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Abstract
Accurate estimations of actual crop evapotranspiration are of utmost importance to evaluate crop water requirements and 
to optimize water use efficiency. At this aim, coupling simple agro-hydrological models, such as the well-known FAO-56 
model, with remote observations of the land surface could represent an easy-to-use tool to identify biophysical parameters 
of vegetation, such as the crop coefficient Kc under the actual field conditions and to estimate actual crop evapotranspiration. 
This paper intends, therefore, to propose an operational procedure to evaluate the spatio-temporal variability of Kc in a citrus 
orchard characterized by the sporadic presence of ground weeds, based on micro-meteorological measurements collected 
on-ground and vegetation indices (VIs) retrieved by the Sentinel-2 sensors. A non-linear Kc(VIs) relationship was identified 
after assuming that the sum of two VIs, such as the normalized difference vegetation index, NDVI, and the normalized differ-
ence water index, NDWI, is suitable to represent the spatio-temporal dynamics of the investigated environment, characterized 
by sparse vegetation and the sporadic presence of spontaneous but transpiring soil weeds, typical of winter seasons and/
or periods following events wetting the soil surface. The Kc values obtained in each cell of the Sentinel-2 grid (10 m) were 
then used as input of the spatially distributed FAO-56 model to estimate the variability of actual evapotranspiration (ETa) 
and the other terms of water balance. The performance of the proposed procedure was finally evaluated by comparing the 
estimated average soil water content and actual crop evapotranspiration with the corresponding ones measured on-ground. 
The application of the FAO-56 model indicated that the estimated ETa were characterized by root-mean-square-error, 
RMSE, and mean bias-error, MBE, of 0.48 and -0.13 mm d−1 respectively, while the estimated soil water contents, SWC, 
were characterized by RMSE equal to 0.01 cm3 cm−3 and the absence of bias, then confirming that the suggested procedure 
can produce highly accurate results in terms of dynamics of soil water content and actual crop evapotranspiration under the 
investigated field conditions.

Introduction

Monitoring crop evapotranspiration (ETc) is crucial to eval-
uating actual crop water requirements. A widely accepted 
practical approach to estimating ETc is the FAO-56 (Allen 
et al. 1998), in which ETc is calculated as the product of crop 
reference evapotranspiration (ETo) and a single or dual crop 
coefficient (Kc or Kcb + Ke). ETo represents the evapotranspi-
ration of a reference hypothetical crop (i.e., alfalfa), actively 
growing, adequately watered and characterized by defined 
values of height, surface resistance, and albedo, which is, 
therefore, associated with the meteorological evaporative 
demand. The standard method to estimate ETo is the FAO-
56 Penman–Monteith equation (Allen et al. 1998).

Due to its simplicity, the FAO-56 approach has 
been widely applied to various crops to estimate water 
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requirements and to compute all the terms of soil water bal-
ance (SWB) in the root zone, based on a simplified reser-
voir scheme. The dynamic of water content in the soil root 
layer includes a corrective coefficient Ks (0–1) expressive 
of actual crop water stress conditions. Moreover, using the 
dual crop coefficient method, the FAO-56 approach accounts 
separately for plant transpiration (T) and soil evaporation 
(E), represented by a basal crop coefficient (Kcb) and a soil 
evaporation coefficient (Ke), respectively (Allen et al. 1998). 
Actual crop evapotranspiration, ETa, can be, therefore, esti-
mated as the product of ETo and the term (KcbKs + Ke).

Although detailed equations and tabulated values for the 
crop coefficients have been suggested in the FAO-56 manual, 
it has been strongly recommended to check their suitability 
based on in situ measurements and local adaptations. As 
a result, in the last decade, the scientific community has 
revised the crop coefficients from the original values, also 
considering the specific crop varieties or climatic conditions, 
and adding Kc values for crops not originally considered 
(Pereira et al. 2015; Rallo et al. 2021). However, these coef-
ficients are generally referred to specific conditions, such as 
the presence or the absence of active ground cover or weeds, 
and are assumed valid during the entire irrigation season, 
without including the possibility of time-variable conditions.

Despite the remote sensing (RS) technique has not been 
considered in the FAO-56 method, in the past two dec-
ades, several studies have been proposed to take advantage 
of multispectral remotely sensed images to estimate the 
spatio-temporal variability of Kc or Kcb to support irriga-
tion management (e.g., Bausch and Neale 1987; Bausch 
1995; Campos et al. 2010, 2017; Choudhury et al. 1994; 
Er-Raki et al. 2007; González-Dugo et al. 2013; Hunsaker 
et al. 2003; Mateos et al. 2013; Neale et al. 1989; Padilla 
et al. 2011; Pôças et al. 2015). RS technologies represent a 
useful tool to quantify various vegetation parameters such 
as albedo, surface temperature, crop coefficients, and leaf 
area index, with the advantage to capture their spatial and 
temporal variability at different scales. Regarding the crop 
coefficient Kc, two different RS techniques have been pro-
posed. The first one is analytical, and based on the direct 
application of the Penman–Monteith equation in which input 
data for crop characterization (Leaf Area Index, LAI, height 
and albedo) are estimated using multispectral images oper-
ating in the visible and near-infrared (VIS–NIR) domain 
(D’Urso 2001; Minacapilli et al. 2008); the second tech-
nique is based on a vegetation indices (VI-Kc) approach, 
based on the assumption of a direct relationship between Kc 
and various vegetation spectral indices (i.e., NDVI, SAVI, 
EVI, etc.) derived from reflectance in the VIS–NIR, domain 
(Gontia and Tiwari 2010; Er-Raki et al. 2013; Kamble et al. 
2013; Alam et al. 2018). An overview of the RS data and 
missions mostly used to implement the Kc–VI approaches, 
running from satellite missions with long imagery archives 

until new satellite programs and constellations, has been 
recently proposed by Pôças et al. (2020). The main advan-
tage of the VI–Kc approach is that the vegetation indices 
operating in the VIS–NIR domain are readily available; on 
the other hand, the VI–Kc approach is based on crop-specific 
regressions, whose assessment requires calibration and vali-
dation procedures.

Pôças et al. (2020) reported an exhaustive list of different 
Kc–VI relationships valid for a variety of crops and advo-
cated their advantages and limitations based on a SWOT 
analysis. If on the one hand, the authors showed the perfor-
mance of different Kc–VI relationships based on the compar-
isons between estimated and measured ETc reported in vari-
ous studies, which were characterized by root mean square 
errors (RMSE) ranging between 0.40 and 0.72 mm d−1 or 
root mean square differences (RMSD) ranging between 
0.50 and 1.00 mm d−1. On the other hand, they stated that 
the examined approaches have a local validity and also that 
complementary methodology may be required to adjust for 
the actual field conditions. Moreover, most of these studies 
were related to herbaceous crops that uniformly cover the 
soil surface, while only a few investigations have been car-
ried out on sparse vegetation; for these cases, experimental 
research is still necessary to verify the reliability of the Kc 
values suggested in the literature, especially for sparse tree 
crops such as citrus orchards, characterized by the presence 
of active ground weeds that can temporarily spread over the 
soil surface (Saitta et al. 2020). Citrus orchards are exten-
sively diffused in the Mediterranean regions and have an 
important role in the economy of these areas. Usually, weeds 
will germinate from the seed immediately after wetting the 
soil surface due to the occurrence of rainfall or surface irri-
gation events. The presence of weeds, even if temporary, can 
contribute to the reduction of water and nutrients in the root 
zone, limiting crop availability and penalizing crop yield 
(Singh et al. 2022). The knowledge of the contribution of 
weed transpiration to the spatio-temporal variability of water 
depletion is crucial to improving the performance of water 
balance models and optimizing irrigation water management 
(Zimdahl 2018).

Sicily island (Southern Italy), characterized by a semi-
arid climate, has excellent potential for citrus production. 
The region is characterized by scarce precipitation in 
the period from April to September, during which citrus 
orchards need to be irrigated; the assessment of the correct 
crop water requirement is, therefore, of utmost importance.

The main objectives of this work were (i) to estimate reli-
able Kc values for a typical Sicilian citrus orchard character-
ized by temporary ground weeds contributing to soil water 
depletion; (ii) to develop a functional relationship between 
the crop coefficient and remote sensed vegetation indices to 
assess the spatial and temporal variability of the crop coef-
ficient during the different crop growth stages; and iii) to 



7Irrigation Science (2023) 41:5–22	

1 3

assess the suitability of the proposed approach, based on 
the performance of the FAO-56 model to estimate soil water 
contents and actual crop evapotranspiration.

The estimated values of actual evapotranspiration, ETa, 
and soil water content, SWC, aggregated at plot levels, were 
finally compared with the corresponding measured on-site. 
The comparative analysis indicated that the estimated ETa 
values were characterized by average root-mean-square-
error, RMSE, and mean bias-error, MBE, are equal to 0.48 
and -0.13 mm d−1 respectively, while the estimated SWC 
resulted in an RMSE equal to 0.01 cm3 cm−3 and the absence 
of bias.

Materials and methods

Description of the study area and experimental 
layout

The experiment was carried out in a citrus orchard of about 
0.4 ha located in Palermo, Sicily (38°4′ 53.4’’ N, 13° 25′ 
8.2’’ E) in the period from 2018 to 2020.

The climate of the investigated area is the typical Medi-
terranean, with annual rainfall ranging between 600 and 

800 mm, most of which is concentrated in fall and winter, 
and cumulated crop reference evapotranspiration generally 
higher than 1000 mm. The average daily air temperature 
ranges from about 4 °C in winter to a maximum of around 
35 °C in summer. Figure 1 shows the location of the orchard 
and a map of the experimental field with the position of the 
installed equipment and facilities. The citrus orchard (Cit-
rus reticulata Blanco, cv. Mandarino Tardivo di Ciaculli) 
is characterized by planting spacing of 5.0 × 5.0 m (density 
of 400 trees ha-1, fraction cover of 48%), with plant rows 
roughly oriented from North-East to South-West. The trees 
are characterized by an average height of about 2.5 m and 
a maximum rooting depth of 0.5 m, with the highest root 
density around 0.3 m depth. The dominant textural class 
of the topsoil is sandy-clay-loam with average clay, silt 
and sand content of 22.2%, 18.0% and 59.8%, respectively. 
Soil water contents at field capacity (SWCfc) and permanent 
wilting point (SWCwp) are equal to 0.28 cm3cm−3 and 0.15 
cm3cm−3, respectively. During the irrigation seasons, gener-
ally after the rainfall events, the field was characterized by 
the presence of temporary ground weeds (mainly Cynodon 
Dactylon, and Boerhavia Coccinea).

Agrometeorological data were collected by a WatchDog 
2000 series weather station (Spectrum Technologies, Inc., 

Fig. 1   Experimental field with location of weather station (WS), flux tower (EC), and soil water content sensors; the spatial resolution of Senti-
nel-2 (L2A/L2B) multispectral images is also shown
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Aurora, IL, USA) installed nearby the experimental field 
(Fig. 1), including the sensors to measure, with a time-step 
of 30 min, air temperature, global solar radiation, relative 
air humidity, wind speed and direction at 2 m height, and 
rainfall.

Irrigation season in the area ordinarily starts at the end 
of May and finishes around the end of September, during 
periods with scarce or absent precipitations. The field is 
irrigated with a subsurface drip system with two pipes per 
plant row, one on each side of the tree, at 1.1 m from the 
trunks. The lateral pipes contain co-extruded emitters dis-
charging 2.3 l h-1 at a pressure of 100 kPa with a spacing of 
1.0 m (i.e., 10 emitters/tree). The adopted irrigation strategy, 
accounting for the actual climate conditions, was designed 
to define moderate crop water stress only during phase II of 
vegetative growth (initial fruit enlargement phase), generally 
occurring between July 1 and August 15, during which the 
lower threshold of Midday Stem Water Potential (MSWP) 
ranged between − 1.4 and − 2.0 MPa. During the other 
phases of crop growth, the values of MSWP ranged between 
− 0.4 and − 1.4 MPa. A total of three watering of about 56 
m3 ha-1 were generally scheduled per week, except for the 
period of water restrictions, in which only two irrigation 
events were scheduled per week.

The temporal dynamic of soil water content (SWC) 
was monitored with four 0.6 m long "drill & drop" probes 
(Sentek Pty Ltd, Stepney, Australia), installed at a distance 
of 0.8 m from the tree trunks and 30 cm far from an emit-
ter (Fig. 1). These sensors, based on the frequency-domain 
reflectometry (FDR) technique allowed monitoring of the 
soil water content and temperature at each 0.1 m depth, up 
to 0.6 m, with a time-step of about 30 min. The average 
SWC between the soil surface and 0.5 m depth was assumed 
representative of the entire root domain.

During each irrigation season, weekly measurements of 
Midday Stem Water Potential (MSWP, MPa) were carried 
out in the same four trees in which the SWC sensors were 
installed, with a pressure chamber (Plant Moisture Vessel 
SKPM 1400 series, Skye Instruments Ltd, Llandrindod 
Wells, Powys, UK), following the protocol described in 
Turner (1981). These data (not reported) allowed the iden-
tification of the critical threshold of SWC equal to about 
0.21 cm3 cm−3, below which initiates the moisture stress, 
with reduction of crop transpiration.

In 2019, an Eddy Covariance flux tower (EC) was also 
installed in the field to measure actual evapotranspiration, 
ETa (Fig. 1). The tower was equipped with a 4-component 
net radiometer (CNR4, Campbell Scientific Inch., Logan, 
Utah) installed at 3.0 m height to measure low-frequency 
(30 min) net radiation, Rn [W m−2], a three-dimensional 
sonic anemometer (CSAT3-D, Campbell Scientific Inch., 
Logan, Utah) to measure high-frequency (20 Hz) wind speed 
3D components, and an infrared open patch gas analyzer 

(Li-7500, Li-cor bioscience inch., Lincoln, Nebraska) to 
measure H20 and CO2 concentrations, respectively (at 
20 Hz). High and low-frequency data were collected in a 
CR3000 datalogger (Campbell Scientific Inch., Logan, Utah) 
equipped with a 2 GB memory card.

Sensible, H [W m−2] and latent, λET [W m−2] heat fluxes 
were evaluated as:

where ρ [g m-3] is the air density, cp [J g−1 K−1] is the air-
specific heat capacity at constant pressure and σWT [m K s−1] 
is the covariance between vertical wind speed and air tem-
perature, λ [J g−1] is the latent heat of vaporization and σWQ 
[g m−2 s−1] is the covariance between vertical wind speed 
and the water vapor density. The row data acquired by the 
EC tower were processed using the software developed by 
Manca (2003), which allowed to determine the evapotranspi-
ration fluxes with a time-step of 30 min, and then aggregated 
at a daily time-step to estimate daily ETa [mm d−1].

Finally, an extended database of high-resolution multispec-
tral images (MSI) retrieved from the Sentinel-2 twin satellites 
(L2A/L2B) was acquired to monitor, over the study area, the 
spatio-temporal variability of a set of VIS–NIR–SWIR veg-
etation indices. The product downloaded was the Multispec-
tral Instruments (MSI) level 2A (ESA, https://​scihub.​coper​
nicus.​eu/) which provides images calibrated in reflectance at 
the bottom of the atmosphere (BoA), orthorectified and cor-
rected for the atmospheric effects (Main-Knorn et al. 2017). 
The images have a spatial resolution of 10 m in the VIS–NIR 
regions and 20 m in the SWIR region, with a temporal resolu-
tion of approximately 5 days when considering both satellites 
(2A and 2B satellites). For the three years, a total of 193 scenes 
were selected under clear-sky conditions, downloaded and pre-
processed using the R library named “sen2r” (Ranghetti et al. 
2020),

Estimating the crop coefficients from remote 
sensing data and ground measurements.

The onset of Kc–VI approaches to estimate the crop coeffi-
cients relied on the evident similarities between the temporal 
patterns of Kc and VIs, such as the Normalized Difference 
Vegetation Index, NDVI, or the Soil Adjusted Vegetation 
Index, SAVI, found in pioneering studies (Bausch 1993; 
Bausch and Neale 1987; Heilman et al. 1982; Neale et al. 
1989). Following these studies, a large set of relationships of 
VIs with either Kc or Kcb have been proposed.

As recently reported in Pôças et al. (2020), the VIs consid-
ered in the various linear or non-linear Kc–VI relationships 
are only based on the Visible and Near-Infrared (VIS–NIR) 

(1)H = �cp�WT ,

(2)�ET = ��WQ,

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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reflectance; the most used VI is NDVI which can be calculated 
as (Rouse et al. 1974):

where ρnir and ρred are the near-infrared and red reflectance. 
Similarly to the crop coefficient, NDVI is well correlated to 
the plant vigor, leaf area index and fraction cover.

The recent availability of high-resolution multispectral 
images from the ESA Sentinel-2 mission has allowed the 
easy recovery of other vegetation indices based on the 
shortwave region, SWIR, in addition to VIS–NIR. For 
the investigated case, the use of the SWIR region with 
the Normalized Difference Water Index (NDWI) has the 
advantage to be sensitive to the surface water content 
(Gao, 1996). The values of NDWI can be calculated as:

where ρswir is the shortwave reflectance. Considering the 
different spatial resolutions associated with NIR and SWIR, 
to evaluate NDWI, the values of reflectance related to four 
pixels corresponding to the NIR domain were associated 
with a single pixel reflectance in the SWIR. The wave-
lengths, for Sentinel-2A and 2B satellites, are centered at 
664.6 nm and 664.9 nm for the red band (B4), at 832.8 nm 
and 832.9 nm for NIR (B8) and 1613.7 nm and 1610.4 nm 
for SWIR (B11), respectively.

For the considered period (2018–2020), after retrieving 
the Sentinel-2 clear-sky images, a gap-filled database of 
daily NDVI and NDWI maps was generated using a lin-
ear interpolation technique (Pan et al. 2017) implemented 
in Matlab® R2019b and then exported in QGIS (release 
3.4.3) environment.

A Kc–VI non-linear relationship was initially identified 
by using an extended time series of multispectral images 
retrieved by the Sentinel-2 platform combined with a set of 
field micro-meteorological measurements. For the inves-
tigated orchard, the proposed Kc–VI relationship allowed 
obtaining a priori a database of daily Kc maps charac-
terized by high spatial resolution (10 m). The empirical 
relationship was obtained in the absence of crop water 
stress and, therefore, on days in which SWC in the orchard 
resulted higher than 0.21 cm3cm−3, which was identified as 
the critical threshold of soil water content (SWC*) below 
which crop water stress occurs in the orchard (Franco et al. 
2022). The database of daily Kc maps was then used as 
input for the FAO-56 model to estimate the spatio-tempo-
ral variability of actual evapotranspiration, as well as the 
other terms of water balance in the root zone.

(3)NDVI =
�nir − �red

�nir + �red
,

(4)NDWI =
�nir − �swir

�nir + �swir
,

FAO‑56 model to estimate crop evapotranspiration

The FAO-56 model suggests the use of the Penman–Mon-
teith (PM) equation for estimating daily crop reference 
evapotranspiration, ETo [mm d−1] (Allen et al. 1998):

where Δ [kPa °C-1] is the slope of saturation vapor pres-
sure curve, Rn [MJ m−2 d−1] is the net radiation at the crop 
surface, G [MJ m−2 d−1] is the soil heat flux density, (es–ea) 
[kPa] is the actual vapor pressure deficit, γ [kPa °C−1] is the 
psychrometric constant and U2 [m s−1] is the wind speed 
measured at 2 m height.

Based on the daily reference evapotranspiration values, 
the FAO-56 model estimates daily crop potential evapo-
transpiration, ETc, by multiplying ETo with a crop coef-
ficient, Kc, accounting for the differences between the 
biophysical characteristics of the reference crop (canopy 
properties, ground cover, aerodynamic resistance) and 
the considered crop. The FAO-56 model can be applied 
based on a single or a dual crop coefficient approach. In 
the former, soil evaporation and crop transpiration are 
merged into a single Kc value for each crop stage; in the 
latter, crop transpiration is estimated using a basal crop 
coefficient (Kcb), whereas soil evaporation is based on the 
evaporation coefficient (Ke). Thus, ETc is, therefore, split 
into potential crop transpiration (Tc = Kcb ETo) and soil 
evaporation (Es = Ke ETo).

The standard tabulated values of Kc and Kcb are generally 
used to estimate ETc under potential and well-watered con-
ditions. However, under actual field conditions, the crop is 
often subjected to water stress due to limited irrigation doses 
or inappropriate management practices. Thus, in the FAO-
56 model a water stress coefficient, Ks, ranging between 0 
and 1, is introduced as a multiplicative factor to estimate 
the actual values of Kc or Kcb. Consequently, actual crop 
evapotranspiration, ETa, is generally smaller than the cor-
responding potential and can be defined as:

if the single crop coefficient approach is used, or

if the dual crop coefficient approach is used.
The water stress factor Ks is generally estimated as a 

linear function of the root zone depletion D [mm]. In the 
absence of crop water stress (D ≤ RAW) Ks = 1, whereas 
under soil water deficit conditions (D > RAW) it can be 

(5)

ET0 =

0.408Δ
(

Rn − G
)

+ �

(

900

Ta
+ 273

)

(

U2

(

es − ea
))

Δ + �
(

1 + 0.34U2

) ,

(6)ETa = (Ks Kc) ETo,

(7)ETa = (Ks Kcb + Ke) ETo,
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evaluated as a linear function of the soil water depletion D 
[mm] (Allen et al. 1998):

where TAW​ and RAW​ [mm] are the total and readily avail-
able water in the root zone, respectively, with RAW​ = p TAW​
, being p the fraction of soil water depletion identifying the 
absence of crop water stress. According to Eq. 6, Ks < 1.0 
when the root zone depletion exceeds RAW, i.e., the water 
depleted fraction is larger than p. Typical depletion coeffi-
cients, p, for various crops type are tabulated in the FAO-56 
manual.

At the daily time-step, the soil water balance in the root 
zone, Zr [m], can be written as:

where Di and Di−1 [mm] are the root zone depletions at the 
end of the day i and i-1, Pi [mm] is the net precipitation, 
Roi [mm] is the surface runoff, ETai [mm] is the actual crop 
evapotranspiration, Ii [mm] is the irrigation depth and DPi 
[mm] is the deep percolation of water moving out of the 
root zone.

Net precipitation was calculated by reducing the gross 
precipitation P [mm] of the canopy interception, Pint [mm], 
estimated as (Braden 1985):

where a is an empirical conversion coefficient, and b is the 
soil cover fraction, corresponding to about LAI/3. For ordi-
nary crops, it is possible to assume a = 0.25.

The domain of the depletion ranges between 0, occur-
ring when the soil is at the field capacity, to a maximum 
value corresponding to the total available water (TAW, mm), 
evaluated as:

where SWCfc [cm3 cm−3] and SWCwp [cm3 cm−3] are the soil 
water contents at field capacity and wilting point, respec-
tively, and Zr [m] is the rooting depth.

Model simulations to estimate daily values of soil water 
content and actual crop evapotranspiration and to assess the 
performance of the crop coefficients estimated with remote 
sensing acquisitions were carried out during three irrigation 
seasons, from DOY 137 to DOY 273, by considering, as 
initial soil water content (SWC0) the corresponding meas-
ured. Table 1 summarizes the values of the input variables 
assumed for the model simulations and the related data 
sources.

(8)Ks =
TAW − D

TAW − RAW
,

(9)Di = Di−1 −
(

Pi − Roi
)

− Ii + ETai + DPi,

(10)Pint = aLAI

(

1 −
1

1 +
bP

aLAI

)

,

(11)TAW = 1000
(

SWCfc − SWCwp

)

Zr,

Statistical analysis for model validation

The model performance was evaluated based on the follow-
ing goodness-of-fit indicators used to assess the matching 
between measured and estimated soil water contents and 
actual evapotranspiration: Root Mean Square Error (RMSE, 
cm3 cm−3 or mm d−1), whose target value is zero when there 
are no differences between simulated and observed values; 
Mean Bias Error (MBE cm3 cm−3 or mm d−1), whose tar-
get value is zero; a positive value indicates that simulated 
values are overestimated, while a negative value indicates 
the model underestimation (Kennedy and Neville 1986); the 
regression coefficient (b, dimensionless), whose target value 
is one; represents the angular coefficient of the regression 
line between simulated and observed variables forced to the 
origin; the coefficient of determination (R2, dimensionless) 
whose target value is one, indicating that the variance of 
the observed values is explained by the model (Eisenhauer 
2003). The percent bias (PBIAS, %), whose target value is 
zero; positive values are associated with the model under-
estimation, while negative values indicate the model over-
estimation; the Nash–Sutcliffe efficiency coefficient (NSE, 
dimensionless), whose target value is one; values between 
0.0 and 1.0 indicate an acceptable model performance, 
whereas negative values indicate that the mean of observed 
values is a better predictor than the simulated values and, 
therefore, unacceptable performance (Nash and Sutcliffe 
1970).

Results

In situ measurements

For the three years of observation (2018–2020), Fig. 2 shows 
the temporal dynamics of precipitation, P, the amount of 
irrigation, I, and the daily crop reference evapotranspira-
tion, ETo, estimated with Eq. 5. The gray boxes identify the 
irrigation seasons (light gray), which include the periods of 
water deficit application (dark gray), usually applied from 
the beginning of July to mid-August. As it can be observed, 
even if the annual trends of daily ETo during the three years 

Table 1   Values for the variables used for FAO-56 model simulations

Variable Units 2018 2019 2020 Data source

SWCfc [cm3cm−3] 0.28 0.28 0.28 Measured
SWCwp [cm3cm−3] 0.15 0.15 0.15 Measured
SWC0 [cm3cm−3] 0.20 0.23 0.24 Measured
SWC* [cm3cm−3] 0.21 0.21 0.21 Fixed
Zr [m] 0.50 0.50 0.50 Fixed
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resulted quite similar, the values in 2018 were relatively 
lower than in the other two years. The maximum crop refer-
ence evapotranspiration generally occurred in July, during 
periods of limited or absent precipitation, while the mini-
mum was registered between December and January. On the 
other hand, a certain variability during the three years can 

be noticed in the patterns of rainfall; the number of rainy 
days, with rainfall value equal to or higher than 2.5 mm d−1, 
resulted equal to 65 in 2018 and only 44 in 2020, when a 
prolonged drought period occurred at the beginning of the 
year, followed by an extreme event of 97.3 mm registered 
on March 25.

Fig. 2   Temporal dynamic of crop reference evapotranspiration (con-
tinuous line), ETo, precipitation (blue bars), P, and amount of irri-
gation (black bars), I from 2018 to 2020. Available values of actual 

crop evapotranspiration (red dots), ETa, are also shown. The light 
box indicates the irrigation season, while the dark box identifies the 
period of application of water stress

Fig. 3   Cumulative precipitation, 
∑

P , crop reference evapotranspiration, 
∑

ETo , and irrigation, 
∑

I , distributions during 2018–2020. The light 
box indicates the irrigation season, while the dark box identifies the period of application of water stress
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When considering the yearly cumulated precipitation, a 
total of 865 mm was recorded in 2018, and only 551 mm 
and 577 mm in 2019 and 2020. On the other hand, the yearly 
crop reference evapotranspiration resulted in 988 mm in 
2018, 1069 mm in 2019 and 1076 mm in 2020 (Fig. 3), as a 
consequence of the relatively higher daily ETo values regis-
tered in 2019 and 2020.

For the three investigated years, Table 2 indicates the 
periods before, during and after irrigation season, for each 
of which summarizes the cumulated precipitation, ∑P, the 
amount of irrigation, ∑I, the crop reference evapotranspi-
ration, ∑ETo, and the corresponding pluviometric deficits 
∑(P-ETo). During the irrigation seasons, the lowest pluvio-
metric deficit, equal to − 293 mm, was observed in 2018; 
on the other hand, irrigation seasons 2019 and 2020 were 

Table 2   Cumulated annual 
precipitation, 

∑

P amount of 
irrigation, 

∑

I , crop reference 
evapotranspiration, 

∑

ET
0

 , 
and pluviometric deficit, 
∑

�

P − ET
0

�

 , in the three 
years before, during and after 
irrigation seasons

Year Date Duration Ʃ P Ʃ I Ʃ ET0 Ʃ (P-ET0)
[d] [mm] [mm] [mm] [mm]

01 Jan–11 Jun 162 390 –  411 – 21
2018 12 Jun–24 Sep 105 158 87 451 – 293

25 Sep–31 Dec 98 317 –  127 190
01 Jan–03 Jun 154 283 –  362 – 79

2019 04 Jun–23 Sep 112 68 172 530 – 462
24 Sep–31 Dec 99 199 –  177 22
01 Jan–22 May 143 198 –  347 – 149

2020 23 May–05 Oct 136 92 256 615 – 523
06 Oct–31 Dec 87 248 –  115 133

Fig. 4   Map of the experimental plot showing the EC tower footprint. The inner box shows the scatterplot between hourly (H + LE) and (Rn – G) 
fluxes measured in 2019 (black dots) and 2020 (gray dots)
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characterized by higher pluviometric deficit, with values 
equal to − 462 mm and − 523 mm, respectively, which 
suggested to anticipate the start of irrigation season and to 
increase the applied volumes.

The footprint of the flux tower, which identifies the 
area on the ground encompassing at least 70% of the flux 
source, is shown in Fig. 4; the footprint was obtained 
based on the model proposed by Kljun et al. (2015) and 
considering the dominant wind speed of 1.7 m s-1 with a 
direction of 45° (NE). The accuracy of balance closure 
was verified based on the closure ratio, CR, (Prueger et al. 
2005) computed only from the subset of hourly data with 
Rn ≥ 100 W m−2, whose values resulted equal to 0.98 in 
2019 and 0.88 in 2020.

Daily actual evapotranspiration, ETa measured with the 
EC tower only in 2019 and 2020 (Fig. 2), resulted in gen-
eral lower than daily ETo, except during or immediately 
after rainy days, as a consequence of the higher contribu-
tion of evaporation component (French et al. 2020). EC 
system monitoring was interrupted from March to June 
2020, due to the instrument failure occurring during the 
COVID-19 pandemic lockdown.

The temporal dynamic of the ratio between ETa 
and ETo, calculated after excluding the rainy days 
(P < 2.5 mm) from the dataset of measured ETa, is shown 
in Fig. 5. This ratio represents the actual crop coeffi-
cient,K∗

c
 , represented by the product ,K∗

c
=Kc*Ks, between 

the standard unstressed crop coefficient, Kc, and the water 
stress coefficient, Ks. The latter is lower than the unit 
only in periods of crop water stress (generally occurring 
from the beginning of July to mid-August), and equal 

to the unit when soil water contents did not limit crop 
transpiration (absence of crop water stress). The values 
of K∗

c
 were characterized by a quite high variability, with 

trends decreasing in spring and rising since the end of 
summer, up to values even higher than the unit. Moreo-
ver, the rapid decline of K∗

c
 observed during the period of 

water deficit application (Fig. 5) was due to the contex-
tual effect of the weeds removal from the soil surface (red 
arrows) and the limited water supply.

Remote sensing data

For the three investigated years, Fig. 6 shows the temporal 
dynamics of vegetation indices (NDVI and NDWI) retrieved 
from the Sentinel-2 clear-sky images database; the average 
and standard deviation of both VIs were determined by con-
sidering the four pixels containing the trees in which the 
soil water content sensors were installed. The generally low 
standard deviations characterizing both the VIs indicated 
that the four pixels were almost homogeneous. For both the 
VIs, the annual trends resulted quite similar, with values 
in winter generally higher than in summer. The occurrence 
of rainfall events during irrigation seasons 2018 and 2020 
(Table 2) determined rising NDVI values, due to the rapid 
germination and emergence of spontaneous weeds on the 
soil surface. On the other hand, during irrigation seasons 
2019, the lower amount of rainfall associated with the sub-
surface drip irrigation system did not drive the emergence 
of spontaneous weeds and determined, after weeding, the 
progressive decline of NDVI from 0.62 to 0.43. During 
the periods from late fall to early spring, NDVI resulted 

Fig. 5   Values of the ratio between measured ETa and ETo, K
c
 , in 2019 and 2020. The light box indicates the irrigation season, while the dark 

one identifies the period of water deficit application. Red arrows indicate the days in which weeds were cut down
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in slightly variable and assumed values up to 0.90, due to 
vigorous vegetation cover in the tree rows caused by the 
presence of uncut weeds. The values of NDWI, normally 
used to monitor the moisture conditions of vegetation cano-
pies, ranged between 0.01 and 0.60, being the higher values 
associated with high vegetation water content and coverage 
of a large part of the field, and the lower associated with low 

vegetation water content and sparse coverage. The possibil-
ity to jointly use NDVI and NDWI was, therefore, supposed 
effective to improve the evaluation of the crop coefficient 
in sparse orchards characterized by the sporadic presence 
of cover weeds.

To identify the relationship to predict the crop coeffi-
cient from the examined VIs, it was therefore assumed that 

Fig. 6   Temporal dynamic of average NDVI and NDWI, precipitation, 
P, and the amount of irrigation, I, for the investigated period (2018–
2020). The light box indicates the irrigation season, while the dark 

box identifies the period of application of water stress. Red arrows 
indicate the days in which weeds were cut down

Fig. 7   Predictive relationship to estimate the crop coefficient, Kc, from the sum of NDVI + NDWI
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the joint use of the examined indices (NDVI and NDWI) 
can better represent the actual field conditions charac-
terized by sparse vegetation, the presence of transpiring 
weeds on the soil surface, and a limited period of water 
deficit application. Figure 7 shows the scatterplot repre-
senting the crop coefficient Kc , evaluated in the absence 
of crop water stress, as a function of the sum of NDVI and 
NDWI and the predictive relationship, expressed by the 
following exponential function characterized by R2 = 0.70:

in which a and b are two calibration coefficients equal to 
0.304 and 0.939, respectively. To exclude the effects of the 
crop water stress in the predictive relationship, the periods 
of water deficit application (Ks < 1) were not included for 
this analysis.

For the investigated field, Fig. 8 shows some examples of 
maps of NDVI and NDWI retrieved by Sentinel-2 acquisi-
tions and the corresponding Kc estimated with Eq. 12 in two 
different days (June 20, 2019, and December 4, 2019) char-
acterized by the absence (upper row) and the presence (lower 
row) of actively transpiring cover weeds on the soil sur-
face. The sum of the two vegetation indices in the absence 
of cover weeds (NDVIav = 0.59, NDWIav = 0.10) resulted 
lower than that obtained under the presence of active cover 
weeds (NDVI_mean = 0.90, NDWI_mean = 0.36). The observed 

(12)Kc = ae(b(NDVI+NDWI)),

difference is due to the diverse spectral responses caused by 
the presence of weeds covering the soil among the tree rows 
and consequently, the average Kc estimated in the absence of 
cover weeds (Kc = 0.58) resulted lower than the correspond-
ing obtained in the presence of actively transpiring weeds 
(Kc ~ 1.00).

In Fig. 9, the temporal trends of crop coefficient estimated 
with Eq. (12) were compared with those obtained from the 
literature for citrus orchards characterized by the presence 
(Allen and Pereira 2009) and absence (Rallo et al. 2021) of 
ground weeds. The colors associated with the estimated Kc 
values depend on the sum of NDVI and NDWI. As it can be 
observed, relatively higher Kc associated with the greater 
vegetation indices combination, with values, close to 1.0, 
were obtained from late fall to early spring, after the begin-
ning of sprouting, while in the following stage, estimated 
Kc values were associated with the decreasing vegetation 
indices combination. On the other hand, during the irriga-
tion season, under absent or scarce precipitation, the esti-
mated Kc, associated with the relatively lower combination 
of vegetation indices, resulted in about 0.55; finally, after 
the end of irrigation, the rising estimated Kc, associated with 
increased values of the vegetation indices, can be justified by 
the emergency and development of ground weeds among the 
plant rows. In 2020, the late growth season started later than 
in 2019, as a consequence of the quite high pluviometric 
deficit characterizing the mid-season 2020.

Fig. 8   Maps of NDVI and NDWI obtained from Sentinel-2 acquisitions and corresponding Kc estimated from Eq. (12) in two days characterized 
by the absence (June 20, 2019, upper row) and the presence of transpirating cover weeds (December 4, 2019, lower row) on the soil surface
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FAO‑56 soil water balance model

For the examined field, the FAO-56 procedure was imple-
mented in a spatially distributed mode to estimate the soil 
water balance with a 10 m spatial resolution. However, 
considering that SWC measurements were acquired in only 
four trees, while actual evapotranspiration measurements 
involved the entire field, the validation of the spatially dis-
tributed FAO-56 model was performed at field scale using 
the average of the output pixel values falling inside the 
perimeter of the study area. In this way, the results of the 
pixel-based FAO-56 procedure were aggregated at a field 
scale where evapotranspiration and SWC measurements 
were carried out.

To give an example, Fig. 10 shows the maps of simulated 
soil water content (SWCsim) and actual evapotranspiration 
(ETa) retrieved from the application of the FAO-56 model 
on two different days, i.e., on June 20, 2019, and December 
4, 2019, respectively, in the absence and presence of active 
weeds on the soil surface. During these two days, the average 
ETa resulted equal to 3.27 mm d−1 and 1.27 mm d−1, with a 
standard deviation of 0.17 mm d−1 and 0.13 mm d−1, respec-
tively. Moreover, on the same days, the average SWCsim 
resulted equal to 0.19 ± 0.00 cm3  cm−3 and 0.27 ± 0.01 
cm3 cm−3, respectively. The value of Kc was close to 1.0 on 
days in which weeds were present on the soil surface deter-
mining values of ETa fairly close to the corresponding ETo.

The results of the FAO-56 model simulations applied 
at the field scale for the three years (from 17 May to 30 

September) are shown in Fig. 11. The upper row illustrates 
the comparison between measured (SWCmeas) and simulated 
(SWCsim) soil water contents, while the second row shows 
the soil water contents distribution in the soil layer 0–0.50 m 
where the active root system is developed. The daily val-
ues of measured SWC of the entire experimental field 
were calculated as the mean of the values acquired in layer 
0–0.50 m by the four probes installed in the plot. A fairly 
good agreement can be observed between simulated and 
measured SWC in the root zone, even if local but negligi-
ble discrepancies can be noticed mainly after rainfall events 
and, for years 2018 and 2020, around the final periods of 
simulations, when a slight overestimation of simulated SWC 
occurred. When observing the temporal dynamics of SWC 
profiles, it is interesting to notice that water applications 
with the subsurface drip irrigation system increased only 
the SWC at depths ranging from 0.30 m to 0.50 m, whereas 
the upper soil layer remained generally dry. The third row of 
Fig. 11 shows the dynamic of crop reference evapotranspira-
tion (ETo) in the three years, as well as measured (ETa_meas) 
and simulated (ETa_sim) actual evapotranspiration. For the 
two years in which measured ETa values were available, 
the trends of simulated values followed, in general, those of 
the corresponding measured, even if a slight underestima-
tion can be observed in the initial period of simulation of 
2019, probably due to rapid depletion of soil water content 
consequent to the absence of rainfall events in the period. 
Finally, the lower row of Fig. 11 shows the trend of meas-
ured and simulated K∗

c
 , whose values resulted generally in 

Fig. 9   Comparison between crop coefficient estimated with Eq.  (12) 
and the corresponding curves suggested by Allen et  al. (2009) 
(dashed line) and Rallo et  al. (2021) (continuous line). The colors 
associated with the experimental values depend on the combination 

of NDVI and NDWI. The light gray box indicates the irrigation sea-
son (IS), while the dark gray identifies the period of application of 
water deficit (DI). Precipitation, P (blue bars), and Irrigation events 
(black bars), I, are indicated in the secondary axes
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a fairly good agreement. The predictive relationship, there-
fore, can represent a useful alternative to estimate the actual 
crop coefficient under the examined field conditions and the 
presence of temporarily active weeds among the plant rows.

The performance of the Kc(VI) relationship implemented 
in the FAO-56 model was evaluated based on the statisti-
cal parameters associated with simulated and measured soil 
water contents and actual evapotranspiration, reported in 
Table 3 for the periods of observation. The model allows 
predictions of daily SWC very accurate, with RMSE equal 
to 0.01 cm3 cm−3 and the absence of bias, as a consequence 
of the substantial agreement between the average soil water 
contents measured in the root zone and the correspond-
ing simulated by the model. The goodness of the proposed 
Kc(VI) relationship is also confirmed by the quite high R2 
values, the b coefficient marginally higher than the unit and 

the always positive NSE. However, the negative values of 
PBIAS obtained in the three years of simulation indicate 
a weak tendency of simulated values to be higher than the 
corresponding observed. On the other hand, the simulated 
values of actual evapotranspiration, ETa, were characterized 
by RMSE equal to 0.57 and 0.40, MBE of -0.26 mm d−1 and 
-0.01 mm d−1 and PBIAS of 10.4 and 0.2 for 2019 and 2020, 
respectively. Despite these values indicating that mainly 
in 2019 the simulated actual evapotranspiration resulted 
slightly underestimated, the high values of the regression 
coefficient b (higher than 0.88), and the positive NSE index, 
allow considering acceptable, for practical application aimed 
at irrigation scheduling, the performance of the model to 
estimate ETa when assuming, as an input variable, the crop 
coefficients retrieved by Sentinel-2 images.

Fig. 10   Examples of maps of simulated soil water content, SWCsim, and actual evapotranspiration, ETa, obtained in the absence (a June 20, 
2019) and presence (b December 4, 2019) of active weeds among the tree rows
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Discussion and conclusions

To increase irrigation water use efficiency of woody crops, 
it is necessary to improve the irrigation infrastructure and 
method, as well as to adopt site-specific strategies of water 
management to control crop water status and limit the water 
supply to the amounts requested by the plants. To this aim, 
a multidisciplinary approach is necessary to exploit the most 
advanced irrigation techniques and crop monitoring with 
recent earth observation technologies and agro-hydrological 
modeling.

In the present study, the simultaneous availability of high-
resolution satellite images and site-specific observations 

acquired with eddy covariance and weather station systems 
allowed simulating with high precision the water and energy 
exchanges of a citrus orchard equipped with a subsurface 
drip irrigation system.

For the study area, the use of a subsurface drip irri-
gation system, with laterals buried 30 cm below the soil 
surface, ensured the efficiency either in terms of convey-
ance and distribution of irrigation water (Nair et al. 2013; 
Martinez-Gimeno et al. 2018); during irrigation seasons, 
the generally dry topsoil limited soil evaporation and the 
presence of actively transpiring spontaneous vegetation. 
On the other hand, using the traditional surface drip irriga-
tion systems would have determined the increase of soil 
evaporation and the growth of transpiring weeds around 

Fig. 11   Temporal dynamics of average and standard deviation of 
measured SWCmeas and corresponding simulated, SWCsim, precipita-
tion, P, amount of irrigation, I (upper row) and detail of soil water 
contents measured each 10  cm depth in the layer 0–50  cm (second 

row); temporal dynamics of crop reference evapotranspiration, ETo, 
and of measured, ETa_meas, and simulated actual evapotranspiration, 
ETa_sim, (third row); temporal dynamics of measured and estimated 
Kc* (lower row) for the simulated periods of 2018, 2019 and 2020

Table 3   Results of the statistical analysis to check the FAO-56 model performance

SWC
RMSE MBE PBIAS R2 b NSE

[cm3/cm3] [cm3/cm3] [%] [–] [–] [–]

2018 0.01 0.00 − 1.30 0.74 1.01 0.40
2019 0.01 0.00 − 0.49 0.86 1.00 0.85
2020 0.01 0.00 − 2.11 0.80 1.02 0.76

ETa

[mm/day] [mm/day] [%] [−] [–] [–]

2019 0.57 − 0.26 10.36 0.44 0.88 0.21
2020 0.40 − 0.01 0.22 0.70 0.98 0.68
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the wetted zone and, consequently, the rise of Kc. How-
ever, during irrigation seasons 2018 and 2020, the occur-
rence of rainfall events determined the germination of 
spontaneous vegetation, which contributed to increasing 
the orchard evapotranspiration fluxes. Under these condi-
tions, the use of tabular crop coefficient could have led to 
an inaccurate estimation of actual crop evapotranspiration, 
while the estimation of site-specific crop coefficient con-
tributed to enhancing the results of modeling applications.

The availability of measurements acquired by the eddy 
covariance tower and the weather station in 2019 and 2020, 
provided the source of data to estimate the crop coefficient as 
the ratio between ground-based ETa retrieved in the absence 
of water stress and ETo (Calera et al. 2017). The occurrence 
of crop water stress was verified based on the measurements 
of midday stem water potential which allowed identifying 
the critical threshold of soil water content, equal to 0.21 
cm3 cm−3, below which, relative crop transpiration starts 
to decrease (Franco et al. 2021; 2022). This value resulted 
quite similar to that identified by Puig-Sirera et al. (2021b) 
for a citrus orchard (Citrus Clementina, Hort ex Tan.) in 
Spain. Even though crop water deficit was scheduled from 
the beginning of July to mid-August (phase II of the crop 
growth stage), two heavy rainfall events registered in mid-
July 2020 delayed the occurrence of soil water deficit, lim-
iting the periods characterized by Ks < 1. During irrigation 
seasons, excluding the short periods of crop water stress, the 
values of crop coefficient ranged between 0.47 and 0.76, in 
line with the tabulated values of 0.50 and 0.82 suggested by 
Allen et al. (1998) for a citrus orchard characterized by a 
fraction cover of 30%, respectively, in absence and presence 
of active ground cover or weeds. Moreover, an indicative 
value of the mid-season crop coefficient, equal to 0.55 ± 0.5, 
has been recently confirmed by Rallo et al. (2021) for low-
density citrus orchards characterized by a fraction cover 
between 25 and 40% and with a plant height between 2.3 
and 4.5 m.

The values of crop coefficient were obtained by the 
combination of two vegetation indices, NDVI and NDWI, 
the first of which is representative of the plant vigor and 
vegetative fraction; relatively higher tree canopy coverage 
increases the plant transpiration component, while lower val-
ues determine its decrease. Higher basal crop coefficient, 
Kcb, associated with the fraction cover is consistent with 
the methodology proposed by Allen and Peeira (2009) and 
Pereira et al. (2020) allowing the evaluation of Kcb from 
the fraction of ground cover and plant height. On the other 
hand, irrigation frequency should mainly affect the tempo-
ral dynamic of the stress coefficient Ks and not the values 
of Kcb.

The dispersion of the measured crop coefficient tended to 
increase in periods characterized by frequent rainfall events 
as a consequence of the rapid growth of active weeds on 

the soil surface (Fig. 5). On the other hand, the removal of 
the weeds determined the rapid reduction of the associated 
transpiration and the decline of Kc.

The use of remote sensing (RS) technologies for a 
range of agricultural applications have been exponentially 
increased over the past few decades (Khanal et al. 2020), 
and the possible applications will surely furtherly grow in 
the coming years. The challenges associated with the use of 
RS for estimating and mapping single (Kc) and basal (Kcb) 
crop coefficients based on vegetation indices have been 
recently discussed by Pôças et al. (2020), who concluded 
that the operative advantages of such an approach are not 
questioned and the technology is mature to support irrigation 
scheduling. In this direction, the present study demonstrated 
the suitability of a combination of VIs retrieved by Senti-
nel-2 multispectral images to indirectly estimate the spatio-
temporal variability of the crop coefficient (Kc) in a citrus 
orchard, during the different stages of crop growth. For the 
three examined years, the available satellite clear-sky scenes 
resulted, on average, equal to 60–70 per year, with an aver-
age revisiting time, during the irrigation season of 4 days, 
thus ensuring an almost continuous tracking of the orchard 
temporal variability. Moreover, in the view to promote preci-
sion irrigation, the quite high resolution of Sentinel-2 scenes 
(10–20 m) can allow detecting the possible intra-field spatial 
variability, which can be used to divide the farm into homo-
geneous zones requiring differentiated management.

Even if the literature reports a large number of empiri-
cal Kcb–VI relationships, developed for different crops and 
under different operating conditions, the proposed non-linear 
relationship (Eq. 12) included a combination of two indices, 
namely the sum between NDVI and NDWI, the first of which 
to account for the plant vigor, LAI and fraction cover, while 
the second, depending on the shortwave reflectance, is sensi-
tive to the change of moisture conditions of the vegetation 
canopy (Gao 1996), including the effects of spontaneous 
vegetation covering the soil surface.

Values of estimated Kc close to 1.0 were in general 
obtained from late fall to early spring, under the greater veg-
etation indices combination (Fig. 9), whereas they resulted to 
vary around 0.55 during the mid-seasons in which the com-
bination of vegetation indices was relatively lower; finally, 
after mid-season, the values of Kc associated to the increas-
ing values of the vegetation indices combination tended to 
rise gradually, following the emergency and development 
of ground weeds among the plant rows. In other words, the 
Kc values for the mid-season, when soil evaporation and 
weed transpiration were limited, resulted lower than the seg-
ments relative to the late and the non-growing seasons, in 
which rainfall and evapotranspiration from the soil surface 
occur. Similar annual patterns of crop coefficient have been 
recently reported by Puig-Sirera et al. (2021a) for an olive 
orchard and by Segovia-Cardozo et al. (2021) in a citrus 
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orchard in which, focusing on the full year and not only on 
the growing season, it was observed that Kc values in non-
growing periods resulted in higher values than in the grow-
ing period, due to the large contribution of soil evaporation.

The VIs-based Kc, implemented in the spatially dis-
tributed FAO-56 model under the real irrigation strategy, 
allowed the precise estimations of daily and seasonal soil 
water status and actual crop evapotranspiration (Calera et al. 
2017; Rallo et al. 2017), also accounting for the presence of 
temporarily transpiring weeds, which increased the velocity 
with which water was depleted from the root zone, with the 
consequent reduction of crop water availability and the need 
of more frequent watering. Considering that simulated soil 
water contents during the examined periods exceeded the 
soil field capacity (SWCfc = 0.28 cm3 cm−3) quite rarely and 
only after a few abundant rainfall events (Fig. 11), deep per-
colation was neglected. The fairly good agreement between 
estimated and measured soil water content and actual crop 
evapotranspiration at plot level (Table 3) confirmed the suit-
ability of the proposed Kc(VI) relationship to characterize 
the biophysical characteristics of the land surface and to 
improve the estimation of actual evapotranspiration.

Even if the crop coefficients tabulated for the different 
stages of citrus crop growth, on average, were confirmed 
in the present research, the possibility of using site-specific 
crop coefficients, accounting for local and time-variable 
conditions occurring in the field can contribute to improv-
ing the crop water requirement predictions and irrigation 
scheduling. Moreover, the proposed Kc(VI) relationships, 
implemented in a GIS environment, can also contribute to 
driving the implementation of precision irrigation strategies 
accounting for the actual field spatial variability.
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