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Magnesium (Mg) is a key ion for numerous metabolic processes, being a cofactor of
over 600 enzymes involved in cell metabolism and multiple biological processes. Mg is
needed for mitochondrial adenosine triphosphate (ATP) synthesis and energy production,
nucleic acid synthesis and stability, protein synthesis, as well as oxidative phosphorylation.
Mg is also involved in the action of glycolytic enzymes, protein kinases, and all phosphory-
lation processes and reactions that implicate ATP consumption. Globally, around 70% of
the body’s enzymes require Mg to function properly [1].

The total content of Mg in the human body is around 24 g (1 mole) and it is mostly
intracellular. Mg is a major component of bone, together with calcium (Ca), while only
1% of Mg is present in the blood. Serum Mg concentrations are strictly controlled with a
normal range between 0.75 and 0.95 mmol/L (1.7–2.5 mg/dL or 1.5–1.9 meq/L). Because
of this tight control, total serum Mg concentrations (MgT) do not always accurately reflect
the body’s Mg status. Hypomagnesemia (defined as a serum Mg level below 0.75 mmol/L)
occurs only with a severe Mg deficiency, while the majority of subclinical Mg deficiency
remains undetected. Thus, MgT is rarely helpful in identifying subclinical Mg deficits.
A Mg-to-Ca ratio may be useful since functions of both cations are closely linked. Thus,
Mg is a mild Ca antagonist, and the cellular influx/efflux of Mg and Ca use the same
transporters [2].

Although there is no agreement among the different national and international guide-
lines, the amount of dietary Mg required is suggested to be around 300–400 mg per day in
healthy adults (5 to 6 mg/kg/day). Mg is the central core of the chlorophyll molecule in
plant tissue; thus, it is present in all green leafy vegetables. Although Mg is present in many
other foods, including legumes, seeds, nuts, seafood, chocolate, and whole versus refined
grains, Western diets lacking these types of foods are generally low in Mg. Nutritional Mg
insufficiency has been frequently found in Western industrialized countries. Data from the
NHANES III in the US and from France showed that Mg intake in the population of all
ages is well below the recommended daily requirement [3,4]. This corresponds with the
low consumption of foods rich in Mg reported by the Dietary Guidelines for Americans
2015–2020 [5] (% of persons below recommendation across all ages and both sexes in the
US was near 100% for whole grains, ~90% for total vegetables, over 80% for beans and peas,
and ~60% for nuts, according to data from NHANES 2007–2010), which also indicated that
49% of the US population, considering all age groups, had a Mg intake below the estimated
average requirement. Other estimates have indicated that over 60% of Americans are under
the recommended daily intake [6].

Processed and ultra-processed foods that constitute a substantial portion of the diet in
Western countries have a significantly reduced Mg content, and a significant proportion of
this ion (up to ~80%) is lost during food processing, cooking, or refining [7].

In agriculture, soil acidification has become a major global issue. The progressive
acidification of soils in the last fifty years has mainly been caused by the release of protons
(H+) during the transformation and cycling of carbon, nitrogen, and sulfur and fertilizer
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reactions. Soil acidification may have contributed to Mg scarcity since reduced Mg levels
have been associated with acid soils. Some pesticide agents employed in agriculture in
crops, such as glyphosate, chelate Mg [8], further decreasing the content of Mg in the soil.
In relation to this, it has also been suggested that the Mg content in vegetables and fruits
has dropped in recent years.

The benefits of Mg are known in terms of gut motility and gastric acidity, although
recent evidence has suggested that dietary Mg may also positively affect gut microbiota [9]
and be a key player in inflammatory bowel disease [10]. Because of the wide range of crucial
homeostatic actions, a suitable amount of body Mg is fundamental for regular cellular and
body functioning. Mg disorders have been implicated in the pathogenesis of a large number
of diseases, including cardiovascular, metabolic, pulmonary, neurological, and infectious
diseases (including COVID-19), bone disease and fractures, and muscular disorders, among
others [1]. At least two possible not alternative links (and likely negatively related), i.e.,
(a) chronic inflammation and (b) decreased immune defense, have been hypothesized to
drive the association of a poorly supplied Mg homeostasis and the long list of pathologies
that have been associated with a deficient Mg status. It is well established, both in vitro and
in vivo, that a Mg deficit and hypomagnesemia result in inflammation and the increased
production of free oxygen radicals [1,7,11]. A Mg deficit stimulates the production and
release of interleukin-1β and tumor necrosis factor-α, proinflammatory neuropeptides,
platelet aggregability and adhesiveness, and lipid peroxidation, while inhibiting endothelial
growth and migration and reducing the production of antioxidant hepatic glutathione,
superoxide dismutase, and vitamin E [1,12–14]. Accordingly, Mg supplementation may
significantly reduce different human inflammatory markers, in particular, serum C reactive
protein and nitric oxide levels [15].

Mg also stimulates the immune response as it is a co-factor for immunoglobulin (Ig)
synthesis, C’3 convertase, immune cell adherence, antibody-dependent cytolysis, IgM
lymphocyte binding, macrophage response to lymphokines, and other processes strictly
associated with the function of T and B cells [16,17]. In addition, Mg is necessary for
the synthesis and activation of vitamin D, another factor involved in the pathogenesis of
infectious diseases. Existing data seem to confirm the association between an altered Mg
status and several infectious diseases, including COVID-19 [18]. Thus, low serum Mg was
found to be associated with a higher incidence of long COVID-19 symptomatology and a
significant predictor of mortality, length of stay, and the onset of long COVID-19 symptoms
in older persons affected by COVID-19 [19]. In obese COVID-19 patients, reduced renal
function and low Mg levels were associated with increased mortality [20]. In over a
thousand patients hospitalized for severe COVID-19, the ratio of Mg-to-Ca ≤ 0.20 was
strongly associated with mortality [2].

Several studies have implied that Mg plays a role in the development of cardiovas-
cular disease (CVD). An inverse relation has been suggested between Mg intake and
hypertension, and hypoMg might be considered a potential risk marker for early CVD [21].
Endothelial function may be compromised under conditions of Mg deficiency, which in-
creases vulnerability to inflammation and the development of arteriosclerosis [22]. HypoMg
was suggested to be frequent in patients with atrial fibrillation (AF). The Framingham study
showed previously that individuals in the lowest quartile of serum Mg were significantly
more likely to develop AF compared to those in the upper quartile. The incidence of
hypoMg in patients with de novo AF admitted to the emergency department and intensive
care unit was 8.5% [23]. Serum and dietary Mg intake were also associated with markers of
subclinical CVD and with the presence of various functional and structural parameters of
subclinical CVD [24].

Mg deficit has been associated with an increased risk of psychiatric disorders, includ-
ing depression, anxiety, and panic attacks, as well as with various neurologic diseases,
including cognitive decline and dementia, migraine, and stroke. Mg supplementation may
be of help in these conditions and has been used as a coadjutant to prevent migraine attacks
and in the treatment of insomnia [25–27]. Regarding neuroprotective effects, elevated
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serum Mg was cross-sectionally associated with greater brain volumes and lower odds of
subclinical cerebrovascular disease in participants to the Atherosclerosis Risk in Communi-
ties Neurocognitive Study (ARIC-NCS), suggesting beneficial effects on pathways related
to neurodegeneration and cerebrovascular damage [28].

A significant body of evidence has suggested that a chronic Mg deficit may be im-
plicated in the pathogenesis of various metabolic disorders, such as metabolic syndrome,
insulin resistance, hypertension, dyslipidemia, glucose intolerance, and type 2 diabetes
(T2D) [1,29]. The use of Mg supplements may have a beneficial role to improve glucose
parameters in people with T2D and in people at high risk of diabetes, reducing plasma
glucose per se after a 2 h oral glucose tolerance test and improving insulin sensitivity
markers [30].

Mg, because of its mild Ca-channel-blocking properties, has some relaxing effects on
bronchial smooth muscle, and a potential use as an adjunct therapy in bronchial constriction
conditions has been suggested. Among a group of patients with cystic fibrosis, 47% had
hypomagnesemia and 12% insufficient Mg dietary intake; 82% had a high serum Ca/Mg
ratio and a low Ca/Mg intake ratio, respectively. Both Ca/Mg ratios were associated with
the risk of developing CVD, T2D, metabolic syndrome, and even several cancers. Thus,
over half of the patients with cystic fibrosis were at high risk of Mg deficiency and of
developing other chronic diseases [31].

Mg is involved in vitamin D and parathyroid hormone (PTH) synthesis and secre-
tion. Mg deprivation is associated with hypoparathyroidism, low production of 1,25-
dihydroxyvitamin D3, and resistance to PTH and vitamin D actions [32]. Mg deficiency
may contribute to impairing bone mineralization and altering bone strength, quality, and
bone mineral density. A systematic review with meta-analysis found a strong association
of serum Mg concentrations with incident fractures [33]. Mg supplementation has also
been suggested to increase physical performance in relation to the crucial role of Mg to
muscle ATP.

In conclusion, numerous human diseases have been connected with Mg deficits,
including CVD, hypertension and stroke, cardio-metabolic syndrome and T2D, depression,
dementia, digestive and muscular disorders, and bone fragility, among others. Decreased
Mg intake in Western countries, due to the wide-spread consumption of ultra-processed
food and reduced Mg content in soil, may aggravate the deficit. Maintaining an optimal
Mg balance all throughout life may help to maintain a healthy and longer life.
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