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A DECOMPOSITION THEOREM FOR
σ -P-DIRECTIONALLY POROUS SETS

IN FRÉCHET SPACES

CATERINA LA RUSSA

In this paper we study suitable notions of porosity and directional
porosity in Fréchet spaces. Moreover we give a decomposition theorem for
σ -P-directionally porous sets.

1. Introduction.

Most authors tend to understand “infinite dimensional spaces”, in the
context of differentiability, as Banach spaces; but starting with Mankiewicz
[4], the more general context of Fréchet spaces has also been considered.
The natural question of extending the Banach space results to the more
general setting has been answered in various stages by several authors.
In this paper we continue the programme of transferring the strongest
Banach space results to Fréchet spaces.

The porosity of a set arises, in a natural way, in questions concerning
the differentiability of Lipschitz maps. For subsets of the real line this
notion was introduced by A. Denjoy [1] and E. P. Dolzhenko [2]. The
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family of all σ -porous subsets of the real line is properly included between
the family of all Lebesgue null sets and the class of all first category
sets. Many authors have been investigated on the porosity and generalized
this notion to metric spaces and in particular to Banach spaces. For an
exhaustive study on this argument see [8] and [9].

D. Preiss and J. Tišer [5] proved that there exist σ -porous subsets
of a separable Banach space which are not “null” in any known sense.
Moreover D. Preiss and L. Zajíček [6] observed that Borel σ -directionally
porous subsets of a separable Banach space are null in Aronszajn’s sense.

In this paper, we generalize both the notions of porosity and directional
porosity. More precisely, given a Fréchet space X , a family of directions V
and a sequence P of continuous seminorms on X , we introduce the notions
of P-porosity, σ -P-porosity in direction V and σ -P-directional porosity.
We prove decomposition theorems for σ -P-porous sets in direction V
(Proposition 3.1 and Proposition 3.2) and for σ -P-directionally porous
sets (Theorem 3.1). These decompositions are used in [3] to study the
sets of points of Gâteaux non-differentiability for Lipschitz maps.

2. Preliminaries.

Trough this paper X is a Fréchet space, i.e. a locally convex space
which is metrizable and complete.

If A ⊂ X we denote by A, Int (A), δ(A) and AC , the closure, the
interior, the boundary and the complementary set of A, respectively. The
linear span of A is denoted by < A >.

If p is a continuous seminorm on X , x ∈ X and r > 0, we use the
notation Bp(x, r) for the set {y ∈ X : p(y − x) < r}.

Definition 2.1. Let M be a subset of X and let x be a point of X . M
is said to be porous at the point x if there exist a positive constant c and
a continuous seminorm p on X such that, for each ε > 0, there exist
y ∈ X and r > c · p(x − y), with p(x − y) < ε and M ∩ Bp(y, r) = ∅.
M is said to be porous if it is porous at each of its points.

Note that the constant c and the seminorm p depend on the point x
and that we can assume c < 1.

Definition 2.2. Let M be a subset of X and let p be a continuous
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seminorm on X .

(i) M is said to be p-porous if it is porous at each point x ∈ M
and the conditions of Definition 2.1 are fulfilled by the continuous
seminorm p.

(ii) M is said to be c-porous if it is porous at each point x ∈ M and
the conditions of Definition 2.1 are fulfilled by the constant c.

(iii) M is said to be (c, p)-porous if it is porous at each point x ∈ M
and the conditions of Definition 2.1 are fulfilled by the continuous
seminorm p and by the constant c.

Definition 2.3. Let M and V be subsets of X and let x be a point of
X . The set M is said to be porous ( p-porous, c-porous, (c, p)-porous)
at x in direction V if it is porous ( p-porous, c-porous, (c, p)-porous)
at x and the vector y satisfying the conditions of Definition 2.1 has the
form y = x + tv, where v ∈ V and t ≥ 0 (t > 0, if x ∈ M ). If V = {v},
then M is said to be porous ( p-porous, c-porous, (c, p)-porous) at x in
the direction v.

Note that in the above Definition, we can assume v �= 0. Moreover if
M is porous at x in the direction v, then there exist c > 0 and a continuous
seminorm p on X , with p(v) �= 0, such that for each ε > 0 there exist
t ≥ 0 and r > c · tp(v), with t · p(v) < ε and M ∩ Bp(x + tv, r) = ∅.

The condition p(v) �= 0 follows from the fact that the condition
p(v) = 0 implies x ∈ Bp(x + tv, r).

Definition 2.4. Let M and V be subsets of X and let x be a point of X .

(i) M is said to be porous in direction V if it is porous in direction V
at each of its points.

(ii) M is said to be directionally porous at x if there exists v ∈ X such
that M is porous at x in the direction v.

(iii) M is said to be directionally porous, if it is directionally porous at
each of its points (the directions depend on the points).

Remark 2.1. From the above definitions it follows that:

(r1) M is porous at x in the direction v if and only if M is porous at
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x in direction {tv : t ≥ 0}.
(r2) M is c-porous at x in the direction v if and only if M is c-porous

at x in the direction
v

p(v)
, where p is the continuous seminorm that

satisfies the porosity of M at x in the direction v.

(r3) M is (c, p)-porous at x in direction V if and only if M is (c, p)-

porous at x in direction Vs =
{

v

p(v)
: 0 �= v ∈ V

}
.

(r4) If M is porous at x in direction V = V1 ∪ V2 ∪ ... ∪ Vn , then we can

write M =
n⋃

i=1

Mi , where Mi is porous in direction Vi , i = 1, ..., n.

Definition 2.5. M is σ -porous (σ -porous in direction V , ....), if M is
a countable union of porous (porous in direction V , ....) sets.

Definition 2.6. Let P = (pi)i∈N be a sequence of continuous seminorms
on X and let C = (ci)i∈N be a sequence of positive constants and let
M be a subset of X .

(i) M is said to be σ -P-porous (σ -P-porous in direction V ,...) if

M =
∞⋃

i=1

Mi , where Mi is pi -porous ( pi -porous in direction V ,... ),

i = 1, 2, ....

(ii) M is said to be σ -(C, P)-porous (σ -(C,P)-porous in direction

V ,...) if M =
∞⋃

i=1

Mi , where Mi is (ci , pi)-porous ((ci , pi)-porous in

direction V , ...), i = 1, 2, ....

Lemma 2.1. Let x be a point of X , let M be a subset of X and let
0 < c < c. Then the following assertions hold:

(a) If M is c-porous at x in the direction v and 0 �= w ∈ X is such
that p(w) �= 0 and p(v − w) < c − c̄, where p is the continuous
seminorm which satisfies the porosity of M at x in the direction v,
then M is c̄-porous at x in the direction w.

(b) If M is (c, p)-porous at x in direction V , and W ⊂ X is such that
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p(w) �= 0, for each w ∈ W , and in f {p(v − w) : w ∈ W } < c − c̄,
for each v ∈ V , then M is (c̄, p)-porous at x in direction W .

Proof. (a) Since p(w) �= 0, we may assume that p(v) = p(w) = 1
(see Remark 2.1(r2)). Choose r = r − t · p(v − w), where t ≥ 0 and
r > 0 satisfy the condition of porosity of M at x in the direction v.
Observe that p(tw) = t < ε and that

c · p(tw) = ct − (c − c̄)t < r − t · p(v − w) = r̄ .

To complete the proof we need to prove that M ∩ Bp(x + tw, r) = ∅.
Now M ∩ Bp(x + tv, r) = ∅, by hypothesis. Therefore it is enough to
prove that Bp(x + tw, r) ⊂ Bp(x + tv, r). Let y ∈ Bp(x + tw, r), then

p(y − (x + tv))

< p(y − (x + tw)) + p(tw − tv)

< r − tp(w − v) + tp(w − v)

= r.

This completes the proof.
(b) Since M is (c, p)-porous at x in direction V , then there exists

v̄ ∈ V such that M is (c, p)-porous at x in the direction v̄. Moreover
there exists w̄ ∈ W such that p(v̄ − w̄) < c − c̄. Consequently, by
Lemma 2.1(a) M is (c̄, p)-porous at x in the direction w̄. Thus M is
(c̄, p)-porous at x in direction W . �

Let M and V be subsets of X , c and ε be two positive real numbers
and p be a continuous seminorm on X . We denote by P(M, V, c, p, ε) the
set of all points a ∈ X for which there exist v ∈ V with p(v) �= 0, t ≥ 0
and r > 0, such that r > c · p(tv), p(tv) < ε and Bp(a + tv, r)∩ A = ∅.

Remark 2.2. By the definition of P(M, V, c, p, ε), it follows that:

(i) M is (c, p)-porous at a ∈ X in direction V iff

a ∈
⋂
ε>0

P(M, V, c, p, ε) =
∞⋂

n=1

P

(
M, V, c, p,

1

n

)
;

(ii) M is p-porous at a in direction V iff

a ∈
∞⋃

k=1

∞⋂
n=1

P

(
M, V,

1

k
, p,

1

n

)
.
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Remark 2.3. If M is p-porous in direction V (resp. p-directionally

porous), then we can write M =
∞⋃

k=1

Mk , where Mk is

(
1

k
, p

)
-porous in

direction V (resp.

(
1

k
, p

)
-directionally porous), for k = 1, 2, ... In fact,

it is enough to set

Mk =
{

a ∈ M : M is

(
1

k
, p

)
− porous at a in direction V

}
.

Lemma 2.2. The following assertions hold:

(i) P(M, V, c, p, ε) is an open set.

(ii) If M is (c, p)-porous in direction V , then there exists a G δ set
M̃ ⊃ M which is (c, p)-porous in direction V .

(iii) If M is p-porous (resp. σ -P-porous) in direction V , then there
exists a Gδσ set M∗ ⊃ M which is p-porous (resp. σ -P-porous) in
direction V .

Proof. Condition (i) follows by the definition of P(M, V, c, p, ε).

(ii) Put M̃ = M ∩
∞⋂

n=1

P

(
M, V, c, p,

1

n

)
and observe that M̃ ⊃ M .

In fact, since M is (c, p)-porous in direction V , then for each a ∈ M
it follows a ∈ M , and by Remark 2.2 (i) the point a belongs to
∞⋂

n=1

P

(
M, V, c, p,

1

n

)
. Moreover by (i) M̃ is a Gδ set. Observe that

since M is (c, p)-porous in direction V , then any subset of M is (c, p)-
porous in direction V . Therefore M̃ is (c, p)-porous in direction V .

(iii) Put M ∗ = M ∩
∞⋃

k=1

∞⋂
n=1

P
(
M, V,

1

k
, p,

1

n

)
. As above, each a ∈ M

belongs to M and, since M is p-porous in direction V , by Remark 2.2

(ii), we have a ∈
∞⋃

k=1

∞⋂
n=1

P
(
M, V,

1

k
, p,

1

n

)
. Thus M∗ ⊃ M . Moreover by

(i) M∗ is a Gδσ set, and since M is p-porous in direction V , it is
p-porous in direction V . �
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Proposition 2.1. Let p be a continuous seminorm on X and let c be a
positive real number. Moreover let A ⊂ X be (c, p)-porous in direction
E + F, where E and F are subspaces of X with the property that
there exists ηp > 0 such that

(1) p(e + f ) ≥ ηp · max{p(e), p( f )}
whenever e ∈ E, f ∈ F and p(e + f ) �= 0. Then A = A1 ∪ A2, where
A1 is p-porous in direction E and A2 is σ -P-porous in direction F,
where P is the constant sequence (p).

Proof. Define

A1 = A ∩
∞⋂

m=1

P

(
A, E,

cηp

2
, p,

1

m

)

and

A2 = A \ A1 =
∞⋃

m=1

A \ P

(
A, E,

cηp

2
, p,

1

m

)
.

By Remark 2.2 (i), A1 is
(cηp

2
, p

)
-porous in direction E . We are

now showing that A2 is σ -P-porous in direction F , where P is
the constant sequence (p). To this end we shall prove that the set

Dm = A \ P

(
A, E,

cηp

2
, p,

1

m

)
is

(cηp

2
, p

)
-porous in direction F .

By Remark 2.2 (ii) it is enough to show that, for x ∈ Dm and for every

0 < ε <
1

m
, we have x ∈ P

(
Dm, F,

cηp

2
, p, ε

)
. Since x ∈ Dm , it is

x ∈ A. By hypothesis, A is (c, p)-porous at x in direction E + F . Then
there exist e ∈ E , f ∈ F , with p(e + f ) �= 0, t > 0, r > 0 such that
p(te + t f ) < ε · ηp , Bp(x + t (e + f ), r) ∩ A = ∅ and r > c · p(te + t f ).
Now we prove that p( f ) �= 0. Assume, by contradiction, that p( f ) = 0.
Then by (1) we have

ηp · p(e) ≤ p(e + f ).

Hence
cηp

2
· t · p(e) ≤ c

2
· t · p(e + f ) <

r

2
.

Since ηp · p(te) ≤ p(te + t f ) < ε · ηp , then

p(te) < ε <
1

m
.
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So for y ∈ Bp(x + te,
r

2
), we have

p(y − (x + t (e + f ))

≤ p(y − (x + te)) + p(t f ) ≤ r

2
< r.

Therefore Bp(x + te, r
2) ⊂ Bp(x + t (e + f ), r).

Since Bp(x + t (e + f ), r) ∩ A = ∅, then Bp(x + te,
r

2
) ∩ A = ∅.

Hence x ∈ P
(

A, E,
cηp

2
, p,

1

m

)
, which contradicts the fact that x ∈ Dm .

This completes the proof of the condition p( f ) �= 0.

By (1) we have

(2) max(p(te), p(t f )) ≤ 1

ηp
· p(te + t f ) < ε <

1

m
.

So we obtain p(t f ) < ε and p(t f ) ≤ 1

ηp
· p(te + t f ). Thus

cηp

2
· p(t f ) <

cηp

2
· 1

ηp
· r

c
= r

2
.

Now we prove that

Bp

(
x + t f,

r

2

)
∩ Dm = ∅.

We may assume that p(e) �= 0. In fact the condition p(e) = 0, implies

Bp

(
x + t f,

r

2

)
⊂ Bp(x + t (e + f ), r).

But Bp(x + t (e + f ), r) ∩ A = ∅. Therefore Bp
(
x + t f,

r

2

) ∩ A = ∅ and

Bp

(
x + t f,

r

2

)
∩ Dm = ∅.

Assume, by contradiction, that there is y ∈ Bp

(
x +t f,

r

2

)
∩ Dm . Note that

Bp
(
y + te,

r

2

) ⊂ Bp(x + t (e+ f ), r) and therefore Bp
(
y + te,

r

2

)∩ A = ∅.

Moreover by (2) we obtain

p(te) <
1

m
and

cηp

2
· p(te) ≤ c

2
· p(te + t f ) <

r

2
.
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Thus y ∈ P
(

A, E,
cηp

2
, p,

1

m

)
, which contradicts the fact that y

belongs to Dm . �

In the previous Proposition we have proved, in particular, that the set

A1 is
(cηp

2
, p

)
-porous in direction E and the set A2 is σ -(C,P)-porous

in direction F , where C and P are the constant sequences
(cηp

2

)
and

(p), respectively. Hence the constant of porosity is the same for all points
of the sets A1 and A2 and it depends on the constant c of porosity of
A and on the constant ηp .

Proposition 2.2. Let P = (pi)i∈N be a sequence of continuous seminorms
on X . Moreover let A ⊂ X be a σ -P-porous set in direction E + F,
where E and F are two subspaces of X with the property that there
exists ηpi > 0 such that

pi(e + f ) ≥ ηpi · max{pi(e), pi( f )}
whenever e ∈ E, f ∈ F and pi(e + f ) �= 0, for each i ∈ N. Then
A = A1 ∪ A2, where A1 is σ -P-porous in direction E and A2 is σ -P-
porous in direction F.

Proof. Since A is a σ -P-porous set in direction E + F , then

A =
∞⋃

i=1

Ai , where Ai is pi -porous in direction E + F , i = 1, 2, . . .

By Remark 2.3 it follows that Ai =
∞⋃

k=1

Ak
i , where Ak

i is

(
1

k
, pi

)
-porous

in direction E + F , k = 1, 2, .... Moreover, by Proposition 2.1, for each
i and k , we have Ak

i = (Ak
i )E ∪ (Ak

i )F , where (Ak
i )E is pi -porous in

direction E and (Ak
i )F is a countable union of sets which are pi -porous in

direction F . Therefore
∞⋃

k=1

(Ak
i )E is pi -porous in direction E and

∞⋃
k=1

(Ak
i )F

is pi -porous in direction F . We set

A1 =
∞⋃

i=1

( ∞⋃
k=1

(Ak
i )E

)
and A2 =

∞⋃
i=1

( ∞⋃
k=1

(Ak
i )F

)
.

Then A = A1 ∪ A2, where A1 is σ -P-porous in direction E and A2 is
σ -P-porous in direction F . �
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Lemma 2.3. Let p be a continuous seminorm on X and let V be the
subspace of X spanned by the linearly independent vectors v1, v2, ...., vn .
If E =< v1, v2, ...., vn−1 > and F =< vn >, then there exists a constant
ηp > 0 such that

p(e + f ) ≥ ηp · max{p(e), p( f )}
for each e ∈ E, f ∈ F.

Proof. Let X̄ be the quotient space of X with respect to the p-null
set {x ∈ X : p(x) = 0}. For each x̄ ∈ X̄ , define p̄(x̄) := p(x). It
is easy to see that p̄ is a norm on X̄ . Set Ē = {ē ∈ X̄ : e ∈ E},
F̄ = { f̄ ∈ X̄ : f ∈ F}, and consider the space

Ē ⊕ F̄ = {x̄ ∈ X̄ : x̄ = ē + f̄ with e ∈ E ed f ∈ F}.
Now define

|x̄ | = |ē + f̄ | = max{ p̄(ē), p̄( f̄ )},
for each x̄ = ē + f̄ ∈ Ē ⊕ F̄ . We see that | · | is well defined. Let
x̄ = ē1 + f̄1 and ȳ = ē2 + f̄2 ∈ Ē ⊕ F̄ such that x̄ = ȳ . Then x̄ − ȳ = 0̄;
i.e. p̄

(
ē1 + f̄1 − ē2 − f̄2

) = 0. Moreover, since

| p̄(ē1 − ē2) − p̄( f̄2 − f̄1)| ≤ p̄
(
ē1 + f̄1 − ē2 − f̄2

) = 0,

it follows that p̄(ē1 − ē2) = p̄( f̄1 − f̄2). Hence ē1 − ē2 = f̄1 − f̄2 = 0̄.
Therefore p̄(ē1−ē2) = 0 and p̄( f̄1− f̄2) = 0. It follows that p̄(ē1) = p̄(ē2)

and p̄( f̄1) = p̄( f̄2). Thus |x̄ | = |ȳ|.
Now we see that | · | is subadditive. Let x̄ = ē1 + f̄1 and ȳ = ē2 + f̄2.

Then
|x̄ + ȳ|

= |ē1 + f̄1 + ē2 + f̄2|
= max{ p̄(ē1 + ē2), p̄( f̄1 + f̄2)}
≤ max{ p̄(ē1) + p̄(ē2), p̄( f̄1) + p̄( f̄2)}
≤ max{ p̄(ē1), p̄( f̄1)} + max{ p̄(ē2), p̄( f̄2)}
= |x̄ | + |ȳ|.

So | · | is a norm on Ē ⊕ F̄ . Since Ē ⊕ F̄ has finite dimension, there
exists a positive constant η p̄ such that

p̄(ē + f̄ ) ≥ η p̄ · max{ p̄(ē), p̄( f̄ )},
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for each ē ∈ Ē , f̄ ∈ F̄ . Moreover

p(e+ f ) = p̄( e + f ) = p̄(ē+ f̄ ), p(e) = p̄(ē) and p( f ) = p̄( f̄ ),

for each e ∈ E and f ∈ F . Then

p(e + f ) ≥ ηp · max{p(e), p( f )},
with ηp = η p̄ . �

3. Main results.

Proposition 3.1. Let P = (pi)i∈N be a sequence of continuous
seminorms on X and let V be the subspace spanned by the vectors
v1, v2, ...., vn . If A ⊂ X is σ -P-porous in direction V , then we can write

A =
n⋃

j=1

(
A+

j ∪ A−
j

)

where A+
j and A−

j are σ -P-porous sets in direction v j and −vj ,
respectively.

Proof. We proceed by induction. If n = 1, then

V = {tv1 : t ≥ 0} ∪ {t (−v1) : t ≥ 0}.

As A is σ -P-porous in direction V , then A =
∞⋃

i=1

Ai , where Ai is pi -

porous in direction V . So we can write Ai = A+
i ∪ A−

i , where A+
i is

pi -porous in direction {tv1 : t ≥ 0} and A−
i is pi -porous in direction

{−tv1 : t ≥ 0} (see Remark 2.1 (r1)). Hence A+
i is pi -porous in direction

+v1 and A−
i is pi -porous in direction −v1 (see Remark 2.1 (r4)). We

set A+
1 =

∞⋃
i=1

A+
i and A−

1 =
∞⋃

i=1

A−
i . Then

A =
∞⋃

i=1

Ai =
∞⋃

i=1

(
A+

i ∪ A−
i

) =
( ∞⋃

i=1

A+
i

)
∪

( ∞⋃
i=1

A−
i

)
= A+

1 ∪ A−
1 .

Assume now that n > 1 and the statement holds for each k < n. Without
any loss of generality, we may also assume that v1, v2, ...., vn are linearly
independent.
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Set E = < v1, v2, ...., vn−1 > and F =< vn >. Then V = E + F ,
and by Lemma 2.3, there exists ηpi > 0 such that

pi(e + f ) ≥ ηpi · max{pi(e), pi( f )}
for each e ∈ E , f ∈ F and for each i ∈ N. By Proposition 2.2
it follows that A = A E ∪ AF , where AE is σ -P-porous in direction
E =< v1, ..., vn−1 > and AF is σ -P-porous in direction F = < vn >.
Now, by the induction assumption, we have

AE =
n−1⋃
h=1

(
A+

h ∪ A−
h

)

where A+
h is σ -P-porous in direction +vh and A−

h is σ -P-porous in
direction −vh , with h = 1, ..., n − 1. Moreover A F = A+

n ∪ A−
n where

A+
n is σ -P-porous in direction +vn and A−

n is σ -P-porous in direction
−vn . Thus

A = AE ∪ AF =
( n−1⋃

h=1

(A+
h ∪ A−

h )

)
∪ (

A+
n ∪ A−

n

)
. �

Proposition 3.2. Let p be a continuous seminorm on X and let
V = < v1, v2, ..... > be a subspace of X . Moreover let A ⊂ X be
a set with the property that for each point a ∈ A there exists va ∈ V
such that A is p-porous at a in direction va . Then we can write

A =
in f ty⋃
j=1

(
A+

j ∪ A−
j

)

where A+
j and A−

j are σ -P-porous in direction v j and −vj , respectively
and P is the constant sequence (p).

Proof. By hypothesis, for each a ∈ A there exists va ∈ V such that
A is p-porous at a in the direction va . Without any loss of generality, we

can assume p(va) = 1. In fact, since p(va) �= 0, we can take va = va

p(va)
,

with p(va) = 1 and, by Remark 2.1 (r2), A is p-porous at a in direction
va .

Let Wn =< v1, ..., vn > ∩ {v ∈ X : p(v) = 1} and let Ak,n be the

set of all points a ∈ A at which A is

(
1

k
, p

)
-porous in the direction va
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and inf w∈Wn {p(va − w)} <
1

2k
. Then A =

∞⋃
k,n=1

Ak,n . In fact it is clear

that
∞⋃

k,n=1

Ak,n ⊂ A. Assume that a ∈ A. Since A is p-porous at a in the

direction va , then there exists k ∈ N such that A is

(
1

k
, p

)
-porous at a

in the direction va .
Moreover, since va ∈ V = < v1, v2, ..... >, there exists n ∈ N such

that inf w∈Wn {p(va − w)} <
1

2k
. Therefore a ∈

∞⋃
k=1

Ak,n . Since Ak,n

is

(
1

k
, p

)
-porous in the direction va , by Lemma 2.1 (b) applied to

W = Wn , V = {va}, c = 1

k
and c̄ = 1

2k
, we have that Ak,n is (

1

2k
, p)-

porous in direction Wn . Hence Ak,n is

(
1

2k
, p

)
-porous in direction

< v1, v2, ..., vn > (see Remark 2.1 (r3)) and so
∞⋃

k=1

Ak,n is σ -P-porous

in direction < v1, v2, ..., vn >, where P is the constant sequence (p). By

Proposition 3.1 it follows that
∞⋃

k=1

Ak,n =
n⋃

j=1

(
A+

j ∪ A−
j

)
, where A+

j is

σ -P-porous in the direction +v j and A−
j is σ -P-porous in the direction

−vj . Thus

A =
∞⋃

n=1

( ∞⋃
k=1

Ak,n

)
=

∞⋃
n=1

( n⋃
j=1

(A+
j ∪ A−

j )

)
=

∞⋃
j=1

(
A+

j ∪ A−
j

)
. �

Theorem 3.1. Let X be a separable Fréchet space and let (vn)n∈N be
a complete sequence in X . Moreover let P = (pi)i∈N be a sequence of
continuous seminorms on X . If A ⊂ X is a σ -P-directionally porous
set, then

A =
∞⋃

n=1

(
A+

n ∪ A−
n

)
,

where A+
n and A−

n are σ -P-porous in direction vn and −vn , respectively.
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Proof. By hypothesis < v1, v2, ..... > = X . Since A is a σ -P-

directionally porous, then A =
∞⋃

i=1

Ai , where the Ai are pi -directionally

porous, for each i = 1, 2, .... Therefore by Proposition 3.2 we have

Ai =
∞⋃

n=1

(
A+

i,n ∪ A−
i,n

)
, where A+

i,n is pi -porous in the direction +vn and

A−
i,n is pi -porous in the direction −vn .

We set A+
n =

∞⋃
i=1

A+
i,n and A−

n =
∞⋃

i=1

A−
i,n . Then

A =
∞⋃

i=1

Ai =
∞⋃

i=1

( ( ∞⋃
n=1

A+
i,n

)
∪

( ∞⋃
n=1

A−
i,n

) )
=

∞⋃
n=1

(
A+

n ∪ A−
n

)
. �

Remark 3.1. If A is a Borel set, we can require that the sets A+
n , A−

n
are Borel. Indeed since A+

n and A−
n are σ -P-porous, by Lemma 2.2 (iii)

we infer that there exist Gδσ sets A+
n

∗ ⊃ A+
n and A−

n
∗ ⊃ A−

n which are
σ -P-porous. Hence in the above decomposition we can replace A+

n and
A−

n by A+
n

∗ ∩ A and A−
n

∗ ∩ A, respectively.
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