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A B S T R A C T

Thermal noise and harmonic forcing have recently been shown to cooperatively excite sine–Gordon breathers
robust to dissipation. Such a phenomenon has been found assuming a Gaussian noise source, delta-correlated
both in time and space. In light of the potential implications of this generation technique, e.g., for the
experimental observation of breathers in long Josephson junctions, it is physically motivated to investigate the
effects of more realistic noise sources with finite correlation time and/or correlation length. Here, breathers are
demonstrated to still emerge under this broader class of noise sources. The correlation time and the correlation
length are found to offer control over the probability of observing breathers, as well on the typical timescale
for their emergence. In particular, our results show that, as compared to the thermal case, the temporal
and spatial correlations in the noise can lead to a larger breather-only occurrence frequency, i.e., the latter
quantity behaves nonmonotonically versus both the correlation time and the correlation length. Overall, noise
correlations represent a powerful tool for controlling the excitation of the elusive breather modes in view of
experiments.
1. Introduction

Many remarkable phenomena can arise thanks to the combined
action of nonlinearity and noise, and their understanding is crucial for
advancing both theoretical and practical knowledge in various physical
systems [1–3]. While white Gaussian (i.e., thermal) noise is often used
as a simplifying abstraction, real-world applications demand a more
nuanced exploration of correlated noise, that is, a stochastic source
characterized by an intrinsic correlation time/length stemming from
the physical processes underlying the noise’s description [1,3–7]. This
is particularly relevant, e.g., in the study of Josephson systems, which
have attracted significant interest due to their fundamental properties
and cutting-edge applications [8–24]. Within the latter context, the
sine–Gordon (SG) model and its soliton excitations, (anti)kinks and
breathers, are well-known to play a prominent role [10–12,25–31].

The nonlinear science community has long recognized the impor-
tance of developing a deep theoretical understanding of the SG model
and studying the dynamics of its solitonic modes under harmonic
(ac) forcing and dissipation [32–49], as well as other determinis-
tic and stochastic perturbations [50–52]. This comprehension is not
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only fundamental for theoretical physics, but it could also be relevant
for, e.g., gaining insight into recent pioneering experiments aimed
at controlling the superconducting-like properties of strongly driven
cuprate materials [53–55]. In this regard, highly tunable experimen-
tal platforms such as long Josephson junctions (LJJs) and ultracold
atoms [56–61] are particularly attractive for researchers, since they
allow to replicate and investigate the properties of the SG model and
its nonlinear excitations in a manageable environment, thus helping in
shedding light on intricate phenomena possibly occurring in, e.g., the
previously mentioned high-𝑇𝑐 scenarios [53–55].

Motivated by the above ideas, in this work we numerically in-
vestigate the influence of both temporally and spatially correlated
noise on the excitation of quasi-stable oscillatory SG soliton modes,
i.e., breathers, in the presence of a spatially uniform ac driving and
dissipation. Indeed, it has been shown that breathers, robust to dissi-
pation (i.e., not decaying in time due to radiative losses) and resonant
with an external ac force, can stochastically emerge if a thermal noise
of suitable intensity is included in the dynamics, starting from a soliton-
free initial state [48,49]. Here we find that this interesting phenomenon
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still occurs under the influence of more realistic, correlated noise
sources. Furthermore, the probability of observing breathers, as well
as the timescale for the excitation of these nonlinear modes, are found
to be sensitive to both the correlation time 𝜏 and the correlation length
𝜆 characterizing the noise. Notably, breathers can be observed much
more frequently, as compared to the corresponding white-noise case
(i.e., for 𝜏 , 𝜆 → 0), in intermediate ranges of correlation times and
correlation lengths. For both large enough 𝜏 and 𝜆, we witness an
increasing slowdown of the system’s dynamics, i.e., breathers form due
to fluctuations over longer timescales. These facts imply that the fre-
quency of breather-only occurrence, defined as the fraction of the total
numerical realizations in which exclusively breather modes emerge,
is nonmonotonic as a function of both 𝜏 and 𝜆. Noise correlations
thus represent a tool for controlling the excitation of breathers—a
useful fact in view of experiments, such as those aimed at breather
detection in LJJs. We also note interesting qualitative differences in
the events leading to the formation of solitonic structures between the
temporally and the spatially correlated scenarios. In the former case,
indeed, (regardless of 𝜏) isolated localized modes are mostly generated
thanks to intense enough local fluctuations of the SG field. In the
spatially correlated scenario, however, (for large enough 𝜆) a clear
tendency towards a collective behavior emerges, with easy-to-spread
fluctuations leading to a cascade of solitons excited throughout the
system. Nevertheless, a number of isolated breathers, robust over very
long times, can still often come out of such convoluted transients.

The following outline is employed for this work. Section 2 describes
the model under consideration. Results for the temporally and the spa-
tially correlated noise are presented, respectively, in Sections 3.1 and
3.2. Conclusions are then drawn in Section 4. Finally, technical details
on how we numerically deal with temporally and spatially correlated
sources are provided in, respectively, Appendix A and Appendix B.

2. Materials and methods

We examine the following SG-type equation, in dimensionless units,

𝜑𝑥𝑥 − 𝜑𝑡𝑡 − 𝛼 𝜑𝑡 = sin𝜑 − 𝐴 sin (𝜔𝑡) − 𝛾 (𝑥, 𝑡) , (1)

which features both deterministic and stochastic perturbations: a vis-
cous damping term with strength 𝛼 < 1, an external monochromatic
(ac) force with frequency (amplitude) 𝜔 < 1 (𝐴 < 1), and a space–
time Gaussian noise source 𝛾 (𝑥, 𝑡) with zero average and exponential
correlation, see Eqs. (2) and (3). The notation 𝜑𝜇 = 𝜕𝜇𝜑 is used
throughout to denote the partial derivatives of the field 𝜑(𝑥, 𝑡). Eq. (1) is
numerically integrated over the spatio-temporal domain (𝑥, 𝑡) ∈ [0, 𝐿 =
50] × [0, 𝑇 ], via implicit finite-difference numerical means [62,63], with
null initial conditions (𝜑|𝑡=0 = 𝜑𝑡|𝑡=0 = 0) and with no-flux boundary
conditions (𝜑𝑥|𝑥=0 = 𝜑𝑥|𝑥=𝐿 = 0).

We note that Eq. (1) can be experimentally studied within various
platforms, e.g., in LJJs [8–12], in which case it is interpreted as the
2 
equation of motion for the Josephson phase, in the presence of dissipa-
tion, an applied uniform ac current, and stochastic fluctuations [8–12].
In our work, we are interested in two types of excitations which can
be studied in LJJs: solitons, which are quanta of magnetic flux, and
breathers, which are bound states between flux and antiflux quanta.
Furthermore, for the LJJ system, the following identifications can be
made. The friction coefficient 𝛼 = 𝐺∕

(

𝜔𝑝𝐶
)

is related to the effective
normal conductance 𝐺, the capacitance per unit length 𝐶, and the
Josephson plasma frequency 𝜔𝑝 =

√

2𝜋 𝐽𝑐∕
(

𝛷0𝐶
)

, whose reciprocal
sets the time unit. Here, 𝐽𝑐 represents the critical Josephson current,
and it determines the unit for 𝐴. The Josephson penetration depth 𝜆𝐽 =
√

𝛷0∕
(

2𝜋 𝐽𝑐𝐿𝑝
)

sets the space unit, where 𝐿𝑝 is the inductance per unit
length. The null initial condition then signifies that the LJJ is initially
free of solitonic excitations. The choice of boundary conditions specifies
the junction geometry under consideration—in our case, the so-called
overlap geometry, in the absence of external magnetic fields [8–12].

The purpose of this work is to investigate the effects of both tempo-
ral and spatial correlations in 𝛾 (𝑥, 𝑡) on the noise-induced formation
of stabilized breathers, a phenomenon which was discovered in the
thermal (i.e., delta-correlated) case in Refs. [48,49]. Going beyond the
thermal noise analysis is physically motivated since, in any realistic
situation, intrinsic correlation times and lengths are expected to stem
from the physical processes underlying the noise’s description. Thus, in
Section 3.1, we report results for a temporally correlated source defined
as

⟨𝛾 (𝑥, 𝑡) 𝛾 (𝑥′, 𝑡′)⟩ = 𝜀
𝜏
𝛿
(

𝑥 − 𝑥′
)

𝑒−
|𝑡−𝑡′ |
𝜏 . (2)

Here, 𝜀 is the noise amplitude and 𝜏 is the correlation time. For a 0-
dimensional system, such correlations are known to lead to persistent
phenomena in the dynamical behavior [1,3–7]. On the other hand, for
small 𝜏, Eq. (2)’s properties resemble that of thermal noise, which is
strictly obtained in the 𝜏 → 0 limit, see Appendix A for the technical
details. In this case, the system dynamics approaches that described in
Refs. [48,49].

Since our model is 1-dimensional, and our focus lies on solitonic
modes such as breathers, it is natural to study the influence of spatial
correlations on the system dynamical features as well. In the latter
scenario, which is discussed in Section 3.2, we take

⟨𝛾 (𝑥, 𝑡) 𝛾 (𝑥′, 𝑡′)⟩ = 𝜀
𝜆
𝑒−

|𝑥−𝑥′ |
𝜆 𝛿

(

𝑡 − 𝑡′
)

, (3)

where 𝜀 denotes the noise amplitude and 𝜆 is the correlation length.
Spatial correlations have been introduced and studied in extended
systems in the past [3], but to our knowledge this topic has not been
explored so far in the SG context. Before closing this section, we note
that as 𝜆 approaches zero, we revert to white noise, see Appendix B
for a technical discussion on Eq. (3). In the latter limit, results from
Refs. [48,49] are recovered once again.
Fig. 1. Contour plots of the field 𝜑 (𝑥, 𝑡), for different choices of the correlation time 𝜏, showing the robustness of the breather emergence phenomenon, as well as the 𝜏-induced
slowdown of the dynamics. We take 𝜏 = 𝛥𝑡 (i.e., white-noise limit) in panel (𝐴), 𝜏 = 300𝛥𝑡 in panel (𝐵) and 𝜏 = 900𝛥𝑡 in panel (𝐶). The remaining simulation parameters are:
𝛼 = 0.2, 𝐴 = 0.59, 𝜔 = 0.6, 𝜀 = 0.004.
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Fig. 2. Occurrence frequencies of getting at least one kink-type object 𝑓𝑘, panel (A), breathers only 𝑓𝑏, panel (B), no excitations 𝑓0, panel (C), versus the noise amplitude 𝜀, for
different values of the correlation time 𝜏. The different 𝜏 choices are 𝛥𝑡 (white-noise limit), 100𝛥𝑡, and 250𝛥𝑡, see panel (B) for the color scheme. Other parameters are: 𝛼 = 0.2,
𝐴 = 0.59, 𝜔 = 0.6, 𝐿 = 50, 𝑇 = 500 (simulation time), and 𝑁 = 500 (number of trajectories). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
3. Results

3.1. Effects of temporally correlated noise

In this section, the effects of temporally correlated noise, with
correlation time 𝜏, are investigated.1 To this end, we begin in Fig. 1
by illustrating the typical spatio-temporal behavior of the field 𝜑 (𝑥, 𝑡)
for different values of 𝜏, in particular 𝜏 = 𝛥𝑡 [within our discretized
framework for the integration of Eq. (1), a 𝜏 equal to the integration
time step value corresponds to the white-noise limit] is taken in panel
(𝐴), 𝜏 = 300𝛥𝑡 in (𝐵), and 𝜏 = 900𝛥𝑡 in (𝐶). The remaining parameters
are set such that Ref. [48,49]’s results are progressively reached as
𝜏 → 0, see Fig. 1. A first, nontrivial fact we can deduce from these
contour plots is that the emergence of breathers, remarkably stable
both in amplitude and in position, is clearly possible in the presence
of temporal correlations in the noise source. The kink–antikink bound
state can be easily spotted in Fig. 1 due to its characteristic localized
oscillation between 2𝜋 and −2𝜋. Furthermore, as we progress from
panel (𝐴) to panel (𝐶), i.e., as 𝜏 gets larger, the characteristic time
at which the breather dynamics kicks-in seems to increase, see also
Fig. 3(B) below. By examining the correlation function given in Eq. (2),
we can heuristically understand why such a phenomenon takes place as
a function of the correlation time. As 𝜏 increases, the noise amplitude,
which features the prefactor 𝜀∕𝜏, is effectively reduced. Since the
timescale characterizing the stochastic generation events is sensitive
to the effective fluctuations’ strength [48,49], that is, the higher the
noise intensity, the faster the coherent excitations tend to arise from
the noise source, a delay in the breathers’ emergence due to temporal
correlations is a reasonable simulation outcome.2

To provide statistical evidence of the phenomena exemplified in
Fig. 1, we perform 𝑁 = 500 independent numerical runs, and classify
them according to the excitations observed in each simulation: (i) at
least a kink-type structure, if at least a 2𝜋-step excitation is present;
(ii) breathers alone, if the observed modes’ amplitudes lie between
𝜑⋆ = 4 ar ct an

(
√

1 − 𝜔2∕𝜔
)

, corresponding to the amplitude of the
static SG breather with frequency 𝜔 [25,26], and 2𝜋; (iii) no solitonic
modes, if the phase profile is essentially flat over the spatial domain.
We define frequencies of occurrence for each of the previous scenarios:
𝑓𝑘, 𝑓𝑏, and 𝑓0, respectively. We then analyze these occurrence frequen-
cies under different conditions and for different ranges of parameters.
Another useful tool for the present purposes is the time 𝑡⋆ where, in
each numerical experiment, |𝜑 (𝑥, 𝑡) | reaches (at any 𝑥) the threshold
𝜑⋆. Since, for the explored parameter sets, the reaching of 𝑡 = 𝑡⋆

1 Here, the values of 𝜏 are chosen much smaller than the simulation time,
𝑇 = 500, such that the effects of time correlations on the dynamics can be
properly addressed, see Appendix A.

2 This phenomenon is conceptually similar to that discussed in,
e.g., Ref. [64].
3 
reasonably signals the hitting of a solitonic generation event, here this
quantity is dubbed ‘‘hitting time’’. The convention 𝑡⋆ = ∞ is chosen
for numerical runs where |𝜑| < 𝜑⋆ is observed throughout, like in the
cases free of solitonic modes.

Let us first examine how the three occurrence frequencies behave,
versus the noise amplitude 𝜀, for different values of 𝜏. Starting from the
white-noise limit, 𝜏 = 𝛥𝑡, which fully recovers the results in Refs. [48,
49], we observe that for small 𝜀 the frequency of kink-generation (𝑓𝑘)
and that of no-excitation generation (𝑓0) are, respectively, zero and
one, see the red data points in Fig. 2(A) and (C). For large 𝜀, the
role of 𝑓𝑘 and 𝑓0 is instead interchanged. Interestingly, 𝑓𝑏 shows a
nonmonotonic behavior, with a clear peak identifying the optimal set
of noise amplitudes for breather-related purposes, see the red curve in
Fig. 2(B). That is, an intermediate 𝜀 range exists where the most likely
event is by far breather-only formation. The previous behaviors are
well-understood: if the noise strength is too weak, creating localized
excitations on top of the roughly uniform (oscillating) background is
very unlikely, whereas, if it is too strong, all breathers are broken
up into kink–antikink pairs.3 Then, a sweet spot for which 𝜀 is large
enough for the excitation of breathers, but not for their destruction,
allows for the peak in the red curve in Fig. 2(B) to develop. Beyond the
white-noise limit, i.e., by increasing 𝜏, we observe that the previous
picture still qualitatively holds, see the green (𝜏 = 100𝛥𝑡) and black
(𝜏 = 250𝛥𝑡) curves in Fig. 2, thereby showing the robustness of the
nonmonotonic 𝑓𝑏 behavior against temporal correlations in the noise
source. Furthermore, Fig. 2 clearly shows that the parameter 𝜏 shifts
the occurrence frequency curves, thus dictating the range of 𝜀 values
where, for instance, the breather modes are most likely to be excited.
The latter phenomenon, which can potentially be very useful in practice
since it provides an additional control knob for breather generation, is
intuitively explained by the above argument on the 𝜏-dependent noise
amplitude rescaling.

It is interesting to note that, within the current framework, it
is possible to leverage the effect of the noise’s time correlations to
enhance the likelihood of breather formation in a situation where,
say, the value of 𝜀 would only allow for kink-type excitations in the
corresponding white-noise case. This can be seen in the 𝑓𝑘(𝜏), 𝑓𝑏(𝜏),
and 𝑓0(𝜏) curves in Fig. 3(A), where we choose 𝜀 = 0.04, a value high
enough to essentially result in 𝑓𝑘 ≈ 1 at 𝜏 = 𝛥𝑡 (white-noise limit, see
the magenta curve). Notably, the breather only occurrence frequency
[denoted in brown in Fig. 3(A)], which starts from zero at 𝜏 = 𝛥𝑡,
is led to a maximum of ∼ 0.9 through 𝜏’s increase, and eventually
approaches again zero for very large values of 𝜏, since the latter are
expected to effectively freeze the noisy dynamics. This phenomenon
results in the concurrent increase of 𝑓0, see the orange curve, whereas
𝑓𝑘 shows a decreasing trend, see the magenta curve. Overall, 𝑓𝑏 is found

3 Recall indeed that, according to the general SG theory, breathers represent
kink–antikink bound states, see Ref. [25,26]
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Fig. 3. In panel (A) the occurrence frequencies are reported versus the correlation time 𝜏, starting from 𝜏 = 𝛥𝑡 = 0.01, as follows: at least one kink 𝑓𝑘 in magenta, breathers-only
𝑓𝑏 in brown, and no excitations 𝑓0 in orange. In panel (B) the inverse hitting time is plotted as a function of 𝜏. Parameters: 𝛼 = 0.2, 𝐴 = 0.59, 𝜔 = 0.6, 𝜀 = 0.04, 𝐿 = 50, 𝑇 = 500,
𝑁 = 250. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
to be a nonmonotonic function of the correlation time. The freezing
phenomenon can also be clearly appreciated by looking at the hitting
time 𝑡⋆, see Fig. 3(B). In particular, the latter figure, obtained for the
same parameter set as Fig. 3(A), depicts the average inverse hitting
time, which is characterized by a monotonically decreasing behavior
versus 𝜏. This quantity directly shows that progressively longer times
are needed for the noise to trigger nonlinear modes as the correlation
time increases, confirming the remarks made at the beginning of this
section.

3.2. Effects of spatially correlated noise

In this section, we investigate the effects of spatially correlated noise
with correlation length 𝜆, whereas delta-correlation in time is hence-
forth restored. We first illustrate, in Fig. 4, the typical spatio-temporal
behavior of the field 𝜑 (𝑥, 𝑡), for different values of 𝜆. Specifically, in
panel (A) we consider 𝜆 = 𝛥𝑥, corresponding to the white-noise limit
in our discretized realm, in panel (B) 𝜆 = 1, and in panel (C) 𝜆 = 10.
Similarly to the previous section, all other parameters are chosen such
that the results of Ref. [48,49] are gradually approached as 𝜆 → 0.

From these panels one immediately sees that the formation of
breathers is also possible when spatial correlations in the noise are
accounted for. Furthermore, the excited breathers remain stable both
in amplitude and position over very long times. Notably, as compared
to spatially uncorrelated scenarios, which seem to be characterized
by generation events occurring in an essentially isolated fashion [cfr.,
e.g., Figs. 1 and 4(A)], the early dynamical stages can display a peculiar
collective behavior, intuitively when 𝜆 exceeds the SG (anti)kink width
of ∼ 1 [cfr. Fig. 4(C)], with similar solitonic structures emerging
throughout. Thus, as opposed to both the delta- and self-correlated in
time cases, spatially correlated sources are found to favor the formation
of multiple excitations: as shown in the example in Fig. 4(C), once the
first solitons appear, the spatial correlations facilitate the spreading of
such profiles, as witnessed by the activation of several nonlinear modes
within the system. Remarkably, these convoluted excitation patterns
4 
can collapse into a bunch of isolated breathers persisting in time and
space, as we observe in Fig. 4(C).

To further characterize the system’s behavior in the spatially cor-
related case, we again turn to the statistical quantities introduced in
the previous section, i.e., the occurrence frequencies 𝑓𝑘, 𝑓𝑏, and 𝑓0
and the hitting time 𝑡⋆. In particular, we concentrate on an 𝜀 value
large enough, in a pure white-noise scenario, to (almost) always yield
at least one kink-type excitation, i.e., for which 𝑓𝑘 ≈ 1 and 𝑓𝑏,0 ≈ 0,
see also the red curves in Fig. 2. Panel (A) of Fig. 5 displays the
𝑓𝑘, 𝑓𝑏, and 𝑓0 occurrence frequencies as a function of the correlation
length 𝜆, see Appendix B for a discussion on the 𝜆 range chosen for
this investigation. As expected, for 𝜆 ≈ 0, the values 𝑓𝑘 ≈ 1 [see the
magenta curve in Fig. 5(A)] and 𝑓𝑏 ≈ 𝑓0 ≈ 0 [see the brown and
orange curves in Fig. 5(A)] are observed. For higher 𝜆, interestingly, we
notice a decrease in the kink occurrence 𝑓𝑘 in favor of the breather one
𝑓𝑏, leading to the peak value 𝑓𝑏 ≈ 0.6. The 𝑓𝑏 curve eventually starts
going down, whereas 𝑓0 is essentially equal to zero—up to 𝜆 ≈ 𝐿∕2,
where it shows a small, but appreciable, increasing trend. The presence
of spatial correlations in the noise can thus be exploited as well to
obtain breather-only formation with a higher chance, as compared to
the thermal case. On the other hand, Fig. 5(B) illustrates the inverse
hitting time 1∕𝑡⋆ versus 𝜆, which is characterized by a monotonically
decreasing behavior.

Both the plots in Fig. 5 contain valuable information about the
dynamical behavior of the system. Increasing the 𝜆 parameter results
in a rescaled effective noise amplitude, similarly to the time-correlated
case, which in turn explains the observation of a dynamics’ slowdown
in Fig. 5(B). However, differently from the previous section, where the
freezing phenomenon is found in correspondence of a decrease in both
the kink and breather occurrence, now the spatial correlations seem
to lead to an effective exchange between 𝑓𝑘 and 𝑓𝑏, see Fig. 5(A).
We can intuitively understand the persistence in the 𝑓𝑘,𝑏 occurrence
frequencies versus 𝜆 as follows: although the dynamics is progres-
sively slowing down, larger 𝜆 values imply easier-to-spread fluctuations
throughout the system and thus trigger collective behavior, such that
the effectiveness of the noisy generation events can still be very high.
Fig. 4. Contour plots of the field 𝜑(𝑥, 𝑡), for different choices of the correlation length 𝜆, exemplifying the robustness of the breather emergence phenomenon to spatial correlations,
as well as the 𝜆-induced collective excitation mechanism. We take 𝜆 = 𝛥𝑥 (i.e., white-noise limit) in panel (A), 𝜆 = 1 in panel (B), and 𝜆 = 10 in panel (C). The remaining simulation
parameters are 𝛼 = 0.2, 𝐴 = 0.59, 𝜔 = 0.6, 𝜀 = 0.004.
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Fig. 5. Panel (A): occurrence frequencies versus the correlation length 𝜆, starting from 𝜆 = 𝛥𝑥 = 0.01 (at least one kink 𝑓𝑘 in magenta, breathers-only 𝑓𝑏 in brown, and no
excitations 𝑓0 in orange). Panel (B): inverse hitting time as a function of 𝜆. Parameters: 𝛼 = 0.2, 𝐴 = 0.59, 𝜔 = 0.6, 𝜀 = 0.04, 𝐿 = 50, 𝑇 = 500, 𝑁 = 250. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
We eventually expect 𝑓0 to increase, as 𝜆 → ∞, since in this limit we
recover a spatially uniform system. In this regard, a hint is provided by
the slightly increasing behavior of the 𝑓0 (orange) curve as we reach
𝜆 = 𝐿∕2.

4. Conclusions

This work concerns the effects of both temporally and spatially
correlated noise sources on the emergence of SG breather modes robust
against dissipation, in the presence of spatially uniform ac driving. We
find both the correlation time 𝜏 and the correlation length 𝜆 to influence
the likelihood of observing breathers, as well as the timescale for the
excitation of these nonlinear modes. Specifically, in the 𝜏 → 0 (white
noise) and the 𝜆 → 0 (spatially uncorrelated noise) limits, we recover
the results from Refs. [48,49]; on the other hand, for both large 𝜏 and
𝜆 we observe a progressive dynamical slowdown, that is, noise-induced
nonlinear modes take longer times to arise. We find, notably, that inter-
mediate ranges of correlation times and correlation lengths exist such
that breathers are observed much more frequently as compared to the
corresponding white, spatially uncorrelated, noise case. In other words,
the breather-only occurrence frequency shows nonmonotonicities as a
function of both 𝜏 and 𝜆. We also note interesting qualitative differences
in the events leading to the formation of solitonic structures between
the temporally and the spatially correlated scenarios. In the former
case, indeed, localized modes are generated in an essentially isolated
fashion, i.e., thanks to intense enough fluctuations of the field occurring
over a relatively small portion of the spatial domain. In the latter case,
for large enough 𝜆, we instead observe a tendency towards collective
behaviors, with easy-to-spread fluctuations leading to a cascade of
solitons emerging throughout the system. Nevertheless, these rather
convoluted transients can still relax into a number of isolated breathers,
robust over very long times.

Given that noisy and ac-driven LJJs have been recently proposed
as ideal candidates for the experimental observation of breathers, via
both destructive [48,65,66] and non-destructive [67] approaches, the
above results are expected to be useful in view of the actual imple-
mentation of such detection protocols, thereby solving a long-standing
problem in the Josephson community [10,68,69]. We have, in fact,
uncovered additional knobs for the controlled excitation of these elu-
sive nonlinear modes by exploiting the correlation properties of the
noise source. As a further step, in the future it might be interesting
to concentrate on non-Gaussian fluctuations as well, such as Lévy-
distributed noise sources [70–72], and establish their effects on the
current framework. In particular, Lévy sources are known to lead to
rich dynamical phenomena in SG-type landscapes [73–75], and some
questions naturally arise: for example, could the celebrated Lévy flights
lead to more effective breather generation? Another aspect worth of
further exploration is that of the collective solitonic behaviors induced
by the spatial correlations in the noise. We expect these phenomena
to be of general interest from the perspective of statistical physics in
the SG domain [76–81], even in Kibble–Zurek-like scenarios [28], in
5 
addition to the specific breather generation framework considered here.
In this regard, the widespread interest of the scientific community in
the physics of solitons [2,82–90] could drive investigations into the
peculiar features of solitonic structures’ emergence and dynamics, par-
ticularly in the presence of spatially correlated noise sources, extending
even beyond the SG model.
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Appendix A. Temporally correlated noise

In this appendix, we will focus on a noise source displaying nonzero
temporal correlations, but delta-correlated in space, i.e., with autocor-
relation function given by

⟨𝜂 (𝑥, 𝑡) 𝜂 (𝑥′, 𝑡′)⟩ = 𝜀
𝜏
𝛿
(

𝑥 − 𝑥′
)

𝑒−
|𝑡−𝑡′ |
𝜏 , (A.1)

where 𝜀 is the noise amplitude and 𝜏 is the correlation time. In short,
Eq. (A.1) implies that the outcomes 𝜂(𝑥, 𝑡) and 𝜂(𝑥, 𝑡′) are not indepen-
dent of each other, and the overlap between the two exponentially
decays with the time interval |𝑡 − 𝑡′| over the correlation time 𝜏. By
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Fig. A.6. Panel (A) shows the histograms computed for the time-correlated noise sources, where distinct colors represent different values of the correlation time, as well as that
for the corresponding white noise case, see the green curve. The histograms are normalized such that the area under each curve is the same. Panel (B) displays the correlation
functions versus 𝑡 at different 𝜏, with dots indicating the numerical outcomes and solid lines representing the analytical predictions. The correlation functions are only plotted for
a suitable time range (the simulation time is 𝑇 = 500, the same as in the main text), but they can all be observed to approach zero for large enough times. In both panels, the
amplitude 𝜀 = 0.06 is taken. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
contrast, at each time 𝑡, no correlation is displayed between noise
outcomes at different locations 𝑥 and 𝑥′, regardless of how short the
distance |𝑥−𝑥′| is. In other words, the memory of the noise’s history is
lost, at any location 𝑥, over the characteristic time 𝜏. Moreover, from
Eq. (A.1) we can infer the time correlation to introduce a rescaled
noise amplitude, with the peculiarity that, as 𝜏 → 0, the white noise
correlation properties are regained.

To accurately simulate the noise in Eq. (A.1) and its statistical
properties, we analyze an Ornstein–Uhlenbeck process, similarly to
Ref. [3], which obeys

𝜕𝑡𝜂 (𝑥, 𝑡) = −1
𝜏
𝜂 (𝑥, 𝑡) + 1

𝜏
𝜉 (𝑥, 𝑡) , (A.2)

where 𝜉 (𝑥, 𝑡) is a Gaussian noise source with zero mean and the
following correlation function

⟨𝜉 (𝑥, 𝑡) 𝜉 (𝑥′, 𝑡′)⟩ = 2𝜀𝛿 (𝑥 − 𝑥′
)

𝛿
(

𝑡 − 𝑡′
)

. (A.3)

It can be rigorously shown that the stochastic variable 𝜂 in Eq. (A.2)
follows the same statistics as that in Eq. (A.1). Thus, by numerically
integrating the Ornstein–Uhlenbeck process, we can generate the de-
sired fluctuations’ pattern. To this end, Eq. (A.2) can be handled via a
first-order Euler method, resulting in the discretized expression

𝜂𝑖,𝑗+1 =
(

1 − 𝛥𝑡
𝜏

)

𝜂𝑖,𝑗 +
𝛥𝑡
𝜏

√

2𝜀
√

𝛥𝑥𝛥𝑡
𝑁𝑖,𝑗 , (A.4)

where 𝑖 and 𝑗 are the indices relative to the spatio-temporal grid,
characterized by the discretization steps 𝛥𝑥 = 𝛥𝑡 = 0.01 for all of our
simulations, and 𝑁𝑖,𝑗 are independent normal random variables with
zero mean and unit variance.

To quantitatively illustrate how 𝜏’s presence can alter the effective
noise amplitude, Fig. A.6(A) displays the histograms computed for time-
correlated noise sources (distinct colors represent different values of the
correlation time), for the fixed value 𝜀 = 0.06, and compares them to
the corresponding white noise case (in green). It is evident that the
noise distribution remains Gaussian in all cases, but with a variance
which decreases with 𝜏. The white-noise variance is recovered for 𝜏 =
𝛥𝑡, i.e., the closest we can get to the time-uncorrelated limit in the
discretized framework. Moreover, in Fig. A.6(B), we test the reliability
of the above numerical scheme for time-correlated noise generation by
comparing the simulated correlation functions (see the dots in the plot)
against the corresponding analytical predictions (see the solid lines in
the plot), for different values of the correlation time. We observe a very
good agreement throughout the explored parameter range. Finally, we
remark that our simulations, discussed in the main text, all involve
values of 𝜏 much smaller than the typical simulation time, 𝑇 = 500,
such that the effects of time correlations on the system’s dynamics can
be addressed in a meaningful way.
6 
Appendix B. Spatially correlated noise

Here we will concentrate on a noise source with nonzero spatial cor-
relations, but uncorrelated in time, characterized by the autocorrelation
function

⟨𝜂 (𝑥, 𝑡) 𝜂 (𝑥′, 𝑡′)⟩ = 𝜀
𝜆
𝑒−

|𝑥−𝑥′ |
𝜆 𝛿

(

𝑡 − 𝑡′
)

, (B.1)

where 𝜀 is the noise amplitude and 𝜆 is the correlation length. In short,
Eq. (B.1) implies that the outcomes 𝜂(𝑥, 𝑡) and 𝜂(𝑥′, 𝑡) are not indepen-
dent of each other, and the overlap between the two exponentially
decays with the distance |𝑥 − 𝑥′| over the characteristic scale 𝜆. By
contrast, at each point 𝑥, no correlation is displayed between noise
outcomes at different times 𝑡 and 𝑡′, regardless of how short the interval
|𝑡 − 𝑡′| is. Additionally, from Eq. (B.1) we see that the presence of
spatial correlations results in a rescaled effective noise amplitude, and
the white noise correlation properties are recovered as 𝜆 → 0.

We now turn to a technical description on how to numerically
simulate a noise source delta-correlated in time, with nonzero spatial
correlations, according to the definition in Eq. (B.1). Following Ref. [3],
we employ an algorithm that allows for the generation of spatially
correlated noise with the following correlation function

⟨𝜂 (𝑥, 𝑡) 𝜂 (𝑥′, 𝑡′)⟩ = 2𝐶
(

|

|

𝑥 − 𝑥′|
|

𝜆

)

𝛿
(

𝑡 − 𝑡′
)

, (B.2)

where 𝜀 is the noise amplitude, 𝜆 is the correlation length, and 𝐶(𝑥) is
an arbitrarily shaped correlation function [for our numerical runs, an
exponential profile is taken, see Eq. (B.1)]. This particular type of noise
can be handled in practice by working in Fourier space. The Fourier
transform of 𝜂(𝑥, 𝑡) can be written as

𝜂 (𝑘, 𝑡) =
√

𝐶 (𝑘)𝛼 (𝑘, 𝑡) , (B.3)

where 𝐶(𝑘) is the Fourier transform of 𝐶(𝑥) and 𝛼(𝑘, 𝑡) are random
Gaussian numbers with zero mean and correlation function given
by

⟨𝛼 (𝑘, 𝑡) 𝛼 (𝑘′, 𝑡′)⟩ = 2𝛿 (𝑘 + 𝑘′
)

𝛿
(

𝑡 − 𝑡′
)

. (B.4)

The noise in Fourier space can be simulated in two different ways. The
first, though not very efficient, is to generate white noise in real space
and then compute its Fourier transform. Another possibility, which is
pursued here, is to generate the noise directly in Fourier space. To do
so, one can straightforwardly show that the Fourier transform of white
real-space noise inherits the following correlation property

⟨𝛼 (𝑘) 𝛼
(

𝑘′
)

⟩ = 𝛿
(

𝑘 + 𝑘′
)

, (B.5)

and that both the relations Re{𝛼(𝑘)}=Re{𝛼(−𝑘)} and Im{𝛼(𝑘)}=–
Im{𝛼(−𝑘)} hold. To generate the noise signal in Eq. (B.5), the field
𝛼(𝑘) can be expressed in terms of its real and imaginary parts 𝛼(𝑘) =
𝑎(𝑘) + 𝑖𝑏(𝑘). Here, 𝑎 and 𝑏 are two random Gaussian variables with zero
mean and variances ⟨𝑎2⟩ = ⟨𝑏2⟩ = 1 for every point in the Brillouin
2
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Fig. B.7. Panel (A) shows the histograms computed for the spatially correlated noise sources, where distinct colors represent different values of the correlation length, as well as
that for the corresponding white noise case, see the green curve. The histograms are normalized such that the area under each curve is the same. Panel (B) displays the correlation
functions versus 𝑥 at different 𝜆, with dots indicating the numerical outcomes and solid lines representing the analytical predictions. In both panels, the amplitude 𝜀 = 0.001 is
taken. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
zone, except for the edge and the middle point, where ⟨𝑎2⟩ = 1 and
⟨𝑏2⟩ = 0.

To address the effectiveness of our noise generation scheme, we
perform a statistical analysis similar to that presented in Appendix A.
We first examine the Gaussian nature of the noise and its rescaling
properties. Fig. B.7(A) illustrates the histograms computed for spatially
correlated noise sources (distinct colors represent different values of the
correlation length), for the fixed value 𝜀 = 0.001, and compares them
to the corresponding white noise case (in green). It is evident that the
noise distribution remains Gaussian regardless of 𝜆, but progressively
smaller variances are obtained as the correlation length grows. We
recover the white noise variance for 𝜆 = 𝛥𝑥, which provides the closest
approximation of the discretized framework to the length-uncorrelated
limit.

Finally, in Fig. B.7(B) we compare the correlation functions ob-
tained from the numerical trajectories with their exact analytical
counterparts, given by Eq. (B.1), for different choices of the correlation
length 𝜆. We observe a good agreement for both small and intermediate
values of 𝜆, whereas deviations between the analytical prediction and
the numerical results start to occur when 𝜆 is increased to values
comparable to the length 𝐿 of the system due to finite-size effects. In
light of this, we have chosen 𝜆 = 25 as the maximum correlation length
for our computational experiments.

Data availability

Data will be made available on request.
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