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Abstract: Green roofs are widely used in hot or cold climates mainly because they are capable to
improve the energy efficiency of buildings and, when implemented at a large scale,
reducing air pollution and the urban heat island effect (UHI) in urban contexts.
However, the study of green roof thermal performance is a challenge because of both
the occurrence of different mass and thermal exchange phenomena
contemporaneously present (convective, shortwave and longwave radiative heat
exchanges between the outdoor environment and substrate and vegetation,
evapotranspiration, heat conduction through the substrate and so on) and the non-
linearity of existing mathematical models describing these phenomena.
Artificial Neural Network (ANN) black-box algorithms, which are increasingly being
used to perform predictive analyses in various fields of engineering science, among
which the building sector, are a valid alternative to studying such complex systems.
However, the literature highlights that to date limited attention has been paid to such a
research topic and that the few available studies are concentrated on specific
individual aspects of the green roofs’ performance, such as evapotranspiration or
irrigation management; no research is yet available that couples the ANN concept to
the evaluation of all the main thermal parameters that intervene in its thermal
performance. In addition, - quite surprisingly – none of the available research refers to
coupling ANNs and green roofs in the Mediterranean area, where green roofs are
instead considered one of the most suitable technologies to reduce the high cooling
demand.
Therefore, the objective of this research work is to create and validate an ANN for the
prediction of the monthly green roof’s internal and external surface temperatures and
the monthly internal air temperature, starting from different green roof parameters and
climatic variables. Specifically, the ANN was created with reference to a Mediterranean
climate considering an existing green roof on a building of the University of Palermo
characterized by a cooling demand predominance; 180 green roof configurations,
obtained by varying the characteristic parameters of vegetation (plant height, leaf area
index and leaf reflectivity) and the substrate thickness and thermophysical properties
(lightweight and heavyweight), were dynamically simulated on an hourly basis to build
the training dataset. In addition, other 72 green roof configurations were simulated to
generate the dataset for the validation purpose of the ANN accuracy. Moreover, the
optimal number of neurons and hidden layers was investigated. The optimal ANN-
related architecture consists of 90 neurons with one hidden layer and guarantees very
high accuracy predictions.
The outcomes of this research represent a useful tool to determine the thermal
response of green roofs and so their impact on the energy demand of buildings
equipped with them, the indoor thermal comfort, and the UHI phenomenon.
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Research context and gap 

The use of this green roofing technology is becoming more and more widespread, as it is a valid 

strategy to minimize the problems resulting from urban overbuilding because it provides several 

advantages both from an environmental, social, and economic perspective, as well as to the building 

on which they are installed. 

To describe the thermal behaviour of a green roof, a variety of mathematical models have been 

proposed in the literature, which however have been validated only for specific green roof 

configurations and locations. Obviously, it is inaccurate to define one model as more or less 

appropriate than another, and it is also not possible to define the most appropriate model to use, 

because all models start from simplified assumptions, and some consider factors in detail, while 

others are neglected or ignored. 

Among the available green roof models, the one proposed by Sailor in 2008 [18], which is based on 

the energy and mass balance equations of FASST [19], is certainly worth mentioning; it analyzes in 

detail each type of heat exchange occurring in the system of soil - vegetation - external environment, 

even if a simplified representation of the water balance and a constant soil thermal conductivity are 

proposed. This model was then implemented in the simulation program Energy Plus and validated 

with experimental data. 

On the other hand, it should be noted that for the analysis of complex systems the use of artificial 

intelligence is increasingly being used in engineering science, as an alternative solution to perform 

predictive analyses in various fields. 

A search in scientific databases has shown how there is still little use of this technique in the field 

of green roofs: only six research works have coupled the artificial intelligence model and green 

roof analysis. 

The analysis of these few research works highlights that to date attention has been given to specific 

individual aspects influencing the green roof performance such as irrigation and the 

evapotranspiration phenomenon and to specific thermal quantities, with the surface temperature the 

most frequent. In addition, the cooling period is predominant as the season selected for their 

evaluation. However, except for the work of Erdemir et al. [33], no research is yet available that 

couples the ANN concept to the evaluation of all the main thermal parameters that intervene in 

the green roof performance. 
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Research objectives 

To cover this research gap, this work proposes an algorithm code based on ANNs able to predict the 

thermal performance of a green roof on the basis of monthly values of climatic variables. Specifically, 

the idea behind this study is to apply ANNs to learn the thermal response of a green roof deriving 

from the joint action of all different thermal forcings. In detail, the tool developed trained with 

monthly data is able to predict the monthly external and internal green roof surface temperatures and 

internal air temperatures. 

All these quantities are also strictly correlated to the UHI, the indoor thermal comfort, and cooling 

load transferred indoors. Consequently, the tool proposed here can also contribute to assessing the 

impact that green roofs have on these phenomena and aspects. 

To achieve the purpose of the study, different green roofs were considered located in the city of 

Palermo, characterized by a Mediterranean climate, by varying the most important vegetation and 

soil parameters. The ANN was trained and validated on the basis of monthly data of external climatic 

conditions and other monthly green roof thermal performance indicators. The monthly data derives 

from dynamic hourly simulations. Training and validation data derive from an extensive parametric 

analysis performed by the present authors using Design Builder Software. 
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Abstract 

Green roofs are widely used in hot or cold climates mainly because they are capable to improve the 

energy efficiency of buildings and, when implemented at a large scale, reducing air pollution and the 

urban heat island effect (UHI) in urban contexts. 

However, the study of green roof thermal performance is a challenge because of both the occurrence 

of different mass and thermal exchange phenomena contemporaneously present (convective, 

shortwave and longwave radiative heat exchanges between the outdoor environment and substrate 

and vegetation, evapotranspiration, heat conduction through the substrate and so on) and the non-

linearity of existing mathematical models describing these phenomena. 

Artificial Neural Network (ANN) black-box algorithms, which are increasingly being used to perform 

predictive analyses in various fields of engineering science, among which the building sector, are a 

valid alternative to studying such complex systems. However, the literature highlights that to date 

limited attention has been paid to such a research topic and that the few available studies are 

concentrated on specific individual aspects of the green roofs’ performance, such as 

evapotranspiration or irrigation management; no research is yet available that couples the ANN 

concept to the evaluation of all the main thermal parameters that intervene in its thermal performance. 

In addition, - quite surprisingly – none of the available research refers to coupling ANNs and green 

roofs in the Mediterranean area, where green roofs are instead considered one of the most suitable 

technologies to reduce the high cooling demand. 

Therefore, the objective of this research work is to create and validate an ANN for the prediction of 

the monthly green roof’s internal and external surface temperatures and the monthly internal air 

temperature, starting from different green roof parameters and climatic variables. Specifically, the 

ANN was created with reference to a Mediterranean climate considering an existing green roof on a 
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building of the University of Palermo characterized by a cooling demand predominance; 180 green 

roof configurations, obtained by varying the characteristic parameters of vegetation (plant height, leaf 

area index and leaf reflectivity) and the substrate thickness and thermophysical properties 

(lightweight and heavyweight), were dynamically simulated on an hourly basis to build the training 

dataset. In addition, other 72 green roof configurations were simulated to generate the dataset for the 

validation purpose of the ANN accuracy. Moreover, the optimal number of neurons and hidden layers 

was investigated. The optimal ANN-related architecture consists of 90 neurons with one hidden layer 

and guarantees very high accuracy predictions. 

The outcomes of this research represent a useful tool to determine the thermal response of green roofs 

and so their impact on the energy demand of buildings equipped with them, the indoor thermal 

comfort, and the UHI phenomenon.  

 

Keywords: Green roof; Thermal performance; Urban heat Island; Mediterranean area; Artificial 

Intelligence. 

 

1. Introduction 

Background 

Roofs with greenery growing on top are called green roofs. The use of this green roofing technology 

is becoming more and more widespread, as it is a valid strategy to minimize the problems resulting 

from urban overbuilding because it provides several advantages both from an environmental, social, 

and economic perspective, as well as to the building on which they are installed [1]. In detail, green 

roofs contribute to lowering noise levels [1-4] as well as reducing water runoff by minimizing the 

impact on sewer systems, as well as improving the quality of water runoff with reduced dust, 

pollutants, and nutrients [1, 5]. The purpose of green roofs is to counter high levels of atmospheric 

pollution by acting as vegetation that can intercept pollutants (PM10 particulate matter and PM2.5 

particulate matter) as well as absorb carbon dioxide (CO2), creating oxygen (O2), and subsequently 

develop their vital functions [1, 6]. Moreover, they improve the efficiency of photovoltaic systems 

[7-9]. As for the energy advantages, this innovative solution can increase the cooling capacity, the 

shading effect, the surface albedo, when compared with, for example, an asphalt surface, and improve 

the thermal insulation of the building by decreasing the air conditioning load, especially during the 

summer months and therefore the corresponding greenhouse gas emissions [1, 10-12]. Plants growing 

on these roofs, whether extensive or intensive, are meant to absorb the incident radiation from the sun 

in order to perform their biological functions such as photosynthesis, transpiration, evaporation and 

respiration. In addition, evapotranspiration is useful for regulating the microclimate because it cools 

both the foliage and the surrounding air. In this way, these innovative solutions can limit the rise in 

ambient temperature on days where there is high solar radiation, thus mitigating the Urban Heat Island 

(UHI) effect [13]. In this regard, it is worth noting that the Mediterranean climate is one of the 

warmest climates worldwide in the summer period and the cooling demand in this season is often 

predominant in the energy demand. Consequently, green roofs for these areas can be selected as a 

promising solution both to reduce energy needs and UHI effects. Green roof covers can also attenuate 

and delay the temperature and heat flux acting on their surface given the high thermal mass of the 

substrate layer [14]. 
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An average green roof installation cost of 99 €/m2 is associated with extensive installations, 130 €/m2 

is associated with semi-intensive installations and 362 €/m2 with those that host heavier materials and 

plants (i.e., small trees) [1]. 

Numerous studies in the literature suggest that from an energy standpoint, the use of green roofs is 

an excellent strategy for reducing heat transfers between a building's interior and exterior as well as 

improving thermal comfort within the building [15, 16]. Benefits are influenced by the characteristics 

of the system (leaf area, substrate type, depth and moisture content, materials of each layer and 

connection to the building), the physical characteristics of the building (geometry, height, insulation, 

building materials, building envelope, glazed area, solar orientation, shading) and local climatic 

conditions (seasons, heating or cooling needs) [1, 7, 17]. 

From a thermophysical perspective, the green roof system as a whole can be described by an energy 

balance equation that explains in a very general way the processes that are clarified in more depth 

and with different levels of detail in the following terms: 

 

Rn = L +  Qsens + Qcond +  B                                                       (1) 

 

Rn is the radiative contribution which is composed of a short wave portion coming from the sun and 

a long wave portion. Most of the radiant energy that reaches the earth's surface is shortwave, a 

percentage of which is reflected by the surfaces on which it impinges. The percentage fraction of 

energy reflected, referred to as the albedo, depends on both time-varying environmental factors, such 

as the height of the Sun above the horizon, and the characteristics of the surface reached by the sun's 

rays. Vegetation usually reflects a higher fraction of radiation than soil. Part of the radiative energy 

absorbed by the earth is radiated back to the atmosphere in the longwave field, infrared, in a manner 

proportional to surface temperature. The same happens for the gases that constitute the atmosphere, 

which in turn reflect this energy in the same length field. Therefore, the net radiation, considered for 

the budget, turns out to be a combination of longwave and shortwave radiation. Ultimately, the 

detectable radiative contributions in the presence of a green roof are: short-wave radiation incident 

on foliage, short-wave radiation incident on the ground, longwave radiation between vegetation and 

the outdoor environment, longwave radiation between vegetation and soil, longwave radiation 

between soil and external environment.  

L is the latent heat, transmitted by variation of liquid-vapour state; it is related to evapotranspiration 

phenomena, that is to say, soil evaporation and plant transpiration; the contribution of latent heat that 

propagates inside the soil should not be neglected, even if less important than the previous one. In 

latent processes the presence of water is fundamental; its absence tends to cancel the latent 

contribution leading to the transformation of the incident radiative contribution in part in sensible 

heat and part in conductive flow inside the soil. 

Qsens is the sensible heat flux, i.e., the heat exchanged between the soil and the layer of air in contact, 

or between the vegetation and the surrounding air, due to a thermal gradient that generates air motions 

and thus heat propagation in the boundary layer by natural convection. 

Qcond is the heat flux in the soil, or the heat transferred from the surface to the underlying layers 

always triggered by a temperature gradient and dependent on the thermal conductivity of the layer 

that is being analyzed. This term can assume positive or negative values depending on whether there 

is heating or cooling of the surface. The thermal conductivity is closely related to the conditions of 
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humidity of the soil, as the air, a bad conductor of heat, present in the pores, can then be replaced by 

water, which instead is a good conductor. 

B is the energy released into the biosphere by the photosynthesis process of plants, which, using the 

energy derived from sunlight, water and CO2, release O2 and produce biomass. This contribution is 

generally overlooked. 

In consideration of all this, it can be deduced how complex the physical-thermal modelling of a green 

roof is. To describe the thermal behaviour of a green roof, a variety of mathematical models have 

been proposed in the literature, which however has been validated only for specific green roof 

configurations and locations. Obviously, it is inaccurate to define one model as more or less 

appropriate than another, and it is also not possible to define the most appropriate model to use, 

because all models start from simplified assumptions, and some consider factors in detail, while 

others are neglected or ignored. However, it should be noted that some models are supported by a 

process of validation that demonstrates the agreement between the theoretical mathematical model 

and the results obtained by experimental investigation. 

Among the available green roof models, the one proposed by Sailor in 2008 [18], which is based on 

the energy and mass balance equations of FASST [19], is certainly worth mentioning; it analyzes in 

detail each type of heat exchange occurring in the system of soil - vegetation - external environment, 

even if a simplified representation of the water balance and a constant soil thermal conductivity are 

proposed. This model was then implemented in the simulation program Energy Plus and validated 

with experimental data. 

On the other hand, it should be noted that for the analysis of complex systems the use of artificial 

intelligence is increasingly being used in engineering science, as an alternative solution to perform 

predictive analyses in various fields. Artificial intelligence, through artificial neural networks 

(ANNs), has been used, e.g., for the assessment of energy and environmental performance of 

buildings [20], for the rehabilitation of non-residential building stock [21], as well as for the 

assessment of thermal transmittance in walls [22]. ANNs are also used as a valid and effective 

solution to provide predictive analysis of solar radiation [23], including monthly average [24] and 

daily average [25], wind energy [26, 27], as well as the maximum and normal operating power of a 

photovoltaic module [28].  Recently, ANNs were also employed to study the energy performance of 

clean energy communities based on hybrid PV-wind renewable systems in the presence of electric 

vehicle charging stations [29]. The ANN is, in particular, a computational model composed of 

artificial "neurons", loosely inspired by the simplification of a biological neural network. Using 

machine learning, they can reproduce the behaviour of any system from the simplest to the most 

complex. This learning can take place either through experimental data or from numerical 

simulations. Experimental data are suggested to build an ANN characteristic of the physical reality 

of the considered system. 

 

Literature gap and research contribution 

A search in scientific databases has shown how there is still little use of this technique in the field of 

green roofs: only six research works have coupled the artificial intelligence model and green roof 

analysis. For example, Wei et al. predicted the roof outer surface temperature under a green roof soil 

layer of a building in winter in a subtropical Wuyishan city (China) using the neural network 

modelling method [30]. Tsang and Jim trained an ANN to predict soil moisture based on daily weather 

variables to determine the irrigation time and watering volume. Furthermore, to assess the 
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performance of artificial intelligence in green roof irrigation, two experimental plots were set up on 

the roof of the Main Library at the University of Hong Kong [31]. Similarly, Pandey et al. trained an 

ANN to learn to predict the reduction in heat gain from the roof buildings with the different 

experimental data extrapolated in the Sustainable City, Ujjain (India) [32]. Erdemir et al. presented 

an ANN model to predict temperature decrease on a green roof using training data taken from nine 

different cities around the world (1. London, England; 2. Montreal, Canada; 3. Moscow, Russia; 4. 

Athens, Greece; 5. Beijing, China; 6. Riyadh, Saudi Arabia; 7. Hong Kong, China; 8. Mumbai, India; 

9 Brasilia, Brazil), characterized by different climatic conditions [33]. He et al. developed fifteen 

ANN models compared to water vapour diffusion models and data from an experimental campaign 

for the determination of the hourly evapotranspiration rate in Singapore [34]. Asadi et al. built a 

multilayer feed-forward neural network to find a relationship between land surface temperature and 

various urban characteristic parameters simultaneously in Austin, Texas [35]. Abdalla et al. applied 

four machine learning models, commonly used in runoff modelling studies, to simulate runoff from 

16 green roofs located in four Norwegian cities with different climatic conditions [36]. 

The analysis of these few research works highlights that to date attention has been given to specific 

individual aspects influencing the green roof performance such as irrigation and the 

evapotranspiration phenomenon and to specific thermal quantities, with the surface temperature the 

most frequent. In addition, the cooling period is predominant as the season selected for their 

evaluation. However, except for the work of Erdemir et al. [33], no research is yet available that 

couples the ANN concept to the evaluation of all the main thermal parameters that intervene in the 

green roof performance. 

To cover this research gap, this work proposes an algorithm code based on ANNs able to predict the 

thermal performance of a green roof on the basis of monthly values of climatic variables. Specifically, 

the idea behind this study is to apply ANNs to learn the thermal response of a green roof deriving 

from the joint action of all different thermal forcings. In detail, the tool developed trained with 

monthly data is able to predict the monthly external and internal green roof surface temperatures and 

internal air temperatures. 

All these quantities are also strictly correlated to the UHI, the indoor thermal comfort, and cooling 

load transferred indoors. Consequently, the tool proposed here can also contribute to assessing the 

impact that green roofs have on these phenomena and aspects. 

To achieve the purpose of the study, different green roofs were considered located in the city of 

Palermo, characterized by a Mediterranean climate, by varying the most important vegetation and 

soil parameters. The ANN was trained and validated on the basis of monthly data of external climatic 

conditions and other monthly green roof thermal performance indicators. The monthly data derives 

from dynamic hourly simulations. Training and validation data derive from an extensive parametric 

analysis performed by the present authors using Design Builder Software. 

 

2.  Materials and methods 

The development of the green roof ANN is based on the following steps:  

1) Database creation: a step consisting of gathering input and output data to create input-output 

pairs that will be used for the subsequent training and validation steps of the implemented 

ANN; 
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2) ANN training and optimization: a step related to the insertion of input and output data 

collected in the previous step to train the ANN, choose the ANN architecture and optimize 

the performance of the ANN chosen; 

3) ANN validation: a step in which the optimized ANN is used for new predictive analyses with 

new data never encountered before in the training phase. To be able to use the network, it 

must expose the appropriate values of dome accuracy indices. 

Figure 1 presents an overview of these steps implemented in the study presented here to achieve the 

objectives of the research. 

 

 
Figure 1. Overview of the different steps implemented to develop an Artificial Neural Network for 

the dynamic simulation of the thermal performance of a green roof in the Mediterranean climate. 

 

2.1. Step 1 – Database creation 

The first step aims to create a database that consists of all inputs affecting the green roof's thermal 

performance and all outputs that describes its thermal response. To generate this database, parametric 

simulations were carried out considering an existing green roof located in Palermo. The simulations 

were performed using the DesignBuilder software [37] by varying the main green roof parameters. 

 

2.1.1. Description of the reference green roof and climatic conditions 

In this research, a building located within the University of Palermo and belonging to the Department 

of Engineering was considered as a reference case. In particular, this building has been chosen 
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because on it there are three different experimental plots of green roof, which share the same 

stratigraphy (except for the type of vegetation planted), so it was possible to model one of them. 

As for the building analysed, it has four floors and a basement (Figure 2) and is made up of 

laboratories and technical rooms with a ceiling height of 3.5 m. This building is characterized by a 

framed structure with tuff brick infill and a flat roof consisting of concrete and brick. The fixtures, 

which characterize the transparent elements, are made of double glazing with air with an aluminium 

frame and internal blinds. Hereafter, a description of the building use is described in the real building 

space operating. The blinds are only open on working days from April to September [38]. 

The building is occupied on weekdays (Monday through Friday) from 8:00 am to 6:00 pm. The 

lighting is provided by fluorescent lamps of varying wattage and is programmed from October to 

November (from 2:00 p.m. to 6:00 p.m.) and from December to March (from 8:00 a.m. to 6:00 p.m.) 

while for the remaining months of the year (April to September) there is natural lighting. The heating 

systems consist of radiators and fan coils, which are switched on from 7 a.m. to 12 p.m. and from 3 

p.m. to 6 p.m. during the heating season. For cooling and heating, the setpoints were set at 25 °C and 

20 °C, respectively [38]. 

The main thermo-physical properties of both opaque and transparent elements concern: 

 external wall thickness 36 cm with transmittance 2.635 W/(m2 K); 

 double glass with air layer (4 mm - 12 mm - 4 mm) with transmittance 2.725 W/(m^2 K); 

 roofing thickness 32.5 cm with transmittance 1.756 W/(m2 K); 

 green roof thickness 53 cm and transmittance 0.363 W/(m2 K). 

As for the three experimental green roofs installed on the building roof, among the different Italian 

patented commercial systems, PerliGarden by Perlite Italiana Srl, was used to realize the green 

package. 

 

 
Figure 2. The front view (left) of the building of the Department of Engineering, located within the 

University of Palermo and the three zones (right) on the terrace selected for the installation of the 

green coverings, taken from [38]. 

 

Figure 3 shows the three plots on the roof of the selected building [39]. 
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Figure 3. Positioning of plots 1, 2 and 3 on the roof of the selected building. Taken from [39]. 

 

The stratigraphy characterizing all three plots, from the outside to the inside, is the following [38-42]: 

 Vegetation layer; 

 Medium growing layer consisting of a mixture of lapillus, pumice, peat and slow-release 

fertilizers;  

 Non-woven geotextile felt 100 % polypropylene calendered that constitutes the filtering 

element for the stratigraphy of green surfaces; 

 Water storage layer composed of cushions 5 cm thick. They are made of a special calendered 

non-woven polyester geotextile, filled with hygroperlite or expanded perlite with a grain size 

of 1 ÷ 3 mm; 

 Draining layer which is a composite product characterized by a polyethene geotextile hot 

coupled with a non-woven geotextile with filtering action; 

 Waterproofing covering the role of root barrier, 5 mm thick, in a particular bituminous sheath; 

 Structural support consisting of a 10 cm layer of light concrete, a 20 cm concrete slab and a 2 

cm layer of plaster. 

As for the vegetative layer, as shown in area 1 of Figure 4 it was decided to partition it into four 

sectors: the first two were planted with Phyla nodiflora, the third with Gazania nivea and the fourth 

was left without vegetation. In area 2, only one plant species was planted: Gazania nivea. Finally, 

area 3 was partitioned into three sectors, respectively planted with Sedum, Mesembryanthemum 

barbatus and Aptenia lancifolia. It should be noted that to decrease the growth time of the vegetation 

cover in the three areas, their scions were planted directly [38-40]. 

In addition, different thicknesses of average growing medium were taken, specifically, a 10 cm one 

for the vegetation cover in areas 1 and 2 and a 5 cm one for vegetation in area 3. Drip irrigation, with 

a rate of 3 cm/week, was chosen for these areas to achieve greater uniformity of water supply, which 

should help facilitate the growth of the plant species despite the limited thicknesses of the substrates 

[38-40].  
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Figure 4. Planting of plots 1, 2 and 3 located on the selected building of the University of Palermo. 

Taken from [39]. 

 

The climatic conditions considered for the database creation are those of Palermo in Sicily, Italy, 

characterized by a latitude of 38° 10′ 50.14″ North, a longitude of 13°05′ 46.87″ East and an altitude 

of 34 meters a.s.l. 

The EnergyPlus Weather File (EPW) format was used as a source of generation of climatic data of 

Palermo. Figure 5 illustrates the pertinent monthly average, minimum and maximum value of 

temperature, humidity, wind speed and global horizontal solar radiation. 

 

 
Figure 5. Monthly average, minimum and maximum value of temperature, humidity, wind speed and 

global horizontal solar radiation of Palermo. 

 

As it can be seen from the figure on the top left, the months of July and August are those in which 

the highest temperature values are recorded; instead, the lowest ones, even negative, are recorded in 

the winter months (December and January). In detail, the average annual temperature is 18.41 °C, the 

maximum annual temperature value is 34.20 °C recorded on August 5 at 10:00 am while the minimum 

annual temperature value is 5.95 °C recorded on December 22 at 6:00 am. 
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As can be seen from the figure on the top right, the relative humidity values are mainly concentrated 

between 20% and 95%, but there are days when the relative humidity values go beyond this range. In 

detail, the average annual relative humidity is 75.42%, the maximum annual value of relative 

humidity is 100% recorded on December 2 at 05:00 am and the minimum annual value of relative 

humidity is 10% recorded on August 5 at 6:00 am. 

As can be seen from the figure on the bottom left, the trend of wind speed values is extremely variable. 

In particular, the average annual wind speed is equal to 4.51 m/s, the maximum annual value of the 

wind speed is equal to 19.00 m/s recorded on February 16 at 17:00 while the minimum annual value 

of the wind speed is equal to 0.00 m/s which is recorded in different days during the year. 

As can be seen from the figure on the bottom right, the annual mean total horizontal solar radiation 

is 116.96 W/m2, while the annual maximum value is 1116.38 W/m2 recorded on June 22 at 13:00. 

 

2.1.2. Dynamic thermal modelling of the green roof in DesignBuilder 

For the analysis of the energy performance of the green roof described and for the realization of a 

database to be used with neural networks was used the thermophysical model contained in the 

simulation program in the dynamic regime EnergyPlus-DesignBuilder [37] which is based on the 

model proposed by Sailor [18], previously cited. This software allows extrapolating, as an output, the 

heat inputs transmitted through the various building components of the envelope (walls, roof and 

floor), solar gains, radiant exchanges through the surfaces of the envelope, as well as the surface 

temperature of the individual walls, the temperature of the air inside the envelope, radiant and 

operating temperature. 

The model under consideration is based on that of the Army Corps of Engineers' FASST [19, 43], 

with some modifications and assumptions made, that is: 

 plants and growing medium are horizontally homogeneous; 

 heat and mass transfer are analyzed according to the vertical direction only, while horizontal 

fluxes are negligible; this assumption implies the choice of a one-dimensional model; 

 the photosynthesis phenomenon in plants is negligible in the energy balance equation; 

 heat transfer by conduction in plants is negligible; 

 the crop substrate is considered equivalent to a homogeneous and isotropic continuum, so its 

properties do not depend on direction; 

 neglected thermal inertia of the substrate; 

 thermal conductivity of the soil constant; 

 simplified mass equation with heat flux due to vertical water transport in the soil neglected; 

 crop substrate partially covered by vegetation; 

 neglected precipitation flux. 

The model under consideration is centred on two balance equations at the vegetation-outdoor 

environment interface and at the soil-outdoor environment interface, which are linearized and solved 

simultaneously, thus obtaining the soil (Tg) and foliage (Tf) temperature values, expressed in Kelvin. 

In Figure 6, a representation of the thermal exchanges between the vegetation, soil and external 

environment, taken into consideration by the model developed by Sailor, are shown. 

 



11 
 

 
Figure 6. Representation of the thermal exchanges between vegetation - soil – external environment 

taken into consideration by the model developed by Sailor. Taken from [18]. 

 

In Figure 6, Hg is the soil sensible heat flux, Hf is the foliage sensible heat flux, Lg is the latent heat 

flux of the soil, Lf is the latent heat flux of foliage, LW is the longwave radiation and Is is the total 

incoming shortwave radiative flux. The balance equation related to the foliage layer is represented by 

Eq. (2). 

 

Ff = σf[Is(1 − αf) + εfIir − εfσTf
4] +

σf εg εf σ

εg +  εf − εfεg
(Tg

4 − Tf
4) + Hf + Lf = 0        (2) 

 

Where, Ff is the net foliage heat flux, Is is the total incoming shortwave radiative flux, Iir is the total 

incoming longwave radiative flux, αf is the shortwave albedo of vegetation, εf is the long-wave 

emissivity of the vegetation,  εg is the emissivity of the ground surface, σ is the Stefan-Boltzmann 

constant, σf is the fraction of vegetation cover dependent on the leaf area index (LAI) that represents, 

also mentioned as foliage density, the total area of leaves on only one side above a unitary ground 

area. 

The balance equation related to the soil layer is represented by Eq. (3). 

 

Fg = (1 − σf)[Is(1 − αg) + εgIir − εgσTg
4] −

σf εg εf σ

εg + εf − εfεg
(Tg

4 − Tf
4) + Hg + Lg + k

∂Tg

∂z
= 0         (3) 

 

Where, Fg is the net heat flux at the ground surface and αg is the shortwave albedo of the ground 

surface, k is the soil thermal conductivity, and z is the soil depth direction. 

To study the green roof thermal response, a cavity composed of adiabatic walls (see Figure 7), except 

the roof, was built in the DesignBuilder environment to isolate the only green roof thermal effect on 

the variation of the internal air temperature and internal surface temperature. In other words, to cancel 

the contribution of all vertical walls and floor of the cavity, the combined use of the "adiabatic" 

boundary condition and a reduced thickness of insulation of 0.1 cm was implemented in Design 

Builder. The insulation layer has the thermal and optical characteristics reported in Table 1. In this 

way, the incidence of the walls constituting the cavity and internal heat gains on the thermal balance 

of the air node is completely negligible since the energy transferred from the internal environment to 

the external environment and, vice versa, through the five walls is almost nil.  



12 
 

 
Figure 7. Rendered representation of the modelled adiabatic cavity. 

 

Table 1. Thermophysical and optical properties of the insulation material. 

Thermophysical properties of the material Surface optical properties 

Insulation 

layer 

Thermal 

conductivity 

(W/mK) 

Specific 

heat 

capacity 

(J/kgK) 

Density 

(kg/m3) 

Emissivity 

(-) 

Solar 

Absorbance  

(-) 

Visual 

Absorbance 

(-) 

0.001 100 20 0.99 0.01 0.01 

 

In addition, neither internal heat gains nor window components within the cavity were considered to 

avoid their influence on the internal air fluctuation. In all these conditions, the cavity with the green 

roof installed was dynamically simulated in a free-floating regime to detect the thermal response in 

therms of indoor and outdoor temperature fluctuations in the absence of an air-conditioning system. 

The stratigraphy of the experimental green roofs placed on the building under study, from the outside 

to the inside, was described in Section 2.1.1 and reproduced in DesignBuilder. In addition, 

DesignBuilder calculates the convective and radiative heat transfer coefficients for heat transfer of 

the outer and inner surfaces. The values obtained are 19.58 W/(m2 K) and 8.77 W/(m2 K), 

respectively, for the external and internal convective coefficients, and 5.41 W/(m2 K) and 1.23 W/(m2 

K) for the external and internal radiative coefficients. 

In Table 2, the thermophysical properties and the thicknesses of all green roof layers implemented in 

DesignBuilder are reported. 

 

Table 2. Green roof stratigraphy description. 

Stratigraphy elements Modelling 

Thermophysical properties of the 

material 
Thickness 

Thermal 

conductivity 

λ (W/m K) 

Specific 

heat 

capacity 

cp (J/kg K) 

Density 

ρ 

(kg/m3) 

(m) 

1. Growing medium layer. It 

consists of a mixture of 

lapilli, pumice, Agrilit 

Soil layer + vegetation 0.2 1100 950 - 
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expanded perlite, peats, bark, 

coconut fibres, special clays, 

soil conditioners, and 

organic fertilizers. 

2. Filter layer 100% Polypropylene 0.22 1800 910 0.05 

3. Water storage layer (5-cm 

cushions) filled with 

hygroperlite or expanded 

perlite with a grain size of 1 

to 3 mm 

Bulk expanded perlite 

in 0.1 to 2.3 mm 

granules 

0.05 1000 950 0.05 

4. Drainage layer 

Geonet in high density 

polyethylene coupled 

with a woven not 

woven in 

polypropylene 

 

0.5 1800 980 0.045 

5. Waterproofing - 

bituminous sheathing 
Sheet/Felt Bitumen 0.23 1000 1100 0.005 

6. Lightweight concrete 

screed 

Closed structure 

concrete of expanded 

clays 

0.65 1000 1600 0.10 

7. Cement mortar Cement mortar 1.400 1000 2000 0.02 

8. Reinforced concrete layer 
Concrete reinforced 

with 2% steel 
2.50 1000 2400 0.20 

9. Interior lime and gypsum 

plaster layer 

Lime plaster and 

gypsum plaster 
0.7 1000 1400 0.02 

 

On the internal side of the roof, the emissivity was set equal to 0.9, and the solar and visible solar 

absorptance to 0.7. The thermophysical properties of various layers were found by referring to both 

the data sheets relating to the Italian patented commercial system, or PerliGarden of Perlite Italiana 

Srl [42], as well as some standards [44-48]. Based on these data, the overall roof steady thermal 

transmittance resulted to be 0.443 W/m2 K. 

 

2.1.3. Parametric analysis 

An extensive parametric simulation was performed by changing some characteristics of the reference 

existing green roof stratigraphy in Palermo. In detail, starting from this stratigraphy, other green roofs 

were defined in DesignBuilder by varying characteristic parameters of vegetation and substrate layers 

in order to generate the ANN database. In particular, the typical values and the variation range of the 

vegetation parameters essential to performing the simulation of the building modelled in Design 

Builder are reported in Table 3 [49]. 

 

Table 3. Typical values and the variation range of the vegetation parameters. 

Vegetation 

Parameter 
Definition 

Variation 

range 

Plant height Average height of plants on the green roof 
0 - ꝏ 

(m) 
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Leaf air index 

(LAI) 
Expected leaf area per unit area of the ground surface 

0.01 - 5.0 

(-) 

Foliage 

Reflectivity 

Fraction of solar radiation that is incident to and then 

reflected from the surface of the individual leaf. Solar radiation 

includes the visible spectrum and infrared and ultraviolet 

wavelengths 

0.1 - 0.4 

(-) 

Leaf Emissivity 

Ratio of the thermal radiation emitted by the leaf surface 

to that emitted by an ideal black body at the same temperature. 

This parameter is used to calculate the radiant wavelength 

exchanged by the leaf surface 

0.8 - 1.0 

(-) 

Minimum 

stomata 

resistance 

Resistance of stomata to moisture transport. A cover 

made with plants with low stomatal resistance values will result 

in higher rates of plant evapotranspiration 

50 - 300 

(s/m) 

Maximum 

moisture in 

saturation 

Maximum volumetric moisture content of the soil that 

depends on the soil properties and, in particular, the porosity 

0 – 100 

(%) 

Residual 

moisture 

Minimum possible volumetric moisture content of the 

soil layer 

0 – 100 

(%) 

Initial moisture 

The volumetric moisture content of the soil layer at the 

beginning of the simulation. The moisture content is updated 

throughout the simulation based on surface evaporation, 

irrigation, and precipitation 

0 – 100 

(%) 

 

Table 4 lists the parameters changed in the parametric simulation and their values considered. 

 

Table 4. Variation range of vegetation parameters in the parametric simulation. 

Parameters Variation range Variation step Values considered 

Plant height (m) 0 - 0.6 0.3 0.01 0.3 0.6 

Leaf air index (LAI) 0.001 - 5 2.5 0.001 2.5 5 

Foliage Reflectivity 0.1 - 0.4 0.1 0.2 0.3  

 

Instead, the leaf emissivity and minimum stomatal resistance were considered unvaried in all 

simulations and equal to 0.95 and 180 s/m, respectively. 

In addition, substrates different to the one implemented in the reference green roof were considered 

to study the effect produced by the thermophysical properties and thickness of the substrate layer on 

the green roof thermal response. 

Besides the growing substrate of the experimental green cover placed on the building of the 

University of Palermo consists of a mixture of lapillus, pumice, Agrilit expanded perlite, peats, barks, 

coconut fibres, special clays, soil conditioners, organic fertilizers, other types of soil substrates were 

considered [50, 51]. Specifically, to study how the thermal properties of the growing medium and 

moisture content affect the energy performance of the green cover, lightweight and heavyweight 

substrates were analyzed [50, 51]. 

The constituent materials of the lightweight substrate are pumice (75 %), compost (10 %) and sand 

(15 %), while those of the heavyweight substrate are expanded shale (50 %) and sand (50 %). 
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The lightweight substrate is characterized by the highest moisture capacity, lowest thermal 

conductivity, and lowest density among all substrates, while the heavyweight one has the highest 

density and thermal conductivity among substrates. 

To determine the influence of substrate moisture content on the energy performance of vegetated 

covers, the thermal properties of each growing medium were considered for three different percentage 

moisture content levels: 20%, 60% and 100% taken from the literature [50, 51].  

Table 5 reports all thermophysical data of the different additional substrates considered for different 

values of the moisture content. 

 

Table 5. Thermal properties of lightweight and heavyweight substrates for three different moisture 

contents. 

Substrate 

number 

Moisture contents 

(%) 

Density  

ρ (kg/m3) 

Thermal 

conductivity  

λ (W/mK) 

Specific heat capacity 

cp (J/kgK) 

 Lightweight substrate 

1 20 765 0.21 1284 

2 60 870 0.31 1602 

3 100 934 0.41 1853 

 Heavyweight substrate 

4 20 1385 0.37 936 

5 60 1450 0.6 1035 

6 100 1500 0.84 1095 

 

As it can be seen, the thermal conductivity λ and density ρ increase as substrate moisture content. In 

addition, the specific heat cp increases as moisture content increases since water has a greater thermal 

storage capacity than air. Finally, two different substrate thicknesses of 0.1 and 0.3 m were 

considered. 

For the reference soil, also the maximum volumetric moisture content at saturation, minimum residual 

volumetric moisture content and initial volumetric moisture content, in all simulations, were set the 

same and equal to 0.42 m3/m3, 0.05 m3/m3 and 0.21 m3/m3, respectively. Instead, for the lightweight 

and heavyweight soils, the previous three parameters were set equal to 0.5 m3/m3, 0.01 m3/m3 and 0.2 

m3/m3, respectively. 

Overall, 18 different vegetation layers, 7 different substrate layers and two substrate thicknesses were 

considered. The parametrical analysis consists of hourly simulations throughout the year of 252 

different green roofs. For each hourly simulation, the hourly inputs are represented by the climatic 

conditions, while the hourly outputs are represented by the internal air temperature, internal and 

external surface temperature and internal and external surface heat flux. 

To extract from this database data for the training and validation phases, the reference soil resting on 

top of the building of the University of Palermo and, among the six additional cultivation soils, those 

with the most extreme thermal properties, i.e. characterized by the highest and lowest values of 

thermal conductivity (W/(m K)), specific heat (J/(kg K)) and density (kg/m3) were selected for the 

training phase. The remaining two substrates were used for the ANN validation phase. Table 5 

highlights the substrates selected for the validation phase in underlined italics. 
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2.2. Step 2 - Artificial neural network (ANN) training and optimization 

2.2.1. What is an ANN? 

The biological neural system consists of neurons, which in turn consists of the soma, from which a 

series of ramifications, called dendrites and a central body called axon from which other 

ramifications, called axon terminals, start, which have a swelling, the so-called synaptic button. The 

neuron has the function of receiving, integrating and transmitting nerve impulses; it receives 

information from the external environment in the form of an electrical signal. This signal reaches the 

neuron through dendrites, which transmit the information to the pack. In the soma, an integration 

process takes place, i.e. all the information coming from the various dendrites are added together and 

if a certain threshold value, called the potential threshold, is exceeded, the new signal is transmitted 

to the other neurons. The synaptic buttons of an axon are in contact with the dendrites of other neurons 

in such a way that the nerve impulse propagates along the neuronal circuit. The connection between 

neurons is called the synapse, which can be either excitatory or inhibitory depending on whether it 

favours or inhibits the transmission of the electrical signal between the neurons. 

The functioning of ANNs simplifies what happens within the biological neural system. Specifically, 

an ANN is made up of elementary units, the artificial neurons, between which some connections 

simulate synapses between biological neurons. Each neuron processes the received signals and 

transmits the result to other neurons through the connections. The importance is not the same for all 

connections but is determined through a connection weight, attributed to each connection between 

neurons. The ANN framework shown in Figure 8 simulates the behaviour of the biological neuron.  

 

 
Figure 8. Framework of ANN reproducing brain neuron behaviour 

 

On the left, the inputs correspond to the synaptic signal coming from the dendrites to the biological 

neuron. Each signal has a weight (w) which represents the force of the synapse. In the central part, a 

weighted sum of the various inputs with their respective weights is performed, as it happens in the 

biological neuron soma. This sum must exceed a certain threshold, which takes the name of the 

activation function, which corresponds to the potential threshold of the biological neuron.  

Different ANN architecture types are available based on the number of input and output neurons and 

based on their connection. The neurons are organized in layers. In particular, neurons belonging to 

the same layer present similar behaviour. It is necessary to mention that the input nodes are not 

considered layers since they are not involved in processing. According to [52], the ANN can be 

classified according to its architecture in (i) single-layer feedforward ANNs, composed of a layer of 
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input neurons and a layer of output neurons, in which the propagation of the signal occurs only in one 

direction, from the input layer to the output layer and, therefore, it is strongly acyclic or feedforward; 

(ii) multilayer feedforward ANNs, characterized by the presence of one or more layers of hidden 

nodes (hidden layers) placed between input nodes and output nodes, in which the operation takes 

place only in one direction from input to output and the final efficiency of the model is greater than 

the single-layer ANN; and (iii) recurrent ANNs, characterized by at least one feedback or a counter-

reaction cycle, in which there is a level of neurons that sends the output signals back to the input and 

the learning capacity is enhanced. 

 

2.2.2. ANN elements and equations 

Generally, an ANN consists of three basic elements: 

- a set of synapses or connections each of which is characterized by a weight (synaptic efficacy); 

unlike the human model, the artificial model can have both negative and positive weights; 

- a summation that sums the signals in input weighed by the respective synapses, producing in 

output a linear combination of the inputs; 

- an activation function to limit the amplitude of the output of a neuron. Typically the amplitude 

of the outputs belongs to the range [0,1] or [-1,1]. 

The neuronal model also consists of a threshold value that has the effect, depending on its positivity 

or negativity, of increasing or decreasing the net input to the activation function. 

This model undergoes a learning process in which the weights are gradually updated until the mean 

square error between the output of the ANN (Output) and the desired output (Target) is minimized. 

In mathematical terms, a neuron k is described with Eqs. (4) and (5). 

 

uk = ∑ wkj .  xj

m

j=0

                                                                  (4) 

 

yk =  φ(uk + bk)                                                                  (5) 

 

Where, xj are the inputs relative to neuron k, wkj is the j-th synaptic weights of neuron k, uk is the 

linear combination of the inputs in neuron k, bk is the threshold value of neuron k, φ(x) is the 

activation function and yk is the output generated by neuron k. 

The elements that characterize an ANN result are: input level; hidden level/s; output level; weights 

and distortions between levels; function of activation.  

The type of activation function used determines the neuron's response. In the literature, different types 

of activation functions are employed. The most used are: 

 

1. Step activation function (Heaviside function) 

The step activation function f(A) of Eq. (6) assumes value 1 if the weighted sum is greater than 

the threshold value s; otherwise, it assumes value 0. 

 

f(A) = {
1               if A ≥ s
0                     else

                                                           (6) 

 

2. Sign step activation function 
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The sign activation function of Eq. (7) assumes value 1 if it is greater than the threshold value, 

otherwise, it assumes value -1. 

 

f(A) = {
1               if A ≥ s

 −1                    else
                                                  (7) 

 

3. Continuous linear activation function 

The continuous linear activation function of Eq. (8) is directly proportional to the weighted sum 

of the input signals and when ε=1 is equal to this weighted sum. 

 

f(A) = εA                                                                      (8) 

 

The previous activation functions are all continuous functions. This allows the transmission of signals 

of gradual intensity and makes them similar to biological neurons. In addition, there are also widely 

used non-linear continuous activation functions. 

 

4. Binary sigmoidal activation function 

The binary sigmoidal activation function of Eq. (9) is an increasing function and varies in the 

interval [0, 1]. 

 

f(A) =
1

1 + e−εA
                                                                      (9) 

 

where ε indicates the slope of the function. When ε = 1 the Log-sigmoid activation function 

is obtained. 

 

5. Bipolar sigmoidal activation function 

The bipolar sigmoidal activation function of Eq. (10) varies in the interval [1, -1] and uses the 

hyperbolic tangent: 

 

f(A) = tanh(εA)                                                                      (10) 

 

where ε represents the slope of the function. When ε=1, the hyperbolic tangent sigmoid 

activation function of Eq. (11) is obtained. 

 

f(A) =
2

1 + e−2A
− 1                                                                    (11) 

 

Figure 9 shows all the activation functions described. 
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Figure 9. Most employed activation functions. 

 

In this research work, hyperbolic tangent sigmoid activation functions were used in the hidden layers, 

while a continuous linear activation function was associated with the output layer. The advantage of 

using hyperbolic tangent sigmoid activation functions in the hidden layers is that the negative inputs 

will be mapped strongly negative and the zero inputs will be mapped near zero. In addition, the 

function is differentiable and monotonic while its derivative is not monotonic. All these 

characteristics are very useful for the training algorithm, explained in the successive section, to know 

in which direction and how much to change or update the ANN weights. Instead, the continuous 

linear activation function does not alter the output from the ANN. 

 

2.2.3. ANN training algorithm 

To build an effective ANN model, it is necessary to carry out an ANN training phase in which the 

model receives a series of input data, apparently unrelated to each other, and a series of outputs, to 

learn the relationship between input and output. These data are numerically or experimentally 

analyzed and elaborated by experts and the data produced constitute the model outputs. 

In the training phase, the ANN learns the relationships existing between the inputs, which are 

the data collected, and the outputs, which are the evaluations made by the experts. The training phase 

aims to provide an output solution even when different input data are provided. In particular, the ANN 

training phase can be based on three different algorithms: supervised, unsupervised, and 

reinforcement. Supervised learning is used to solve classification and regression problems, and the 

objective is to learn the relationship between inputs and outputs given as training data. Then the ANN 

generalizes this relationship by processing correct outputs even when it receives different data inputs. 

In particular, the ANN increases the weights that provide a correct solution and decreases those that 

provide an incorrect solution.  

Several ANN learning methods were developed to speed up the learning process. The four 

following training algorithms are the most commonly used: 
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- Error back-propagation algorithm: is a decreasing gradient method that optimizes the value 

of the weights minimizing the total square error between the ANN output (output) and the 

desired output (target) [52]. 

- Levenberg-Marquardt algorithm: requires more memory but less time. The training phase 

stops automatically when the generalization stops improving, i.e. when there is an increase in 

the mean square error (MSE) of the validation samples.  

- Bayesian Regularization: allows for achieving a good generalization in the case of difficult, 

small or noisy datasets, at the expense of a longer training time. 

- Scaled Conjugate Gradient: the training phase stops automatically when the generalization 

stops improving, as in the Levenberg-Marquardt algorithm but requires less memory. 

In this research work, the Levenberg-Marquardt algorithm was used, which is widely used in ANNs 

because it is the most stable and fastest method in finding the solution, while the method of back-

propagation of the error is valid in the case of ANNs composed of a large number of hidden layers 

and neurons. The Levenberg-Marquardt algorithm refers to the Newton approximation method and 

the Hessian matrix to assign values to weights [53-55]. It is based on both the Newton method and 

the gradient descent method and is an iterative regression technique used to solve multi-variable 

nonlinear problems. To better understand the Levenberg-Marquardt algorithm, the Descending 

gradient and Newton methods underlying this algorithm are summarily described. 

 In the descending gradient method, the weights w are changed at step k+1 using Eq. (12). 

 

wk+1 = wk − αgk                                                (12) 

 

in which the constant α is called learning rate and g is the gradient with a negative sign, which is 

the first derivative of the function sum of the square of the errors. The problem with this method 

is the difficulty of choosing the learning rate α, which depends strongly on the speed with which 

the function converges to the minimum.  

 In the Newton method, the weights w are updated at step k+1 with Eq. (13): 

 

wk+1 = wk − Hk
−1gk                                                (13) 

 

in which H is the Hessian matrix of the second derivatives of the sum function of the quadratic 

error with respect to the weights. The introduction of the Hessian matrix allows the learning rate 

α to be adjusted at each step k, while in the previous method α is fixed. To calculate the Hessian 

matrix, the Gauss-Newton method is used, which modifies the weights w at step k+1 with Eq. 

(14). 

 

wk+1 = wk − (Jk
TJk)

−1
Jkek                                                (14) 

 

where JT is the transposed Jacobian matrix which approximates the Hessian matrix using the 

prime derivatives and not the secondary derivatives, so the Hessian matrix is written via the 

Jacobian matrix as: 

 

Hk = Jk
T Jk                                                                   (15) 
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while the gradient g is: 

 

g =  JTe                                                                     (16) 

where e is the ANN error vector.  

In this way, the Gauss-Newton method solves the problem of slowness in finding the minimum 

of the sum function of the square of the errors. However, it may diverge from the solution in the case 

of complex problems. Instead, the Levenberg-Marquardt method modifies the weights w at step k+1 

with the equation: 

 

wk+1 = wk − (Jk
TJk + μI)

−1
Jkek                                                (17) 

 

Compared to the Gauss-Newton method, this method introduces the parameter µ, called the damping 

coefficient, and the identity matrix I. The damping coefficient is introduced to prevent the algorithm 

from diverging from the minimum error function. Parameter µ varies according to the following 

criteria: is reduced when a step in the algorithm leads to a better value of the error function, such that 

convergence to the minimum value is accelerated; is increased when the value of the error function 

moves away from the minimum so that the variation of the weights is reduced to find a better value 

of the error function. The iterative Levenberg-Marquardt algorithm steps used during the ANN 

training are: (i) starting the ANN training with random values of the weights wk; (ii) calculation of 

the errors, namely a sum function of the square of the errors and Jacobian matrix; (iii) modification 

of the values of the weights wk using a random value of the damping parameter µ; (iv) recalculation 

of the errors E and sum function of the square of the errors with the new values of the weights; (v) if 

the error is decreased (Ek−1 < Ek), then the damping parameter µ is divided by 10 such that the speed 

of convergence is increased, while if the error has increased (Ek−1 > Ek), then the damping parameter 

µ is multiplied by 10 to decrease the speed of convergence; (vi) return to step (ii). The epochs indicate 

the number of times the ANN is trained with the training set. The training algorithm is interrupted 

when the sum function of the square of the errors reaches a minimum value set as a threshold or when 

this function starts to increase on the percentage of data of the "validation test". 

In this work, the ANN was implemented using MATLAB software, MATrix LABoratory, by means 

of the Neural Net Fitting tool [56]. ANN database was divided into three groups of the input data: a 

group, 70% of the data, was used for the ANN training of the network; the second group, 15% of the 

data, was used for the ANN testing, and the remaining 15% was used for the validation of the model. 

Once the training phase is completed, the interface returns the values of the regression coefficient R2 

and the value of the mean square error MSE to evaluate the performance of the network. In case the 

values of the latter are not completely satisfactory, the number of neurons in the hidden layer is 

changed and the ANN is trained again. 

 

2.2.4. ANN inputs and outputs 

Hourly results obtained with Design Builder were synthesized at a monthly average daily level for all 

five soil substrates selected in the training phase.  

Therefore, a "training parametric table" was created for the training phase, that is a table characterized 

by input-output pairs for each simulation and each month. It, in particular, is constituted by a number 

of columns equal to the number of the inputs and outputs considered and by a number of rows equal 
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to the product between the number of simulations realized for the specific substrate, that is 36, and 

the number of months of the year. 

Table 6 lists all inputs and outputs considered for the ANN creation. 

 

Table 6. Inputs and outputs considered for the ANN creation 

Inputs 

Characteristic parameters of the soil substrate: 

Density (kg/m3) 

Thermal conductivity (W/(m K)) 

Specific heat capacity (J/(kg K)) 

Maximum volumetric moisture content at saturation (m3/m3) 

Thickness (m) 

Vegetation characteristic parameters 

Plant height (m) 

LAI (-) 

Leaf reflectivity (-) 

Climatic data of Palermo 

Monthly average daily dry bulb temperature (°C) 

Monthly average daily percentage relative humidity (%) 

Monthly average daily wind speed (m/s) 

Monthly average daily total horizontal radiation (W/m2) 

Monthly average daily diffuse radiation from the sky on the horizontal 

(W/m2) 

Monthly average daily sky temperature (°C) 

Outputs 

Monthly average daily internal surface temperature (°C) 

Monthly average daily external surface temperature (°C) 

Monthly average daily internal air temperature (°C) 

 

 

The 14 inputs considered are related to the parameters of the vegetation, the thickness and the thermal 

properties of the soil substrate, as well as the climatic data of the reference city of Palermo, while the 

3 outputs considered are related to the green roof surface temperatures and internal air temperature, 

according to Figure 10. 
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Figure 10. ANN outputs: internal and external surface temperatures of the green roof and internal 

air temperature. 

 

The chosen outputs are useful to calculate the monthly average daily power entering or exiting from 

the external and internal surface of the green roof. At this point, it is worth noting that the external 

surface temperature is also directly connected to the UHI mitigation reached by implementing a green 

roof, while the internal temperatures are also directly connected to indoor thermal comfort. 

The "training parametric table" implemented for the training phase, for a specific substrate, consists 

of 17 columns (14 input and 3 outputs) and 432 rows (36 simulations related to each month). 

Subsequently, five "training parametric tables" were created and queued for each substrate chosen for 

the training phase. This allowed obtaining a "training parametric table overall" consisting of the same 

number of columns and 2160 rows (432 rows for five terrain substrates), that was imported into 

MATLAB in matrix format. Once the input data and the target data have been inserted, the tool allows 

selecting the percentages according to which the data are divided for the training, validation and 

testing phase. In particular, the percentages are: 70% of the data for training; 15% of the data for the 

validation in such a way that the training is interrupted when the generalization stops improving; 15% 

of the data for the testing phase, which does not affect training. Consequently, 1512 data were used 

for training, and 324 data were used for both validation and testing. 

Overall, this research aims to create a monthly ANN, calculated on the basis of hourly values 

previously simulated with Design Builder, to predict the three temperatures mentioned in Table 6. 

 

2.2.5. ANN optimization 

The accuracy of the ANN prediction is evaluated by comparing the output values obtained using the 

implemented ANN with those obtained using the DesignBuilder software, which are considered as 

desired or target values. 

Table 7 lists the statistical indices used to estimate the accuracy and precision of results provided by 

the monthly ANN based on hourly data [57]. Specifically, the table shows for each statistical index 

the calculation formula, range of variation, and optimal value. 
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Table 7. Accuracy metric name, equation, variation range and optimal value [57]. 

Accuracy metric Equation 

Range and 

optimal 

value 

Mean square error 

(MSE) MSE =  
∑ (ti − yi)

2N
i=1

N
 (𝟎, +∞)  

Mean absolute 

error (MAE) MAE =
∑ |ti − yi|

N
i=1

N
 (𝟎, +∞) 

Root mean square 

error (RMSE) 
RMSE =  √MSE (𝟎, +∞) 

Coefficient of 

variance (COV) 
COV =  

RMSE

∑ yi
2N

i=1
N

∙ 100 
(𝟎, +∞) 

Correlation 

coefficient (CC) 
CC = R =  

N ∑ ti
N
i=1 yi − (∑ ti

N
i=1 )(∑ yi

N
i=1 )

[N(∑ ti
2N

i=1 ) − (∑ ti
N
i=1 )

2
] [N(∑ yi

2N
i=1 ) − (∑ yi

N
i=1 )

2
]
 (−∞, 𝟏) 

R-square (R2) R2 =  
N ∑ ti

N
i=1 y

i
− (∑ ti

N
i=1 )(∑ y

i
N
i=1 )

[N(∑ ti
2N

i=1 ) − (∑ ti
N
i=1 )2] [N(∑ y

i
2N

i=1 ) − (∑ y
i

N
i=1 )

2
]
 (0, 𝟏) 

Coefficient of 

determination 

(COD) 
COD =

[∑ (ti − tm)N
i=1 (yi − ym)]

2

∑  (ti − tm)2N
i=1 ∑  (yi − ym)2N

i=1

 (0, +∞) 

Efficiency 

coefficient (EC) 
EC = 1 −

∑ (ti − yi)
2N

i=1

∑  (ti − tm)2N
i=1

 (−∞, 𝟏) 

Overall index of 

model performance 

(OIMP) 

OIMP =  
1

2
[1 − (

RMSE

tmax − tmin
) + EC] (−∞, 𝟏) 

Coefficient of 

residual mass 

(CRM) 

CRM =  
∑ yi −N

i=1 ∑ ti
N
i=1

∑ ti
N
i=1

 
(−ꝏ, +ꝏ) 

0 

 

The optimal value of the different metrics is highlighted in bold. 

Where: 

 ti, tm, tmax e tmin represent the values i-th, average, maximum and minimum of the output 

target obtained from the simulations carried out with the software Design Builder; 

 yi e ym represent the values i-th and average of the output in output from the ANN; 

 N represents the total number of data. 

Furthermore, additional metrics (minimum, maximum, mean and standard deviation values of the 

error) for the accuracy of the ANN are reported below. They are related to the errors between the 

values of the i-th output target (ti), obtained from the simulations carried out with the software Design 

Builder, and the values of the i-th output obtained with the ANN (yi): 

 

Emin = min(ti − yi)                                                                   (18) 

 

Emax = max(ti − yi)                                                                   (19) 

 

Em =
∑(ti − yi)

N
                                                                   (20) 
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Esd = √
∑(Ei − Em)2

N
                                                                   (21) 

 

Table 7 highlights the interval of variation of these statistical indices in the third column and, in 

particular in bold, the optimal value. Therefore, it is easy to notice as the model that exhibits values 

of Emax, Emin, Em, Esd, MSE, MAE, RMSE, COV and CRM close or even equal to zero is the best 

from the point of view of precision and accuracy of the results predicted by the ANN with respect to 

the target results simulated with Design Builder; while the model characterized by values for R, R2, 

EC, COD and OIMP close or even equal to unity is the most accurate and precise in predicting the 

simulated target results [57]. 

These indices were used in the present research work to identify the optimal number of neurons in 

the hidden layer and the optimal number of hidden layers. In general, it is recommended not to set 

too high a number of neurons in the hidden layer because as the number of neurons in the hidden 

layer increases, the complexity of the network increases and therefore the computational burden. 

Usually, a high number of neurons in the hidden layer is set when very complex problems that have 

many inputs and outputs are faced. In this manner, a more effective resolution is reached. On the 

other hand, a high number of neurons in the hidden layer implies the risk of adapting the network in 

a perfect way to the data used in the training phase (overfitting), thus losing the capacity for 

generalization of the network. 

The ANN training was developed iteratively by increasing the number of neurons evaluating each 

time the statistical indices of the network (in general, coefficient of determination R2 and the root 

mean square error RMSE) that represent the performance parameters.  

In this research work, a progressively increasing number of neurons in the hidden layer was set due 

to the high complexity of the network under study. In particular, a study was carried out varying the 

number of neurons in the hidden layer from 1 to 100 in steps of 5 and from 100 to 200 in steps of 10. 

The final objective is to identify the optimal number of neurons in the hidden layer. Once the optimal 

number of neurons was identified, the ANN with a single hidden layer was compared with another 

ANN characterized by the same overall number of neurons divided into two hidden layers. 

 

2.3. Step 3 – ANN validation 

The validation step of an ANN represents the last step and aims to validate the final model using input 

data different from those used in the training phase to verify that the ANN has learned to generalize 

the model. If the verification is not satisfied, it is necessary to return to the training phase, while if 

the solution provided by the ANN is compatible with that provided by experts, the model is used with 

the various hardware and software. The ANN validation phase quickly provides the results obtained 

with the new data, even if the ANN training phase was slow. In the validation step, the ANN was 

used to predict the thermal performance of the other 72 green roof configurations, described in 

Section 2.1 and not used in the training step. The results obtained from the optimal ANN were 

compared with the results obtained by means of dynamic simulations performed of the same 72 green 

roofs in Design Builder. For this purpose, the same accuracy metrics employed in the training and 

optimization step and described in Section 2.2.5, were also applied in the validation step. 
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3. Results 

In Sections 3.1 and 3.2, results obtained in the green roof ANN training and optimization phase are 

illustrated and results related to the green roof ANN validation phase are described. 

 

3.1. ANN training and optimization 

 

3.1.1. Impact of the number of neurons 

Tables 8-11 show the metrics obtained in the ANN training phase for the internal surface temperature, 

external surface temperature and internal air temperature at the monthly average daily level, as well 

as for all outputs simultaneosly. 

 

Table 8. Accuracy metrics obtained for monthly average daily internal surface temperature. 

# Neurons MAE R2 MSE RMSE EC CRM COV Corr - R COD OIMP Emax Emin Eavg Esd 

1 1.1434 0.9426 2.0908 1.4460 0.9426 0.0007 6.4839 0.9709 0.9480 0.9392 4.2852 -6.9196 0.0165 1.4462 

5 0.4691 0.9853 0.5373 0.7330 0.9853 -0.0006 3.2824 0.9926 0.9862 0.9764 2.7010 -7.6856 -0.0144 0.7330 

10 0.3284 0.9940 0.2192 0.4681 0.9940 -0.0009 2.0959 0.9970 0.9941 0.9866 2.6133 -4.5244 -0.0190 0.4679 

15 0.2546 0.9965 0.1270 0.3564 0.9965 0.0000 1.5969 0.9983 0.9966 0.9903 2.2744 -2.0592 -0.0009 0.3565 

20 0.2097 0.9977 0.0845 0.2906 0.9977 0.0002 1.3025 0.9988 0.9977 0.9924 1.7372 -1.6458 0.0034 0.2907 

25 0.1548 0.9986 0.0514 0.2268 0.9986 0.0001 1.0161 0.9993 0.9986 0.9943 2.2679 -1.4178 0.0012 0.2268 

30 0.1588 0.9986 0.0528 0.2297 0.9986 -0.0002 1.0290 0.9993 0.9986 0.9942 1.5184 -2.1512 -0.0041 0.2297 

35 0.1380 0.9990 0.0351 0.1873 0.9990 -0.0002 0.8390 0.9995 0.9990 0.9954 1.3513 -1.0194 -0.0034 0.1873 

40 0.1354 0.9989 0.0392 0.1979 0.9989 0.0000 0.8869 0.9995 0.9989 0.9951 2.1853 -0.9478 0.0007 0.1980 

45 0.1265 0.9991 0.0316 0.1778 0.9991 0.0003 0.7969 0.9996 0.9991 0.9956 1.0852 -0.8525 0.0067 0.1777 

50 0.1203 0.9992 0.0291 0.1706 0.9992 -0.0004 0.7643 0.9996 0.9992 0.9958 0.7030 -1.4555 -0.0078 0.1705 

55 0.1580 0.9983 0.0607 0.2464 0.9983 -0.0002 1.1036 0.9992 0.9984 0.9937 1.2458 -3.3986 -0.0050 0.2464 

60 0.1084 0.9993 0.0242 0.1557 0.9993 0.0005 0.6980 0.9997 0.9994 0.9962 1.0060 -0.6942 0.0111 0.1553 

65 0.1033 0.9994 0.0223 0.1492 0.9994 0.0002 0.6687 0.9997 0.9994 0.9964 0.8831 -0.7314 0.0051 0.1491 

70 0.1171 0.9992 0.0281 0.1675 0.9992 0.0001 0.7505 0.9996 0.9992 0.9959 0.8131 -0.9138 0.0023 0.1675 

75 0.1056 0.9993 0.0266 0.1630 0.9993 0.0001 0.7302 0.9996 0.9993 0.9960 1.4195 -1.1077 0.0020 0.1630 

80 0.1277 0.9990 0.0363 0.1906 0.9990 0.0000 0.8541 0.9995 0.9990 0.9953 1.0303 -1.7636 -0.0007 0.1907 

85 0.1270 0.9989 0.0386 0.1965 0.9989 0.0006 0.8808 0.9995 0.9990 0.9951 1.2756 -1.2698 0.0132 0.1961 

90 0.0927 0.9994 0.0218 0.1475 0.9994 -0.0002 0.6607 0.9997 0.9994 0.9964 0.8173 -1.2033 -0.0041 0.1475 

95 0.1064 0.9991 0.0341 0.1846 0.9991 0.0001 0.8273 0.9995 0.9991 0.9954 2.5874 -0.7867 0.0015 0.1847 

100 0.1246 0.9990 0.0369 0.1922 0.9990 0.0005 0.8614 0.9995 0.9990 0.9952 1.5628 -1.3216 0.0108 0.1919 

110 0.1302 0.9985 0.0543 0.2330 0.9985 0.0005 1.0445 0.9993 0.9985 0.9941 3.7251 -0.9689 0.0114 0.2328 

120 0.1169 0.9990 0.0374 0.1934 0.9990 0.0001 0.8669 0.9995 0.9990 0.9952 2.0648 -1.9354 0.0030 0.1935 

130 0.1261 0.9989 0.0394 0.1984 0.9989 0.0001 0.8890 0.9995 0.9989 0.9951 1.1668 -2.5817 0.0026 0.1984 

140 0.1240 0.9989 0.0418 0.2045 0.9989 0.0004 0.9167 0.9994 0.9989 0.9949 1.8538 -0.9136 0.0096 0.2043 

150 0.1179 0.9988 0.0456 0.2134 0.9987 0.0006 0.9569 0.9994 0.9988 0.9946 2.9497 -1.2934 0.0123 0.2131 

160 0.1496 0.9984 0.0570 0.2387 0.9984 0.0002 1.0696 0.9992 0.9985 0.9939 2.3297 -1.4390 0.0044 0.2387 

170 0.1214 0.9990 0.0362 0.1904 0.9990 0.0002 0.8532 0.9995 0.9990 0.9953 1.2806 -0.9798 0.0053 0.1903 

180 0.1541 0.9982 0.0660 0.2568 0.9982 0.0005 1.1514 0.9991 0.9982 0.9934 1.4807 -1.3016 0.0115 0.2566 

190 0.1647 0.9979 0.0765 0.2765 0.9979 0.0003 1.2395 0.9990 0.9980 0.9928 2.3546 -2.2985 0.0072 0.2765 

200 0.1499 0.9981 0.0701 0.2648 0.9981 -0.0004 1.1860 0.9990 0.9981 0.9932 1.9779 -1.9269 -0.0094 0.2647 

 

Table 9. Accuracy metrics obtained for monthly average daily external surface temperature. 

# Neurons MAE R2 MSE RMSE EC CRM COV Corr - R COD OIMP Emax Emin Eavg Esd 

1 1.6100 0.9120 3.7994 1.9492 0.9119 0.0028 8.8401 0.9550 0.9201 0.9145 5.0842 -7.4960 0.0628 1.9486 

5 0.5237 0.9862 0.5977 0.7731 0.9861 -0.0008 3.4936 0.9931 0.9867 0.9766 2.9940 -7.6424 -0.0176 0.7731 

10 0.3691 0.9938 0.2683 0.5180 0.9938 -0.0005 2.3412 0.9969 0.9939 0.9859 2.7710 -4.0582 -0.0115 0.5180 

15 0.2995 0.9961 0.1689 0.4110 0.9961 0.0002 1.8589 0.9980 0.9962 0.9893 2.2076 -2.2004 0.0045 0.4110 

20 0.2668 0.9970 0.1283 0.3582 0.9970 0.0004 1.6204 0.9985 0.9971 0.9909 2.0362 -1.6279 0.0094 0.3581 

25 0.2218 0.9979 0.0923 0.3037 0.9979 0.0002 1.3739 0.9989 0.9979 0.9925 2.1201 -1.5241 0.0048 0.3038 

30 0.2016 0.9981 0.0803 0.2835 0.9981 0.0000 1.2819 0.9991 0.9982 0.9930 1.6001 -2.2739 -0.0007 0.2835 

35 0.1846 0.9985 0.0632 0.2515 0.9985 0.0001 1.1374 0.9993 0.9986 0.9939 1.2629 -1.2568 0.0014 0.2515 

40 0.1810 0.9985 0.0656 0.2562 0.9985 -0.0001 1.1584 0.9992 0.9985 0.9938 2.3430 -1.1711 -0.0025 0.2562 

45 0.1723 0.9987 0.0556 0.2358 0.9987 0.0003 1.0668 0.9994 0.9987 0.9943 1.2056 -1.0210 0.0073 0.2358 

50 0.1659 0.9988 0.0509 0.2257 0.9988 -0.0002 1.0204 0.9994 0.9988 0.9946 1.0004 -1.3008 -0.0052 0.2257 

55 0.1978 0.9981 0.0829 0.2879 0.9981 -0.0002 1.3019 0.9990 0.9981 0.9929 1.4922 -3.2508 -0.0044 0.2880 
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60 0.1483 0.9989 0.0467 0.2161 0.9989 0.0002 0.9773 0.9995 0.9990 0.9949 1.2772 -1.3017 0.0042 0.2161 

65 0.1425 0.9991 0.0394 0.1984 0.9991 0.0001 0.8973 0.9995 0.9991 0.9953 1.0810 -0.8680 0.0028 0.1984 

70 0.1599 0.9988 0.0522 0.2284 0.9988 -0.0002 1.0329 0.9994 0.9988 0.9945 1.1914 -1.4066 -0.0046 0.2285 

75 0.1479 0.9989 0.0461 0.2146 0.9989 -0.0003 0.9703 0.9995 0.9990 0.9949 1.7991 -1.1182 -0.0064 0.2146 

80 0.1591 0.9989 0.0496 0.2226 0.9989 0.0000 1.0068 0.9994 0.9989 0.9947 1.1238 -1.2733 -0.0005 0.2227 

85 0.1652 0.9987 0.0554 0.2355 0.9987 0.0003 1.0652 0.9994 0.9987 0.9944 1.3639 -1.1823 0.0075 0.2354 

90 0.1309 0.9991 0.0386 0.1966 0.9991 -0.0001 0.8888 0.9996 0.9991 0.9954 1.3561 -1.4652 -0.0030 0.1966 

95 0.1439 0.9988 0.0512 0.2262 0.9988 0.0001 1.0231 0.9994 0.9988 0.9946 2.5161 -1.1762 0.0027 0.2263 

100 0.1586 0.9988 0.0532 0.2307 0.9988 0.0002 1.0433 0.9994 0.9988 0.9945 1.6457 -1.5333 0.0039 0.2307 

110 0.1581 0.9983 0.0719 0.2681 0.9983 0.0004 1.2131 0.9992 0.9984 0.9935 3.7589 -1.6703 0.0096 0.2680 

120 0.1512 0.9988 0.0526 0.2294 0.9988 -0.0001 1.0375 0.9994 0.9988 0.9945 1.6584 -2.0820 -0.0019 0.2295 

130 0.1502 0.9988 0.0535 0.2312 0.9988 0.0002 1.0459 0.9994 0.9988 0.9945 1.2606 -2.5799 0.0035 0.2313 

140 0.1652 0.9985 0.0634 0.2518 0.9985 0.0005 1.1393 0.9993 0.9986 0.9939 1.3945 -1.8922 0.0121 0.2516 

150 0.1476 0.9986 0.0588 0.2426 0.9986 0.0007 1.0977 0.9993 0.9987 0.9942 2.8214 -1.1260 0.0146 0.2422 

160 0.1810 0.9983 0.0736 0.2713 0.9983 0.0002 1.2274 0.9991 0.9983 0.9934 2.7794 -1.4415 0.0052 0.2714 

170 0.1466 0.9988 0.0523 0.2287 0.9988 0.0001 1.0344 0.9994 0.9988 0.9945 1.3593 -1.2645 0.0018 0.2288 

180 0.1738 0.9982 0.0774 0.2782 0.9982 0.0002 1.2583 0.9991 0.9983 0.9932 1.5396 -1.5826 0.0038 0.2782 

190 0.1824 0.9978 0.0933 0.3054 0.9978 0.0008 1.3821 0.9989 0.9978 0.9924 3.1199 -2.2100 0.0166 0.3050 

200 0.1686 0.9980 0.0876 0.2959 0.9980 -0.0006 1.3375 0.9990 0.9980 0.9927 1.9551 -2.9650 -0.0138 0.2957 

 

Table 10. Accuracy metrics obtained for monthly average daily internal air temperature. 

# Neurons MAE R2 MSE RMSE EC CRM COV Corr - R COD OIMP Emax Emin Eavg Esd 

1 1.1333 0.9446 2.0228 1.4222 0.9446 0.0005 6.3676 0.9719 0.9500 0.9407 4.2588 -4.3123 0.0114 1.4225 

5 0.4510 0.9887 0.4125 0.6422 0.9887 -0.0006 2.8722 0.9943 0.9891 0.9801 2.6399 -2.5621 -0.0140 0.6422 

10 0.3467 0.9927 0.2678 0.5175 0.9927 -0.0013 2.3127 0.9963 0.9931 0.9849 5.3507 -1.9683 -0.0280 0.5168 

15 0.2638 0.9960 0.1472 0.3836 0.9960 -0.0001 1.7165 0.9980 0.9960 0.9895 2.5613 -2.0214 -0.0014 0.3837 

20 0.2194 0.9971 0.1053 0.3245 0.9971 0.0000 1.4522 0.9986 0.9972 0.9914 2.1078 -2.1509 -0.0007 0.3246 

25 0.1584 0.9983 0.0603 0.2455 0.9983 0.0000 1.0987 0.9992 0.9984 0.9937 2.2747 -2.1199 -0.0005 0.2456 

30 0.1645 0.9983 0.0616 0.2481 0.9983 0.0000 1.1102 0.9992 0.9983 0.9937 1.8305 -2.1507 -0.0008 0.2482 

35 0.1420 0.9988 0.0430 0.2074 0.9988 -0.0002 0.9279 0.9994 0.9988 0.9948 1.8380 -1.8844 -0.0053 0.2074 

40 0.1423 0.9987 0.0482 0.2196 0.9987 0.0000 0.9825 0.9993 0.9987 0.9945 2.2282 -1.4381 -0.0006 0.2196 

45 0.1295 0.9990 0.0374 0.1933 0.9990 0.0003 0.8651 0.9995 0.9990 0.9952 1.6846 -1.5782 0.0062 0.1932 

50 0.1267 0.9990 0.0377 0.1943 0.9990 0.0000 0.8693 0.9995 0.9990 0.9952 2.1834 -1.4136 -0.0010 0.1943 

55 0.1714 0.9979 0.0775 0.2784 0.9979 -0.0004 1.2455 0.9989 0.9979 0.9928 2.1031 -3.5315 -0.0093 0.2784 

60 0.1124 0.9992 0.0293 0.1711 0.9992 0.0005 0.7662 0.9996 0.9992 0.9958 1.6089 -1.4947 0.0104 0.1709 

65 0.1048 0.9993 0.0260 0.1613 0.9993 0.0003 0.7220 0.9996 0.9993 0.9961 1.6623 -1.3956 0.0072 0.1612 

70 0.1235 0.9991 0.0345 0.1856 0.9991 0.0002 0.8308 0.9995 0.9991 0.9954 1.6529 -1.4216 0.0049 0.1856 

75 0.1097 0.9992 0.0310 0.1759 0.9992 0.0001 0.7873 0.9996 0.9992 0.9957 1.4127 -1.5945 0.0015 0.1760 

80 0.1389 0.9988 0.0454 0.2130 0.9988 0.0001 0.9532 0.9994 0.9988 0.9947 1.7571 -1.6012 0.0015 0.2130 

85 0.1305 0.9987 0.0460 0.2145 0.9987 0.0005 0.9602 0.9994 0.9988 0.9946 1.6732 -2.1620 0.0121 0.2142 

90 0.0958 0.9993 0.0262 0.1619 0.9993 -0.0002 0.7243 0.9996 0.9993 0.9960 1.5787 -1.6375 -0.0042 0.1619 

95 0.1110 0.9989 0.0394 0.1986 0.9989 0.0000 0.8887 0.9995 0.9989 0.9951 2.5585 -1.5243 0.0006 0.1986 

100 0.1324 0.9988 0.0443 0.2104 0.9988 0.0002 0.9415 0.9994 0.9988 0.9947 1.7455 -1.4408 0.0038 0.2104 

110 0.1312 0.9988 0.0429 0.2071 0.9988 0.0005 0.9271 0.9994 0.9988 0.9948 2.1811 -1.0168 0.0102 0.2069 

120 0.1203 0.9989 0.0385 0.1962 0.9989 0.0001 0.8779 0.9995 0.9990 0.9951 1.2322 -1.8728 0.0029 0.1962 

130 0.1224 0.9991 0.0344 0.1854 0.9991 0.0001 0.8296 0.9995 0.9991 0.9954 1.5293 -0.8919 0.0020 0.1854 

140 0.1295 0.9987 0.0463 0.2151 0.9987 0.0005 0.9633 0.9994 0.9987 0.9946 1.6267 -1.2653 0.0119 0.2149 

150 0.1178 0.9988 0.0445 0.2109 0.9988 0.0007 0.9446 0.9994 0.9989 0.9947 2.8318 -1.1689 0.0151 0.2104 

160 0.1498 0.9984 0.0594 0.2438 0.9984 0.0011 1.0921 0.9992 0.9984 0.9938 2.2428 -1.3623 0.0242 0.2426 

170 0.1251 0.9989 0.0414 0.2034 0.9989 -0.0004 0.9099 0.9994 0.9989 0.9949 1.2108 -1.6322 -0.0081 0.2033 

180 0.1633 0.9980 0.0735 0.2711 0.9980 0.0003 1.2136 0.9990 0.9980 0.9930 1.7961 -1.4238 0.0058 0.2711 

190 0.1675 0.9980 0.0726 0.2694 0.9980 -0.0004 1.2051 0.9990 0.9981 0.9930 2.1408 -1.6623 -0.0082 0.2693 

200 0.1417 0.9984 0.0594 0.2437 0.9984 -0.0005 1.0900 0.9992 0.9984 0.9938 1.4616 -1.8702 -0.0111 0.2435 

 

Table 11. Accuracy metrics obtained for monthly average daily values of all outputs (optimal values 

in bold). 

# Neurons MAE R2 MSE RMSE EC CRM COV Corr - R COD OIMP Emax Emin Eavg Esd 

1 1.2956 0.9319 2.6377 1.6241 0.9319 0.001358 7.3063 0.9653 0.9383 0.9314 5.0842 -7.4960 0.0302 1.6239 

5 0.4813 0.9867 0.5158 0.7182 0.9867 -0.000689 3.2245 0.9933 0.9873 0.9781 2.9940 -7.6856 -0.0153 0.7181 

10 0.3481 0.9935 0.2517 0.5017 0.9935 -0.000877 2.2521 0.9967 0.9937 0.9861 5.3507 -4.5244 -0.0195 0.5014 

15 0.2726 0.9962 0.1477 0.3843 0.9962 0.000034 1.7266 0.9981 0.9963 0.9899 2.5613 -2.2004 0.0008 0.3843 

20 0.2319 0.9973 0.1060 0.3256 0.9973 0.000183 1.4631 0.9986 0.9973 0.9917 2.1078 -2.1509 0.0041 0.3256 

25 0.1783 0.9982 0.0680 0.2607 0.9982 0.000083 1.1715 0.9991 0.9983 0.9936 2.2747 -2.1199 0.0018 0.2608 
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30 0.1750 0.9983 0.0649 0.2547 0.9983 -0.000083 1.1443 0.9992 0.9984 0.9937 1.8305 -2.2739 -0.0018 0.2547 

35 0.1549 0.9988 0.0471 0.2170 0.9988 -0.000109 0.9750 0.9994 0.9988 0.9948 1.8380 -1.8844 -0.0024 0.2171 

40 0.1529 0.9987 0.0510 0.2258 0.9987 -0.000035 1.0146 0.9993 0.9987 0.9945 2.3430 -1.4381 -0.0008 0.2259 

45 0.1428 0.9989 0.0415 0.2038 0.9989 0.000303 0.9158 0.9995 0.9989 0.9951 1.6846 -1.5782 0.0067 0.2037 

50 0.1376 0.9990 0.0393 0.1981 0.9990 -0.000210 0.8900 0.9995 0.9990 0.9953 2.1834 -1.4555 -0.0047 0.1981 

55 0.1757 0.9981 0.0737 0.2715 0.9981 -0.000281 1.2194 0.9990 0.9981 0.9933 2.1031 -3.5315 -0.0063 0.2714 

60 0.1231 0.9991 0.0334 0.1828 0.9991 0.000385 0.8214 0.9996 0.9992 0.9957 1.6089 -1.4947 0.0086 0.1826 

65 0.1169 0.9992 0.0292 0.1709 0.9992 0.000225 0.7680 0.9996 0.9993 0.9960 1.6623 -1.3956 0.0050 0.1709 

70 0.1335 0.9990 0.0382 0.1955 0.9990 0.000040 0.8784 0.9995 0.9990 0.9953 1.6529 -1.4216 0.0009 0.1955 

75 0.1211 0.9991 0.0345 0.1858 0.9991 -0.000042 0.8347 0.9996 0.9991 0.9956 1.7991 -1.5945 -0.0009 0.1858 

80 0.1419 0.9989 0.0438 0.2092 0.9989 0.000005 0.9398 0.9994 0.9989 0.9950 1.7571 -1.7636 0.0001 0.2092 

85 0.1409 0.9988 0.0467 0.2161 0.9988 0.000491 0.9711 0.9994 0.9988 0.9948 1.6732 -2.1620 0.0109 0.2158 

90 0.1065 0.9993 0.0289 0.1699 0.9993 -0.000168 0.7631 0.9996 0.9993 0.9960 1.5787 -1.6375 -0.0037 0.1699 

95 0.1204 0.9989 0.0416 0.2039 0.9989 0.000071 0.9160 0.9995 0.9989 0.9951 2.5874 -1.5243 0.0016 0.2039 

100 0.1386 0.9988 0.0448 0.2116 0.9988 0.000277 0.9511 0.9994 0.9989 0.9949 1.7455 -1.5333 0.0062 0.2116 

110 0.1398 0.9985 0.0564 0.2374 0.9985 0.000468 1.0670 0.9993 0.9986 0.9942 3.7589 -1.6703 0.0104 0.2372 

120 0.1295 0.9989 0.0428 0.2070 0.9989 0.000061 0.9300 0.9994 0.9989 0.9950 2.0648 -2.0820 0.0014 0.2070 

130 0.1329 0.9989 0.0424 0.2059 0.9989 0.000122 0.9251 0.9995 0.9989 0.9951 1.5293 -2.5817 0.0027 0.2059 

140 0.1396 0.9987 0.0505 0.2247 0.9987 0.000503 1.0101 0.9993 0.9987 0.9946 1.8538 -1.8922 0.0112 0.2245 

150 0.1278 0.9987 0.0496 0.2228 0.9987 0.000629 1.0015 0.9994 0.9988 0.9946 2.9497 -1.2934 0.0140 0.2224 

160 0.1601 0.9984 0.0633 0.2517 0.9984 0.000507 1.1312 0.9992 0.9984 0.9938 2.7794 -1.4415 0.0113 0.2514 

170 0.1310 0.9989 0.0433 0.2081 0.9989 -0.000014 0.9349 0.9994 0.9989 0.9950 1.3593 -1.6322 -0.0003 0.2081 

180 0.1637 0.9981 0.0723 0.2689 0.9981 0.000316 1.2083 0.9991 0.9982 0.9933 1.7961 -1.5826 0.0070 0.2688 

190 0.1715 0.9979 0.0808 0.2842 0.9979 0.000233 1.2771 0.9990 0.9980 0.9929 3.1199 -2.2985 0.0052 0.2842 

200 0.1534 0.9981 0.0724 0.2690 0.9981 -0.000512 1.2079 0.9991 0.9982 0.9933 1.9779 -2.9650 -0.0114 0.2688 

 

In particular, the comparison between the tables shows that the ANN has a lower prediction capacity 

for external surface temperature than the other two because, when considering the same number of 

neurons, worse index values are shown. 

In order to determine the ideal number of neurons in the hidden layer, the optimal statistical indices 

related to the overall case taking into account all three temperature quantities were examined. 

From the Table 11, it is highlighted that the trends of the mean square error (MSE), the mean absolute 

error (MAE) and the root mean square error (RMSE) decrease as the number of neurons in the hidden 

layer increases, reaching the minimum in the configuration characterized by 90 neurons. The 

minimum values are 0.0289, 0.1065 and 0.1699, respectively. From 90 neurons onwards the trends 

increase and decrease in a not very relevant way. Moreover, a trend of the coefficient of residual mass 

(CRM) extremely variable in a random way, between 0.0014 and -0.0009, is noticed demonstrating 

that, globally, the ANN can overestimate or underestimate the target values by modifying the number 

of neurons. 

It is also shown that the trends of the R-square (R2), efficiency coefficient (EC), correlation coefficient 

(CC), determination coefficient (COD) and a general index of model performance (OIMP) grow as 

the number of neurons in the hidden layer increases, reaching a maximum in the configuration with 

90 neurons. The maximum values are very close to unity and are equal, respectively, to 0.9993, 

0.9993, 0.9996, 0.9993 and 0.9960. Also in this case, starting from 90 neurons the trends increase 

and decrease in an insignificant way. 

Definitively, Table 11 shows how the lowest values, close to zero, of the MAE, MSE, RMSE, COV, 

CRM, and Esd indices, and the highest values, close to unity, of R, R2, EC, COD, and OIMP were 

obtained for ANN with 90 neurons in the hidden layer. It is also noted that the minimum value for 

the maximum, minimum, mean and standard deviation error is not obtained for this configuration. 

This allowed us to notice that the optimal architecture of ANN is the one with 90 neurons in the 

hidden layer since most of the metrics of optimal accuracy fall in such configuration.  

The minimum value of Emax, Emin, and Em are obtained for 170, 150, and 80 neurons in the hidden 

layer, respectively. 
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In addition, the Ei errors, committed by the ANN in the training phase in obtaining the target values, 

were also used to draw the overall box plot, shown in Figure 11. 

 

 
Figure 11. Overall box plot of errors committed by the ANN in the training phase in obtaining the 

target values. 

 

It can be seen from the figure that the error box plot suffers a reduction in its interquartile range (the 

difference between the third and first quartiles), median, and whisker size by using a large number of 

neurons in the hidden layer. 

Finally, the trends of the number of iterations and time used, as well as the trend of the time needed 

per iteration, by varying the number of neurons in the hidden layer, were reported in Figure 12 to 

understand the computational burden related to each ANN configuration.   
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Figure 12. Trends of the number of iterations, time used and time needed per iteration by varying the 

number of neurons in the hidden layer 

 

The figure shows how the trend of the number of iterations employed in every single process of 

training is quite variable from 1 to 100 neurons while from 100 to 200 neurons a decreasing trend is 

noticed; therefore as the complexity of the network increases the iterations decrease. The trend of the 

time employed in each process of the ANN training is rather increasing, that is, as the number of 

neurons in the hidden layer increases, the time required increases. Finally, for greater clarity, the trend 
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of the time used for each iteration has been graphically shown, which has an increasing behaviour in 

relation to an equation of second degree. 

The ANN optimal configuration, obtained from the analysis of the training phase, is characterized by 

90 neurons in the hidden layer. The training process of the ANN ended after 86 seconds and 70 

iterations and is stopped with a gradient value of 0.13791 and a value of the damping parameter μ of 

1×10-5. 

Figure 13 shows some characteristics of the optimal ANN architecture, such as the box plots of the 

errors for all three temperatures, both separately and overall. 

 

 
Figure 13. Box plots of the optimal ANN errors  

 

From Figure 13, it is evident that the box plots of the errors are completely concentrated around zero. 

The error associated with the internal surface temperature varies between -0.0564 and 0.0584; the 

one related to the external surface temperature varies between -0.0825 and 0.0858; the one related to 

the internal air temperature varies between -0.0569 and 0.0581; while the overall error, which takes 

into account all three quantities, varies between -0.0640 and 0.0667.  

In addition, the Regression plot of optimal ANN and target temperatures considering single and all 

outputs simultaneously are shown in Figure 14. 

 



32 
 

 
Figure 14. Regression plot of optimal ANN and target temperatures considering single and all outputs 

simultaneously. 

 

From Figure 14, it is easy to detect how there is a high correlation between the outputs obtained from 

the application of the optimal ANN and the targets simulated with the software Design Builder so 

much so that all the data result overlapped and almost concentrated in the bisector, both for the single 

cases and for the total. The graph also shows the R2 coefficient, which is very close to unity in each 

case. 

By considering the yearly average temperature as the representative temperature of 36 green roofs 

considered for each substrate type, further analysis has demonstrated that there is a perfect 

correspondence between the ANN temperatures and the target temperatures, for all three temperatures 

considered. The results of this comparative analysis are reported in the supplementary file. In the 

same Supplementary file, the Matlab script of the optimal ANN architecture is available. 

 

3.1.2. Impact of the number of hidden layers 

The successive step aims to identify the best number of hidden layers that maximize the ANN 

accuracy. For this reason, the 90 neurons found as optimal in the previous analysis were distributed 
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into one, two and three hidden layers, as shown in Figure 15, and the accuracy metrics were calculated 

as well. 

 

 
Figure 15. ANN with 90 neurons in one, two and three hidden layers. 

 

Table 12 lists the accuracy metrics for both the individual outputs and the overall case, at a daily 

average monthly level, in order to ascertain what is the optimal number of hidden levels, given a 

certain number of neurons, equal to 90 in this case. 

 

Table 12. Values of accuracy metrics as the number of hidden levels changes for monthly average 

daily internal and external surface temperature, internal air temperature and overall. 

 Tsi (°C) Tse (°C) Tair (°C) Overall 

# Hidden layer 1 2 3 1 2 3 1 2 3 1 2 3 

MAE 0.093 0.149 0.137 0.131 0.189 0.177 0.096 0.154 0.139 0.106 0.164 0.151 

R2 0.999 0.998 0.998 0.999 0.998 0.998 0.999 0.998 0.998 0.999 0.998 0.998 

MSE 0.022 0.076 0.068 0.039 0.095 0.093 0.026 0.078 0.073 0.029 0.083 0.078 

RMSE 0.147 0.276 0.262 0.197 0.308 0.305 0.162 0.280 0.271 0.170 0.288 0.280 

EC 0.999 0.998 0.998 0.999 0.998 0.998 0.999 0.998 0.998 0.999 0.998 0.998 

CRM 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 

COV 0.661 1.237 1.173 0.889 1.394 1.380 0.724 1.254 1.212 0.763 1.296 1.257 

Corr 1.000 0.999 0.999 1.000 0.999 0.999 1.000 0.999 0.999 1.000 0.999 0.999 

COD 0.999 0.998 0.998 0.999 0.998 0.998 0.999 0.998 0.998 0.999 0.998 0.998 

OIMP 0.996 0.993 0.993 0.995 0.992 0.992 0.996 0.993 0.993 0.996 0.993 0.993 

Emax 0.817 2.418 4.123 1.356 2.116 5.430 1.579 2.383 4.141 1.579 2.418 5.430 

Emin -1.203 -1.680 -1.673 -1.465 -1.995 -1.894 -1.638 -1.685 -1.671 -1.638 -1.995 -1.894 

Eavg -0.004 0.010 0.025 -0.003 0.019 0.031 -0.004 0.019 0.021 -0.004 0.016 0.026 

Esd 0.147 0.276 0.260 0.197 0.307 0.303 0.162 0.279 0.270 0.170 0.288 0.278 
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It can be seen, both for the single outputs and overall case, that there is an increasing trend in the 

maximum error (Emax) and the average error (Eavg) as the number of hidden layers increases. As far 

as the coefficient of variance (COV), the minimum error (Emin) and the standard deviation of the error 

(Esd) are concerned, there is an upward trend from one to two hidden layers and a slight downward 

trend from two to three hidden layers.  

From the same table, it is detected that the highest values of the mean square error (MSE), the mean 

absolute error (MAE) and the root mean square error (RMSE) are recorded for the case with two 

hidden layers, while the lowest values of these quantities occur for the case of a single hidden layer. 

Therefore, the configuration characterized by 90 neurons divided into 3 hidden layers turns out to be 

the intermediate one. Furthermore, it can be seen that there is a trend of the residual mass coefficient 

(CRM) increasing as the number of hidden layers increases. 

Finally, the R-square (R2), the efficiency coefficient (EC), the correlation coefficient (CC), the 

determination coefficient (COD), and the general index of model performance (OIMP) in going from 

the case with one layer to the case with two hidden layers decrease, while they undergo a slight 

increase in the case with three hidden layers. 

Therefore, it can be deduced that the best accuracy metrics are obtained in the configuration with a 

single hidden layer consisting of 90 neurons which thus represents the one proposed as optimal in 

this research work. 

 

3.2. Validation of the ANN for different green roofs 

The next step after the training phase aimed to validate the optimized ANN to evaluate its accuracy 

in the determination of the thermal impact of green roofs not falling in the configurations used to train 

it. In particular, the ANN was validated for the two remaining cases of vegetated roof configurations 

with a different substrate layer not used in the training phase, as indicated in Section 2.1.3. They were 

simulated with the software Design Builder to predict the outputs related to the three temperatures. 

In order to calculate the internal surface, external surface and internal air temperatures for the 

remaining substrates not used in the training phase, the optimal configuration of ANN with 90 

neurons in the hidden layer was used. 

For each soil a "validation parametric table" was created, to be given as input to the optimal neural 

network constituted, by a number of columns equal to the inputs considered, similar to those of the 

training phase, and by a number of rows equal to the product between the 36 configurations of green 

roof containing the specific substrate considered and the number of months of the year. Therefore, 

this parametric validation table, for a specific soil substrate, consists of 14 columns (14 inputs, see 

Table 6) and 432 rows. Altogether, for the two substrates, 864 monthly green roof thermal 

performances are to be validated. The Matlab script, reported in the Supplementary file was used to 

predict the monthly average daily thermal performance of the green roof. 

Figures 16 and 17 show the regression curves related to the comparison between the ANN outputs 

and target outputs, respectively for the substrates 3 and 6 by considering the single outputs and 

overall. 

 

 



35 
 

 
Figure 16. Regression curves related to the comparison between the ANN outputs and target outputs, 

respectively for the substrate 3 by considering the single and overall outputs. 
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Figure 17. Regression curves related to the comparison between the ANN outputs and target outputs, 

respectively for the substrate 6 by considering the single outputs and overall. 

 

For both substrates and all outputs, the regression curves are very close to the bisector with a very 

high R2, highlighting the very high accuracy of the ANN proposed. Another view of the high accuracy 

of the ANN can be observed in Figure 18, containing the error boxplots, for the two substrates and 

different outputs. 
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Figure 18. Box plots of output errors. Left: substrate 3; Right: substrate 6 

 

The box plots highlight the error variation range that can be identified by means of the average error, 

the distribution of the error around the average value with higher frequency, and the maximum and 

minimum errors observed with lower frequency. The values of the average error, for substrate 3,  for 

the internal surface, external surface and internal air temperatures are -0.221 °C, -0.187 °C and -0.219 

°C, respectively. Instead, for substrate 6, the values are 0.066 °C, 0.119 °C and 0.061 °C. 

The values of the error standard deviation, for substrate 3,  for the internal surface, external surface 

and internal air temperatures are 0.651 °C, 0.672 °C and 0.649 °C, respectively. Instead, for substrate 

6, the values are 0.545 °C, 0.586 °C and 0.547 °C. If all temperature outputs are considered 

simultaneously the average error and the error standard deviation are, respectively, -0.209 °C and 

0.657 °C for substrate 3, and 0.082 °C and 0.560 °C, for substrate 6. 

Consequently, the ANN is more accurate to predict the thermal performance of green roofs with 

heavyweight substrates. 

 

4. Conclusions 

The objective of this research work was to develop a dynamic simulation model of the thermal 

performance of a green roof using ANNs. In doing so, a contribution to the scientific literature was 

provided in covering the current gap related to the limited application of ANN in the field of green 

roof thermal performance. 

The ANN algorithm proposed in this research work can be used as a simple and alternative tool to 

simulation software for predicting the green roof thermal performance. In particular, the ANN 

proposed here is capable to predict monthly values of the external and internal surface temperatures 

and the air temperature inside an environment. These temperatures are very useful to identify the 

impact of a green roof on energy loads, indoor thermal comfort, and also the mitigation of the urban 

heat island.  

The ANN was trained by considering several green roof configurations (different vegetation types, 

different lightweight and heavyweight substrates and different substrates thicknesses) located in 

Palermo, a city with a Mediterranean climate. Different ANN architectures were considered by 

varying the number of neurons and hidden layers. The optimal architecture found consists of one 

hidden layer with 90 neurons.  
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Results of the validation phase highlighted the high accuracy of such a tool to forecast temperatures 

for green roofs not considered in the training phase, in comparison with results obtained with 

dynamical simulation software DesignBuilder. 

Among the advantages of the tool proposed, contrary to DesignBuilder, the ANN tool does not require 

advanced expertise, high computational costs, or a high number of data inputs; it is simple and quick 

to be used and provides almost the same results, which are the monthly summary of the hourly results. 

Future improvements of the algorithm created will be conferred by amplifying the training dataset 

with also other weather conditions. The authors are currently developing such research extensions. 

Anyway, this is a useful tool for an expert in this field to simulate the thermal green roof performance 

in Mediterranean climates, very similar to those of Palermo. 
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