
Nanoscale

PAPER

Cite this: Nanoscale, 2021, 13, 6475

Received 23rd December 2020,
Accepted 9th March 2021

DOI: 10.1039/d0nr09076j

rsc.li/nanoscale

Debye vs. Casimir: controlling the structure of
charged nanoparticles deposited on a substrate†
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Svyatoslav Kondrat *a,b,e

Fine-tuning the interactions between particles can allow one to steer their collective behaviour and struc-

ture. A convenient way to achieve this is to use solvent criticality to control attraction, via critical Casimir

forces, and to control repulsion via the Debye screening of electrostatic interactions. Herein, we develop

a multiscale simulation framework and a method for controlled deposition of quantum dots to investigate

how these interactions affect the structure of charged nanoparticles deposited on a substrate, altogether

immersed in a binary liquid mixture intermixed with salt. We consider nanoparticles and substrates favour-

ing the same component of the mixture and find that the critical Casimir interactions between the nano-

particles become drastically reduced at the substrate. In particular, the interactions can become a few kBT

weaker and their decay length a few orders of magnitude smaller than in the bulk. At off-critical compo-

sitions, the decay length increases upon approaching criticality, as expected, but the interaction strength

decreases. With molecular dynamics simulations and experiments, we reveal that the nanoparticles can

self-assemble into crystalline clusters which form superstructures resembling cluster fluids and spinodal

morphology. The simulations additionally predict the formation of fractal-like nanoparticle gels and

bicontinuous phases. Our results demonstrate that charged nanoparticles in a salty binary liquid mixture

provide exciting opportunities to study the formation of complex structures experimentally and theoreti-

cally, which may lead to applications in optoelectronics and photonics.

Introduction

The ability to tune the interactions between particles provides
a means to control their collective behaviour and structure.
Perhaps the simplest way to tune the range and the strength of
interactions between charged particles is to vary the concen-
tration of ions in solution. In the case of identical particles,
the interactions are repulsive and decay exponentially with the
Debye screening length, which is proportional to inverse of the
square root of the ion concentration. The Debye length can be
well-controlled in the range from a nanometre to a hundred of

nanometres,1 corresponding to the ion concentration ranging
from about 1 M to 1 μM, respectively, for water–2,6-lutidine
mixture at room temperature.

Another way to control interactions among particles is
through immersion in a near-critical fluid. A distinct feature of
such a fluid is the emergence of long-range forces acting
among the immersed particles or substrates.2–13 These forces
are called critical Casimir forces, in analogy with the Casimir
forces due to quantum fluctuations,14 as they arise due to fluc-
tuations of the order parameter associated with the solvent cri-
ticality;15 for a binary liquid mixture, for instance, such an
order parameter is the difference in the concentrations of the
two components. Critical Casimir forces are attractive for iden-
tical particles, and their range and strength can be tuned by
changing the composition of the fluid or by varying
temperature.13

Frequently, colloidal particles with sizes ranging from hun-
dreds of nanometres to a few micrometres are used to probe
the interactions mediated by critical fluids.3,6,16–18 Such
micrometer-sized colloids can be observed and studied in real-
time using confocal laser scanning optical microscopy, which
is inapplicable to colloids smaller than the diffraction limit.
However, fine temperature control of the order of few milli
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Kelvins is needed to reach correlation lengths ξ comparable to
the particle size, in order for the critical Casimir interactions
among the colloids to become significantly strong. The
maximum achievable ξ reported so far is about 200 nm (see,
e.g., ref. 19) so that the colloid–colloid interactions extend to
about one colloidal radius at most.

Using nano-sized particles effectively extends the range of
critical Casimir interactions up to a few particle radii, while
simultaneously requiring a coarser tuning of the temperature
to control the interaction strength and range. So far the experi-
mental and theoretical work on nanoparticles in critical media
has been focused on their bulk behaviour.20–25 For instance,
Hopkins et al. used classical density functional theory to calcu-
late the effective potential between nanoparticles dispersed in
a binary liquid mixture,20 and El Fassi et al. calculated the
critical Casimir force between nanoparticles immersed in a
crosslinked polymer blend.21 Lu et al. studied glass transitions
in a suspension of silica nanoparticles in a water–lutidine
mixture near its consolute point,22 while Marino et al. used
the critical Casimir forces to assemble and control quantum
dot superstructures.23,24

Herein, we study how the combination of electrostatic
repulsion, via Debye screening, and critical Casimir attraction
determines the structure of charged nanoparticles depositing
on a substrate. We consider substrates and nanoparticles with
the same preference for the fluid phase or component of a
binary liquid mixture (e.g., hydrophilic nanoparticles on hydro-
philic substrates) and investigate how nanoparticles structure
depends on various parameters, such as the composition of a
mixture, temperature and salt concentration. To this end, we
develop a multiscale simulation framework. We first employ
Monte Carlo simulations of the Ising model, which mimics a
binary liquid mixture or a simple fluid close to criticality, to
obtain an effective critical Casimir potential between the de-
posited nanoparticles. We then use this potential in molecular
dynamics simulations to study their collective behaviour. To
compare the simulated structures to experiment, we develop a
novel method to drive the deposition of quantum dots on
silicon substrates that does not rely on DNA functionalisa-
tion26 or nanoscale patterning.27 The deposited super-
structures reproduce the main features of the simulations well,
demonstrating a novel pathway to quantum dot epitaxy
through critical Casimir forces.

Interaction of nanoparticles at a
substrate
Binary liquid mixture, Ising model and thermodynamic paths

Our goal in this article is to understand the behaviour of nano-
particles at a substrate, as shown in Fig. 1a, driven by the inter-
play between the Debye-screened electrostatic repulsion and
critical Casimir attraction. The latter emerges in solvents such
as binary liquid mixtures in the vicinity of their critical points.
A computationally feasible and reliable method to study such
interactions is to employ the Ising model (eqn (6) in Methods),

which belongs to the same universality class as a binary liquid
mixture.28 Magnetization m in the Ising model corresponds to
concentration c of a binary mixture and bulk field h to the
difference of the chemical potentials Δμ of the two species of
the mixture (for the details of this correspondence, see ref.
29–31). Schematic phase diagrams of the two systems are
drawn in Fig. 1b and c.

In experiments with binary liquid mixtures, one typically
keeps the concentration fixed and varies the temperature, as
denoted schematically by a thin vertical line in Fig. 1b. In
simulations of the Ising model, however, it is more convenient
to vary either the bulk field or temperature, while keeping one
of these variables constant (the lower plot in Fig. 1c). This has
been done in virtually all theoretical and simulation studies
on critical Casimir forces10–13,32–34 (see, however, ref. 35 and
36 where such forces were computed in the canonical ensem-
ble). In this work, in order to mimic our experimental system
as closely as possible, we chose to follow the path of constant
bulk magnetization, which corresponds to constant concen-
tration of a binary liquid mixture. To this end, we first per-
formed Monte Carlo (MC) simulations of the Ising model in
bulk and determined the bulk magnetization m for various
values of the bulk field h and reduced temperature τ = (T − Tc)/
Tc, where Tc is the critical temperature. We then selected the
(h, τ) pairs that provide the same bulk magnetization (Fig. S1
and Table S1†) and performed MC simulations for two nano-
particles at a substrate and in bulk for these values of h and τ.
In addition to these simulations, for comparison we also
carried out simulations along the conventional paths of con-
stant h and τ.

Critical Casimir interactions

Our MC simulations reveal that the presence of substrate can
significantly modify the critical Casimir interactions between
nanoparticles. Fig. 1d compares the interaction potentials
between two identical particles in bulk and at a substrate,
where the substrate favours the same fluid component as the
particles, for the parameters close to the critical point. At the
substrate, both the depth and the extent of interactions are sig-
nificantly reduced. This is because the substrate promotes an
environment (i.e., attracts a fluid component) preferred by the
particles (Fig. 1e), which reduces the deformations of the mag-
netization (or concentration) profile between the particles and
consequently the strength of the interaction.

The effect of substrate becomes less pronounced as one
moves away from the critical point, that is, upon increasing h
and τ (Fig. 1f). In the considered case, the bulk field in the
Ising model favours magnetization opposite in sign to what is
preferred by the nanoparticles. This leads to the formation of
a capillary-like bridge connecting the two particles (Fig. 1g)
and correspondingly strong but short-range forces.34,37,38 Since
the bridge formation is similar at the substrate and in bulk,
the interaction potential changes little when the particles are
brought to the substrate.

To quantify the reduction of the critical Casimir inter-
actions by substrate, we extracted the decay lengths λC of the
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critical Casimir potentials by fitting the MC data to an expo-
nentially decaying function of separation

βUCðDÞ ¼ A
Dþ b

e�D=λC ; ð1Þ

where β = (kBT )
−1, with kB the Boltzmann constant and T temp-

erature; D = r − 2a is the surface-to-surface distance between
the particles, and b and A are two additional fitting para-
meters. Here the 1/D dependence (for D ≫ b) is related to the
behaviour of the potential in the vicinity of criticality,4,5,39

b describes the non-universal behaviour at short separations
and A is the amplitude. This function fits the MC data in

the whole range of distances remarkably well (solid lines in
Fig. 1d and f).

Fig. 1h shows that the substrate reduces the decay length λC
by a few orders of magnitude in the region where λC in bulk is
extremely large (>10a), but it remains practically unaltered in
the region where λC ≲ a. The Casimir decay length λC (for par-
ticles at the substrate) is shown as a heat-map in Fig. 1i along
three different paths. Although reduced as compared to the
bulk value, λC is still large close to the critical point (τ = 0,
h = 0) but decreases as τ or h increases. For constant bulk
field, the decay length varies little with τ and decreases signifi-
cantly only sufficiently far from τ = 0.

Fig. 1 Critical Casimir interactions between nanoparticles. (a) Schematics of two nanoparticles at a substrate immersed in a binary liquid mixture.
The nanoparticles and the substrate favour the same component of the mixture. (b and c) Schematic bulk phase diagrams of a binary liquid mixture,
around its lower critical point, and of the Ising model (eqn (6) in Methods), which models the binary mixture close to criticality. Concentration of the
binary mixture corresponds to magnetization in the Ising model and the difference in the chemical potentials of the two components of the mixture
to bulk field h. The thin vertical and horizontal lines show the paths used in our experiments (b) and simulations (c). (d) Critical Casimir potential for
two nanoparticles in bulk and at the substrate obtained by Monte Carlo (MC) simulations of the Ising model for the values of bulk field h and
reduced temperature τ = (T − Tc)/Tc indicated on the plot. The shaded area shows the region of steric exclusion. Both particles are located at z/a ≈
1.45 above the substrate (unless they are in bulk). (e) Magnetization heat maps from the MC simulations. Nanoparticle separation r/a ≈ 4.91. (f and g)
The same as (d and e) but for h and τ further away from the criticality along the path of constant magnetization (m = 0.2, cf. panel (i)). The white
lines mark zero magnetization. (h) Decay length λC of the critical Casimir potential for two nanoparticles at the substrate as a function of λC in bulk
along the paths of constant magnetization m = 0.2 and m = 0 (critical composition). (i) Thermodynamic paths defined by constant reduced tempera-
ture τ, constant bulk field h, and constant bulk magnetisation m. The colored symbols show the values of the decay length λC of the critical Casimir
potential for two nanoparticles at the substrate. Symbols + and × in (h) and (i) show the values of τ and h used in (d–g).
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Interplay of the Debye-screened repulsion and critical Casimir
attraction

The total interaction potential between the deposited, charged
nanoparticles consists of the above-discussed critical Casimir
attraction and electrostatic and Lennard-Jones interactions.
However, we consider nanoparticles with the dielectric con-
stant close to the solvent’s dielectric constant, implying small
or vanishing van der Waals (dispersion) forces. This assump-
tion is consistent with our experiments, where the relative
dielectric constant of nanoparticles (quantum dots) ε ≈
5–6.25,40,41 while ε ≈ 7 for the critical water–lutidine
mixture.42 For non-vanishing dispersion forces, the electro-
static repulsion (see below) will have to be re-adjusted to com-
pensate partially for the der Waals attraction. We note that
both van der Waals and electrostatic interactions change very
little with temperature in the range of temperatures considered
(20 °C to 33 °C),43,44 compared to drastic changes of the criti-
cal Casimir interactions.45 Thus, the system behaviour can be
steered by the interplay between the Debye-screened repulsion,
through varying salt concentration, and critical Casimir attrac-
tion, via fine temperature control.

In this work, therefore, we neglect dispersion interactions
and combine the computed critical Casimir potentials with
the Debye-screened electrostatic potential, taken in the DLVO
form, and short-ranged Lennard-Jones repulsive potential (eqn
(4) and (3) in Methods). Fig. 2a demonstrates how this combi-
nation creates a minimum (−Edepth) and an energy barrier
(Emax) in the total interaction potential. We calculated Edepth
and Emax along the thermodynamic paths used in our MC
simulations (Fig. 1i) at different values of the Debye screening
length λD as well as for varying λD at fixed values of bulk field h
and reduced temperature τ. This is shown in Fig. 2b and c in
the plane of λD and the extracted decay length λC of the critical
Casimir potential at the substrate.

Perhaps surprisingly, the depth of the potential decreases
with increasing λC, that is, the interactions become weaker

upon approaching criticality (Fig. 2b). This is in contrast to the
behaviour at the critical composition in bulk, where both the
potential depth and the extent of interactions increase upon
approaching the critical temperature.6,13 The substrate screens
the interactions in the immediate vicinity of criticality, redu-
cing the potential depth significantly. The increase of Edepth
with moving away from the criticality can be attributed to the
formation of capillary bridges34,37,38 (Fig. 1g). We note that we
observe a similar behaviour at off-critical compositions also in
bulk, but its magnitude is less pronounced (Fig. S2†).

A large Debye screening length λD can lead to the appear-
ance of an energy barrier Emax and hence to the repulsive tail
in the total interaction potential (Fig. 2a and c). Such poten-
tials, called SALR (short-range attraction, long-range repulsion)
or mermaid potentials,46 have attracted much attention
recently, as they can give rise to a variety of complex structures
and mesophases.46–50 We will see that the emergence of such
repulsive tails in our potentials can influence the nanoparticle
behaviour in a nontrivial way.

Collective behaviour of nanoparticles
at the substrate

To investigate the collective behaviour of nanoparticles at the
substrate, we performed 2D molecular dynamics (MD) simu-
lations using the total interaction potentials discussed above.
To characterize the obtained structures, we calculated radial
distribution functions (RDFs), which describe how density
varies as a function of distance from a reference particle. In
addition, we computed distributions of clusters formed by the
nanoparticles and the average cluster sizes. A nanoparticle was
considered part of a cluster when the distance to at least one
of the cluster’s nanoparticles was smaller than 2.5 the particle
radius. To gain insights into the structure within a cluster, we
calculated the hexatic order parameter ψ6 for the nanoparticles

Fig. 2 Interactions between nanoparticles at substrate. (a) Example of the critical Casimir, electrostatic and total interaction potentials between two
identical nanoparticles at a substrate immersed in a near-critical fluid. The substrate and the particles favour the same fluid component. (b) Diagram
showing the parameter space of the Debye screening length λD and the decay length of the Casimir interactions, λC. The colored symbols show the
values of the depth of the total interaction potential. (c) The same as (b) but showing the energy barrier of the total interaction potential. The dia-
grams are built along the thermodynamic paths indicated in Fig. 1i. The × symbols in (b and c) denote the values of λD and λC corresponding to panel
(a). The nanoparticle structures for the paths of constant λD/a = 1 and constant λC/a = 2.5 (bulk magnetization m = 0.2) are shown in Fig. 3 and 4 as
denoted on panels (b) and (c). The paths of constant bulk field h = 0.007 and reduced temperature τ = 0.007 (at fixed Debye lengths) are shown in
Fig. S4 and S5.†
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belonging to this cluster, where ψ6 = 1 for the perfect hexag-
onal lattice (eqn (7) in Methods).

Dependence on the decay length of the critical Casimir
interactions

To study the dependence of the nanoparticle structure on the
decay length λC of the critical Casimir interactions, we chose
the thermodynamic path of constant (non-zero) magnetiza-
tion in the Ising model, which corresponds to a constant
(off-critical) concentration in a binary liquid mixture (Fig. 1).
To single out the effect of λC, we took a low value of the
Debye screening length, λD/a = 1, so that the long distance
behaviour is mainly determined by the critical Casimir
interactions.

Fig. 3a shows that as the decay length λC decreases, the
depth of the total interaction potential increases (see also
Fig. 2a and b). For a small λC ≈ 0.53a, the potential depth
reaches the value of about 8kBT. Such strong attraction leads to

the formation of clusters of nanoparticles with almost perfect
hexagonal ordering within the clusters. This is demonstrated
by the short-distance behaviour of RDF and by the order para-
meter ψ6 ≈ 1 (Fig. 3b and d). Remarkably, the nanoparticle
clusters form a structure redolent of colloidal gels, consisting
of a network of fractal-like aggregates.51,52

As the decay length λC increases, the clusters coarsen and
the structure inside the clusters becomes more amorphous.
This is manifested by the decreasing order parameter ψ6 and
occurs because the depth of the potential decreases with
increasing λC. The nanoparticles can thus detach from the
clusters more easily, which leads to a decreasing average
cluster size. For the largest decay length studied (λC ≈ 3a), the
nanoparticles assemble into a structure reminiscent of the spi-
nodal morphology. Similar coarsening of nanoparticle clusters
with approaching criticality can be obtained at the critical
composition (Fig. S3†) and along the thermodynamic paths of
constant reduced temperature τ or constant bulk field h, pro-

Fig. 3 Effect of the decay length of the critical Casimir interactions. (a) Total interaction potential between nanoparticles at a substrate immersed in
a near-critical fluid for three values of the decay length λC along the path of constant magnetization m = 0.2 (Fig. 1). The substrate has the same pre-
ference for the fluid phase as the nanoparticles. (b) Radial distribution functions (RDFs) and (c) cluster size distributions in systems with the inter-
action potentials from panel (a) obtained by 2D molecular dynamics (MD) simulations. (d) Average cluster size and hexatic parameter ψ6, eqn (7), as
functions of λC. (e) Snapshots from the MD simulations, showing fractal-like, coarsened and spinodal-like structures (see also Video†). In all plots,
the Debye screening length λD/a = 1 and surface packing fraction η = 0.3. See Fig. S3† for the case of bulk magnetization m = 0 corresponding to
the critical composition. For the dependence on η see Fig. S6 and S7.†
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vided the h and τ values are close to critical and the Debye
screening length is sufficiently low (Fig. S4 and S5†).

Dependence on the Debye screening length

The strength and the range of electrostatic repulsion can be
controlled by the Debye screening length λD through varying
the salt concentration (eqn (4) in Methods). To study how the
nanoparticle structure is affected by λD, we chose the para-
meters providing a large value of the decay length λC of the
critical Casimir attraction, so that we could obtain a transform-
ation between the potentials with attractive and repulsive tails.

Fig. 4 shows that the total interaction potential and the
structure change significantly upon varying λD. At a high salt
concentration, implying a small λD, the repulsive electrostatic
interactions are strongly screened, and the interaction between
the nanoparticles is attractive at all separations (λD/a = 0.5 in
Fig. 4a). This leads to the formation of coarsened structures,
consisting of randomly arranged, partially connected clusters,

within which the nanoparticles are hexagonally ordered.
Again, the order is manifested by well-developed peaks in the
RDF and by a high value of the hexatic order parameter
(Fig. 4b and d). With increasing λD, i.e., with reducing the salt
concentration, a small energy barrier develops in the inter-
action potential, which impedes the nanoparticles from
coming close to each other. This breaks the hexagonal order
and we observe the growth of spinodal-like structures, charac-
terized by smaller cluster sizes and lower values of the hexatic
order parameter (Fig. 4d and e). Upon further increase of λD,
the nanoparticle clusters break and form a dispersed liquid-
like structure without apparent long-ranged order. In this case,
the RDF quickly decays to unity, and the hexatic order para-
meter and the average number of clusters decrease. The latter
saturates at s ≈ 8 already for λD/a ≳ 3. Interestingly, the hexatic
parameter saturates at ψ6 ≈ 0.4, which suggests that the par-
ticles tend to form local hexagonal order even in the dispersed
state.

Fig. 4 Effect of the Debye screening length. (a) Total interaction potential between nanoparticles at a substrate in a near-critical fluid for a few
values of the Debye screening length λD measured in units of the particle radius a. The substrate has the same preference for the fluid phase as the
particles. (b) Radial distribution functions and (c) distribution of cluster sizes in the systems with the interaction potentials from panel (a) obtained by
2D molecular dynamics (MD) simulations. (d) Average cluster size and hexatic parameter ψ6, eqn (7), as functions of λD. (e) Snapshots from MD simu-
lations, showing coarsened, spinodal-like and dispersed structures. In all plots the reduced temperature τ = 0.007 and the bulk field of the Ising
model h = 0.003 (giving λC/a ≈ 2.5), and the surface packing fraction η = 0.3. For the dependence on η see Fig. S8–S10.†
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Effect of density

We have carried out MD simulations for various densities of the
deposited nanoparticles for the parameters from Fig. 3 and 4.
In most cases, we found that the density has a minor effect on
the nanoparticles structure (Fig. S7–S10†). For increasing
density, the average cluster size increases, as small clusters
unite to form bigger structures, but the ordering inside the clus-
ters does not change dramatically. Perhaps not very surprisingly,
our simulations show that the most interesting behaviour is
obtained in the case of mermaid potentials with sufficiently
large potential depths and relatively low energy barriers. One
such case is shown in Fig. 5 and discussed below.

At a low surface area fraction (η = 0.1), the nanoparticles
self-assemble into small polydisperse clusters that arrange
themselves into a liquid-like structure with the tendency for
ordering (Fig. 5b). This is manifested by long-ranged oscil-
lations apparent in the RDF (the inset in Fig. 5c). However, we
have not obtained any well-defined crystal structure of these
clusters, likely due to their polydispersity (Fig. 5d). It is worth
noting that similar cluster-fluid structures have been observed
in experiments with quantum dots at a water–air interface.53

The cluster size distribution exhibits a peak that widens
and moves toward larger s as η increases (Fig. 5d).
Correspondingly, the average cluster size increases with
increasing η and at a high density (η = 0.4) one eventually
obtains a bicontinuous phase similar to microemulsions.54

This is apparent from the cluster size distribution, which
shows a well defined peak at large s comprising nearly all par-
ticles in the simulation box (the inset in Fig. 5d).

Our simulations show that there are no significant changes
in the structure within the clusters. This is reflected in the
RDF, which exhibits only a slight increase of the first peaks as
η increases (Fig. 5c). The hexatic parameter ψ6 also changes
only moderately with η, showing that indeed the structure
inside the clusters remains practically unaltered (Fig. 5e).

Percolated network of deposited nanoparticles

Sufficiently far from the critical point, where the decay length
of the solvent-induced intersections is smaller than the par-
ticle radius, our simulations reveal the formation of fractal-like
clusters that consist of thin but elongated aggregates of nano-
particles with nearly crystalline order inside the aggregates
(Fig. 3 and Fig. S6†). At a high nanoparticle density, these
aggregates merge and form structures reminiscent of colloidal
gels or percolated networks. These structures appear for inter-
action potentials with deep attractive wells and none or very
weak repulsive tails. Increasing the strength of repulsion,
which can be done by increasing the Debye length, breaks the
percolated network so that the deposited structure consist of
separated, rather than inter-connected, but still elongated
nanoparticle clusters (Fig. 6). Percolation can thus be induced
by manipulating repulsion through varying the salt
concentration.

We note that such fractal-like nanoparticle gels are likely
only kinetically stable in the sense that, if formed, they can
persist for a long time but may eventually collapse into a
single compact cluster.51,55 This is unlike cluster fluids or
bicontinuous phases, which are thermodynamically stable.56,57

Fig. 5 Effect of nanoparticle density. (a) Electrostatic, critical Casimir and the total interaction potential between two nanoparticles at a substrate in
a near-critical fluid. The substrate and the particles prefer the same fluid component. (b) Snapshots from MD simulations for a few values of the
two-dimensional packing fraction η = πNa2/A, where N is the number of particles, A the surface area and a the particle radius. (c) Radial distribution
functions and (d) cluster size distributions for the same systems. The cluster size distributions are averages of 100 simulations. (e) Average cluster
size and hexatic parameter ψ6, eqn (7), as functions of η. The reduced temperature τ = 0.007 and bulk field h = 0.007, giving λC/a ≈ 2, and the Debye
screening length λD/a = 4.
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In our simulations, this difference can be seen in the depen-
dence on the initial particle configuration. In the former case,
starting from a densely packed, rather than a random configur-
ation, leads to a single crystalline cluster (with defects); in the
latter case the densely-packed aggregate breaks and the system
evolves towards the structure consistent with the one obtained
with the initially random configuration (Fig. S11†).

The possibility to control the formation of 2D particle net-
works and tune their percolation properties is exciting and
may find applications in optoelectronic devices and sensors.58

Deposition of quantum dots on a
silicon substrate

To test the predictions of our simulations, we performed
experiments on deposition of quantum dots (QDs) driven by
the interplay of the Debye-screened electrostatic repulsion and
the critical Casimir attraction. The setup is shown in Fig. 7a.
QDs were synthesized following the reported procedure.59 The
native hydrophobic oleate ligands were replaced with hydro-
philic 2,3-dimercapto-1-propanesulfonates (DMPS). The dia-
meter of the QD was 2a = 5.5 nm ± 13% as measured from
small-angle X-ray scattering. The QDs were dispersed in an off-
critical (30 w/w%) water–2,6-lutidine mixture, which was
placed in contact with a silicon substrate made hydrophilic by
oxygen plasma treatment. The substrate was in contact with a
thermostated steel block and heated to temperature T, such
that ΔT = Tc − T > 0, where Tc is the critical temperature of the
water–lutidine mixture. Keeping the bulk of the solvent at
room temperature drives a vertical temperature gradient,
making the surface of the substrate the only location for QD
deposition by critical Casimir forces. After one hour the sub-
strate was removed, dried, and imaged with scanning electron
microscopy.

We measured the size of solvent density fluctuations, the
correlation length ξ, in proximity of the substrate prior to each
deposition by measuring the hydrodynamic diameter of the
fluctuations with dynamic light scattering and correcting for
the T-dependence of the viscosity.60 As the probe beam of the
light scattering setup had a diameter of ∼0.5 mm, it measured

the bulk correlation length. Thus, the measured ξ describes
the decay of the critical Casimir interactions in the bulk fluid,
rather than in the immediate nano-scale environment of the
substrate, as in the simulations. In the experiments, we con-
sider the values of ξ ranging from 10 to 19 nm (Fig. 7b), which
in terms of the QD radius is 3.6a to 7a. Using the results of
our MC simulations (Fig. 1h), we estimate that this bulk decay
length corresponds to modified decay lengths between 1.5a
and 2a at the substrate.

We obtained QD structures that are consistent with the
simulation results. Fig. 7c shows micrographs of the obtained
structures for three correlation lengths ξ and for the Debye
length λD = 10 nm. We observe the formation of clusters that
coarsen and evolve into spinodal-like structures upon increas-
ing ξ, as in the simulations (Fig. 3). The lower micrographs in
Fig. 7c show amorphous structures of QDs within the clusters,
with some tendency for ordering. Unlike in the simulations,
which predict hexagonal ordering, the QDs tend to arrange
themselves into a square lattice. This is likely because of their
cubic-like shapes.61

We also varied the Debye screening length at fixed ξ. Fig. 7d
shows that for a fixed correlation length, the size of the clus-
ters decreases as the Debye screening length increases. This is
again in agreement with the simulations (Fig. 4), confirming
experimentally the coarsening of the spinodal structures and
thus demonstrating the control offered by the critical Casimir
interactions over the deposited nanoparticle structures.

While we observe the same trends in the simulations and
experiments, including the appearance of liquid-like and spino-
dal structures of clusters, the simulations additionally predict
the formation of fractal-like gels and bicontinuous phases,
which we could not identify in the experiments. The absence of
nanoparticle gels is not very surprising, as our goal with experi-
ments was to explore the critical regime, while gels appear
farther away from the criticality, which gives rise to strong short-
ranged interactions between the particles (Fig. 6). Bicontinuous
phases and long-range cluster fluids appear in a relatively
narrow range of parameters and are not easy to locate even with
MD simulations. A more detailed investigation is thus desirable,
particularly with MC simulations or classical density functional
theory, which are more efficient in determining thermo-

Fig. 6 Percolated network of deposited nanoparticles. (a) Interaction potential between deposited nanoparticles in a near-critical fluid for two
values of the Debye screening length λD. The substrate and the particles prefer the same fluid component. (b) Average cluster size and hexatic para-
meter ψ6, eqn (7), as functions of λD. The vertical dash line shows approximately the ‘percolation’ value of λD. (c) Snapshots from MD simulations for
the potentials from panel (a). The reduced temperature τ = 0.1 and the bulk field h = 0.01 of the Ising model give the bulk magnetization m = 0.2
and the decay length of the critical Casimir interactions between the deposited nanoparticles λC/a ≈ 0.53.
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dynamically stable phases. However, we also cannot exclude
that additional effects might be at play in the experiments,
which are not taken into account in our model, but which may
affect the formation of such mesophases. In particular, the
electrostatic interactions were taken in the simplest DLVO form
that does not account for solvent’s critical fluctuations. It is
possible that the varying correlation length influences the nano-
particle surface charge density and hence the strength of
electrostatic repulsion.61 QD’s polydispersity and ligands may
further affect the stability and kinetics of mesophases. These
effects require separate experimental and theoretical investi-
gations and fall beyond the scope of the present work.

How interactions define structure

Our multiscale simulations and experiments suggest that there
is a relation between the length scales of the interactions and

the deposited nanoparticle structures, which we discuss below.
The variety of the structures obtained by the simulations are
summarized in Fig. 8.

• Elongated, coarsened structures, consisting of large non-
spherical clusters with near-crystalline ordering of nano-
particles inside the clusters, form for λC ≳ a, λD ≲ a and
coarsen with increasing λC. Examples: λC/a = 1.76 in Fig. 3 and
λD/a = 0.5 in Fig. 4; ξ = 13 nm and ξ = 16 nm in Fig. 7b.

• Increasing λD leads to a larger energy barrier and a stron-
ger repulsive tail in the interaction potential, which breaks
large aggregates and gives rise to smaller dispersed clusters.
Examples: λD/a = 10 in Fig. 4 and 7c.

• Spinodal-like morphologies appear for sufficiently large λC
≳ a and likely separate the dispersed and coarsened structures.
Large λC and λD lead to a decreased potential depth (Fig. 2)
and hence the spinodal structures are more amorphous than
the coarsened ones. Examples: λC/a = 3 in Fig. 3 and ξ = 19 nm
in Fig. 7.

Fig. 7 Deposition of quantum dots on a silicon substrate. (a) Schematics of the experimental setup. Hydrophilic quantum dots (QDs) of diameter 2a
= 5.5 nm are immersed in a water–2,6-lutidine mixture at off-critical composition (30 w/w%) in contact with a hydrophilic silicon substrate.
Temperature varies from room temperature in the bulk to a nearly critical at the substrate. (b) Diagram in the plane of the Debye screening length λD
and bulk correlation length ξ, showing the values of λD and ξ used in the experiments (circles). The bulk correlation lengths correspond to the decay
lengths of the Casimir interactions between QDs at the substrate ranging from about 1.5a to 2a (Fig. 1h). The squares indicate the simulations results
shown in Fig. 3 and 4. (c) SEM images of deposited QDs for a few values of the bulk correlation length ξ and for the Debye screening length λD =
10 nm. The deposited structure coarsens with increasing ξ, similarly as in the simulations (Fig. 3). (d) SEM images for two values of the Debye screen-
ing length and for the bulk correlation length ξ = 10 nm. The size of clusters decreases with increasing λD, in agreement with the simulations (Fig. 4).
In (c and d), the lower row shows the enlargement of small areas from the upper row, demonstrating crystal-like structures inside the clusters. The
sizes of bars are 125 nm (upper row) and 25 nm (lower row).
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• Cluster fluid or bicontinuous phases (depending on the
density) emerge when λD ≳ λC ≳ a, provided there is a weak
repulsive tail in the interaction potential. An example is shown
in Fig. 5. Such mesophases appear in a narrow parameter
range, and we could not easily locate them. For increasing λC,
the attraction becomes weaker (Fig. 2) and hence these phases
transform into the dispersed ones. For decreasing λC, the
attraction increases, but the long-range behaviour becomes
determined by the electrostatic repulsion, leading again to the
dispersed structures.

• Fractal-like nanoparticle gels or percolated networks appear
for λC < a and λD ≲ a, provided the depth of the interparticle
potential is sufficiently large so that a nanoparticle attaches to
an existing cluster virtually irreversibly. Such strong short-
range potentials exist in the wetting regime and are caused by
capillary bridging.34,37,38 In contrast to the critical regime,
these forces can be well-controlled also for large colloids.62

Examples: λC/a = 0.53 in Fig. 3 and 6.
In addition to the interplay of the length scales of the inter-

actions, also the potential depth and the height of the repul-
sive tail (energy barrier) play an important role in the for-
mation of these structures. The strength and the range of criti-
cal Casimir interactions cannot be varied independently, but
the repulsive interactions can be additionally controlled by
changing the nanoparticle charge, which has been assumed
the same throughout this work. Clearly, the parameter range,
where various structures appear, may be modified by the par-
ticle charge. However, we expect the relations between the
decay lengths to hold for the structures emerge due to the
interplay of the long-range tails of the attractive and repulsive
components.

We finally note that the repulsion can also be induced by
other means. For instance, for nanoparticles with magnetic
cores, the repulsion can be controlled with an external mag-
netic field,63,64 which may provide a convenient way to steer
the structural transformations without the need to change an
experimental setup.

Conclusion

We have developed an experimental method and a multiscale
simulation framework to study the behaviour of charged
hydrophilic nanoparticles deposited on hydrophilic substrates,
immersed in a near-critical binary liquid mixture intermixed
with salt. With Monte Carlo simulations of the Ising model,
which mimics the binary mixture, we found that the critical
Casimir interactions between nanoparticles can be drastically
reduced at the substrate (Fig. 1). Notwithstanding, our multi-
scale molecular dynamics simulations predict the formation of
a large variety of superstructures that can be controlled by
varying composition of the mixture or temperature and salt
concentration (Fig. 3–6 and 8). In particular, the simulations
show that the structures coarsen with increasing solvent corre-
lation length and decreasing Debye screening length. The
experiments support these trends (Fig. 7), demonstrating new
opportunities to steer nanoscale structures with external
control. These results signify that nanoparticles in near-critical
electrolytic solvents represent an exciting system with the
potential for controlled fabrication of complex structures. We
hope that our work will stimulate further experimental and
theoretical studies that may lead to the emergence of novel
fabrication techniques and optoelectronic devices, particularly
those based on quantum dots.65

Methods
Multiscale simulations

Interactions between deposited nanoparticles. The inter-
action potential between deposited nanoparticles has been
taken as a sum of three contributions

UðrÞ ¼ UrepðrÞ þ UelðrÞ þ UCðrÞ; ð2Þ
where Urep, Uel and UC are the interaction potentials describing
the short-range and electrostatic repulsion and critical Casimir

Fig. 8 Summary of nanoparticle structures. Diagram shows the summary of structures in the plane of the Debye screening length λD and the decay
length of the critical Casimir interactions between nanoparticles of radius a deposited on a substrate. Examples of the coarsened and dispersed
structures are shown in Fig. 4e, λD/a = 0.5 and λD/a = 10, respectively. Spinodal structures are shown in Fig. 3e (λC/a = 3) and Fig. 4e (λD/a = 2.5).
Cluster fluid and bicontinuous phases are presented in Fig. 5. Examples of percolated and non-percolated nanoparticle networks are shown in
Fig. 6.
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attraction, respectively, and r is the center-to-center distance
between the particles. Since we focus on nanoparticles with
the dielectric constant comparable to that of a critical solvent,
we did not include the van der Waals (dispersion) interactions
in eqn (2). For non-vanishing dispersion forces, one will have
to adapt the electrostatic repulsion to partially compensate for
the der Waals attraction by re-adjusting the surface charge or
salt concentration.

Short-range Lennard-Jones repulsion. For the short-range
repulsive interactions we took66

βUrepðxÞ ¼ Arepðx� 2Þ�7; ð3Þ

where Arep = εLJπ2σ6/(630a6) and x = r/a, with a being the par-
ticle radius, and εLJ and σ the parameters of the inter-
molecular Lennard-Jones potential. Taking a = 2.75 nm as in
the experiments, and using typical values εLJ = 0.4 kcal mol−1

and σ = 0.3 nm, gives Arep ≈ 1.1 × 10–8 kcal mol−1 ≈
1.78 × 10–8kBT at room temperature, which has been used in
all simulations.

Electrostatic repulsion. The electrostatic interactions were
taken in the DLVO form1

βUelðxÞ ¼ Ael
e�akDðx�2Þ

x
; ð4Þ

where

Ael ¼ Z2lB=a

ð1þ kDaÞ2
; ð5Þ

Z is the particle charge (in units of the elementary charge), lB =
βe2/(εrε) is the Bjerrum length and kD = λD

−1 = (4πρlB)1/2 is
inverse of the Debye screening length λD (all in Gaussian
units). Here ρ is the salt concentration, ε the vacuum permitiv-
ity and εr the relative permitivity. We took εr = 7 corresponding
to a critical water–lutidine mixture,42 which gives lB ≈ 8 nm at
room temperature. We used the charge Z = 2.13 throughout
this work. The values of λD and Ael used in MD simulations are
shown in Table S2.†

It has been shown that for 2,6-lutidine–water mixture the
effect of various salts (viz., potassium chloride, potassium
bromide and magnesium nitrate) on the correlation length ξ

and the critical temperature Tc was minor.67 We correspond-
ingly assumed that adding salt does not change the critical
Casimir interactions.

Critical Casimir attraction. We used Monte Carlo simu-
lations of the Ising model to compute the critical Casimir
potential UC between the nanoparticles. The Ising model
mimics an incompressible binary liquid mixture or a simple
fluid. Its Hamiltonian is given by

HðfσgÞ ¼ �J
X
ijh i

σiσj � h
X
i

σi; ð6Þ

where σi = ±1 is a classical spin at lattice site i so that σi = ±1
corresponds to occupation of site i by one of the species of a
binary liquid mixture, and J is the coupling constant. The sum
〈ij〉 runs over all neighbouring pairs of spins. The spins

belonging to the colloids (and to the substrate, if present) were
frozen, so that the summation in eqn (6) runs only over non-
frozen lattice sites, corresponding to the space accessible to
the solvent. We considered the so-called normal surface uni-
versality class,68,69 which corresponds to infinite surface fields
and implies that effectively the surface spins are also fixed
during a simulation. Casimir interaction potentials between
two spherical particles were computed by using the local field
approach.11,70

In all simulations, the system size was 200 × 60 × 60 lattice
units in the x, y and z directions, respectively (Fig. 1e and g).
The particle diameter was 11 lattice sites. The averaging was
performed over 2 × 106 hybrid Mont Carlo steps29 with prelimi-
nary thermalization of 2 × 105 MC steps. For the configuration
with the maximal distance between the particles (89 lattice
sites), the number of MC steps was ten times larger to achieve
a better accuracy (this value was subtracted from the Casimir
potentials obtained at other distances to have zero at large
separations).

Molecular dynamics simulations. We wrote our own
program to perform 2D molecular dynamics simulations of
deposited nanoparticles. In this program, we used the stan-
dard Velocity-Verlet integration algorithm. Particles were
subject to random thermal forces generated by the solvent.
The time step was 10–4τd where τd = a2/D is the diffusion time
for the diffusion coefficient D = kBT/γ (a is the particle radius).
The friction coefficient γ = 10 was used in all simulations. The
averaging was performed over the time 100τd. The cut-off for
the force acting between two particles was 30a to account for
the long-range character of the interactions. The initial con-
figuration of nanoparticles was random unless otherwise
stated.

Analysis. From the obtained trajectories we determined clus-
ters of nanoparticles. A particle was considered as part of a
cluster if the distance to at least one of the cluster’s particles
was less then 2.5a. Within each cluster, we calculated the
order parameters

ψk ¼
XN
i

ψkðiÞ
* +

: ð7Þ

Here N is the total number of nanoparticles, 〈⋯〉 means
thermal average, and

ψkðiÞ ¼
1
ni

Xni
j¼1

cosðkθj;i;jþ1Þ; ð8Þ

where ni is the number of neighbours of the ith nanoparticle
within its cluster, and θj,i,j+1 is the angle between nanoparticles
i, j and j + 1. We computed ψ4 and ψ6, which describe quadra-
tic and hexagonal order (ψ4 = 1 and ψ6 = 1 for perfect square
and hexagonal lattices). However, in all cases considered, we
have not found any traces of quadratic order (Fig. S12†). In the
main text, therefore, we presented the results only for the
hexatic parameter ψ6.
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Experimental

We synthesized oleate-passivated CdSe quantum dots (QDs) by
following procedures reported in the literature.59 After
washing, we redispersed the QDs in 10 mL of hexanes, and
measured their concentration by following the sizing curve
reported in the literature.71 We evaluated the size distribution
of the QD dispersion by fitting the small-angle X-ray pattern to
a spherical form factor convoluted with a normal distribution
centered around the radius a and of width σ. The polydisper-
sity was then extracted as (σ/a) × 100%. The polydispersity can
also be evaluated from spectrophotometry by measuring the
half-width at half-maximum of the first exciton peak and fol-
lowing the fit provided in the literature.72

We replaced the native hydrophobic oleate ligands with
hydrophilic DMPS ligands by following a ligand-exchange pro-
cedure. A 40 μM dispersion of QDs in hexane was placed in
contact with a 40 mM solution of DMPS in N-methylformamide
(NMF) and stirred vigorously for 1 hour. During this time, the
QDs migrated from the apolar to the polar phase, as visually
confirmed by the apolar phase becoming colorless and the
polar phase gaining color. We then stopped the stirring,
allowed for the two phases to separate, and transferred the
polar phase to a centrifuge tube. Then we precipitated the QDs
by adding a volume of acetonitrile equal to the volume of NMF
and mixing. After centrifuging at 3000g for 20 minutes, we dis-
carded the clear supernatant and redispersed the QDs at a con-
centration of 2 μM in the binary solvent, a 30% w/w solution of
2,6-lutidine in water, with an additional 0.89 mM sodium chlor-
ide to control the Debye screening length and 10 mM sodium
hydroxide to improve colloidal stability of QDs.

We transferred the colloidal dispersion to a glass vessel for
dynamic light scattering, where we placed it in contact with an
oxygen plasma-treated silicon substrate placed at the top and
attached to a steel block. Placing the substrate at the top
allows us to rule out sedimentation as a contribution to the
structures we observe and minimizes convection. The substrate
was heated by means of a heating element embedded in the
steel block, to a temperature T, such that ΔT = Tc − T > 0,
where Tc is the critical temperature of the binary solvent. By
keeping the bulk of the solvent at room temperature (RT), we
drive a steep vertical temperature gradient going from T in
proximity of the substrate to RT far from the substrate
(Fig. 7a). To ensure experiment reproducibility, we measured
the size of the solvent density fluctuations prior to each depo-
sition in proximity of the substrate by measuring the hydro-
dynamic diameter of the fluctuations with dynamic light scat-
tering and correcting for the T-dependence of the viscosity.60

The temperature range was 20 °C to 33.1 °C. After 1 hour, the
substrate was retrieved, dipped in pure acetonitrile, and dried
under vacuum prior to electron microscopy studies. By control-
ling the Debye screening length through the concentration of
salt dissolved in the binary solvent, and the solvent correlation
length through temperature, we are able to drive the assembly
of nanoparticles towards structures of strikingly different
morphologies.61
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