (T —iI)(T + i)™,

with domain D(k(T")) = R(T +iI) and range R(k(T)) = R(T —il) (see [23, Ch.
13]). Properties of transform (7.1) are settled in the next theorem.

Theorem 7.1 (|22, Sect. 1.1]). The transform T — 7(T) defines a one-to-one
correspondence, which preserves extensions, between all accretive operators on H
and all contractions J of H such that I — J s invertible.

In particular, the transform T — 7(T) defines a one-to-one correspondence be-

tween all densely defined, accretive operators on H and all contractions J of H
with R(I — J) dense in H.

Let T be an operator with domain D(T") and numerical range contained in a
proper, convex, subset n of C. We want to apply the method of the transform
to T'. Since n is contained in a half-plane, then, up to linear transformation, we
can assume that n is contained in {\ € C : ®\ > 0} (i.e., we can assume that T
is accretive). Therefore, we can apply Theorem 7.1: the operator

T(T)=(T-I)(T+1)"
with domain D(7(T")) = R(T'+1) and range R(7(T")) = R(T'—1I) is a contraction,

I — 7(T) is invertible and T = (I + 7(T))(I — 7(T))~1.
In general, 7(7T') has an additional property, i.e., from

(T +7(T)(I = 7(T))'¢[¢) = (T€|E) en, Ve e D(T),[I¢]| =1
it follows that
(T +7(T)nl(I =7(T))m) €n, V€ R(T+1I), (I - 7(T))nl| = 1.
Now, let K be an operator on 7 such that I — K is invertible and
(I+ K —Km)en,  VneDEK), |I-Kn|=1  (7.2)

We note that K is in particular a contraction since n C {\ € C: X > 0}. Thus,
we have that the operator T' = (I + K)(I — K)~! with domain D(T) = R(I — K)
is well-defined, has numerical range in n and 7(7") = K. Hence, Theorem 7.1 has
the following result as particular case.

Theorem 7.2. Let n be a proper, convex subset of the half-plane {\ € C: RA >
0} of C. Then the transform T — 7(T) defines a one-to-one correspondence,
which preserves extensions, between all operators on H with numerical range in n
and all the operators K on H such that I — K are invertible and satisfying (7.2).
In particular, the transform T — 7(T) defines a one-to-one correspondence be-
tween all densely defined operators on H with numerical range in n and all oper-
ators K on H satisfying (7.2) and with R(I — K) dense in H.
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Corollary 7.3. An operator T on ‘H with numerical range n is n-maximal if and
only if the operator 7(T) = (T — I)(T + I)~' is mazximal in the set of operators
K satisfying (7.2) and such that I — K are invertible.

For particular subsets n (7.2) can be simplified. First of all, let us note that

R+ K)nl(I = K)n) = |In|l* — [[Kn]®

(U + Kl = K)n) = %(<Kn|77> — (&) = 23(Knln),

for all n € D(K). Moreover, for a positive homogeneous subset n (i.e., such that
pun = n for all © > 0) condition (7.2) is equivalent to

((I+K)n|(I—K)p) en,  Vne D(K).
e Ifn={AeC:RX>0,3\ >0}, then (7.2) holds if and only if
K7l <[]l and S(Kn[n) = 0 for all € D(K),

i.e., if and only if K is a contraction with numerical range in the upper
semi-plane of C.
e Ifa>0andn={XeC:0 <R\ <a}, then (7.2) holds if and only if

0 < [ln* — |Knl* < a
for all n € D(K),||(I — K)n|| = 1. This condition is equivalent to
0 < [lnl* — IEnl* < af| (I = K)n|* for all n € D(K).
If, moreover, a = 1, then (7.2) holds if and only if
0 < [l = [[Enl* < I(Z = K)nll* = nll* — 2R(Enln) + || K|
for all n € D(K), i.e.,
1En]| < [ln] and R(Kn|n) < |Kn||* for all € D(K).

o If n={A € C:R\=0}, then (7.2) holds if and only if ||[Kn|| = ||n|| for all
n € D(K), i.e., if and only if K is an isometry.
This case is not surprising since we have, up to a rotation, exactly the
Cayley transform of a symmetric operator (see [23, Theorem 13.5]).

o Ifn={XeC:R\>0,3\ =0}, then (7.2) holds if and only if
1Kl < llnll and (Knln) = (n|Kn) for all n € D(K),

i.e., if and only if K is a symmetric contraction.
In this case, the correspondence of Theorem 7.2 is that given by Proposition
13.22 of 23], and the mapping T+ 7(T') is called Krein transform.
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e If nis a sector n = {A € C: |arg(\)| < 0}, where 0 < 6 < 7, then (7.2)
holds if and only if || sin(0)Kn £ i cos(8)n|| < ||n||, for all n € D(K).
In particular, if D(K) = H then (7.2) is equivalent to

|| sin(0) K +icos(0)I] < 1. (7.3)

The class C(6) of operators K € B(H) satisfying (7.3) has been studied
in |2, 3, 17]. It has been used in descriptions of maximal sectorial exten-
sions of sectorial operators and in the study of one-parameter semigroups
of contractions U(t) = exp(—tT), t > 0, generated by maximal sectorial
operators T'.

8. OPERATORS ASSOCIATED TO SOLVABLE SESQUILINEAR FORMS

In this section we deal with the n-maximality of operators associated to sesquilin-
ear forms. In particular, we work with solvable forms, that have been studied in
[7, 8, 9]. For reader’s convenience we recall some important notions and results
about them.

We assume that D is a dense subspace of H and we denote by ¢ the sesquilinear
form which corresponds to the inner product, i.e., ¢«(§,n) = (&|n), with &, n € H.
A sesquilinear form € on D is called ¢-closed with respect to a norm on D denoted
by |- llo if

1. there exists @ > 0 such that ||£|| < «||{||q, for all £ € D, i.e., the embedding

D[|| - la] = H is continuous;
2. D||| - |la] is a reflexive Banach space;
3. there exists 8 > 0 such that [Q(&,n)| < 5||€llallnllq, for all £,n € D, ie., Q
is bounded on D[|| - [|q].
Let © be a g-closed sesquilinear form on D with respect to a norm || - ||q and

Eq :=D[| - |lal]. Let &, be the conjugate dual of . If the set P(Q) of bounded
sesquilinear forms Y on H satisfying
1 if (Q+7)(&n) =0 for all n € D then £ = 0;
2. for all A € £ there exists £ € £y such that the action of A on ¢ is given
by (Aln) = (24 T)(& n), for all n € &,
is not empty, then Q is said to be solvable with respect to || - ||q.

The following result gives the representation theorem of solvable forms, whose
first version is in [7].

Theorem 8.1 (|8, Theorem 4.6], [9, Theorem 2.7]). Let §2 be a solvable sesquilin-
ear form on D with respect to a norm || - ||q. Then there exists a closed operator
T, with dense domain D(T) C D in H, such that the following statements hold.
1. Q(&,n) = (T¢|n), for all{ € D(T),n € D.
2. D(T) is dense in D[] - ||la]-
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3. A bounded form Y(-,-) = (B-|-) belongs to P(Q) if and only if 0 € p(T'+ B).
In particular, if T = —Xi, with A € C, then T € PB(Q) if and only if
A€ p(T).
The operator T is uniquely determined by the following condition. Let £, x € H.
Then & € D(T') and TE = x if and only if £ € D and Q&,n) = (x|n) for all n
belonging to a dense subset of D]|| - ||l

The operator T in Theorem 8.1 is called associated to ).

Proposition 8.2 (|3, Proposition 4.13|). The numerical range of the operator
associated to a solvable sesquilinear form is a dense subset of the numerical range
of the form.

Many sesquilinear forms studied in the literature are solvable (we refer to Section
7 of [8]). In particular, the forms considered by Kato |16, Theorem VI.2.1] and
MeclIntosh [18, Theorem 3.1] are solvable (see [7, Example 5.8] and [3, Theorem
7.8]).

Kato and McIntosh’s theorems establish also that the associated operators are
maximal sectorial and maximal accretive, respectively. Hence, a natural ques-
tion arises: is the operator associated to a solvable form with numerical range
contained in n (different from C) n-maximal? By [3, Corollary 4.14], the opera-
tors associated to symmetric solvable forms are self-adjoint, then, in particular,
maximal symmetric. In the following we formulate other results on maximality
of the associated operators.

Theorem 8.3. Let n be a proper, conver subset of C and let ) be a solvable
sequilinear form on D, with numerical range ng C n and associated operator T.
If a sesquilinear form T € P(Q) has numerical range ny such that nN(—ny) = &,
then T is n-mazimal. In particular, if there exists A € n® such that —A\v € PB(),
then T is n-mazximal.

Proof. The numerical range nr of T is contained in n. Let B the operator asso-
ciated to T and ng be the numerical range of B. By Theorem 8.1, T'+ B is a
bijection. Let T” be an extension of T with numerical range contained in n. Thus
T’ + B is injective, because npr C n, ng = ny and nN (—ny) = &. Consequently
T =T, ie., T is n-maximal. O

Corollary 8.4. Let n be a proper, convex subset of C and let ) be a g-closed

sequilinear form on D, with numerical range ng C n. Assume that one of the
following statements holds.

(i) If {&,} is a sequence in D such that ILm énll = 0 and le 12(&n,&n)| =0,
then ILm l€nllo = 0.

(ii) There exists a bounded form Y on H such that ng N (—ny) = &, where ny

is the numerical range of Y, and (ii’) or (ii”) below holds

(17°) if {&n} is a sequence in D such that sup |(24 Y)(&,,n)| — 0, then
Inlle=1

1€l — 0;
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(11”) there exists a constant ¢ > 0 such that

gl < sup [(Q+T)(Em)],  VEeD.

Inlle=1
Then Q) is solvable and its associated operator T is n-mazximal.

Proof. This is an application of |3, Theorem 5.2, Corollary 5.3, Theorem 5.4] and
of Theorem 8.3. O

The n-maximality of operators associated to solvable forms holds in any case if
the numerical range of the form is contained in a strip.

Theorem 8.5. Let Q) be a solvable sesquilinear form on D with respect to a norm
|- lo and with numerical range ng contained in a strip S. Let T' be its associated
operator with numerical range wp. Then np® C p(T) and T is n-mazimal, where
n is any proper, convex subset of C containing nyp.

Proof. We can assume again, without loss of generality, that S =S, := {\ € C:
|SA| < a}, for some a > 0.

Consider the real and imaginary parts R, IQ of Q. Since

Q(¢,€) = RAEE) +139(E,€),  VEeD, (8.1)

and ng C S, then I has numerical range in [—a, a], so it is bounded and it
extends to a bounded sesquilinear form ¥ on H. Moreover, R is solvable with
respect to || - ||, being a difference of a solvable form and a bounded form.

Let S be the operator associated to ®Q and B be the bounded operator such that
V(& n) = (BEn), for all ,n € H. From (8.1) it follows that S+iB is exactly the
operator associated to Q, i.e., T'= S+ iB. But S is self-adjoint by |3, Corollary
4.14|, and B is, too. Therefore, T = S + iB is the decomposition of Lemma
5.1. With the same argument of the resolvent set under perturbation used in
Theorem 5.5, n7¢ C p(T'), and the rest of the statement follows by Proposition
3.1. O

We recall that (|9, Definition 4.1]) a solvable sesquilinear form €2 on D with asso-
ciated operator T is said hyper-solvable if D = D(|T |%) Under this condition one
has the following Kato’s second type representation (see [16, Theorem VI.2.23|
and |9, Theorem 4.17])

Q(¢,n) = (U|T|Z¢||T*|2n), V€ e D,

where T'= U|T| = |T*|U is the polar decomposition of 7T
For hyper-solvable sesquilinear forms the converse of Theorem 8.5 holds as follows.

Proposition 8.6. Let T be a densely defined n-maximal operator, where n is
contained in a strip S, and in particular w¢ C p(T). Then there exists a unique
hyper-solvable sesquilinear form with associated operator T .
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Proof. Tt is a direct consequence of Corollary 5.6 and [9, Theorem 5.1]. O

Moreover, next result simplifies the criterion of Lemma 4.14 of [9] when the
numerical range of the form is contained in a strip (see also Corollary 4.16 of [9]).

Corollary 8.7. If Q is a solvable sesquilinear form on D with respect to an
inner product and with associated operator T. If the numerical range ng of Q is
contained in a strip, then the following statements are equivalent.

1. D= D(\T]%), i.e., Q is hyper-solvable;

2. D C D(|T|2);

3. D 2 D(|T)2).

Proof. By Theorem 8.5 and Corollary 5.6, D(T') = D(T*). Hence |10, Corollary

1.3| implies that D(|T\%) = D(|T*|%) Therefore we conclude with Lemma 4.14
of [9]. O

Finally, by Theorem 4.1, it is also possible to make more precise the correspon-
dence, given by [16, Theorem VI.2.6], between densely defined, closed, sectorial
forms and m-sectorial operators as follows.

Corollary 8.8. Let n C C be a closed, convex subset of a sector of C. There
exists a one-to-one correspondence between all closed, densely defined sesquilinear
forms with numerical range in n and all n-maximal, densely defined operators on

H.
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