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 31 

PMT: new analytical framework for automated evaluation of 32 

geo-environmental modelling approaches 33 

Abstract 34 

Geospatial computation, data transformation to a relevant statistical software, and step-wise 35 

quantitative performance assessment can be cumbersome, especially when considering that the 36 

entire modelling procedure is repeatedly interrupted by several input/output steps, and the self-37 

consistency and self-adaptive response to the modelled data and the features therein are lost 38 

while handling the data from different kinds of working environments. To date, an automated 39 

and a comprehensive validation system, which includes both the cutoff-dependent and –40 

independent evaluation criteria for spatial modelling approaches, has not yet been developed for 41 

GIS based methodologies. This study, for the first time, aims to fill this gap by designing and 42 

evaluating a user-friendly model validation approach, denoted as Performance Measure Tool 43 

(PMT), and developed using freely available Python programming platform. The considered 44 

cutoff-dependent criteria include receiver operating characteristic (ROC) curve, success-rate 45 

curve (SRC) and prediction-rate curve (PRC), whereas cutoff-independent consist of twenty-one 46 

performance metrics such as efficiency, misclassification rate, false omission rate, F-score, threat 47 

score, odds ratio, etc. To test the robustness of the developed tool, we applied it to a wide variety 48 

of geo-environmental modelling approaches, especially in different countries, data, and spatial 49 

contexts around the world including, the USA (soil digital modelling), Australia (drought risk 50 

evaluation), Vietnam (landslide studies), Iran (flood studies), and Italy (gully erosion studies). 51 

The newly proposed PMT is demonstrated to be capable of analyzing a wide range of 52 
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environmental modelling results, and provides inclusive performance evaluation metrics in a 53 

relatively short time and user-convenient framework whilst each of the metrics is used to address 54 

a particular aspect of the predictive model. Drawing on the inferences, a scenario-based protocol 55 

for model performance evaluation is suggested. 56 

Keywords: PMT, Spatial modelling, Goodness-of-fit, Validation, Performance analysis; 57 

predictive model evaluation framework 58 

 59 

Software and data availability 60 

Name of tool:     PMT (Performance Measure Tool) 61 

Developers:     Samadi M., Kornejady A., and Rahmati O. 62 

Hardware required:    General-purpose computer (2 Gb RAM) 63 

Software required:    ArcGIS 10.2 64 

Programming languages:   Python© 2.7 65 

Program size:     120 KB 66 

Availability and cost:    Freely available in GitHub 67 

Web link:    https://github.com/mahmoodsamadi/PMT 68 

Year first available:    2018 69 

 70 

1. Introduction 71 

Spatially-applicable predictive models must include a mandatory step where different aspects 72 

of the model performance can be quantitatively benchmarked. Without considering the 73 

performance of such geo-environmental models, the users would not be confident about the 74 

veracity of the modelling results, and is unlikely to utilize them for practical decision making 75 
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(Pullar and Springer, 2000; Glade, 2005; Beguería, 2006). The accuracy of predictive models, 76 

which is a pertinent factor demonstrating the usefulness of the relevant models, can significantly 77 

result in the misclassification costs of the approach depending on the error magnitudes and types 78 

(Frattini et al., 2010). For example, in the modelling of natural hazards, the Error Type I (i.e., false 79 

positive) is likely to indicate that a stable part of a spatial region is classified as being unstable, 80 

and therefore, it can lead to unnecessary control and risk mitigation measures that are 81 

implemented. The Error Type II (i.e., false negative) can imply that a given terrain unit is 82 

susceptible to the hazard, and it can be incorrectly classified as being stable, and consequently, 83 

this terrain region can be allowed to be occupied by people or infrastructure without a responsible 84 

and actionable risk mitigation activity. These errors, if not assessed properly, can consequently 85 

incur social and economic costs, depending on the vulnerability and economic value of the 86 

elements at risk (e.g., infrastructures, lives, etc.). In light of this need, a robust investigation of 87 

such predictive errors in spatially-applicable models is highly warranted, to make the modelling 88 

approaches and model results more viable for real-life usage, risk mitigation and implementation.   89 

Over the past couple of decades, a number of susceptibility assessment models have been built, 90 

each striving to portray the current and future spatial patterns of a specific phenomenon. Many 91 

studies have included a “model comparison” or a “performance assessment” step that was aimed 92 

to evaluate the spatial modelling result, and to select the most optimal spatially-relevant model. 93 

These sorts of models, largely promulgated as an operational tool, have largely been reported in 94 

different fields and applications, such as landslide susceptibility studies (e.g., Kornejady et al., 95 

2017; Kavzoglu et al., 2019; Yan et al., 2019), flood susceptibility studies (e.g., Rahmati and 96 

Pourghasemi, 2017; Siahkamari et al., 2018; Choubin et al., 2019), forest fire modelling purposes 97 

(e.g., Arpaci et al., 2014;Tien Bui et al., 2017), groundwater potential modelling studies (e.g., 98 
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Naghibi et al., 2017; Miraki et al., 2019), species distribution modelling tasks (e.g., Bucklin et al., 99 

2015; Shabani et al., 2016; Quillfeldt et al., 2017), land subsidence modelling (e.g., Abdollahi et 100 

al., 2018; Ghorbanzadeh et al., 2018), soil digital mapping (e.g., Minasny and McBratney, 2007; 101 

Wiesmeier et al., 2011; Malone et al., 2017), gully-erosion susceptibility (e.g., Akgün and Türk, 102 

2011; Conoscenti et al., 2014; Garosi et al., 2018). The evaluation of predictive models with 103 

different statistical metrics and their implemented approaches, especially in such a diverse range 104 

of studies, clearly warrant automated and coherent scientific strategies where performance 105 

evaluations are implemented by means of a universally acceptable and statistically robust tool. 106 

A review of published literature in this respect reveals significant advancements in predictive 107 

model performance evaluations where the context of application and the respective model type 108 

were seen to play a pivotal role in how these evaluation tools were implemented. Recently, the 109 

study of Rahmati and Pourghasemi (2018) compared the performance of ten different advanced 110 

machine learning models for the modelling of landslide susceptibility, while the study of Fukuda 111 

et al. (2013) applied and compared seven different data-driven models for developing species 112 

distribution maps. These authors considered the receiver operating characteristic (ROC) curves 113 

and a number of cutoff-dependent methods for judging the capability of their model, and 114 

consequently, in preparing and transporting the results to their statistical software, although this 115 

was a relatively time-consuming task. Particularly, one must note that when susceptibility maps 116 

are supposed to be directly incorporated into land-use planning, the best performing model are 117 

likely to be highly favored for practical decision-making tasks (Youssef et al., 2016; Siahkamari et 118 

al., 2018). This is primarily because the model performance assessments provide immensely 119 

useful insights into the optimal structure of such models, and the possibility of their practical 120 

implementation for perceived risk mitigation (Van Westen, 2006). 121 
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Most performance evaluation metrics that are designed to evaluate the overall learning skill of 122 

the predictive model, and the validity of the generated results from them are based on comparing 123 

the predicted patterns in spatial models with the actual observation datasets (Chung and Fabbri, 124 

2008). In a somewhat different approach to the traditional model evaluation approaches (e.g., 125 

graphical check of the model’s susceptibility maps in respect to the ground-truth datasets), the new 126 

generation of model performance metrics is mainly applicable for quantifying the traditional terms 127 

and the models’ functionality. According to a general consensus, the performance indices in a 128 

predictive model can be classified into two different categories: cutoff-dependent metrics (e.g., 129 

Cohen’s Kappa, sensitivity, and specificity) and the -independent metrics (e.g. receiver operating 130 

characteristic, ROC method) (Frattini et al., 2010). These approaches have been used in a number 131 

of spatial modelling sub-fields. 132 

Meanwhile, there is little doubt that the ArcGIS software, by virtue of its wide flexibility, 133 

portability and the relevance in spatial modelling approaches (e.g. geostatistics, mapping tools, 134 

variogram, kriging, and local/global scale metrics), has been unceasingly used by many 135 

researchers to implement the most basic as well as the more complex spatial functions and 136 

statistical criterion that are available. In spite of this widespread usage of ArcGIS software as a 137 

spatial modeling platform , the absence of a dedicated GIS-based tool and its non-availability to 138 

aspiring researchers and practitioners who are outside of the major subscribed users and 139 

institutions, is still very challenging (Scott and Janikas, 2010). Furthermore, the GIS users need to 140 

employ cumbersome step-by-step procedures in order to calculate each of their performance 141 

indices, and occasionally, they need to reach out for additional commercial and/or freely available 142 

software platforms (e.g., Microsoft Excel, SPSS, and R packages). These types of external model 143 

evaluation frameworks and largely the expensive software that need to be used to analyze these 144 
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data outside of GIS platforms, represent a challenging task when aiming at optimizing any 145 

modeling workflow.  146 

In respect to these arguments for more robust evaluation of spatially-relevant predictive 147 

models, some of the freely available software, such as the R package in the form of “cvTools” 148 

(Alfons, 2012) or “CrossValidate” (Coombes, 2018), and the relevant modelling platforms in the 149 

R software have partially satisfied the need to compute these metrics. However, these add-in tools 150 

also seem to be relatively deficient in terms of their inclusiveness in the respective modelling 151 

approach, and also sometimes, they may require additional external coding skills, which in some 152 

cases may not available to the users. Furthermore, each of these add-in software are likely to 153 

include only some of the cutoff-dependent and/or –independent evaluation criteria, and not include 154 

the others (as necessary) within a universally desirable manner, and therefore, the external 155 

software may be less flexible and attractive to the novice modeler and other non-scientific 156 

stakeholders, practitioner and decision-makers.  157 

To address inherent limitations posed by existing approaches adopted in the evaluation of 158 

spatial models, this research study aims to propose and construct a new, robust and comprehensive 159 

GIS-based package, denoted as the Performance Measure Tool (PMT), to scrutinize in a 160 

statistically sound manner the performance of spatially-relevant predictive models. The merits of 161 

the proposed PMT, augmented by its extensive validation in diverse regions, contextual 162 

applications and global studies, are likely to enable modelers and risk mitigation practitioners to 163 

calculate practically useful performance metrics (both cutoff-dependent and the –independent 164 

category). The PMT is designed in such way that it has the ability to provide information in a 165 

tabular and graphical format with a relatively simple platform and self-explanatory user interface. 166 

This proposed tool is likely to be useful for any spatially-relevant model, various types of end-167 
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users—from the beginner who are not familiar with advanced coding, to those who are 168 

comfortable with a ‘click-based procedure’ and also practitioners in any scientific sub-field who 169 

need to implement decisions about the model’s versatility. To further ensure credibility and 170 

generalizability of the software, the proposed PMT has been benchmarked rigorously to evaluate 171 

its relative performance in different geo-environmental modelling contexts and in different parts 172 

of the world including studies in Australia, Asia, Europe, and America. 173 

2. Basic Design Framework of the Performance Measure Tool 174 

Implementing the notion that performance evaluation of a spatially-relevant predictive model 175 

must be an important cornerstone of any spatial modelling attempt, in this study different cutoff-176 

dependent and –independent evaluation criteria, elaborated later in greater detail, have been 177 

proposed. A brief review of recent literature shows that most of these analyses are underpinned by 178 

a matrix-wise calculation, termed as the confusion matrix (and also, sometimes known as the table 179 

of confusion, error matrix, or the matching matrix) and the contingency table (also known as the 180 

cross tabulation or crosstab). Some researchers have interchangeably used these two names in 181 

their studies and considered the confusion matrix largely as a special derivative of the contingency 182 

matrix. Other researchers, however, pointed out a delicate, and logical difference, in that the 183 

former is more suitable for evaluating the performance of different classifiers (i.e., more common 184 

in data mining models), while the latter is used to evaluate the rules of association and 185 

interrelations between any two variables (Powers, 2011). However, the name “matching matrix” is 186 

well-adapted in unsupervised machine learning algorithms, whereas the confusion matrix is used 187 

in supervised learning (i.e., input data fed by the training instances).  188 
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In this research, the confusion matrix has been considered as a way to describe the primary 189 

basis for constructing the proposed spatially-relevant model evaluation tool. Consequently, a 2 × 2 190 

confusion matrix is created where the rows are the instances in an actual class (i.e., the 191 

observations) and the columns are the instances in the predicted class, as illustrated in Table 1. As 192 

the name “confusion” implies, the matrix is able to examine the degree of mislabeling one state (as 193 

another) by means of directly comparing the predictions and the observations. The statistics 194 

derived from the matrix are therefore all presented as either the row-wise (e.g., positive and 195 

negative predictive values) or the column-wise (e.g., sensitivity and specificity) in the 196 

implemented PMT tool. 197 

Table 1 HERE 198 

It should be emphasized that the process and various stages of model performance assessments 199 

can be rather a time-consuming and a complex task for the performance measures in a traditional 200 

approach must be calculated separately using the geo-statistical techniques. This is particularly the 201 

case for novice end-users (e.g., risk mitigation practitioners who may be unfamiliar with various 202 

mathematical and statistical knowledge). More importantly, to the best of the authors’ knowledge, 203 

there is hardly any reliable, comprehensive and end-user-friendly tool currently available that can 204 

be used to consider the most relevant performance metrics, particularly in the widely adopted 205 

ArcGIS environment. Considering this deficit, this paper aims to develop an efficient and 206 

automated approach that operates in a quick, reliable and organized manner, and also presents a 207 

relatively effective framework providing a user-friendly interface. The PMT has deliberately been 208 

written in the freeware, the Python programming environment using a portability feature that 209 

enables it to be installed easily within a geo-processing framework found in the ArcToolbox of the 210 

ArcGIS 10.2 software.  211 
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Figure S1 (refer to supplementary information) illustrates the graphical user interface and the 212 

execution process of the proposed PMT. 213 

Fig. S1 HERE 214 

To illustrate the operational mechanism of the proposed PMT, one part of the Python code used 215 

for calculating the evaluation criteria is displayed in Figure S2. The required inputs used to 216 

execute the tool and the relevant outputs files are given in Tables 2 and 3, respectively. It is 217 

important to note that the PMT extension allows the end-users to evaluate the accuracy of the 218 

predictive model in both steps, composed of training/calibration and the validation phase. End-219 

users can also adopt both parts of the training and validation process to check the accuracy of their 220 

predictive models, although investigating the accuracy of the model in the training step can also be 221 

left unchecked in this particular tool. This option is added because most of the interest is usually 222 

focused on the validation component, as it guarantees the viability of the model to be used for the 223 

prediction and decision-making process. Conversely, calibration is a component uniquely voted to 224 

build the reference model, and to evaluate the covariate effects, although these can be subjected to 225 

some degree of overfitting (Lombardo et al., 2018).  These stages make the model easy-to-use 226 

with no special skills required to run the proposed tool. 227 

Fig. S2 HERE 228 

Table 2 HERE 229 

Table 3 HERE 230 

3. Statistical background of the performance metrics 231 

3.1. Confusion matrix 232 
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In what follows next, the authors outline the kinds of information these metrics are able to 233 

convey regarding the model performance. In order to construct a confusion matrix from a spatial 234 

model, the users should define a cutoff (in percentile units) to split the spatial map into two 235 

distinct classes in which the PMT can calculate the cutoff-dependent performance metrics. This is 236 

the analogous operation to splitting a probability distribution into two distinct classes, although in 237 

our case, this is performed directly within ArcGIS into map form. In this process, the first class 238 

(i.e., the lower percentage of susceptibility/ suitability map) is considered as the absence areas 239 

(e.g., the landslide-free areas) and the upper part as the presence locations (e.g., the landslide 240 

affected areas). For instance, let us assume a 50% cutoff for a landslide susceptibility map of 241 

particular interest with 20 landslides located within the lower 50% (i.e., low to moderate 242 

susceptible areas). In this case, those 20 samples will be considered as error sources (denoted as 243 

the ‘false negative error’, that has been discussed later) by the proposed tool and consequently, it 244 

can reduce the performance of the predictive model since the landslides that have already occurred 245 

are supposed to be located within the areas with the highest susceptibility values. The 50% cutoff 246 

value is also quite common in existing literature, especially for the equally balanced 247 

presence/absence datasets (e.g., Lombardo and Mai, 2018). However, the prevalence can be 248 

considered as the best alternative since it is able to represent the inherent predominance of a 249 

phenomenon and it is not controlled by the experimenter. Additionally, quantifying the prevalence 250 

of a natural phenomenon is somewhat problematic (discussed in Section 5.3). Most of the data 251 

mining models can circumvent this issue by calculating the prevalence by means of estimating the 252 

best possible distribution of an event using generalized algorithms which is common in the 253 

presence-only models (e.g. Maximum entropy model). 254 

3.2. Cutoff-dependent Approach 255 
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Cutoff-dependent metrics include True Positive Rate (TPR), True Negative Rate (TNR), False 256 

Positive Rate (FPR), False Negative Rate (FNR), Misclassification rate, Accuracy, Positive 257 

Predictive Value (PPV), False Discovery Rate (FDR), Negative Predictive Value (NPV), False 258 

Omission Rate (FOR), F-score, Matthews Correlation Coefficient (MCC), Informedness 259 

(Bookmaker informedness; BM), Markedness (MK), Threat Score, Equitable threat score, True 260 

skill statistic, Heidke’s skill score, Odds ratio, Odd ratio skill score, and Cohen's kappa. Table 4 261 

details the equations for all of the cutoff-dependent metrics.  262 

Table 4 HERE 263 

The TPR, also termed as the sensitivity, recall, or hit rate, represents the probability of correctly 264 

predicting the positives as observed in reality (given as True positives (TP) / total number of 265 

positives (P)). The TNR, termed as the specificity, aims to quantify the probability of correctly 266 

predicting the negatives as observed in reality (given as true negatives (TN)/ total number of 267 

negatives (N)). The FPR, also known as the “1–specificity” or fall-out, aims to indicate the 268 

probability of incorrectly predicting a non-event location as an event (given as false positives 269 

(FP)/ total number of negatives (N)). Furthermore, the FNR, also denoted as the miss rate, 270 

indicates the probability of incorrectly predicting an event location as a non-event (given as false 271 

negatives (FN)/ total number of positives (P)). This quantity is used to express how often the 272 

model wrongly predicts absences. Misclassification rate undertakes both the false negative and 273 

false positive values and therefore reflects an overall error rate ((FP+FN)/total). The accuracy (or 274 

the model efficiency) is the opposite metric compared to the misclassification rate, since it is able 275 

to highlights the overall success of the predictive model ((i.e., TP+TN)/total). Overall, this metric 276 

shows how often the predictive model is correct. The PPV, also denoted as the confidence or the 277 

precision in data mining approaches, or as Powers (2011) analogously calls it as the accuracy of 278 
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predicted positives, is used to measure the proportion of predicted presences that correctly 279 

represent the real presence. As a complement component of the PPV, a false discovery rate is 280 

applied to conceptualize the Type I errors (i.e., rejection of a true null hypothesis) (Benjamini 281 

and Hochberg, 1995). In accordance with the PPV, the NPV is used to measure the precision of 282 

the predictive model in predicting the absence (or non-event) locations. However, this metric 283 

largely ignores how well the model is able to handle the presence locations and that the FOR 284 

simply is the complement of the NPV. The F-score is also called the harmonic mean of the 285 

precision and the recall (i.e., sensitivity) where it reaches its best values at 1 (i.e., best precision 286 

and recall) and the worst at 0. In essence, MCC is a correlation coefficient metric computed 287 

between the observed and the predicted binary classifications, and it is able to undertake a true 288 

and a false positive and negative value. The terms informedness and markedness, implemented in 289 

the PMT, were introduced initially by Powers (2011). Informedness, however, is likely to be the 290 

only unbiased indicator in the confusion matrix and it measures the probability that an informed 291 

decision that is being made rather than guessing, either the correct or the incorrect decision (due 292 

to overtraining, atypical data, or even deliberately) (Powers, 2011). Markedness, also referred to 293 

as deltaP in psychology, is the complementary pair of informedness indicating the probability 294 

that an outcome is marked by the predictor (marker). Threat Score also penalizes the rare events 295 

since some success of correct predictions of a less frequent event might be resulted out of 296 

random chance. Although Threat Score uses different statistics in conjunction, the actual sources 297 

of misclassification error are not discernible. Equitable Threat Score also known as the Gilbert’s 298 

skill score (Gilbert, 1884; Schaefer, 1990), the equitable threat score functions as per above 299 

based on critical success score, but it is also used to eliminate the hit rates (i.e., true positive 300 

rates) originated by random chance. True skill statistic (TSS) (also called the Hanssen and 301 
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Kuipers discriminant or Pierces skill score), is applied to measure the ability of a predicted value 302 

to discriminate between the events and the non-events, using all of the elements in the confusion 303 

matrix. The Heidke’s Skill Score operates according to the accuracy level but it is also used to 304 

improve its meaning by eliminating the true positive rates that would be expected to occur by 305 

chance (Heidke, 1926). Odd Ratio is used to measure the odds that an event (or an outcome) will 306 

occur given a particular exposure, compared to the odds of the event occurring in the absence of 307 

that exposure (Pepe et al., 2004). Odd Ratio Skill Score (also known as the Yule’s Q) rescales 308 

the values of the odds ratio into the -1 and the +1 range. In addition, Kappa is essentially a 309 

measure of how well the model has performed as compared to how well it would have performed 310 

purely by chance, and this would enable the modeler to better understand the true outcome of the 311 

model in respect to the random occurrence of that value.3.3. Cutoff-independent approach 312 

This approach, included in the PMT, includes two different methods that can be categorized as: 313 

(1) receiver operating characteristic (ROC) curve, and (2) success-rate curve (SRC) and 314 

prediction-rate curve (PRC). 315 

3.3.1. ROC curve 316 

The ROC curve, used typically in risk assessment through predictive model results, simply 317 

plots the sensitivity (i.e., true positive rates) on the Y-axis against the 1–specificity (i.e., false 318 

positive rate) on the X-axis (Gorsevski et al., 2006). The area under the ROC curve (denoted as 319 

AUROC, bounded by [0, 1]), is the actual measure of the model evaluation since it generates a 320 

quantitative value of the performance (Pontius and Schneider, 2001; Mas et al., 2013; Swets, 321 

2014). The closer the AUROC is to unity, the better is the performance. The ROC curve can be 322 

interpreted differently depending on the dataset; it can address the learning capability (or the so-323 
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called goodness-of-fit) of the model if the training set is used for plotting; it can also infer the 324 

predictive skill of the model if the validation set is used (Fawcett, 2006; Lombardo and Mai 2018).  325 

In this regard, the proportion between training and validation samples is highly relevant. A 326 

70:30% split is quite common among the researchers (Pradhan and Lee, 2010). Although different 327 

partitions have also been used, such as 80:20% (e.g. Lipovetsky, 2009), 70:30% (e.g. Choubin et 328 

al., 2019) or even 50:50% (e.g. Deo et al., 2016; Deo et al., 2017), there is no empirical consensus 329 

on the best partition since this is more of an expert-user based decision. Irrespective of this, having 330 

a large amount of inventory data (i.e., number of events), one can assign a greater percentage of 331 

such data to train the predictive model and a lesser percentage for validation. Opting for a suitable 332 

approach to partition the training and validation sets is yet another crucial matter that has been the 333 

subject of many studies, e.g. Kornejady et al. (2017). In this regard, the random sampling, self-334 

organizing maps for input selection, Mahalanobis distance, excerpting separate training/validation 335 

areas, and temporal partitioning are all some of the common sample partitioning approaches. For 336 

more details, readers can refer to the references therein. 337 

3.3.2. Success-Rate Curve (SRC) and Prediction-Rate Curve (PRC) 338 

The SRC is a measure of the learning capability of the model, while the PRC is able to examine 339 

the predictive power. Although the SRC and the PRC may share some common features with the 340 

ROC, the ROC in particular uses almost all the elements of the confusion matrix. This includes 341 

positive (TPR and TNR) and negative (FPR and FNR) aspects of the model, while the SRC and 342 

the PRC are calculated independently from the confusion matrix. In fact, the SRC represents the 343 

cumulative areal percentage of the susceptibility classes (i.e, from the highest values to the lowest) 344 

on the X-axis against the areal cumulative percentage of the training set located within those 345 
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susceptibility classes on the Y-axis (Chung, 2006; Blahut et al., 2010). In terms of its physical 346 

interpretation, a steeper SRC curve is used to indicate that more events fall within the highly 347 

susceptible classes; i.e., a good learning skill. The PRC curve, however, follows the same plotting 348 

process as the SRC, but the training data are replaced by the validation set. 349 

4. Testing the Efficacy of PMT: Selected Case Studies 350 

In this section, the proposed PMT is applied to 5 distinct, real geo-environmental modelling 351 

tasks and case studies in order to robustly investigate its credibility and generalizability, and also 352 

to demonstrate the potential benefits in considering different evaluation criteria promulgated by 353 

the PMT. It is imperative to note that the selected case studies exhibited various noticeable 354 

characteristics in terms of the issue under investigation, the modelling strategies, the overall 355 

frameworks and the predictive model type, spatial or temporal scales considered and the 356 

geographical and climatic conditions that influence the results and implementation of the model. 357 

To provide a robust evaluation of the proposed PMT, the most relevant and a relatively diverse 358 

range of data sets were obtained from most recently conducted research studies and also some 359 

newly implemented models based on: (1) gully erosion prediction mapping in two small 360 

catchments of central-western Sicily, Italy (Conoscenti et al., 2018) (2) flood hazard modelling in 361 

the Galikesh region, Iran (Rahmati and Pourghasemi, 2017) (3) drought risk modelling in south-362 

east Queensland, Australia (Dayal, 2018; Dayal et al. 2018) (4) landslide susceptibility modelling 363 

in the Kon Tum province, Vietnam (5) soil digital modelling in South Dakota, USA (Fig. 1). Each 364 

of these studies employed a range of geo-spatial models where the PMT is used to provide a 365 

consolidated assessment of its efficacy in providing greater insights into the practicality of the 366 

modelling various frameworks.  367 
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An overall description of the study areas and the applied models are provided as follows whereas 368 

further details of the modelling approaches are provided in the references therein.  369 

A detailed flowchart of the various studies is shown in Fig. 2. 370 

Fig. 1 HERE 371 

Fig. 2 HERE 372 

4.1. Gully Erosion Modelling (Italy) 373 

Intense farming activities in two small catchments of central-western Sicily, Italy, have 374 

expedited many erosion processes. In particular, the gully erosion has led to the landscape 375 

dissection and massive soil loss (Conoscenti et al., 2018). The gullies in the study area have 376 

developed as a result of the interrelation of several geo-environmental factors and human activities 377 

such as access roads, parcel borders, wheel tracks, and plow furrows. In addition to the 378 

multivariate adaptive regression splines (MARS) model already utilized by Conoscenti et al. 379 

(2018) for gully erosion prediction mapping, in this paper we used the generalized linear model 380 

(GLM) to conduct a fair comparison of their approach (Fig. 3). 381 

Fig. 3 HERE 382 

4.2. Flood Hazard Modelling (Iran) 383 

Over the last few decades, the Galikesh region, located in the Golestan province, in the north-384 

east of Iran, has witnessed severe flood events due to the particular climatic and topo-hydrological 385 

conditions that resulted in many economic losses and causalities attributable to environmental 386 

mismanagement (e.g., deforestation, overgrazing, and over-exploitation). Since flood-inundation 387 

has been one of the major issues of the urban areas in Golestan province for decades, Rahmati and 388 
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Pourghasemi (2017) used evidential belief function (EBF) to investigate the flood-prone hotspots 389 

(Fig. 4). In this paper, we have implemented the proposed PMT as a statistical and decision-390 

support tool to provide an inclusive performance evaluation of their model. 391 

Fig. 4 HERE 392 

4.3. Drought Risk Modelling (Australia) 393 

An area located in the south-east of Queensland, Australia, encompasses intensive agricultural 394 

activities, such as grazing, horticulture, and animal production, other than the densely populated 395 

localities, which require a reliable water supply. As the study area is affected by severe and 396 

frequent drought events, Dayal (2018) and Dayal et al. (2018) attempted to develop a spatial 397 

drought risk map by employing the Bayes’ theorem (i.e., classifying spatial indicators), fuzzy 398 

logic (i.e., standardizing spatial indicators), and fuzzy GAMMA overlay (i.e., aggregating drought 399 

vulnerability, exposure, and hazard indices) technique (Fig. 5). Employing the findings of that 400 

study, in this paper we utilized their final drought risk map as a potential input to the proposed 401 

PMT, enabling us to examine the different aspects of its performance over the geospatial scale. In 402 

order to investigate the influence of the cutoff values on the performance analysis, three different 403 

cutoffs, i.e., 50%, 70%, and 90% were taken into account and the results were compared, as 404 

illustrated in Fig. 6. 405 

Fig. 5 HERE 406 

Fig. 6 HERE 407 

4.4. Landslide Susceptibility Modelling (Vietnam) 408 
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Landslides are the dominant geo-hazardous elements in the Kon Tum province of Vietnam. 409 

Hence, this study has used two novel data mining models including maximum entropy (MaxEnt) 410 

and a recently developed model named as BayGmmKda (Bayesian-based ensemble of Gaussian 411 

mixture model and radial-basis-function Fisher discriminant analysis) (Tien Bui and Hoang, 2017) 412 

(Fig. 7). This study also uses the proposed PMT to highlight the potential asymmetries among the 413 

performance metrics. 414 

Fig. 7 HERE 415 

4.5. Soil Digital Modelling (USA)  416 

Soil digital modelling has received significant attention amongst scientists in recent years, 417 

where computer-assisted pedometric-predictive mapping of soil properties has led to the creation 418 

of an inclusive geographically-referenced soil database. To this end, an attempt is carried out to 419 

map the soil bulk density (BD) predictive distribution in South Dakota, USA, by obtaining soil 420 

bulk density samples of the study area and using two data mining models, namely the artificial 421 

neural network (ANN) and decision tree (DAT) (Fig. 8). We have delineated the need for 422 

rendering quantitative suitability maps into probability values to be able to use the proposed PMT 423 

for further assessing the models’ performance. In general, there is a few differences between 424 

models’ requirements. For example, DAT model does not require a separate dataset to optimize 425 

parameters and just uses the training dataset for model building (i.e., learning and predicting), 426 

whereas ANN model uses both the training and validation datasets for model building, validation, 427 

and reevaluation and tuning parameters. Therefore, in ANN model, soil inventory dataset was 428 

divided into three subsets: training (50% of input data) and 25% each for validation and testing. 429 

For comparison sake, the same 25% testing dataset was kept in a vault and used for assessing the 430 

generalization power of both the ANN and DAT models.  431 



21 
 

 432 

Fig. 8 HERE 433 

5. Results and Discussion 434 

The following results and the subsequent discussions are based on Table 5, containing all the 435 

previously-described performance metrics that have been calculated by means of the newly 436 

proposed GIS-based PMT extension system. After a preliminary diagnosis of the models in each 437 

of the aforementioned case studies, a detailed comparison of the performance metrics is provided.1  438 

Table 5 HERE 439 

5.1. Gully Erosion Modelling, Italy 440 

According to the AUROC values, both the GLM and the MARS model show excellent 441 

performance where the differences in the AUROC values were almost negligible. According to 442 

Conoscenti et al. (2018), the excellent performance of these two models is indebted to a well-443 

investigation of the gullies in the study area and opting the main controlling factors that best 444 

defined the occurrence mechanism. This process has been carried out by building a base model 445 

comprised of the slope gradient and the contribution area and is then fed by nine other geo-446 

environmental factors one at a time. Moreover, the exemplary features of the chosen model have 447 

also led to a significantly good performance, defined by measures such as the handling of all types 448 

of factors (i.e., both categorical and continuous) and well detecting the interactions among the 449 

factors and also between the factors and the response event. Notably, Gómez-Gutiérrez et al. 450 

                                                           
1 Note: the discussion provided here follows a particular way as the inferences derived from each case study is 
modified or reemphasized perpetually on the basis of the collective information obtained from different case studies 
and modelling scenarios. It is tried to be err on the side of caution to avoid raising any misleading points and 
engaging in dogmatic defense of one approach to the detriment of another. 
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(2015) also applied the MARS model to predict the gully occurrence in a relatively close (ca. 85 451 

km) catchment with similar characteristics; however, the AUROC values stood at the range of 452 

about 0.75-0.85, which was lower than that of Conoscenti et al. (2018). This highlights the 453 

importance of making a well-structured input data and the calibration/ validation techniques. To 454 

this point, both models seem to have rather similar performances. 455 

However, a greater discrimination between models become apparent, as present in the results, 456 

after breaking down these overall precision metrics into smaller components (i.e., considering 457 

simpler indices) that explain the efficacy of the approach more elaborately. Considering the 458 

misclassification rate of both models, it is evident that the GLM approach has most likely 459 

misclassified the presence and the absence more than the MARS model. Also, accuracy, as 460 

understood to be the opposite concept of misclassification rate, attested the same pattern, where 461 

the MARS model exhibited a higher accuracy in the classification of the presence and the absence 462 

localities generated by the spatially-relevant model.  463 

Further exploring the confusion matrix, it becomes evident that the higher value of the 464 

misclassification rate in the GLM approach is directly rooted in the false negative rate. That is, the 465 

GLM approach appears to have misclassified a number of ‘presence locations’ as the ‘absence 466 

locations’ (in fact, this happened almost 13 folds greater than the MARS model). This indicates 467 

that the GLM approach has somewhat failed to locate the gullies in notable study areas, and 468 

therefore, may require further careful consideration prior to its application for real-life decisions. 469 

In fact, the present analysis shows that this error appears to have also spread out to the other 470 

metrics such as the sensitivity, F-score, NPV, and the FOR. The reason for the high AUROC value 471 

for the GLM approach is plausibly due to that the latter is a cutoff independent metric, while the 472 

confusion matrix elements have been calculated based on a 50% cutoff value. However, this does 473 
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not justify the GLM’s underperformance at misclassifying the absence locations, since both 474 

predictive models are compared under the same situation. 475 

 As explained in the Theory section, in such situations, the MCC may be the best representative 476 

of the model’s performance regarding the agreement between the observations and predictions. 477 

One reason for this is because, as opposed to AUROC, AUSRC, and AUPRC, the MCC values the 478 

cost of error and attempts to avoid to circumvent or truncate any error sources. Expectedly, the 479 

MCC has well differentiated the performance of both MARS and GLM approaches, where the 480 

MARS model with a value close to 1 almost represents a perfect model, while the GLM approach 481 

with a value below 0.5 has shown a lesser degree of agreement between the observations and 482 

predictions. This notion raises the possibility of some randomness (i.e., being closer to zero). The 483 

underperformance of the GLM approach highlights the disadvantages of using a predictive model 484 

that is built on linear functions. Such a model is largely incapable of considering the nonlinear 485 

interactions between the causal factors and the response event, may be sensitive to the number of 486 

predictors, and more importantly, it could be sensitive to the outliers which are robustly handled 487 

by non-linear basis functions in the MARS model. Given that the asymmetries of the cutoff-488 

dependent and –independent metrics are now more evident, a greater degree of scrutinization is 489 

perhaps required, as provided by a more extensive discussion in the following real-life case 490 

studies. 491 

5.2. Flood hazard modelling, Iran 492 

Recently, Evidential Belief Function (EBF), as a bivariate statistical model underpinned by the 493 

Dempster-Shafer theory (Shafer 1976), has been adopted for flood inundation and susceptibility 494 

mapping in Iran (Rahmati and Pourghasemi, 2017). Starting with the AUROC values, the overall 495 
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performance is acceptable, with respectively, 0.86 as the learning capability (obtained from the 496 

training set) and 0.78 as a predictive skill (obtained from the validation set). Higher learning skill 497 

compared to the predictive capability is common, and generally expected since the model’s 498 

parameters have been calibrated on a much larger data sample compared to the validation set. 499 

However, this might question the possibility of overfitting, where a statistical model begins to 500 

describe the random error in the data rather than the relationships between variables; that is, the 501 

model becomes accustomed to the pre-used set of data. In this regard, simple statistical 502 

assumptions have been identified as one of the main sources of overfitting issues, especially in 503 

bivariate statistical models. This can negatively influence the generalization power and the 504 

transferability of the model’s results to the validation set/ areas/ time periods.  505 

Considering the results presented here, all of the favorable qualities of the model (i.e., all the 506 

performance metrics highlighting the success of the model) have deteriorated to some extent in the 507 

model validation stage. Although according to the AUROC classifications provided by Hosmer 508 

and Lemeshow (2000), the values greater than 0.7 and 0.8, respectively, indicate an acceptable and 509 

excellent performances, which in turn somewhat addresses the possibility of overfitting. This is 510 

also evident in the AUSRC and AUPRC values, indicating that the predictive model is 511 

respectively well-performing in terms of both the learning capability and the predictive skill. As 512 

for the AUSRC and AUPRC values, the differences are discernable when compared to the 513 

training- and validation-derived AUROC values. These differences are conceivable, given that the 514 

AUSRC and AUPRC are calculated merely based on the presence localities. Therefore, by using 515 

the AUSRC and AUPRC, the potential error sources (i.e., polluting the presence population to 516 

some absences which are incorrectly classified as positives) are left unclear and some degree of 517 

success (i.e., correctly detecting the absence locations) are also not acknowledged and not 518 



25 
 

included in the final calculation. This makes using the AUSRC and AUPRC less favorable to use 519 

due to their erroneous behavior (Frattini et al., 2010).  520 

A closer scrutinization appears to shed more light on the randomly-driven performances and 521 

consequently, the weakness of the model or the input data. Considering the MCC—so far 522 

suggested as an all-inclusive metric in this study—the values greater than zero (i.e., random 523 

agreement) reveals a promising level of precision; however, the values may not be high enough 524 

(i.e., far from a perfect precision to be certain of a non-random performance. In particular, the 525 

level of disagreement between the observed and the predicted values appears to increase in the 526 

validation stage. Other comprehensive measures, such as the true skill statistic, informedness, and 527 

markedness are also in concurrence with the MCC value. 528 

The Heidke’s Skill Score, well-known for providing a robust accuracy value by diminishing the 529 

TPR values generated by random chance, shows how the preliminary accuracy values (i.e., 530 

efficiency) is likely to decay. Similarly, the Cohen’s Kappa aims to address the random aspect of 531 

the model performance and provides new values in agreement with the latter. However, as stated 532 

in our recent discussion, one should be cautious when using the cutoff-dependent metrics. 533 

Drawing relevance from a report given by Frattini et al. (2010), the score-based metrics, despite 534 

providing valuable insights, highly relies on certain cutoff values. That is, different cutoff values 535 

might result in different performance values. However, this assumption still does not contradict 536 

using the score-based metrics for a comparison purpose, since, as stated above, all the predictive 537 

models were supposed to be compared under the same cutoff value(s) (e.g., the Italian case study). 538 

To test this concern, we have applied three different cutoffs for assessing the performance of a 539 

drought risk map developed in the south-east region of Queensland, Australia. 540 
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To elaborate further, we provide two assumptions regarding the reduction in the accuracy of the 541 

EBF metric. The first assumption pertains to the model’s structure. Bivariate statistical models 542 

have long been criticized for ignoring the interactions among the predictors, which can have direct 543 

(and largely negative) influence on both the learning and the predictive skills. Moreover, as stated 544 

by Ruspini et al. (1992), and more recently Reineking (2014), a need for categorizing factors with 545 

continuous nature and also presenting a generalized probabilistic reasoning limit the application of 546 

the EBF metric only to some specific problems (e.g., detecting the uncertainty sources) rather than 547 

a general use. However, a review of the previous work of Rahmati and Pourghasemi (2017) 548 

reveals that the two other well-known data mining models (i.e., boosted regression trees and the 549 

random forest) have been used in addition to the EBF and surprisingly, we noted that the EBF 550 

outperformed both of the data mining models, although the differences were negligible (i.e., 551 

AUROCs= 0.73-0.78), which leaves us with the second hypothesis.  552 

Regarding the latter, the input data can be responsible for such limited performances of all three 553 

models. Reviewing the model input data shows that only 63 flooding points were used as an input 554 

for the modelling process in the period of 2001-2009, let alone that they were categorized into two 555 

sets of 47 (training) and 16 (validation) locations which seems to be rather small to build a proper 556 

predictive model. Complementing the inventory map by collecting more data from a broader time 557 

period would provide a larger information matrix for the models to rely on. This highlights a note 558 

given by Ruspini et al. (1992); “the alleged lack of decision-support and counterintuitive nature of 559 

evidential belief models, in fact, indicates the lack of basic informational shortcomings”. 560 

5.3. Drought Risk Spatial Attribution and Modelling, Australia 561 
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For a drought risk map produced in the south-east of Queensland, Australia, the following 562 

inferences can be derived from the validation stage only in order to focus on the alteration of the 563 

performance metric values. The question mentioned above regarding the liability of the cutoff-564 

dependent metrics is answered by means of producing three cutoffs thresholds, i.e., 50%, 70%, 565 

and 90%, and then comparing these results.  566 

It was evident that the AUROC and AUSRC expectedly yielded intact performance values 567 

through all of the three cutoffs (Table 5). Based on this, the predictive skill of the fuzzy model 568 

appears to be well performing. However, the values of all the cutoff-dependent metrics drastically 569 

change at each cutoff. It is evident that by a transition from 50% to 90% cutoff, the area of danger 570 

zone appears to shrink (as illustrated in Fig. 8). Moreover, at each cutoff threshold, a different 571 

population of the negatives and the positives appears to fall within the safe and danger zones.  572 

The direct impact of these transitions on the results is transparent in Table 5.  As appears, 573 

moving from 50% to 70% cutoff, the FN error decreases to a certain level and adds to the TN, 574 

serving as an advantage point for the model, while the false positives and true positives have 575 

remained intact. Moreover, a vivid increase is also discernible in the values of the cutoff-576 

dependent metrics. However, another step towards the 90% cutoff backfires, where—similar to the 577 

previous transition—although the FN value decreases and adds to TN, most of the TP population 578 

migrates to FP category. This expectedly decreases the values of some cutoff-dependent metrics 579 

such as F-score and PPV. Although 70% cutoff performed better than 50% and 90% cutoffs. Such 580 

a choice would not be advisable for the other study areas and certainly not for the other predictive 581 

models, because it is only in favor of this particular predictive model and the specific distribution 582 

of the positive/negative points throughout the study area.  583 
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As previously mentioned in the Theory section, the only suitable substitute for the cutoff value 584 

is the prevalence of the phenomenon, which again is difficult to ascertain, unless one constructs an 585 

inclusive archive of the ‘presence-absence locations’ by visiting numerous sites. This type of data 586 

compilation is more common in species distribution assessment, whereas, in natural hazard-related 587 

studies, extracting absence locations are executed as an additional stage after inventory mapping, 588 

based on random selection or other analytical strategies. Drawing on these inferences, it is 589 

reasonable to ascertain that using cutoff-dependent performance metrics may not be practical for 590 

individual model assessment, unless it is accompanied by mentioning the cutoff value from which 591 

the metrics’ values are extracted (i.e., 50% for Iran, Italy, and all the following case studies), or it 592 

is carried out by setting the prevalence as the cutoff value.  593 

As with the case of Iran, the AUROC yielded the most accurate performance value that a 594 

spatial modeler can rely on. Thus, based on current arguments, we confirm the second assumption 595 

in which the incapability of the models (i.e., EBF, BRT, and RF) to progress is due to the 596 

unsatisfactory input data (i.e., either scarce inventory, inadequate spatial indicators or spatial 597 

resolution) rather than the models’ structure. Analogously, the AUROC and AUPRC values are 598 

more representative for the fuzzy model’s performance in Queensland, Australia. Also, they are 599 

comparatively in accordance with the validation method of Dayal (2018) and Dayal et al. (2018), 600 

based on which the correlation of the drought risk map and the soil moisture/ rainfall departure 601 

maps confirmed plausible predictive skills.  602 

Comparing the different predictive models (i.e., choosing the premier model among the many 603 

alternatives) or different scenarios of a specific model (i.e., opting the best scenario from different 604 

sample partitioning techniques, different spatial resolution, and so forth), is still feasible by using 605 

the cutoff-dependent metrics as they do provide valuable information that can lead to a more 606 
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transparent distinction between the choices. In particular, the cutoff-dependent indices can assist 607 

us with distinguishing the features of the GLM and the MARS models for the case study in Italy. 608 

Hence, in the following case studies, the cutoff-metrics are used only for a comparison and 609 

selection of the better-performing predictive model. 610 

5.4. Landslide Susceptibility Modelling, Vietnam 611 

In accordance with the analytical evidence from the results of previous case studies, this study 612 

avers that the use of the cutoff-dependent metrics can be informative for a predictive model 613 

comparison. The inferences of this case study are interesting in several ways, showing that how 614 

one should interpret the latter with some degree of caution. According to the AUROC and 615 

AUPRC values of MaxEnt and BayGmmKda models tested in Vietnam (Table 5), the MaxEnt 616 

appears to slightly excel in predictive skill, although both models show an excellent performance 617 

(AUROC> 0.8). On the other hand, asymmetries are evident in the values of the cutoff-dependent 618 

metrics, as we have categorized them as the ROC-accordant and -discordant metrics (see Table 6). 619 

Table 6 HERE 620 

According to Table 6 and the relevant equations provided in Table 4, both categories support 621 

high TP and TN values, while there is a subtle difference that makes them oppose. In fact, a 622 

model’s success in FP stage is highly favored in the ROC-accordant metrics, while the discordant 623 

group leans towards penalizing a model’s downfall in the FN stage. This is evident in the 624 

confusion matrix of the MaxEnt and BayGmmKda, in which the MaxEnt shows an outstanding 625 

performance with a zero FP value, while the FN population is drastically increased in such a way 626 

that it even surpasses the FN+FP population in BayGmmKda model. In this case, the 627 

BayGmmKda has well balanced the FP and FN population that accords to Table 7. As previously 628 
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mentioned in the Theory section, although a zero FP (Type I error) in MaxEnt results cause no 629 

infrastructural and study costs, a drastic increase in FN (Type II error) values can cause massive 630 

casualties via misrepresenting an area as a safe location. 631 

Table 7 HERE 632 

Considering the structure of these predictive models, as opposed to the presence-absence nature 633 

of the BayGmmKda, MaxEnt is considered as a presence-only model where some randomly 634 

chosen pseudo-absence locations (i.e., background samples) help the model differentiate the 635 

presence locations and eventually predict an occurrence pattern. Therefore, presence-absence-636 

based validation metrics (i.e., all the metrics provided in this study) may not be a good fit for the 637 

performance assessment of MaxEnt. This being the case, AUPRC might be the best fit for MaxEnt 638 

and in fact, it has clearly distinguished the performance of both models. However, according to 639 

Phillips et al. (2006), at least, those background locations should be considered as ‘pure absences’ 640 

to be able to graph a ROC curve, and also to calculate the metrics derived from confusion matrix. 641 

This is an inevitable process for the MaxEnt. Another critical inference of this case study 642 

underlines that although cutoff-dependent metrics are valuable metrics for comparing different 643 

models, they are not necessarily supposed to be in line with cutoff-independent metrics. This is the 644 

reason why MaxEnt and BayGmmKda both excel, but in different areas. Therefore, relying on 645 

what we have conceived so far, each cutoff-dependent or -independent metric has a unique 646 

indication of a model’s performance.  647 

There is a consensus that selecting the best predictive model can be a matter of the user 648 

preference and study area’s goals, which has been previously well-delineated in Goetz et al. 649 

(2015). This can be carried out by relying on a pros and cons list for all the metrics and assessing 650 
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whether they work in agreement with the objective(s) of the project. Taking aside the 651 

disadvantages of cutoff-dependent metrics, some critics have also been moved towards AUROC 652 

(Lobo et al., 2008). The main complains pertain to ignoring the PPV (addressed earlier in Theory 653 

section) and equally weighting omission (not recording some instances) and commission (miss-654 

recording some instances) errors. However, this directly stems from predefining a series of 655 

thresholds and the presence-absence fabric of AUROC which is not only specific to AUROC but 656 

rather all the performance metrics. Furthermore, these limitations do not question the metric itself, 657 

but rather the application of them. For instance, ROC curves were first employed in the study of 658 

“discriminator systems for the detection of radio signals in the presence of noise in the 1940s”, 659 

following the attack on Pearl Harbor, USA (Garrett et al., 2008). Even the use of AUROC in 660 

clinical biochemistry is carried out under a presence-absence condition (Obuchowski et al., 2004). 661 

Therefore, in order to employ AUROC and other cutoff/prevalence- independent metrics in a 662 

probabilistic environmental modelling context, their limitation should be accepted in favor of their 663 

valuable outcomes regarding the performance evaluation. 664 

Under these premises, we aver that the project study goal can assist the decision maker with 665 

opting the well-performing model. For instance, if the number of opposing metrics matters the 666 

most, the BayGmmKda would be the well-performing one. In particular, many municipal 667 

authorities may decide in favor of public safety, which in turn can end in an immediate rejection 668 

of the MaxEnt due to having considerable Type II error that can also cause notable fatalities. 669 

Comparatively, if the uncertain nature of the cutoff value is in question, one can choose the 670 

decisive judgment of the AUROC. 671 

5.5. Soil Digital Modelling, USA 672 
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As previously mentioned, this case study represents a unique application of the proposed PMT 673 

for performance assessment of the Bulk Density (BD) lateral distribution in South Dakota, USA. 674 

In contrast to the previous applications of data mining methods that deal with predicting the 675 

probability of an occurrence, in this study we employed the ANN and DT approaches for 676 

predicting an actual quantity of BD whose actual amounts can be measured in the field. Measuring 677 

the BD samples from different location of the study area, root mean square error (RMSE) can be a 678 

good metric to test the accuracy of the results (i.e., an approximated standard deviation of data) if 679 

the data are Gaussian (i.e., rich data) and devoid of any outliers (Chai and Draxler, 2014). 680 

However, RMSE or accuracy, in general, can be biased and may not reflect the total precision of a 681 

predictive model, warranting the need for a consolidated list of model evaluation metrics that 682 

provide more extensive insights into the predictive performance.  683 

In respect to the above discussion, the proposed PMT approach can be a good alternative, but 684 

the nature of the prediction map should be rendered into its probability terms or at least as an 685 

indication of the probability. That is, the higher values of the prediction map can indicate the 686 

greater probability of having higher BD values, and vice versa. By doing so, the cutoff-dependent 687 

and -independent metrics have been calculated based on which, almost all the indices congruently 688 

introduce ANN as a better-performing model compared to DAT; the rest of opposing metrics (e.g. 689 

specificity and PPV) show negligible differences. This is in agreement with those reported by 690 

Taghizadeh-Mehrjardi et al. (2017) where the ANN was seen to outperform the support vector 691 

machine (SVM) model in the mapping of soil organic matter distribution. 692 

6. Synthesis and Conclusion 693 
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This paper provides a novel scientific contribution towards the design and implementation of an 694 

adaptive, largely automated and user-friendly GIS-based spatial model assessment system, 695 

denoted as the Performance Measure Tool (PMT). PMT can be used to address existing challenges 696 

in pragmatic evaluation of predictive models in diverse contexts, and generally, for any scientific 697 

branch where information has a spatial connotation. The PMT encloses the relevant mathematical 698 

formulations to make it an easy-to-use software; it has the added capability to evaluate the 699 

accuracy of the spatial modelling approach based on the different cutoff-dependent and -700 

independent evaluation criteria. The PMT is considerably flexible, and hence, it can be widely 701 

applicable in multiple scientific and engineering applications where spatially-relevant predictive 702 

models are tested. The approach has the potential to be applied in diverse contexts, as verified in 703 

this research study, to extend its usage from geo-environmental spatial models to fields such as 704 

medical geography and epidemiology where data-driven approaches are adopted to generate 705 

predictive models and such models require robust comparison with several benchmark models and 706 

real-life (observed) datasets.  707 

In context of proposing an additional GIS-based predictive model assessment tool, the 708 

consolidated metrics that are generated and evaluated by the proposed PMT, certainly provides a 709 

new practical pathway for real-life decision-makers who are seeking a better performing 710 

predictive model (relative to any other comparative model). Based on contested reasons, and 711 

evaluations of PMT with several studies collated in this research paper, real-life decision-makers 712 

can deduce the grounds on which their predictive models performs better than the others prior to 713 

implementing them for practical use. By accommodating multiple types of real-time geo-714 

environmental modelling instances in this study, the take-home messages are as follows. The use 715 

of a merely row-wise or a column-wise calculated index from the confusion matrix is not a robust 716 
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approach for model selection as this can ignore the more practical concepts considered by their 717 

counterpart tools.  718 

In contrast, some of the model evaluation indices (i.e. cutoff-dependent and –independent ones) 719 

generally use a collective information of the matrix in such a way that a set of multiple statistics 720 

are used in conjunction with each other. Notwithstanding this, some cutoff-dependent metrics may 721 

infer the same connotation which they can be used interchangeably (e.g., threat score and 722 

equitable threat score, or the odds ratio and the odds ratio skill score). Moreover, the choice of 723 

using the cutoff-dependent metrics over each other without a prior knowledge can also constitute 724 

an unjust approach since each metric is able to tackle a different aspect of the model performance. 725 

However, all metrics can be highly sensitive to the cutoff values so, they should be suggested only 726 

for the model comparison.  727 

As demonstrated in the theory of PMT and relevant case studies, it becomes unambiguous that 728 

the measurement of the prevalence of the studied phenomenon is highly advisable in order to 729 

ascertain reliable cutoff-dependent values. Doing so, they are likely to be applicable even for the 730 

performance assessment of an individual model, and also, they could be comparable with cutoff-731 

independent metrics.  732 

On the other hand, the cutoff-independent metrics (i.e., AUROC, AUSRC, and AUPRC) can 733 

decisively screen the premier model regardless of the changes in their cutoff values. However, the 734 

AUROC is also underpinned by some specific assumptions so that using it would require 735 

accepting its mathematical fabric. Furthermore, AUSRC and AUPRC only support presence 736 

locations, they show an erroneous behavior and in particular may result in an underestimation of 737 

performance compared to AUROC. Moreover, all cutoff-dependent and -independent metrics can 738 
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occasionally mislead by providing different results and consequently different model ranks. In 739 

such case, selecting the reference model is strictly tied to the aim of the research and specific 740 

aspect(s) of interest. We also concluded that compartmentalizing models in different performance 741 

categories is not feasible since the matter of performance itself is quite relative.  742 

We also propose the following scenario-based decision-making inferences: 743 

I. Italy and USA case studies: having more than one model→ if AUROC values converge 744 

and the changes are negligible→ using other cutoff-dependent metrics to derive the 745 

better-performing model. 746 

II. Iran and Australia case studies: having one model→ no access to prevalence value 747 

change→ cutoff-dependent metrics change drastically by altering cutoff values→ use 748 

AUROC as the decisive metric. 749 

III. Vietnam case study: more than one model→ metrics are opposing and taking different 750 

parts (i.e. each selecting a different model) → decision should be made based on the 751 

project goal by making pros and cons list for all the metrics. 752 

As our final upshot, ROC and AUC are metrics that tend to lump together the prediction as a 753 

whole; however, studying confusion matrices, accuracy and precision of a model ensure a better 754 

insight on a model hit and misses. This is something that can be rarely found in the literature, 755 

despite its great importance. The PMT quickly provides a full suite of performance metrics 756 

allowing the users to better evaluate their spatial model and supporting a more critical judgment, 757 

which in turn can promote better decision-making procedures. 758 
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Figure Captions 971 

Fig. 1 Study sites on the world map 972 

Fig. 2 Methodological flowchart adopted in this study 973 

Fig. 3 Gully erosion prediction maps of the central-western Sicily (Italy) generated by using the 974 

GLM (a) and MARS (b) models 975 

Fig. 4 Flood-inundation susceptibility map of the Galikesh region (Iran) obtained from the EBF 976 

model 977 

Fig. 5 Drought risk map of the south-east of Queensland (Australia) produced by using fuzzy 978 

GAMMA overlay technique 979 

Fig. 6 Effects of 50% (a), 70% (b) and 90% (c) cutoff values on the extent of safe/danger zones 980 

and classification of presence/absence samples in south-east of Queensland 981 

Fig. 7 Landslide susceptibility maps of the Kon Tum province (Vietnam) obtained from 982 

BayGmmKda (a) and MaxEnt (b) models 983 

Fig. 8 Bulk density predictive distribution maps of South Dakota (USA) generated from ANN 984 

(a) and DT (b) models 985 



 

 

 

Table 1 Confusion matrix elements. 

Observed 
Predicted 

Class stable (−) Class unstable (+) 

Class stable (−)* (−|−) True negative (TN) (+|−) False positive (FP; Error Type I) 

Class unstable (+)** (−|+) False negative (FN; Error Type II) (+|+) True positive (TP) 

* Absence areas            ** Presence areas 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table
Click here to download Table: Tables.doc

http://ees.elsevier.com/stoten/download.aspx?id=2228584&guid=e051bfe4-8312-450d-8462-b45167792bbd&scheme=1


Table 2 The PMT input files 

ID Setting Description ID Setting Description 

1 Input raster 
layers 

The raster maps generated by any spatial 
model representing the susceptibility or 
suitability of a phenomenon over an area 
(you can add different maps for the same 
area as many as desired). 

5 Validation 
positives 

Import the shapefile of all the validation 
samples of the phenomenon of interest 
(discarded dataset in the training stage). 

2 Cutoff An a-priori cutoff percentage to split the 
input raster into two segments (50% is set 
as default). 

6 Validation 
negatives 

Import the shapefile of the non-event 
validation locations. 

3 Training 
positives 

Import the shapefile of all the training 
samples of the phenomenon of interest. 

7 Output 
workspace 

The pass to contain the outputs (a folder 
address). 

4 Training 
negatives 

Import the shapefile of the absence 
training locations (should be prepared 
beforehand by different methods 
mentioned in the text) 

8 Number of 
classes (for SRC 
and PRC curves) 

The number into which the spatial raster is to 
be reclassified (100 classes are set as default). 
The reclassification method is based on an 
equal interval. A higher number of classes will 
result in smoother SRC and PRC curves with 
more precise AUSRC and AUPRC values. 

 

 

Table 3 The PMT output files 

ID Setting Description 

1 Html file It explains the main results of the performance analyses including confusion matrix, cutoff-dependent 
metrics, and cutoff–independent metrics. ROC, SRC, and PRC curves are other parts of this html file. 
In addition, all results were classified into two groups of cutoff-dependent and cutoff-independent 
approaches with some useful explanations regarding these approaches. 

2 Microsoft excel file This file summarize all of quantitative results (without explanations)  

 

 

 



 

Table 4 Equations of cutoff-dependent performance metrics 

Performance metric Equation Performance metric Equation 

True positive rate (TPR; 
sensitivity)  

Matthews correlation 
coefficient (MCC)  

False positive rate (FPR; 
fall-out; 1–specificity)  

Informedness 
(Bookmaker 
informedness; BM) 

 

True negative rate (TNR; 
specificity)  

Markedness (MK)  

False negative rate (miss 
rate)  

Threat score 
 

Efficiency (accuracy) 
 

Equitable threat score 
 

 

 

Misclassification rate 
 

True skill statistic 
(Pierce’s skill score)  

Positive predictive value 
(PPV; precision)  

Heidke’s skill score  

 

False discovery rate 
(FDR)  

Odds ratio 
 

Negative predictive value 
(NPV)  

Odd ratio skill score 
(Yule’s Q)  

False omission rate (FOR) 
 

Cohen's kappa 
 

F-score 
 

- - 

 

 



 

Table 5 Performance metrics calculated for each case study 

Country Subject Model Modellin
g step 

Efficiency 
(accuracy) 

True 
positive 

rate (TPR) 

False 
positive 

rate (FPR) 

Threat 
score 

Equitable 
threat score 

Hedke skill 
score 

Odds 
ratio 

Odd ratio 
skill score 

Australia Drought risk 
mapping 

Fuzzy function: 
50% cutoff 

Validation 

0.625 0.580 0.222 0.545 0.142 0.25 4.8462 0.657 

Fuzzy function: 
70% cutoff 0.85 0.818 0.111 0.75 0.538 0.7 36 0.945 

Fuzzy function: 
90% cutoff 0.625 1 0.428 0.25 0.142 0.25 0 1 

Iran 
Flood 

inundation 
mapping 

EBF 
Training 0.808 0.891 0.245 0.647 0.446 0.617 25.33 0.924 

Validation 0.718 0.769 0.315 0.526 0.28 0.437 7.22 0.756 

USA 
Distribution 

of soil organic 
matters 

DAT Validation 0.442 0.431 0 0.431 0.014 0.028 0 1 

ANN Validation 0.730 0.625 0.1 0.588 0.315 0.48 15 0.875 

Italy 
Gully 

susceptibility 
mapping 

MARS 
Training 0.970 0.963 0.022 0.942 0.888 0.940 1151 0.998 

Validation 0.976 0.970 0.016 0.954 0.910 0.953 1885 0.998 

GLM 
Training 0.656 0.592 0 0.592 0.185 0.312 0 1 

Validation 0.674 0.605 0 0.605 0.211 0.348 0 1 

Vietnam 
Landslide 

susceptibility 
mapping 

MaxEnt 
Validation 

0.601 0.556 0 0.556 0.112 0.202 0 1 

BayGmmKda 0.739 0.731 0.2521 0.592 0.314 0.478 8.08 0.779 

 

 

 

 

 

 

 



 

Table 5 (continued) 

Country Subject Model Modelling 
step 

True skill 
statistic 

Cohen’s 
kappa 

True 
negative 

rate 
(TNR) 

False 
negative 

rate (miss 
rate) 

Misclassif
ication 

rate 

Positive 
predictive 

value 
(PPV) 

False 
discovery 

rate 
(FDR) 

Negative 
predictive 

value 
(NPV) 

Australia Drought risk 
mapping 

Fuzzy function: 
50% cutoff 

Validation 

0.358 0.25 0.778 0.419 0.375 0.900 0.100 0.350 

Fuzzy function: 
70% cutoff 0.707 0.7 0.889 0.182 0.150 0.900 0.100 0.800 

Fuzzy function: 
90% cutoff 0.571 0.25 0.571 0.000 0.375 0.250 0.750 1.000 

Iran 
Flood 

inundation 
mapping 

EBF 
Training 0.646 0.617 0.754 0.108 0.192 0.702 0.298 0.915 

Validation 0.453 0.437 0.684 0.231 0.281 0.625 0.375 0.813 

USA 
Predictive 

distribution of 
soil bulk 
density 

DAT Validation 0.431 0.028 1.00 0.569 0.558 1.000 0.000 0.033 

ANN Validation 0.525 0.48 0.90 0.375 0.269 0.909 0.091 0.600 

Italy 
Gully 

susceptibility 
mapping 

MARS 
Training 0.941 0.940 0.978 0.037 0.030 0.978 0.022 0.963 

Validation 0.953 0.953 0.983 0.030 0.024 0.983 0.017 0.970 

GLM 
Training 0.592 0.312 1.000 0.407 0.344 1.000 0.000 0.313 

Validation 0.605 0.348 1.000 0.394 0.326 1.000 0.000 0.349 

Vietnam 
Landslide 

susceptibility 
mapping 

MaxEnt 
Validation 

0.556 0.202 1.000 0.444 0.399 1.000 0.000 0.203 

BayGmmKda 0.479 0.478 0.748 0.269 0.261 0.757 0.243 0.722 

 

 

 

 

 



 

Table 5 (continued) 

Country Subject Model Modelling 
step 

False 
omission 

rate 
(FOR) 

F-score 

Matthews 
correlation 
coefficient 

(MCC) 

Informedness 
(Bookmaker 

informedness; 
BM) 

Markedness 
(MK) AUROC AUSRC AUPRC 

Australia Drought risk 
mapping 

Fuzzy function: 
50% cutoff 

Validation 

0.650 0.706 0.299 0.358 0.250 0.873 - 74.400 

Fuzzy function: 
70% cutoff 0.200 0.857 0.704 0.707 0.700 0.873  74.400 

Fuzzy function: 
90% cutoff 0.000 0.400 0.378 0.571 0.250 0.873  74.400 

Iran 
Flood 

inundation 
mapping 

EBF 
Training 0.085 0.786 0.632 0.646 0.617 0.866 79.710 - 

Validation 0.188 0.690 0.445 0.453 0.438 0.787 - 75.209 

USA 
Predictive 

distribution of 
soil bulk 
density 

DAT Validation 0.967 0.603 0.120 0.431 0.033 0.839 - 77.620 

ANN Validation 0.400 0.741 0.517 0.525 0.509 0.879 - 79.630 

Italy 
Gully 

susceptibility 
mapping 

MARS 
Training 0.037 0.971 0.941 0.941 0.941 0.992 99.141 - 

Validation 0.030 0.977 0.953 0.953 0.953 0.995 - 99.285 

GLM 
Training 0.687 0.744 0.430 0.593 0.313 0.987 97.134 - 

Validation 0.651 0.754 0.460 0.606 0.349 0.992 - 97.542 

Vietnam 
Landslide 

susceptibility 
mapping 

MaxEnt 
Validation 

0.797 0.715 0.336 0.556 0.203 0.889 - 0.855 

BayGmmKda 0.278 0.744 0.479 0.479 0.479 0.819 - 69.460 

 

 

 

 

 

 



 

 

Table 6 Opposing performance metrics for Vietnam’s case study 

ROC-accordant ROC-discordant 
Informedness Markedness 

PPV MCC 
TNR NPV 
TSS Misclassification rate 

1-Specificity FNR 
FDR Cohen's Kappa 

  F-score 
  Hedke skill score 
  Equitable threat score 
  Threat score 
  Sensitivity 
  Accuracy 
  FOR 

 

 

 

 

 

 

 

 

 

 



 

 

Table 7 Comparing confusion matrix variants of MaxEnt and BayGmmKda models as 
implemented in Vietnam 

Observed 
Models 

MaxEnt BayGmmKda 

TN 330 1175 

TP 1627 1231 

FN 1297 452 

FP 0 396 
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Fig. 6 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 7 

 

 

 

 



 

 

 

Fig. 8 


