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Abstract
We propose an extended version of supersymmetric quantum mechanics which can
be useful if the Hamiltonian of the physical system under investigation is not Her-
mitian. The method is based on the use of two, in general different, superpotentials.
Bi-coherent states of the Gazeau-Klauder type are constructed and their properties
are analyzed. Some examples are also discussed, including an application to the
Black-Scholes equation, one of the most important equations in Finance.

Keywords Supersymmetic quantum mechanics · Ladder operators ·
Non self-adjoint hamiltonian · Gazeau-Klauder coherent states

Mathematics Subject Classification (2010) 81Q60 · 81Sxx

1 Introduction

Supersymmetric quantum mechanics (Susy qm, in the following) is nowadays a well
analyzed approach which has proven to be quite useful in the attempt of constructing
Hamiltonians whose eigenvalues and eigenvectors can be easily deduced, out of those
of a given operator. The role of factorization in this procedure is crucial, and it is
widely discussed. We refer to [1–3] for many results on Susy qm and to [4] for an
interesting review on the factorization method, with a very reach list of references.
The essence is the following: we consider an operator a = d

dx
+ w(x), acting on

H ≡ L2(R), whose adjoint is a† = − d
dx

+ w(x), at least if w(x) is a real function,
called superpotential. Needless to say, the domains of a and a†, D(a) and D(a†),
cannot be all of H, since each function in these sets must be, at least, differentiable.
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This suggests that, in general, they are unbounded, since all closed bounded operators
can be defined everywhere in H. For instance, if we take w(x) linear in x as for
harmonic oscillator, it is well known that a and a† are unbounded. However, all
throughout this paper, we will not consider in details this aspect of the operators
involved in our analysis, except when it will be essential.

Two operators can now be introduced: h1 = a†a and h2 = aa†. In the coordinate
representation, these look like:

h1 = a†a = − d2

dx2
+ v1(x), h2 = aa† = − d2

dx2
+ v2(x), (1.1)

where

v1(x) = w2(x) − w′(x), v2(x) = w2(x) + w′(x). (1.2)

It is easy to check that [a, a†] = h2 − h1 = 2w′(x), which is zero only if the
superpotential is constant. Notice that h1 and h2 are both Hermitian and non-negative:
〈f, hjf 〉 � 0, j = 1, 2, for all f ∈ D(hj ), the domain of hj . Hence all their
eigenvalues are real and non-negative. It is clear that the two vacua of a and a†

cannot be both square-integrable. In fact, assuming that ϕ(1)(x) and ϕ(2)(x) satisfy
aϕ(1)(x) = 0 and a†ϕ(2)(x) = 0, we find that

ϕ(1)(x) = N1 exp

{
−

∫
w(x)

}
, ϕ(2)(x) = N2 exp

{∫
w(x)

}
.

We see that, if ϕ(1)(x) ∈ H, then ϕ(2)(x) /∈ H, and vice-versa. It may also happen,
however, that neither ϕ(1)(x) nor ϕ(2)(x) belong toH. This is when SUSY is broken.
In this case all the eigenvalues of hj must be strictly positive and the spectra of h1 and

h2 coincide: E
(1)
n = E

(2)
n =: En, [2]. When SUSY is not broken (unbroken SUSY),

one can always rename the operators in such a way ϕ(1)(x) ∈ H, while ϕ(2)(x) /∈ H.
This is, in fact, the standard choice adopted in the literature. In this short review,
we will restrict to the broken case, since this will be the more interesting situation
for us, expecially in connection with the bicoherent states considered in Section 4.
Hence, let us assume that e

(j)
n (x) is an eigenstate of hj with eigenvalue En > 0:

hj e
(j)
n = Ene

(j)
n . Then

e(2)
n = 1√

En

ae(1)
n , e(1)

n = 1√
En

a†e(2)
n . (1.3)

Of course, these formulas make sense since En > 0 for all n. Hence a and a† are
not, in general, ladder operators. They rather map the o.n. basis E1 = {e(1)

n } into
the second o.n. basis E2 = {e(2)

n }, and vice-versa. Notice that Ej will be assumed to
be bases quite often in this paper, even if this is not always true when dealing with
eigenvectors of non-Hermitian operators, see [5] for physical Hamiltonians showing
this feature.

Let us introduce now the operators

H0 =
(

h1 0
0 h2

)
, Q0 =

(
0 0
a 0

)
, Q

†
0 =

(
0 a†

0 0

)
.
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Then, the following formulas are satisfied:

[H0, Q0] = [H0, Q
†
0] = 0, Q2

0 = Q
†
0
2 = 0, {Q0, Q

†
0} = H0.

Also, if we put

ẽ(+)
n =

(
e
(1)
n

0

)
, ẽ(−)

n =
(

0
e
(2)
n

)
,

then

H0ẽ
(±)
n = Enẽ

(±)
n , Q0ẽ

(+)
n = √

Enẽ
(−)
n , Q

†
0ẽ

(−)
n = √

Enẽ
(+)
n , (1.4)

while Q0ẽ
(−)
n = Q

†
0ẽ

(+)
n = 0. Many more details and examples of this (and similar)

structure can be found in the literature on Susy qm, see [1, 2] in particular.
In this paper we will extend this setting to the case in which an Hamiltonian H1,

replacing h1 above, can still be factorized, but in terms of two unrelated operators A

andB:H1 = BA, withA �= B†. This implies, of course, thatH1 is not Hermitian, but
opens interesting possibilities as, for instance, having zero-eigenvalue vacua for both
H1 and for its supersymmetric partnerH2 = AB, as we will see. This is the content of
Section 2. In Section 3 we discuss how our framework can be deduced from ordinary
SUSY using a bounded deformation operator, with bounded inverse. Section 4 con-
tains some preliminary results on bicoherent states of the Gazeau-Klauder type, [6],
with an application to the Swanson model, [7]. Examples are discussed in Section 5,
while our conclusions are given in Section 6.

2 The General Settings

Let us consider two operators A and B defined as follows:

A = d

dx
+ wA(x), B = − d

dx
+ wB(x), (2.1)

with wA(x) and wB(x) in principle complex functions, and sufficiently regular.1 Of
course, if wA(x) = wB(x) = w(x) we have A = B† and these both coincide with
a in Section 1 while, if wA(x) �= wB(x), A and B† are different. We still call these
functions superpotentials. It should be stated clearly that, as a and a†, also A and
B are unbounded operators, being not everywhere defined in H. It is now an easy
computation to check that

H1 = BA = − d2

dx2
+q1(x)

d

dx
+V1(x), H2 = AB = − d2

dx2
+q1(x)

d

dx
+V2(x),

(2.2)
where

q1(x) = wB(x) − wA(x), V1(x) = wA(x)wB(x) − w′
A(x),

V2(x) = wA(x)wB(x) + w′
B(x). (2.3)

1Regularity of wA,B(x) is required to make our computations meaningful. For instance, see (2.3), they
must admit at least the first derivative.
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It is obvious that, even if wA,B(x) are real functions, H1 and H2 are manifestly
non-Hermitian, due to the presence of the term q1(x) d

dx
, which disappears only if

wA(x) = wB(x). This is exactly the situation in which B† = A, and we go back to
ordinary Susy qm, see Section 1. It is also possible to remove the first derivative term
by a suitable transformation of H1 or H2. This was discussed for the Black-Scholes
equation, [32, 33, 35], where it is also shown that this transformation is implemented
by an unbounded operator, with unbounded inverse. In what follows, we are more
interested to considering different superpotentials since this will allow us to produce
new results.

First of all, it is clear that, if we know the vacuum of A, i.e. the function satisfying
the equation Aϕ

(1)
0 (x) = 0, then we can deduce the superpotential wA(x): wA(x) =

− d
dx

ϕ
(1)
0 (x)

ϕ
(1)
0 (x)

. Analogously, if ϕ
(2)
0 (x) is the vacuum of B, Bϕ

(2)
0 (x) = 0, then wB(x) =

d
dx

ϕ
(2)
0 (x)

ϕ
(2)
0 (x)

. Of course, these formulas make sense if ϕ
(1)
0 (x) and ϕ

(2)
0 (x) are never zero.

Viceversa, knowing the superpotential it is possible to deduce the two vacua:

ϕ
(1)
0 (x) = Nϕ(1) exp

{
−

∫
wA(x)

}
, ϕ

(2)
0 (x) = Nϕ(2) exp

{∫
wB(x)

}
. (2.4)

Here Nϕ(1) and Nϕ(2) are two normalization constants.2 Of course, since wA(x) and

wB(x) are not necessarily connected, it may be true that both ϕ
(1)
0 (x) and ϕ

(2)
0 (x) are

square integrable. For instance, if ϕ
(1)
0 (x) ∈ H, a trivial choice which guarantees this

result iswB(x) = −wA(x). However, this is too trivial, since it implies thatB = −A,
V1(x) = V2(x) and H1 = H2. On the other hand, if we take wB(x) = −αwA(x), for
some α > 0, α �= 1, the situation becomes more interesting since V1(x) �= V2(x) and
both ϕ

(1)
0 (x) and ϕ

(2)
0 (x) belong toH. Another possible choice3 iswB(x) = −wA(x),

which returns a real q1(x) and V2(x) = V1(x).
The commutator betweenA andB is the difference between the two Hamiltonians:

[A, B] = H2 − H1 = V2(x) − V1(x) = w′
A(x) + w′

B(x), (2.5)

which extends what deduced for [a, a†]. In particular, if wA(x) + wB(x) is linear
in x, we recover the pseudo-bosonic commutation rule, [A, B] ∝ 11, and several
interesting results can be deduced, see [5, 8, 9] and references therein, and [10] for
a more recent results. We will consider this particular case in Section 5. It is known
that, when we deal with pseudo-bosons,A,B and their adjoint act as ladder operators,
so that the full families of eigenstates for H1 and H2 can be explicitly constructed in
a rather automatic way, as one does for the harmonic oscillator. On the other hand,
if wA(x) + wB(x) is not linear in x, then this is not possible, in general, and the
eigenvectors should be constructed using some alternative strategy, if any. For the

2Calling Nϕ(1) and Nϕ(2) normalization constants could be not really appropriate, since it may happen that

ϕ
(1)
0 (x) or ϕ

(2)
0 (x), or both, are not in L2(R).

3Suggested by the unkonwn Referee. Thank you!
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moment, we assume that, in some way, we know the eigenvectors of H1 and H2, and
their related eigenvalues:

H1ϕ
(1)
n (x) = E(1)

n ϕ(1)
n (x), H2ϕ

(2)
n (x) = E(2)

n ϕ(2)
n (x), (2.6)

for all n � 0. We are assuming also that ϕ
(1)
0 (x) and ϕ

(2)
0 (x) belong to H, so that

E
(1)
0 = E

(2)
0 = E0 = 0. As for h1 and h2, it is possible to prove that E

(1)
n = E

(2)
n

for all n � 0. In fact, since ϕ
(1)
n (x) is an eigenstate of H1 with eigenvalue E

(1)
n ,

then Aϕ
(1)
n (x) is eigenstate of H2 with the same eigenvalue E

(1)
n . Analogously, since

ϕ
(2)
m (x) is an eigenstate of H2 with eigenvalue E

(2)
m , then Bϕ

(2)
m (x) is eigenstate of

H1 with the same eigenvalue E
(1)
m . Now, with a clever reordering of the eigenvalues

of, say, H2, we conclude that E
(1)
n = E

(2)
n = En also for n > 0, and that

Aϕ(1)
n (x) = αnϕ

(2)
n (x), Bϕ(2)

n (x) = βnϕ
(1)
n (x), (2.7)

with αnβn = En, for all n � 1.

Remark (1) Of course, we can consider the first equation in (2.7) as the defining
relation for ϕ

(2)
n (x). In other words, it is not really needed to know the eigen-

vectors of both H1 and H2. In fact, from (2.7) we see that the knowledge of one
family is enough to deduce also the second set.

(2) Equation (2.7) also holds for n = 0 if E0 > 0. In this case, however, the vacua
ϕ

(j)

0 (x) cannot be those in (2.4), of course, since they are not compatible with

the fact that we should now have, for instance, Aϕ
(1)
0 (x) �= 0.

With respect to ordinary Susy qm, we have two more Hamiltonians which are
interesting for us, H †

1 and H
†
2 . We find

H
†
1 = A†B† = − d2

dx2
− q1(x)

d

dx
+ V1(x),

H
†
2 = B†A† = − d2

dx2
− q1(x)

d

dx
+ V2(x), (2.8)

where

V1(x) = wA(x)wB(x) − w′
B(x), V2(x) = wA(x)wB(x) + w′

A(x). (2.9)

It is clear that, in general, these potentials are different from those in (2.3). However,
it is easy to see that each H

†
j has the same expression as Hj with wA,B(x) replaced

by wB,A(x). This suggests that we could repeat, for H
†
1 and H

†
2 , what we have done

for H1 and H2. In particular, we could look for the vacua of A† and B† and check
under which conditions they are (both, possibly) in H. Alternatively, we could make
use of the following result, which gives us conditions for H

†
j to have eigenvectors,

and how these functions should be related to the eigenvectors of Hj .

Theorem 1 Suppose Fϕ(1) = {ϕ(1)
n (x)} is a basis of H. Then there exist an

unique set Fψ(1) = {ψ(1)
n (x)} which is also a basis of H and such that Fϕ(1) and

Math Phys Anal Geom (2020) 23: 28 Page 5 of 22 28



Fψ(1) are biorthogonal. Moreover, ψ(1)
n (x) is eigenstate of H

†
1 with eigenvalue En:

H
†
1 ψ

(1)
n (x) = Enψ

(1)
n (x). A similar statement holds for Fϕ(2) = {ϕ(2)

n (x)}.

Proof The existence of an basis Fψ(1) = {ψ(1)
n (x)} which is biorthogonal to Fϕ(1) is

granted, see [11]. The fact that its vectors are eigenstates of H
†
1 is a consequence of

the completeness of Fϕ(1). In fact, since 〈ψ(1)
n , ϕ

(1)
m 〉 = δn,m,

〈
H

†
1 ψ(1)

n , ϕ(1)
m

〉
=

〈
ψ(1)

n , H1ϕ
(1)
m

〉
= Em

〈
ψ(1)

n , ϕ(1)
m

〉
= En

〈
ψ(1)

n , ϕ(1)
m

〉

=
〈
Enψ

(1)
n , ϕ(1)

m

〉
.

Hence 〈(H †
1 − En)ψ

(1)
n , ϕ

(1)
m 〉 = 0, for all m. But, since the set Fϕ(1) is complete,

(H
†
1 − En)ψ

(1)
n = 0 for all n. Our claim follows. Of course the proof for H2 is

completely analogous.

The counterpart of formula (2.7) can be deduced also for the sets Fψ(j), j = 1, 2.
In particular we have

B†ψ(1)
n (x) = βnψ

(2)
n (x), A†ψ(2)

n (x) = αnψ
(1)
n (x), (2.10)

where αn and βn are those already introduced. It is useful to draw the following picture:

This diagram shows the effects of SUSY (horizontal lines) and of the adjoint
map (vertical lines): SUSY exchanges the order of the operators factorizing the
various Hamiltonians mapping the “(1)” into the “(2)” sets of vectors, and vice-
versa, while keeping unchanged the eigenvalues. On the other hand, the (vertical) †
maps each Hamiltonian into its adjoint. This operation implies the replacement of
the eigenvalues with their complex conjugate, and the sets Fϕ(j) with Fψ(j), and
vice-versa.

As in ordinary SUSY we can introduce the operators

H =
(

H1 0
0 H2

)
, QA =

(
0 0
A 0

)
, QB =

(
0 B

0 0

)
. (2.11)

Math Phys Anal Geom (2020) 23: 28Page 6 of 2228



Then,

[H, QA] = [H, QB ] = 0, Q2
A = Q2

B = 0, {QA, QB} = H, (2.12)

with similar equalities satisfied by H †, Q†
A and Q

†
B . For instance, {Q†

A, Q
†
B} = H †.

Also, if we further put

ϕ̃(+)
n =

(
ϕ

(1)
n

0

)
, ϕ̃(−)

n =
(

0
ϕ

(2)
n

)
, ψ̃(+)

n =
(

ψ
(1)
n

0

)
, ψ̃(−)

n =
(

0
ψ

(2)
n

)
,

we deduce that

Hϕ̃(±)
n = Enϕ̃

(±)
n , H †ψ̃(±)

n = Enψ̃
(±)
n , (2.13)

and

QAϕ̃(+)
n = αnϕ̃

(−)
n , QBϕ̃(−)

n = βnϕ̃
(+)
n , Q

†
Aψ̃(−)

n = αnψ̃
(+)
n ,

Q
†
Bψ̃(+)

n = βnψ̃
(−)
n , (2.14)

while QAϕ̃
(−)
n = QBϕ̃

(+)
n = Q

†
Aψ̃

(+)
n = Q

†
Bψ̃

(−)
n = 0. Formula (2.14) shows how

the variousQ’s map fermionic into bosonic vectors, and vice-versa. We conclude that
the essential characteristics of ordinary SUSY qm are recovered in the present setting.
Still, our results look somehow richer, since the adjoint map has interesting features
both for its physical consequences (the differences between, say, an Hamiltonian and
its adjoint have been considered in many applications to, e.g., quantum mechanical
gain and loss systems, see [12, 13] and references therein) and from the mathematical
side (many mathematical aspects of non self-adjoint operators have been considered
in [14]).

3 Deformed Ordinary SUSY qm

In this section we will show how operators like those in (2.1) can be easily obtained
by a suitable deformation of ordinary SUSY qm, using some kind of similarity
map implemented by an invertible (but possibly non unitary) operator. This is not
particularly different from what we can find in connection with some non self-
adjoint Hamiltonians which are often considered in PT or pseudo-Hermitian quantum
mechanics, [12, 13], which are deduced as (bounded or unbounded) deformations of
some Hermitian operator. However, to keep the mathematical aspects of the prob-
lem under control, in what follows we will assume that the operator implementing
the deformation is bounded, with bounded inverse. For that we consider a regu-
lar (at least differentiable) complex-valued function q(x) = qr(x) + iqi(x), where
qr(x) = 
{q(x)} and qi(x) = �{q(x)}, whose real part is bounded from below and
from above: two strictly positive constants m and M exist such that

0 < m � qr(x) � M < ∞.

Then we define the following multiplication operator T , and its inverse:

(Tf )(x) = eq(x)f (x), (T −1f )(x) = e−q(x)f (x). (3.1)
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It is easy to check that

‖T ‖ � eM, ‖T −1‖ � e−m. (3.2)

Therefore f (x) in (3.1) can be taken arbitrarily in H. In other words, D(T ) =
D(T −1) = L2(R). Now, if we call A = T aT −1 and B = T a†T −1, where a and a†

are those introduced in Section 1, we obtain exactly the operators in (2.1) with

wA(x) = w(x) − q ′(x), wB(x) = w(x) + q ′(x). (3.3)

With this choice the Hamiltonians H1 and H2 in (2.2) have

q1(x) = 2q ′(x), V1(x) = w2(x) − w′(x) − (q ′(x))2 + q ′′(x),

V2(x) = w2(x) + w′(x) − (q ′(x))2 + q ′′(x), (3.4)

while the potentials V1(x) and V2(x) in (2.9) turn out to be

V1(x) = w2(x) − w′(x) − (q ′(x))2 − q ′′(x),

V2(x) = w2(x) + w′(x) − (q ′(x))2 − q ′′(x), (3.5)

where we have used the fact that w(x) is real. Let us now define, out of the o.n. bases
E1 and E2, see Section 1, the following vectors and their related sets:

ϕ
(j)
n (x) = (T e

(j)
n )(x) = eq(x)e

(j)
n , ψ

(j)
n (x) = ((T −1)†e

(j)
n )(x) = e−q(x)e

(j)
n ,

(3.6)
and Fϕ(j) = {ϕ(j)

n (x)}, Fψ(j) = {ψ(j)
n (x)}, j = 1, 2. Due to the boundedness of T

and T −1, each pair (Fϕ(j),Fψ(j)) is a biortogonal Riesz basis, the best we can have
after o.n. bases, [11]. Of course, this would not be true if qr(x) does not satisfy the
inequalities given at the beginning of this section. In particular, as a consequence of
(3.2), we deduce that

‖ϕ(j)
n ‖ � eM, ‖ψ(j)

n ‖ � e−m, (3.7)

j = 1, 2. Moreover, they are eigenstates of the various Hamiltonians we have
introduced so far. More in detail,

Hjϕ
(j)
n (x) = Enϕ

(j)
n (x), H

†
j ψ

(j)
n (x) = Enψ

(j)
n (x), (3.8)

j = 1, 2. Notice that the eigenvalues are all real and, therefore, coincident, even if
the Hamiltonians are manifestly non Hermitian. This is because each Hj is defined
as a deformation of an Hermitian operator, hj , whose eigenvalues are necessarily real
and non negative. This aspect was already commented in Section 1.

Straightforward computations show that, for instance, equations (2.7) and (2.10)
are satisfied with the choice αn = βn = √

En. Also, if we introduce the matrix

T2 =
(

T 0
0 T

)
,

then T2 is invertible and the following equalities between the quantities introduced in
Sections 1 and 2 hold:

H = T2H0T
−1
2 , QA = T2Q0T

−1
2 , QB = T2Q

†
0T

−1
2 ,

ϕ̃(±)
n = T2ẽ

(±)
n ψ̃(±)

n = (T −1
2 )†ẽ(±)

n .
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Hence there exists a sort of equivalence between standard SUSY qm and what has
been deduced in Section 2, at least under our assumptions on qr(x). It is well known,
however, that this is not really so evident if T , T −1, or both, are unbounded. This is
the case if qr(x) is not bounded but is only, for instance, semi-bounded. In this case
Fϕ(j), Fψ(j) are not Riesz bases, and may also not be even bases for H. We refer to
[5, 15] for some results on this aspect in the context of non-Hermitian Hamiltonians.
In the next Section we will show how the vectors in (3.6) can be used to introduce a
certain class of bi-coherent states.

4 Gazeau-Klauder-Like Bicoherent States

In this section we will show how some sort of coherent states can be naturally
attached to the general framework discussed so far. In particular, we will significantly
extend what we have done in [16], where the idea of using a particular definition of
coherent states, due to Gazeau and Klauder [6], was already considered. It is maybe
worth stressing that many kind of coherent states have been introduced and studied
during the years, with different features and related to different physical systems. We
refer to the following monographs, [17–20], and to the recent volume [21]. In our
knowledge, all the coherent states proposed so far are eigenvectors of some lowering
operator and satisfy some sort of resolution of the identity. In recent years, with the
growing interest for non-Hermitian Hamiltonians, many attempts to define coherent
states also in this case have been carried out, see the recent paper [22] for instance. In
particular, we have proposed one of these extentions, the so-called bi-coherent states,
see [10] and references therein, which have a lot of nice properties. Here, extending
what we did in [16], we propose a different kind of bi-coherent states which we call
of the Gazeau-Klauder type, [6], which are rather different from those proposed in
[23–27].

Let Fϕ(j) = {ϕ(j)
n (x)} be a basis4 for H such that Hjϕ

(j)
n (x) = Enϕ

(j)
n (x). Let

then Fψ(j) = {ψ(j)
n (x)} be the unique biorthogonal basis associated to Fϕ(j), j =

1, 2, [11]. We have already shown in Theorem 1 that H
†
j ψ

(j)
n (x) = Enψ

(j)
n (x). Let

us now define the following vectors

ϕ(j)(J, γ ; x) = K(J )

∞∑
n=0

J n/2e−iEnγ

√
ρn

ϕ
(j)
n (x),

ψ(j)(J, γ ; x) = K(J )

∞∑
n=0

J n/2e−iEnγ

√
ρn

ψ
(j)
n (x), (4.1)

where J � 0, γ ∈ R, and ρn is defined as follows: ρ0 = 1 and ρn = E1E2 · · · En.
Since these quantities are, in general, complex, we need to clarify what we mean for√

ρn. We make the easiest choice: if ρn = |ρn|eiθn , then
√

ρn = |ρn|1/2eiθn/2. Of

4The reader could have in mind the sets in Theorem 1. However, most of what we will discuss in this
section holds true independently of the origin of these vectors.
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course, there is no problem at all if the sets Fϕ(j) and Fψ(j) are those introduced
in Section 3, since all the En are non negative. In (4.1) we have also introduced the
following normalization function:

K(J ) =
( ∞∑

n=0

J n

|ρn|

)−1/2

, (4.2)

which we take coincident for ϕ(j)(J, γ ; x) and forψ(j)(J, γ ; x). The series converge
if J < R, where R = limn,∞ |En|. Incidentally we observe that K does not depend
on γ or x. It only depends on J . Of course, taking J < R, does not ensure us that
also the two series in (4.1) converge. In fact, something else should be assumed on
the norms of ϕ

(j)
n (x) and ψ

(j)
n (x). We adopt here the same very mild assumptions

considered in [28]: let us suppose that four strictly positive constants exist, Aϕ , Aψ ,
rϕ , rψ , together with two sequences {Mn(ϕ)} and {Mn(ψ)}, such that

lim
n,∞

Mn(ϕ)

Mn+1(ϕ)
= M(ϕ) ∈]0, ∞], lim

n,∞
Mn(ψ)

Mn+1(ψ)
= M(ψ) ∈]0, ∞],

and

‖ϕ(j)
n ‖ � Aϕrn

ϕMn(ϕ), ‖ψ(j)
n ‖ � Aψrn

ψMn(ψ), (4.3)

for all n � 0. Suppose further that, calling En = E
(r)
n + iE

(i)
n , the following holds:

δE = lim
n,∞(E(i)

n − E
(i)
n+1) = 0. (4.4)

Of course, this is true if En is real (at least for n large enough), or if the imaginary
part of En is constant (up to at most a finite number of n), or yet if the sequence
{E(i)

n } decays to zero. Then we have, for instance,

‖ϕ(j)‖ � K(J )Aϕ

∞∑
n=0

Mn(ϕ)eE
(i)
n γ

√|ρn| (
√

J rϕ)n,

where we have used the fact that K(J ) is positive. The series on the right-hand side

converges if J < Jϕ := M2(ϕ)R
rϕ

, independently of γ . Analogously, the series for

‖ψ(j)‖ converges for all γ if J < Jψ := M2(ψ)R
rψ

. Hence we can conclude that the
vectors in (4.1) are well defined for all γ , if J < Jmin = min(R, Jϕ, Jψ).

Now that we know the domain in which these states are defined, we are interested
in deducing their properties. In the following we will call C the following subset of
R
2: C = {(J, γ ) : J ∈ [0, Jmin[, γ ∈ R}.
First of all, a direct computation shows that, thanks to our choice of K(J ),

〈ϕ(j)(J, γ ; x), ψ(j)(J, γ ; x)〉 = 1, (4.5)

for all (j, γ ) ∈ C. This is a direct consequence of the biorthogonality of the families
Fϕ(j) and Fψ(j). This kind of normalization in pairs is typical of biorthogonal sets,
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[5, 11]. Now, following [6], we introduce the following measure on C: dν(J, γ ) =
K−2(J )ρ(J )dJdν(γ ), where ρ(J ) is a solution of the moment problem∫ Jmin

0
J nρ(J )dJ = |ρn|, (4.6)

while dν(γ ) is defined as follows, [6]:∫
R

· · · dν(γ ) = lim
�,∞

1

2�

∫ �

−�

· · · dγ .

Then, if each En has multiplicity one, it is possible to check that∫
C

dν(J, γ )〈f, ϕ(j)(J, γ ; x)〉〈ψ(j)(J, γ ; x), g〉 =

=
∫

C

dν(J, γ )〈f, ψ(j)(J, γ ; x)〉〈ϕ(j)(J, γ ; x), g〉 = 〈f, g〉, (4.7)

for all f, g ∈ H. Hence the two families in (4.1) resolve the identity.

Another useful property of these states can be deduced if e−iHj t and e
−iH

†
j t

commute with the series in (4.1). In this case, in fact, we deduce that

e−iHj tϕ(j)(J, γ ; x) = ϕ(j)(J, γ + t; x),

e
−iH

†
j t

ψ(j)(J, γ ; x) = ψ(j)(J, γ + t; x). (4.8)

This means that our Gazeau-Klauder-like bicoherent states are stable under time evo-
lution. Last but not least, they also satisfy the following generalized version of the
action identity, [6], at least if E0 = 0 and En > 0 for n > 0:

〈ψ(j)(J, γ ; x), Hjϕ
(j)(J, γ ; x)〉 = J . (4.9)

On the negative side, it is not a big surprise the fact that these states are not eigenstates
of any of the operators A, B, A† or B†. In fact, this does not even hold for the
standard Gazeau-Klauder coherent states. The reason is simple: except that for some
particular situation, these operators are not at all lowering operators. This is true
for pseudo-bosons, [5], but not in general. However, as in [6], some γ -depending
lowering operators can be defined, via their action on the bases Fϕ(j) and Fψ(j). For
instance, if we put

aj (γ )ϕ
(j)
n =

{
0 if n = 0√

Ene
i(En−En−1)γ ϕ

(j)

n−1 if n � 1,
(4.10)

we find that
aj (γ )ϕ(j)(J, γ ; x) = √

Jϕ(j)(J, γ ; x), (4.11)

j = 1, 2. Similarly, if we define

b
†
j (γ )ψ

(j)
n =

{
0 if n = 0√

Ene
i(En−En−1)γ ψ

(j)

n−1 if n � 1,
(4.12)

then
b
†
j (γ )ψ(j)(J, γ ; x) = √

Jψ(j)(J, γ ; x), (4.13)

j = 1, 2.
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It is worth noticing that in (4.12) only the En’s in the exponent are replaced by
their complex conjugates, while

√
En appears both in (4.10) and in (4.12). This is

related to the definitions in (4.1) where we have used
√

ρn in the denominator for
both vectors. This was meant to simplify the computations, by getting |ρn| rather that√

ρ2
n = ρn, for instance, when solving the moment problem (4.6). In fact, in this

case, we should have a complex ρ(J ), which we prefer to avoid.

Remark (1) Even if A and B, in general, act on our bicoherent states in a rather
complicated way, there are few situations in which interesting formulas can be
deduced. This is, for instance, when αn = En and βn = 1, for all n in (2.7). In
this case we find that

Aϕ(1)(J, γ ; x) = i
d

dγ
ϕ(2)(J, γ ; x), Bϕ(2)(J, γ ; x) = ϕ(1)(J, γ ; x).

(4.14)
If we rather have αn = 1 and βn = En, we get

Aϕ(1)(J, γ ; x) = ϕ(2)(J, γ ; x), Bϕ(2)(J, γ ; x) = i
d

dγ
ϕ(1)(J, γ ; x).

(4.15)
(2) In [10, 28] we have considered the (1-d and 2-d) Swanson model, whose

Hamiltonian is, in its 1-d version,

Hθ = 1

2 cos(2θ)

(
p̂2e−2iθ + q̂2e2iθ

)
.

Here q̂ and p̂ are the position and momentum operators, and θ is a real param-
eter taking values in (−π

4 , π
4 )\{0}. It is clear that Hθ �= H

†
θ , and it is known

that it can be written, except that for a constant, in a factorized form. In fact,
introducing the pair of pseudo bosonic operators

â = 1√
2

(
q̂0e

iθ + ip̂0e
−iθ

)
, b̂ = 1√

2

(
q̂0e

iθ − ip̂0e
−iθ

)
, (4.16)

see [5], they satisfy
[â, b̂] = 11, â† �= b̂, (4.17)

and moreover

Hθ = 1

cos(2θ)

(
b̂â + 1

2
11

)
.

As shown in [5] the eigenstates of Hθ and H
†
θ are respectively

ϕn(x) = N1√
2nn!Hn(e

iθ x)exp

{
−1

2
e2iθ x2

}
, 
n(x) = N2√

2nn!Hn(e
−iθ x)

×exp

{
−1

2
e−2iθ x2

}
(4.18)

for all n � 0, with N1N̄2 = e−iθ√
π

in order to have 〈ϕ0, 
0〉 = 1. In [10] we have

shown that the bounds in (4.3) (for j = 1) are satisfied and that Jmin = ∞.
Therefore, ϕ(1)(J, γ ; x) and ψ(1)(J, γ ; x) are well defined for all (J, γ ) ∈
R
2. As for the other pair, ϕ(2)(J, γ ; x) and ψ(2)(J, γ ; x), we cannot apply our
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previous results as they are, since the Susy partner of Hθ , which is essentially
âb̂, has eigenvalues which are shifted with respect to those of Hθ .

(3) Examples of Gazeau-Klauder-like bicoherent states can be easily constructed by
any broken Susy, adopting the approach considered in Section 3. The inequal-
ities in (3.7) ensure the validity of those in (4.3) with Aϕ = eM , Aψ = e−m,
and rϕ = rψ = Mn(ϕ) = Mn(ψ) = 1, ∀n. Hence Jmin = R = limn,∞ En,
and for those problems for which the moment problem can be solved, the reso-
lution of the identity in (4.7) follows. Examples of broken Susy can be found,
for instance, in [1, 29, 30].

5 Examples

As we have anticipated, if the operators A and B in (2.1) are pseudo-bosonic, [5],
they can also be used to construct explicitly the different families of eigenvectors con-
sidered all along this paper. The price to pay, however, is that the eigenvalues of Hj

and H
†
j are essentially linear in the quantum number, since these Hamiltonians are,

in general, directly proportional to certain pseudo-bosonic number operators. In this
section we will consider an examples of this kind, and an interesting generalization
of it. However, before going to the simple pseudo-bosonic settings, we will discuss
some results related to the Black-Scholes equation, for which pseudo-bosonic ladder
operators cannot be introduced.

5.1 The Black-Scholes Hamiltonian

The starting point is the Black-Scholes equation for option pricing with constant
volatility σ ,

∂C

∂t
= −1

2
σ 2S2 ∂2C

∂S2
− rS

∂C

∂S
− rC. (5.1)

Here C(S, t) is the price of the option, S is the stock price and r is the risk-free spot
interest rate. Equation (5.1) describes the price of an option in absence of uncertainty,
when there is no random fluctuations ( perfectly hedged portfolio). A full understand-
ing of the meaning of this equation is outside the scopes of this paper. We refer to
[31, 34] for an overview on (5.1), its derivation and its role in Finance, and to [33–35]
for its connections with Quantum Mechanics.

Introducing a new variable x via S = ex , and the related unknown function 
(x)

as C(S(x), t) = eεt
(x), equation (5.1) can be rewritten in the following form:

HBS
(x) = ε
(x), where HBS = −1

2
σ 2 d2

dx2
+

(
σ 2

2
− r

)
d

dx
+ r11.

(5.2)

Notice that HBS �= H
†
BS , because of the presence of the term

(
σ 2

2 − r
)

d
dx
. In [32–

35] this Hamiltonian has been mapped into a formally Hermitian operator, using a
suitable similarity multiplication operator which, contrarily to T and T −1 in (3.1), is
unbounded with unbounded inverse. This kind of transformation is not what we are
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interested in, here. In fact,HBS as it is, looks exactly as the Hamiltonians in (2.2). For
concreteness, we fix σ 2 = 2 to simplify the notation, and we call H1 the Hamiltonian
we get in this way:

H1 = − d2

dx2
+ (1 − r)

d

dx
+ r11. (5.3)

Our aim is to use our results to analyse H1, and its related Hamiltonians. Comparing
(5.3) with (2.2) we see that q1(x) = 1 − r = wB(x) − wA(x), and V1(x) = r =
wA(x)wB(x) − w′

A(x). These equations return wA(x) and wB(x) and the solution
depends on whether r = −1 or not. In particular, if r �= −1, calling

v(x) = v0e
−(r+1)x − 1

r + 1
,

we find

wA(x) = r + 1

v(x)
, wB(x) = 1 + 1

v(x)
. (5.4)

Here v0 is an integration constant, which we always take strictly positive, to fix the
ideas. As for V2(x) we find that

V2(x) = 1

v2(x)

(
rv2(x) + 2v(x)(r + 1) + 2

)
, (5.5)

which diverges when x approaches x0 := 1
r+1 log((r + 1)v0). We see that V1(x) and

V2(x) look rather different. However, as |x| diverges, V2(x) converges to r . Hence,
asymptotically, V1(x) and V2(x) are, in fact, not so different.

Let us now see what happens if r = −1. In this case we still have (5.4), but
v(x) = v0 − x. As before, lim|x|,∞ V2(x) = −1 = r = V1(x), and the two potentials
are asymptotically quite close. This is because we find that V2(x) = 2

(x−v0)
2 − 1.

What we want to do now is to look for the vacua of the various operators introduced
in Section 2, and to check whether is possible that they are all in L2(R). We first
recall that

ϕ
(1)
0 (x) = Nϕ(1) exp

{
−

∫
wA(x)dx

}
, ϕ

(2)
0 (x) = Nϕ(2) exp

{∫
wB(x)dx

}
.

Now, if r �= −1,

−
∫

wA(x)dx = −rx + log
∣∣∣e(r+1)x − v0(r + 1)

∣∣∣ ,
while ∫

wB(x)dx = x − log
∣∣∣e(r+1)x − v0(r + 1)

∣∣∣ .
On the other hand, if r = −1 we get

−
∫

wA(x)dx = x + log |x − v0| ,
∫

wB(x)dx = x − log |x − v0| .

If r > −1, it is possible to check that ϕ(1)
0 (x) behaves as ex for x → ∞ and as e−rx

for x → −∞. Hence ϕ
(1)
0 (x) /∈ L2(R). On the other hand, ϕ(2)

0 (x) behaves as e−rx

for x → ∞ and as ex for x → −∞. This implies that, if r > 0 (then r > −1 as well,
of course), ϕ

(2)
0 (x) ∈ L2(R). Of course, since Bϕ

(2)
0 (x) is proportional to ϕ

(1)
0 (x),
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see (2.7), and since ϕ
(1)
0 (x) /∈ L2(R), our result implies that ϕ

(2)
0 (x) /∈ D(B), the

domain of B.
If r = −1 it is easy to check that both ϕ

(1)
0 (x) and ϕ

(2)
0 (x) behave as ex , for large

|x|. This implies that none of these vacua belong to L2(R).
Finally, if r < −1, ϕ

(1)
0 (x) goes as ex for x → −∞ and as e−rx for x → +∞,

while ϕ
(2)
0 (x) behaves as e−rx for x → −∞ and as ex for x → +∞. Then, since

r < −1, neither ϕ
(1)
0 (x) nor ϕ

(2)
0 (x) are square integrable.

Let us now consider the adjoint Hamiltonians H
†
1 and H

†
2 . First of all it is clear

that, taking v0 ∈ R, wA(x) and wB(x) are real. Therefore q1(x) = q1(x), V1(x) =
V1(x) and V2(x) = V2(x). However, this does not mean that Hj = H

†
j , of course,

due to the different sign in the term linear in the x-derivative, see (2.2) and (2.8). The
ground states of H

†
1 = A†B† and H

†
2 = B†A† can be deduced looking for the vacua

of B† and A† respectively: B†ψ
(1)
0 (x) = 0 and A†ψ

(2)
0 (x) = 0 , and we find

ψ
(1)
0 (x) = Nψ(1) exp

{
−

∫
wB(x)dx

}
, ψ

(2)
0 (x) = Nψ(2) exp

{∫
wA(x)dx

}
,

which can be easily related to ϕ
(1)
0 (x) and ϕ

(2)
0 (x). Indeed we find

ψ
(1)
0 (x)ϕ

(2)
0 (x) = Nψ(1)Nϕ(2), ψ

(2)
0 (x)ϕ

(1)
0 (x) = Nψ(2)Nϕ(1).

Now, to analyze their asymptotic behaviour, we first consider the case r > −1.
Of course, since ϕ

(2)
0 (x) → 0 for x → −∞, ψ

(1)
0 (x) → ∞ in the same limit.

Hence, independently of the choice of r , ψ
(1)
0 (x) /∈ L2(R). The situation changes

for ψ
(2)
0 (x). In fact, as we have seen, ϕ

(1)
0 (x) → ∞ for |x| → ∞, if r > 0. Then

ψ
(2)
0 (x) → 0 in the same limit. The conclusion is the following:

if r > 0 the ground states of H2 and H
†
2 , ϕ

(2)
0 (x) and ψ

(2)
0 (x), are square inte-

grable. On the other hand, for any r > −1, neither ϕ
(1)
0 (x) nor ψ

(1)
0 (x) belong to

L2(R).
A similar analysis can be repeated for the other values of r: if r � −1, none of the

ψ
(j)

0 (x)’s is square-integrable.
Summarizing, if we want our system to live in L2(R) (assumption which, how-

ever, could be relaxed, see [36, 37]), we cannot work directly with the Black-Scholes
Hamiltonian but, rather, with its Susy partner H2, together with the adjoint of H2,
at least if r > 0. Of course, our analysis should be refined if we also want to ana-
lyze eigenvectors different from the lowest ones. However, this analysis is much
harder, since there is no general way to construct them. In particular, the commutator
between A and B is not so easy and does not allow to use them as ladder operators.

5.2 Pseudo-bosonic Superpotentials

In this example we will discuss a non-trivial choice of wA(x) and wB(x) such that
[A, B] = 11, see (2.5). In particular, we want the two functions to be different and
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not just linear in x (this choice has been considered several times in recent years, see
[5] and references therein). To be concrete, we take here

wA(x) = k + ex, wB(x) = x − ex, (5.6)

where we take k ∈ R for concreteness. Hence

A = d

dx
+ k + ex, B = − d

dx
+ x − ex .

With this choice we have w′
A(x) + w′

B(x) = 1. Therefore [A, B] = 11, and

q1(x) = x−k−2ex, V1(x) = kx+(x−k−1)ex−e2x, V2(x) = V1(x)+1, (5.7)

in agreement with the fact that H2 = AB = [A, B] + BA = H1 + 11. Needless to
say, a similar relation is also recovered for H

†
1 and H

†
2 : H

†
2 = H

†
1 + 11. It is clear

that ϕ(2)
n (x) coincide with ϕ

(1)
n (x), but the eigenvalues are shifted. Similarly, ψ(2)

n (x)

coincide with ψ
(1)
n (x), and again the eigenvalues are shifted. This reminds very much

what happens in unbroken SUSY.

Remark This result does not really depend on the particular choice of the superpo-
tential in (5.6). Indeed, it is a consequence of the fact that [A, B] = 11, which implies
that (H2, H

†
2 ) = (H1+11, H †

1 +11). For this reason in the rest of this example we will

concentrate on what happens for (H1, H
†
1 ), since this completely determines what

happens also for the other pair, (H2, H
†
2 ).

The ground state of H1 can be deduced by solving the equation Aϕ
(1)
0 (x) = 0:

ϕ
(1)
0 (x) = Nϕ(1)e

−kx−ex
. It is clear that, if k < 0, ϕ

(1)
0 (x) ∈ L2(R). Since B† =

d
dx

+ x − ex , its vacuum turns out to be ψ
(1)
0 (x) = Nψ(1)e

ex−x2/2, which is not in

L2(R). However, it is clear that ψ
(1)
0 (x) ∈ L1

loc(R), the set of all locally integrable
functions, and that it is also a C∞ function: it admits derivatives of all order. It is
also clear that the product ϕ

(1)
0 (x)ψ

(1)
0 (x) belongs to L1(R), so that the ordinary

scalar product between two L2 functions can also be defined for this product. In fact,
we will see later that this is true for all products of the kind ϕ

(1)
k (x)ψ

(1)
l (x), where

ϕ
(1)
k (x) are the eigenstates of H1 (all in L2(R)) while, ψ(1)

l (x) are the (generalized)

eigenstates of H
†
1 (none in L2(R)). This is what happens, in general, in the so-called

PIP-spaces,5 [38]. This reflects the general structure of weak pseudo-bosons, recently
introduced in [37].

Motivated by our results in [5, 37], we can prove the following:

Theorem 2 If we put

ϕ(1)
n (x) = 1√

n!B
nϕ

(1)
0 (x), ψ(1)

n (x) = 1√
n!A

†n
ψ

(1)
0 (x), (5.8)

5Here PIP stands for partial inner product.
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n = 1, 2, 3, · · · , we have
ϕ

(1)
n (x)

ϕ
(1)
0 (x)

= ψ
(1)
n (x)

ψ
(1)
0 (x)

= pn(x), (5.9)

∀n � 0, where pn(x) is defined recursively as follows:

p0(x) = 1, pn(x) = 1√
n

(
pn−1(x)(x + k) − p′

n−1(x)
)
. (5.10)

Moreover, ϕ(1)
n (x) ∈ L2(R), while ψ

(1)
n (x) ∈ L1

loc(R), ∀n � 0.

Proof To prove (5.9) we use induction on n. Of course, the statement is true for
n = 0. Let us assume that it is also true for a given n, with pn(x) as in (5.10), and let
us tehn prove that the analogous result holds for n + 1.

Due to (5.8) and to the definition of B we have

√
n + 1ϕ(1)

n+1(x) = Bϕ(1)
n (x) =

(
− d

dx
+ x − ex

)
ϕ(1)

n (x) =
(

− d

dx
+ x − ex

)(
pn(x)ϕ

(1)
0 (x)

)
,

where we have also used the induction hypothesis. Now, since Aϕ
(1)
0 (x) = 0, we

have d
dx

ϕ
(1)
0 (x) = −(k + ex)ϕ

(1)
0 (x). Therefore, after some computations,

√
n + 1ϕ(1)

n+1(x) = (
pn(x)(x + k) − p′

n(x)
)
ϕ

(1)
0 (x) = √

n + 1pn+1(x)ϕ
(1)
0 (x),

which is what we had to prove. A similar proof can be repeated for ψ
(1)
n (x). As for

the nature of the functions, this is an obvious consequence of (5.9) and of the fact
that pn(x) is a polynomial.

From this theorem the following result can be deduced:

Corollary 3 If we take Nϕ(1)Nψ(1) =
(
2πek2

)−1/2
, then ϕ

(1)
n (x)ψ

(1)
m (x) ∈ L1(R)

and

〈ϕ(1)
n , ψ(1)

n 〉 = δn,m, (5.11)

for all n, m � 0.

Proof First of all we observe that, because of (5.9) and of the explicit forms for
ϕ

(1)
0 (x) and ψ

(1)
0 (x), we have

ϕ(1)
n (x)ψ(1)

m (x) = Nϕ(1)Nψ(1)pn(x)pm(x)e−x2/2−kx

=
(
2πek2

)−1/2
pn(x)pm(x)e−x2/2−kx,

which is integrable for all n and m. Therefore 〈ϕ(1)
n , ψ

(1)
m 〉 is well defined, despite

of the fact that ψ
(1)
m (x) /∈ L2(R). Next, we show that this scalar product is zero if

n �= m. This can be proved by showing first the following equality, which strongly
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recall a similar equality for the Hermite polynomials (which are indeed quite related
to our pn(x), as we will show later):

(−1)m
√

m!pm(x) = ex2/2+kx

(
dm

dxm
e−x2/2−kx

)
, (5.12)

m = 0, 1, 2, 3, · · · . This equality, again, can be proved by induction, but we will not
do it here.

Now, let us suppose that m > n. Then we have

〈ϕ(1)
n , ψ(1)

m 〉 =
(
2πek2

)−1/2
∫
R

pn(x)pm(x)e−x2/2−kxdx

=
(
2πek2

)−1/2 (−1)m√
m!

∫
R

pn(x)ex2/2+kx

(
dm

dxm
e−x2/2−kx

)
e−x2/2−kxdx

=
(
2πek2

)−1/2 (−1)m√
m!

∫
R

pn(x)

(
dm

dxm
e−x2/2−kx

)
dx,

which is zero. In fact, using integration by parts, we have to compute dmpn(x)
dxm , which

is zero since m > n. Of course, the same proof works also if m < n, by inverting the
role of pn(x) and pm(x).

Let us now see what happens if n = m. In this case, integrating by parts, we have

〈ϕ(1)
n , ψ(1)

n 〉 =
(
2πek2

)−1/2 (−1)n√
n!

∫
R

pn(x)

(
dn

dxn
e−x2/2−kx

)
dx

=
(
2πek2

)−1/2

√
n!

∫
R

dnpn(x)

dxn
e−x2/2−kxdx.

It is obvious that, for all n � 0, dnpn(x)
dxn is a constant. In fact, we can check that this

constant is
√

n!: dnpn(x)
dxn = √

n!. The proof is based on the following preliminary
result:

dn

dxn

[
p′

n(x)(x + k)
] = np(n)

n (x), (5.13)

which is a direct consequence of the formula dn

dxn (f (x)g(x) = ∑n
k=0

(
n

k

)
f (n−k)

(x)g(k)(x), that in our case reduces to just two contributions, since (x + k)(n) = 0
if n � 2. We are now ready to prove our claim by induction on n. First of all, since

p0(x) = 1, it is true that d0pn(x)

dx0
= √

0!. Now, let us suppose we have dnpn(x)
dxn = √

n!.
We want to check that this equality extends to n+1. For that we use (5.10). Therefore

dn+1

dxn+1
pn+1(x) = dn+1

dxn+1

1√
n + 1

(
pn(x)(x + k) − p′

n(x)
)

= 1√
n + 1

dn+1

dxn+1
pn(x)(x + k),
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since p′
n(x) is a polynomial af degree n − 1, which is annihilated by the n + 1-th

derivative. Now,

dn+1

dxn+1
pn+1(x) = 1√

n + 1

dn

dxn

(
p′

n(x)(x + k) + pn(x)
)

= 1√
n + 1

(
np(n)

n (x) + p(n)
n

)

= √
(n + 1)!,

because of the (5.13) and of our inductive assumption.
We are now ready to conclude our proof:

〈ϕ(1)
n , ψ(1)

n 〉 =
(
2πek2

)−1/2
∫
R

e−x2/2−kxdx = 1,

which is what we had to prove.

As we have already anticipated, the above result is not really surprising, since
it is possible to deduce the following relation between our pn(x) and the Hermite
polynomials Hn(x):

pn(x) = 1

2nn!Hn

(
x + k√

2

)
, (5.14)

and therefore, because of (5.9),

ϕ(1)
n = Nϕ(1)

2nn! Hn

(
x + k√

2

)
e−kx−ex

, ψ(1)
n = Nψ(1)

2nn! Hn

(
x + k√

2

)
eex−x2/2,

(5.15)

where the normalization constants satisfy the condition given in Corollary 3. We
conclude that the sets Fϕ(1) and Fψ(1) are biorthogonal, even if the functions in
Fψ(1) are not square-integrable. This suggests that Fϕ(1), thought being complete6 in
L2(R), it is not a basis. This is because, otherwise, an unique biorhogonal basis would
exist in L2(R), which is also a basis, [11]. On the other hand, here, we see that such
a biorthogonal set exists, but this is not in L2(R). Let then Dϕ(1) = l.s.{ϕ(1)

n (x)}, the
linear span of the functions ϕ

(1)
n (x). This set is dense in H, since Fϕ(1) is complete.

It is obvious that all functions in Dϕ(1) can be written as

f (x) =
N∑

k=0

〈ψ(1)
k , f 〉ϕ(1)

k (x),

6Completeness has been met previously in this paper. We remind that this means that the only square-
integrable function f (x) which is orthogonal to all the ϕ

(1)
n (x)’s is the zero function. This can be proved

using the same argument adopted in [5], see also [39].
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for some finite N . Analogously, introducing the linear span of ψ
(1)
n (x), Dψ(1), this

is a subset of L1
loc(R) (not dense, in general). Any function g(x) in Dψ(1) can be

written in terms of the ϕ
(1)
n (x):

g(x) =
M∑

k=0

〈ϕ(1)
k , g〉ψ(1)

k (x),

for some finite M . These formulas are not compatible with the general pseudo-
bosonic framework described in [5], while they fit well the weak pseudo-bosonic
framework, [37]. In particular, for these f (x) and g(x), we deduce that 〈f, g〉 is well
defined and that

〈f, g〉 =
min{N,M}∑

k=0

〈f, ψ
(1)
k 〉〈ϕ(1)

k , g〉, (5.16)

which is a sort of resolution of the identity restricted to suitable spaces. Of course, if
f (x), g(x) ∈ Dϕ(1) ∩ Dψ(1), we get

〈f, g〉 =
min{N,M}∑

k=0

〈f, ψ
(1)
k 〉〈ϕ(1)

k , g〉 =
min{N,M}∑

k=0

〈f, ϕ
(1)
k 〉〈ψ(1)

k , g〉.

An interesting question related to the example considered here is which is the
role of the particular choice of the superpotentials wA(x) and wB(x) in (5.6). In
fact, this is not so relevant. More in details, it is not hard to show, with the same
techniques described above, that, for any choice of wA(x) and wB(x) such that
wA(x)+wB(x) = k+x, k ∈ R, formulas (5.9) and (5.10) are again satisfied. For this
reason, the fact that ϕ

(1)
n (x) or ψ

(1)
n (x) are square-integrable or not, is related to the

fact that ϕ(1)
0 (x) or ψ

(1)
0 (x) are in L2(R). The existence of 〈ϕ(1)

n , ψ
(1)
m 〉 can be proved

in the same way, and a resolution like the one in (5.16) can be again be deduced.
This gives us a lot of freedom for producing examples based on the pseudo-bosonic
commutation relations. We refer to [40] for more results on pseudo-bosons in this
direction.

6 Conclusions

In this paper we have proposed the factorization of a given, non-Hermitian, Hamilto-
nian H1 using two, rather than one, superpotentials. This allows, in principle, to have
two vacua for H1 and for its Susy counterpart, H2. The eigenvectors for H

†
1 and H

†
2

have also been analysed, and a rich framework with two maps, the SUSY and the
adjoint maps, have been discussed in some details. We have shown how this structure
can be deduced using a suitable deformation of ordinary SUSY qm.We have also dis-
cussed how bi-coherent states of the Gazeau-Klauder type can be defined, and which
properties do they have. The Swanson Hamiltonian has been used as a test for our
construction.

In the last part of the paper, we have discussed some applications of our general
framework to the Black-Scholes Hamiltonian and to (weak) pseudo-bosonic systems.
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Among other aspects, in our future research we plan to consider the role of shape-
invariant potentials (if any), and analyse in more details the differences between
broken and unbroken Susy. Also, we hope to refine the mathematical aspects of our
approach, considering for instance what happens if the deformation operator T in
Section 3, its inverse, or both, are unbounded.
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CRUI-CARE Agreement.

Availability of Data and Material Not applicable.

Code Availability Not applicable.

Compliance with Ethical Standards

Conflict of Interest There are no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

1. Junker, G.: Supersymmetric Methods in Quantum and Statistical Physics. Springer, Berlin (1992)
2. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and Quantum Mechanics. Word Scientific,

Singapore (2001)
3. Sukumar, C.V.: Supersymmetric quantum mechanics and its applications. AIP Conf. Proc. 744, 166

(2004)
4. Mielnik, B., Rosas-Ortiz, O.: Factorization: little or great algorithm. J. Phys. A 37, 10007–10035

(2004)
5. Bagarello, F.: Deformed canonical (anti-)commutation relations and non hermitian Hamiltonians. In:

Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M. (eds.) Non-selfadjoint Operators in Quantum
Physics: Mathematical Aspects. Wiley, Hoboken (2015)

6. Gazeau, J.P., Klauder, J.R.: Coherent states for systems with discrete and continuous spectrum. J.
Phys. A 32, 123–132 (1999)

7. Swanson, M.S.: Transition elements for a non-Hermitian quadratic hamiltonian. J. Math. Phys. 45,
585 (2004)

8. Bagarello, F., Ali, S.T., Gazeau, J.P.: D-pseudo-bosons, Complex Hermite Polynomials and Integral
Quantization. In: SIGMA, vol. 11, p. 078,23 (2015)

9. Bagarello, F., Znojil, M.: Non linear pseudo-bosons versus hidden Hermiticity. J. Phys. A 44, 415305
(2011)

Math Phys Anal Geom (2020) 23: 28 Page 21 of 22 28

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/


10. Bagarello, F., Gargano, F., Spagnolo, S.: Bi-squeezed states arising from pseudo-bosons. J. Phys. A
51, 455204 (2018)

11. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)
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29. Junker, G., Roy, P.: Supersymmetric construction of exactly solvable potentials and nonlinear
algebras. Phys. Atom. Nucl. 61(10), 1736–1743 (1998)

30. Junker, G., Roy, P.: Conditionally exactly solvable problems and non-linear algebras. Phys. Lett. A
232, 155–161 (1997)

31. Saari, D.G.: Mathematics of Finance: an Intuitive Introduction. Springer, Berlin (2019)
32. Jana, T.K., Roy, P.: Supersymmetry in option pricing. Phys. A 390, 2350–2355 (2011)
33. Jana, T.K., Roy, P.: Pseudo Hermitian formulation of the quantum Black-Scholes Hamiltonian. Phys.

A 391, 2636–2640 (2012)
34. Baaquie, B.E.: Quantum Finance. Cambridge University Press, Cambridge (2004)
35. Bagarello, F.: Appearances of pseudo-bosons from Black-Scholes equation. J. Math. Phys. 57, 043504

(2016)
36. Bagarello, F., Gargano, F., Roccati, F.: A no-go result for the quantum damped harmonic oscillator.

Phys. Lett. A 383, 2836–2838 (2019)
37. Bagarello, F.: Weak pseudo-bosons. J. Phys. A 53, 135201 (2020)
38. Antoine, J.-P., Trapani, C.: Reproducing pairs of measurable functions and partial inner product

spaces. Adv. Oper. Theory 2, 126–146 (2017)
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