1 Geochemical constraints on mantle sources and basalt petrogenesis in the Strait of Sicily

- 2 Rift Zone (Italy).
- 3 To be submitted to *Lithos*
- 4 John Charles White^{1,*}, David A. Neave², Silvio G. Rotolo^{3, 4}, and Don F. Parker^{5,†}.
- 5 ¹Department of Geosciences
- 6 Eastern Kentucky University
- 7 521 Lancaster Ave., Science 2234
- 8 Richmond, KY 40475 USA
- 9
- 10 ²School of Earth and Environmental Sciences
- 11 The University of Manchester
- 12 Oxford Road, Manchester
- 13 M13 9PL, UNITED KINGDOM
- 14
- ³Dipartimento di Scienze della Terra e del Mare (DiSTeM)
- 16 Università di Palermo
- 17 Via Archirafi 36
- 18 90123 Palermo ITALY
- 19
- 20 ⁴Instituto Nazionale di Geofisica e Vulcanologia (INGV)
- 21 Sezione di Palermo
- 22 Via Ugo La Malfa 153
- 23 90146 Palermo ITALY
- 24
- ⁵Department of Geosciences
- 26 Baylor University
- 27 Waco, TX 76798 USA
- 28
- 29 *Corresponding author: john.white@eku.edu (e-mail), +1 859-622-1276 (phone), +1 859-622-
- 30 3357 (fax).
- 31
- 32 [†] Present address: School of Math and Science, Wayland Baptist University, 1900 West 7th
- 33 Street, Plainview, TX 79072 USA
- 34

35 Abstract

36 Basaltic magmatism from the late Miocene to historic time (most recently 1891 CE) in the Strait of Sicily has created two islands (Pantelleria and Linosa) and several seamounts. These 37 volcanoes are dominated by transitional (ol+hy-normative) to alkaline (ne-normative) basaltic 38 lavas and scoriae; consanguineous peralkaline felsic rocks occur only on Pantelleria. Although 39 40 most likely erupted through continental crust, basalts demonstrate no evidence of crustal contamination and are geochemically similar to oceanic island basalts (OIB). Despite these 41 42 broad similarities, there are considerable compositional differences both between and within the two islands that are due to short-length scale mantle heterogeneity beneath the region as well as 43 variability in partial melting and magma storage conditions. The results of geochemical 44 modelling suggest that lithospheric thickness beneath both islands is ~60 km, consistent with 45 published geophysical models, with a mantle potential temperature between 1400-1450°C, 46 similar to other documented continental "passive rifts," such as the Basin and Range province 47 48 (USA). Linosa basalts were formed from ~2-3% partial melting of a source region dominated by depleted MORB mantle (DMM) well-mixed with a small fraction of recycled MORB lithosphere 49 (as eclogite or garnet pyroxenite) originating in the garnet-spinel transition zone. Trace element 50 evidence suggests Pantelleria basalts were formed by ~3-4% partial melting of a source also 51 52 consisting of DMM, but with a much higher proportion of recycled MORB lithosphere and an additional LILE-enriched component, with melting of lithologically enriched material beginning 53 as deep as ~116 km. On both islands, storage of basaltic magmas occurred primarily at two 54 levels: 0.5 GPa, corresponding to the Moho (17-25 km); and 0.2-0.1 GPa, corresponding to the 55 56 top of the crystalline basement (8-4 km). Magmas stored in the higher-level chamber were more effectively homogenized and thus have a narrower compositional range. Despite the geophysical 57

58	similarities between the two islands in terms of lithospheric thickness and crustal thinning, melt
59	productivity has been historically greater at Pantelleria, producing a much larger island, which
60	may ultimately be entirely due to the local occurrence of much more fusible mantle.
61	Keywords: Strait of Sicily Rift Zone, Continental-OIB, Alkali Basalt, Mantle Melting, Mantle

62 Heterogeneity

63

64 1. Introduction

65	The Mediterranean Sea between the island of Sicily and the Tunisian coast is the setting
66	for magmatism with an OIB-like affinity that has produced two islands (Pantelleria and Linosa)
67	and several seamounts which occur subparallel to the faulted margins of two of the three
68	northwest-southeast trending grabens that comprise the Strait of Sicily Rift Zone (SSRZ) (Figure
69	1; Catalano et al., 2009). Transitional (hy+ol-normative) to alkali (ne-normative) basaltic lavas
70	and tuffs occur throughout the SSRZ, with evolved rocks (peralkaline trachyte and rhyolite
71	[pantellerite]) occurring only at Pantelleria, where they form in a bimodal association typical of
72	intraplate magmatic settings (Mahood and Hildreth, 1986; Civetta et al., 1998; Bindi et al., 2002;
73	Rotolo et al., 2006; Di Bella et al., 2008; White et al., 2009; Neave et al., 2012; Avanzinelli et
74	al., 2014).

75 It was noted early that the major- and trace-element variation at Pantelleria could not be 76 attributed to polybaric fractional crystallization of a single parental magma and required instead 77 multiple parental magmas related by varying degrees of partial melting from a garnet peridotite 78 source (Mahood and Baker, 1986). Subsequent studies revealed that the mantle source is nearly 79 isotopically homogenous: basalts throughout the rift zone have nearly identical Sr-isotopes **Commentato [DN1]:** I understand what you mean here, but I think mentioning OIB quite so early could be a bit of a red herring. Maybe a different tone would read better? Perhaps "the setting for magmatism with a OIB-like affinity" or something like that? I'm not sure we have the answer to why this is the case, but you make a very compelling case here for the conditions under which the SSRZ magmas have been generated.

80	(Linosa: 0.7031 ± 0.0001 ; Pantelleria: 0.7032 ± 0.0001 ; Seamounts: 0.7035 ± 0.0005) and very
81	similar Nd-isotopes (Linosa: 0.51291-0.51297 [ϵ_{Nd} = 5.9 ± 0.5]; Pantelleria: 0.51287-0.51299
82	$[\epsilon_{Nd} = 6.2 \pm 0.4]$; Seamounts: 0.51299-0.51312 $[\epsilon_{Nd} = 7.7 \pm 0.5]$) (Esperança and Crisci, 1995;
83	Civetta et al., 1998; Rotolo et al., 2006; Di Bella et al., 2008; Avanzinelli et al., 2014). Lead
84	isotope ratios both between and within the volcanic centers are more variable, becoming more
85	radiogenic from the older (1070 to 530 ka) Linosa suite to the paleo-Pantelleria suite (120-80
86	ka), with the younger (29-10 ka) neo-Pantelleria suite and Seamounts showing intermediate
87	values (Rotolo et al., 2006; Avanzinelli et al., 2014). These isotopic data place the Pantelleria
88	and Linosa basalts on the mantle array in the compositional space assigned to "Prevalent Mantle"
89	(PREMA) between depleted MORB mantle (DMM) and an enriched component frequently
90	identified as HIMU (High- μ , $\mu = {}^{238}U/{}^{204}Pb$) (Zindler and Hart, 1986; Stracke, 2012). Helium
91	isotopes recorded at both Pantelleria and Linosa are similar (${}^{3}\text{He}/{}^{4}\text{He} = 7.3-7.6 \text{ R/R}_{a}$; Parello et
92	al., 2000; Fouré et al., 2012), lower than global MORB (8.3 $R/R_{\rm a})$ and also similar to HIMU
93	islands ($6.8 \pm 0.9 \text{ R/R}_a$; Hanyu and Kaneoka, 1997). Based on these results, mantle sources for
94	basaltic magmatism in the SSRZ have been variably interpreted as: (1) lithospheric mantle
95	chemically modified by the addition of recycled MORB material (Esperança and Crisci, 1995);
96	(2) depleted MORB mantle enriched by a fossil "plume" of deep mantle material (Civetta et al.,
97	1998; Rotolo et al., 2006); (3) a mixture of asthenospheric and metasomatized lithospheric
98	mantle (Di Bella et al., 2008); or (4) asthenosphere enriched with an eclogitic component
99	representing recycled MORB material (Avanzinelli et al., 2014). In their study, Avanzinelli et
100	al. included the results of U-series disequilibrium systematics for the neo-Pantelleria lavas and
101	concluded that the sources are strictly asthenospheric, with no need for interaction with
102	lithospheric mantle or continental crust nor any need for a metasomatic component (viz., no role

103	for amphibole). Further, they suggested a positive correlation exists between radiogenic Pb and a
104	greater amount of recycled material.
105	Differences in basalt major- and trace-element chemistry have also been documented
106	both between and within the islands and seamounts. At Pantelleria, Civetta et al. (1998) divided
107	the basalts into "High Ti-P" and "Low Ti-P" types, with the former also characterized by higher
108	concentrations of incompatible trace elements and higher LREE/HREE than the latter, which
109	they attributed to different degrees of partial melting from a locally heterogeneous
110	asthenospheric mantle. Similar differences were described on Linosa, where Di Bella et al.
111	(2008) recognized a "Trend-A" and "Trend-B", with the former having higher K_2O , P_2O_5 ,
112	incompatible trace elements (e.g., Rb, Th), and LREE/HREE at a given value of MgO. Although
113	Di Bella et al. attributed the differences between the volcanic centers of the SSRZ to varying
114	degrees of partial melting from heterogeneous mantle sources, they modelled the Linosa trends
115	as differentiates from a common primary magma. In our paper we present the results of major-
116	element, trace-element, and thermodynamic geochemical models for Pantelleria, Linosa, and the
117	seamounts that attempt to: (1) constrain the magma storage conditions in the crust and describe
118	its effect on basalt geochemistry; (2) determine the conditions of partial melting in the
119	asthenosphere beneath the SSRZ; (3) discriminate between the effects of lithospheric thickness,
120	source lithology, and magma storage on the geochemistry of these basalts; and (4) attempt to
121	characterize the nature of the enriched mantle component(s) in the SSRZ asthenosphere.
122	

2. Geologic Setting

The Strait of Sicily Rift Zone (SSRZ) is a northwest-southeast trending transtensional rift system situated on the Hyblean-Pelagian Block, the northern promontory of the African plate

126	that represents the foreland domain of the Sicilian Apenninic-Maghrebian orogen (Catalano et
127	al., 2009, and references therein). The SSRZ consists of three basins: the Pantelleria Trough, the
128	Linosa Trough, and the Malta Trough. Water depth is <500 m beneath most of the Pelagian
129	Block, increasing to ~1350 m in the Pantelleria Trough, ~1580 m in the Linosa Trough, and
130	~1720 m in the Malta Trough (Calanchi et al., 1989). Volcanoes are present in or adjacent to all
131	except the Malta Trough, and include two islands (Pantelleria and Linosa) and several
132	seamounts. The thickness of the crust throughout most of the Pelagian Block is 25-35 km,
133	thinning to 16-18 km beneath the troughs, 20-21 km beneath the island of Pantelleria, and 24-25
134	km beneath the island of Linosa (Civile et al., 2008; Catalano et al., 2009). The depth to the
135	lithosphere-asthenosphere boundary has been inferred from regional geophysical studies. The
136	Pelagian Block is characterized by high heat flow (>80 mW/m^2) with values that increase to
137	>130 mW/m ² in the Pantelleria and Linosa troughs (Della Vedova et al., 1995) and up to 200-
138	460 mW/m ² within the Cinque Denti caldera (Bellani et al., 1995). Combined with positive
139	Bouguer anomalies (65-103 mgal; Berrino and Capuano, 1995), several workers have suggested
140	asthenospheric upwelling up to ~60 km (Della Vedova et al., 1995; Argnani and Torelli, 2001;
141	Civille et al., 2008).
142	Extension of the SSRZ began about 9-10 Ma, with minor volcanism occurring during the
143	late Miocene (Tortonian-Messinian) and the vast majority of volcanism occurring during the
144	Plio-Pleistocene. (Calanchi et al., 1989; Rotolo et al., 2006; Coltelli et al., 2016; Lodolo et al.,
145	2019). Volcanic seamounts are primarily located in one of three areas within the SSRZ (Aissi et
146	al., 2015): (1) the Graham and Terrible volcanic province (Anfirite, Tetide, Galatea, Graham
147	Bank, Cimotoe, Pinne, and Nameless Bank volcanoes) which lies 50-75 km offshore and runs

148 parallel to the coast of Sicily for ~100 km between Mazara del Vallo and Agrigento (Lodolo et

149	al., 2019); (2) near the island of Pantelleria (Pantelleria SE, Pantelleria E, Pantelleria SW,
150	Pantelleria Central Bank, Angelia, and Foerstner volcanoes); and (3) north of the island of
151	Linosa (Linosa I, Linosa II, and Linosa II volcanoes). Within the Graham and Terrible volcanic
152	province, the oldest (late Miocene) is the Nameless Bank seamount, which lies ~100 km due east
153	of Pantelleria and ~60 km southwest of Agrigento and rises from a depth of 330-340 m to 80-90
154	m b.s.l.; the youngest is the Graham Bank seamount, which is located \sim 45 km southwest of
155	Sciacca and ~70 km northwest of Pantelleria, rises from 330-340 m to 7 m b.s.l., and last erupted
156	in 1831 CE (producing the ephemeral "Ferdinandea Island"; Gemmellaro, 1831; Washington,
157	1909.)
158	The island of Pantelleria is by far the larger (~83 km ²) of the two islands and represents
159	the emergent portion of a volcanic edifice that rises 836 m above sea level and about 2200 m
160	above the sea floor within the Pantelleria graben (Calanchi et al., 1989). Most rocks exposed on
161	the island are felsic (trachyte-pantellerite) and younger than the 45.7 ± 1.0 ka pantelleritic Green
162	Tuff, the caldera-forming ignimbrite of the Cinque Denti caldera (Mahood and Hildreth, 1986;
163	Scaillet et al., 2013). The oldest exposed pantelleritic lava on the island has been dated at dated
164	at 324 ± 11 ka (Mahood and Hildreth, 1986), but most of the island is submerged, much older,
165	and most likely primarily basaltic (Fulignati et al., 1997). The oldest documented basalts (~80-
166	120 ka, herein termed "paleo-Pantelleria", following Avanzinelli et al., 2004) are exposed
167	primarily in outcrops along the coast and along the scarp of the Cinque Denti caldera (Mahood
168	and Hildreth, 1986). Younger mafic lavas ("neo-Pantelleria") are found only in the northwestern
169	part of the island and include flows that erupted at ~29 ka from the Cuddie Bruciata, Ferle, and
170	del Monte cinder cones, and at ~10 ka from the Cuddie Rosse cinder cone (Mahood and
171	Hildreth, 1986; Civetta et al., 1998). The most recent volcanic activity occurred ~4 km NW of

173 (Washington, 1909; Aissi et al., 2015). The island of Linosa lies ~120 km to the southeast of Pantelleria. Linosa is much smaller 174 (~6 km²) and represents the emergent portion of a large submarine volcanic complex that rises 175 196 m above sea level and about 800 m above the sea floor along the SW edge of the Linosa 176 177 graben (Rossi et al., 1996). Linosa consists entirely of mafic lavas and tuffs that erupted in three stages at 1070 ka (paleo-Linosa), 700 ka (Arena Bianca), and 530 ka (Monte Bandiera) and 178 179 created several coalescing cinder cone and maar volcanoes (Lanzafame et al., 1994). The paleo-Linosa stage is characterized primarily by hydromagmatic pyroclastic sequences with minor 180 181 scoria and lava which built maars and cinder cones. The beginning of the Arena Bianca stage was dominated by hydromagmatism followed by eruptions of scoria that built Monte Nero cinder 182 183 cone and lava flows that created the eastern third of the present-day island. The Monte Bandiera stage also began with hydromagmatic activity that created the Fossa Cappellano maar volcano 184 185 (and associated Monte Bandiera tuff ring), which was followed by eruptions of scoria and lava that built the Montagna Rossa and Monte Vulcano cinder cones that dominate the western two-186 187 thirds of the island (Rossi et al., 1996). 188 189 3. Methods and Results

the island at the submarine (90-100 m b.s.l.) Foerstner volcano on October 17-25, 1891 C.E.

190 *3.1 Methods and materials*

172

191Twenty-two samples of mafic lava and scoria were collected from the islands of192Pantelleria and Linosa during field trips in 2003, 2006 and 2013, six of which were originally193presented in Parker and White (2008) and White et al. (2009). These samples were powdered to194-200 mesh in a pre-contaminated shatterbox grinder and were analyzed at Activation

195	Laboratories, Ontario, for major-elements by ICP-OES and trace-elements (including a full suite	
196	of rare earth elements [REE]) by ICP-MS (Code 4Lithoresearch). Whole-rock analyses are	
197	presented in Table 1. For the discussion that follows, these analyses are combined with data	
198	from literature for a total of 134 analyses of mafic rocks (SiO $_2 \le 52$ wt% normalized anhydrous);	
199	75 of these include analyses of REE, including 39 from Pantelleria (Civetta et al., 1998;	
200	Esperança & Crisci, 1995; Avanzinelli et al., 2004, 2014), 29 from Linosa (Bindi et al., 2002; Di	
201	Bella et al., 2008; Avanzinelli et al., 2014), and 7 from various Seamounts (Rotolo et al., 2006;	
202	with additional data from Beccaluva, 1981, and Calanchi et al., 1989). Excluded are the	
203	Khartibucale hawaiites at Pantelleria, which deserve a separate study; they have trace-element	
204	and isotopic signatures significantly different from the rest of the SSRZ basalts, and there are	
205	only three known published analyses (Avanzinelli et al., 2004, 2014; White et al., 2009).	
206	3.2 Major-element geochemistry	
207	All samples classify as either basalt or hawaiite (Figure 2a; Le Maitre, 2002), with basalts	
208	further classified based on normative mineralogy (assuming $Fe^{3+}/\Sigma Fe = 0.10$) as either alkali	
209	basalt (ol+ne-normative) or transitional basalt (ol+hy-normative) on their position in the basalt	
210	tetrahedron (Figure 2b; Irvine and Baragar, 1971). Linosa samples from the paleo-Linosa and	
211	Monte Bandiera stages are dominated by alkali basalt, with the samples evolving from Ol' (=	
212	normative Ol + 0.25Hy) towards normative Ab along the Ol'-Ab join, which divides the "alkali"	
213	and "transitional" basalt fields. Linosa samples from the Arena Bianca stage along with most	
214	Pantelleria samples classify predominantly as transitional basalts. Mafic lavas and scoriae from	
215	both trends are petrographically broadly similar, consisting of lavas with variable amounts of	
216	phenocrysts of olivine, clinopyroxene, plagioclase, and magnetite (see Rossi et al., 1996; Civetta	

Commentato [DN2]: More for my own understanding that anything else, could you explain what the apostrophe means here? Is it something to do with grouping Mg and Fe together?

et al., 1998; Bindi et al., 2002; Di Bella et al., 2008; and White et al., 2009 for comprehensivedescriptions).

219	Major-element variation diagrams that use wt% MgO as a differentiation index are
220	plotted in Figure 3. Several clear differences can be seen between and within the Pantelleria and
221	Linosa suites. Primitive basalts (MgO > 9 wt%) have not been documented at Pantelleria (max
222	7.65 wt%, median 5.82 wt% MgO), but have been at Linosa (max 16.35 wt%, median 7.72 wt%
223	MgO). However, the basalts with very high (>14 wt%) MgO at Linosa very likely resulted from
224	the accumulation of olivine (Di Bella et al., 2008). At a given concentration of MgO, Linosa
225	basalts have higher SiO_2 and Al_2O_3 , but lower TiO_2 and CaO than Pantelleria basalts (Figures 3a,
226	b, c, e). Elevated values of TiO_2 at a given value of MgO is a characteristic of OIB globally and
227	has been proposed as evidence of a higher degree of mixing of peridotite with recycled MORB
228	lithosphere (Pyrutak and Elliot, 2007). Within the Linosa samples, CaO increases with
229	decreasing to MgO to ~8 wt% after which it decreases, probably indicating fractionation of
230	clinopyroxene and/or plagioclase feldspar at this point. Two distinct trends are observed in plots
231	of MgO versus TiO ₂ , K_2O , and P_2O_5 (Figures 3b, g, h). The higher-TiO ₂ , K_2O , and P_2O_5 trend
232	(labelled "A", following Di Bella et al., 2008) includes most of the younger Monte Bandiera
233	(MB) basalts from Linosa and some samples from the older suites; The lower- ${\rm TiO}_2, {\rm K}_2 {\rm O},$ and
234	P2O5 trend (labelled "B", following Di Bella et al., 2008) includes most of the older Arena
235	Bianca (AB) basalts from Linosa and some samples from both MB and the older Paleo-Linosa
236	(PL) suites. The younger basalts from Pantelleria (neo-Pantelleria; NP) plot similarly to Trend B
237	with respect to K_2O (but at slightly lower values) and P_2O_5 but with considerably higher TiO ₂ ,
238	whereas the older basalts (paleo-Pantelleria; PP) plot within both trends, but some also with even
239	higher TiO ₂ (>3 wt%) and P ₂ O ₅ (>1 wt%) (Civetta et al., 1998). The origin of the two suites at

Commentato [DN3]: Is there any information about these rocks' crystals contents? Values this high suggest to me that these samples contain significant amounts of accommodated olivine.

240	Linosa has been attributed to fractional crystallization from a similar, hypothetical parental basalt
241	at different pressures, with all geochemical differences due solely to paragenesis and mineral
242	proportions with "Trend-A" representing a younger suite that crystallized at higher pressures
243	(Bindi et al., 2002; Di Bella et al., 2008). In contrast, Civetta et al. (1998) suggested variable
244	degrees of partial melting from a heterogeneous mantle source in addition to fractional
245	crystallization to explain the different basaltic suites at Pantelleria. Haggerty et al. (1994)
246	documented coupled elevated concentrations of Ti and P in eclogitic garnet from the upper
247	mantle, which may support this idea and provide a potential contributing component to the
248	source of these basalts.
249	3.3 Trace-element geochemistry
250	Trace-element variation diagrams that use wt% MgO as a differentiation index are plotted
251	in Figure 4. As with the major-element geochemistry, trace-element concentrations and ratios
252	show great diversity both between and within the island suites. Within the more primitive Linosa
253	basalts, Sc (Figure 4a) remains fairly constant to ~8 wt% MgO before decreasing, suggesting—
254	like the variation between MgO and CaO-the saturation of clinopyroxene at about this point.
255	Pantelleria basalts are generally higher in Sc at a given concentration of MgO, although many
256	paleo-Pantelleria (PP) basalts plot with the Linosa samples. Nickel (Figure 4b), along with Cr
257	and Co (not shown), demonstrates a constant and linear decrease with MgO indicating
258	fractionation (or accumulation in the case of high-MgO samples) of olivine throughout the suite.
259	Unlike the transition elements, the large-ion lithophile elements (LILE: Rb, Sr, and Ba) and high
260	field-strength elements (HFSE: Zr, Nb, Th) form distinct trends, similar to K ₂ O and TiO ₂ , which
261	are labelled in Figures 4c, 4e, 4f, 4g, and 4h but are apparent in Figure 4d as well. Trend-A is
262	again dominated by the Monte Bandiera (MB) lavas from Linosa, and include a few samples

Commentato [DN4]: There is a lot made of low-Ti and high-Ti trends in the flood basalt literature. I'm not sure if this relevant here, but it may lend credence to the idea that such variations can come from the mantle.

Commentato [DN5]: Or accumulation in the case of high-MgO samples.

263	from the other Linosan suites as well as some of the paleo-Pantelleria (PP) samples, whereas
264	Trend-B consists of the Arena Bianca (AB) lavas from Linosa as well as a few samples from the
265	other Linosan suites as well as most of the neo-Pantelleria (NP) samples and some of the PP
266	samples. At a given value of MgO, the NP samples demonstrate slightly lower values of Rb, Zr,
267	Nb, and Th than the MB samples.

268 Representative rare earth element (REE) diagrams (normalized to C1 chondrite; McDonough and Sun, 1995) are presented in Figure 5. AB (Figure 5b) and NP (Figure 5e) 269 270 display the most internally consistent values, with La_N/Yb_N enrichments of ~7.0 and 9.5 and Sm_N/Yb_N enrichments of ~2.7 and 3.8, respectively. MB (Figure 5c) has a large range of 271 272 La_N/Yb_N values, but near-constant Sm_N/Yb_N. PL samples (Figure 5a) have similar HREE concentrations, but La_N/Yb_N values either more similar to AB or MB. PP and SEA have the 273 274 greatest diversity, at least in part because unlike the others they represent discrete volcanic 275 centers that erupted over ~120 ka and 8 Ma, respectively. Several PP samples have La_N/Yb_N and 276 Sm_N/Yb_N ratios similar to NP. Positive Europium anomalies ($Eu/Eu^* = Eu_N/[Sm_N \cdot Gd_N]^{1/2}$) characterize basalts on both islands, with Pantelleria basalts (PP = 1.13 ± 0.17 ; NP = 1.17 ± 0.09) 277 278 having a more pronounced anomaly than Linosa basalts (1.06 ± 0.07). Positive Eu anomalies are a common feature in primitive (MgO > 9 wt%) MORB and OIB and have been interpreted as 279 280 evidence of mixing of DMM with recycled lower continental lithosphere (Niu and O'Hara, 2009; Tang et al., 2015). However, the lack of a negative correlation between Eu/Eu* and radiogenetic 281 lead isotope ratios makes lower continental crust an unlikely component. Alternatively, a 282 positive Eu/Eu* anomaly may simply be due the relative incompatibility of divalent Eu in 283 284 clinopyroxene compared to trivalent Gd and Sm, coupled with more reducing conditions in the

source region which leads to higher Eu^{2+}/Eu^{3+} and thus higher Eu/Eu^{*} in the partial melts (Tang

et al., 2017).

287

288 4.0 Discussion

289 4.1 Trace element constraints on partial melting and mantle sources.

290 The isotopic heterogeneity of the mantle has been well-established; however, how this correlates with lithological heterogeneity is much less certain (Zindler and Hart, 1986; Dasgupta 291 292 et al., 2010; Stracke, 2012). As noted in the Introduction, there is very little variability with respect to Sr and Nd isotopes in the SSRZ basalts (with the exception of the seamounts, which 293 294 have been strongly affected by chemical alteration). Despite this apparent isotopic homogeneity with respect to Sr-Nd-He, the data clearly show several significant differences with respect to 295 296 major- and trace-element compositions (and Pb isotopes; Avanzinelli et al., 2014) as well as some key similarities. In this section we investigate these similarities and differences and discuss 297 298 their constraints on the relative roles of mantle source composition and degree of partial melting in magma generation in the SSRZ. 299 K/Nb and Nb/U ratios for Pantelleria (213.9 \pm 38.2 and 48.5 \pm 18.1) and Linosa (228.5 \pm 300 22.0 and 46.2 \pm 6.0) basalts are similar to global values for OIB (253 \pm 71 and 47 \pm 10; Hofmann 301

et al., 1986; Halliday et al., 1995; Arevalo et al., 2009) and, combined with Sr-Nd-Pb-O isotope
systematics and U-series disequilibrium argue strongly against a significant role for crustal

contamination or assimilation in the origin of these basalts (Avanzinelli et al., 2014). Pantelleria and Linosa also have similar incompatible trace element ratios for Th/U (3.3 ± 0.8 and 3.2 ± 1.6), U/Pb (0.59 ± 0.08 and 0.57 ± 0.16), Lu/Hf (0.08 ± 0.01 and 0.07 ± 0.01), and Rb/Sr (0.04 ± 0.01 and 0.05 ± 0.01) which are characteristic of HIMU end-member OIBs (Willbold and Stracke, **Commentato [DN6]:** I would add a few more citations here. Stracke (2012, Chem Geol) perhaps?

308	2006). Nb/Ta ratios are uniform (Pantelleria: 16.6 ± 1.6 ; Linosa: 17.1 ± 0.8) and chondritic
309	(17.8; McDonough and Sun, 1995). Typical of OIB, Zr/Hf ratios are mostly superchondritic
310	(>37.1; McDonough and Sun, 1995) and variable, with Pantelleria basalts (42.8 ± 5.8) having
311	generally lower values than Linosa basalts (45.8 \pm 2.9), which could reflect smaller degrees of
312	partial melting at Linosa, deeper melting (more residual garnet) at Pantelleria, more eclogite in
313	the source at Pantelleria, or a combination of these (Van Westrenen et al., 2001; Pertermann et
314	al., 2003).

315 Despite these similarities, there are several systematic differences in other trace element ratios both between and within the islands and seamounts. Ratios of incompatible trace elements 316 317 (with REE ratios normalized to C1 chondrite; McDonough and Sun, 1995) are presented in Figure 6. La_N/Yb_N is plotted against ppm La in Figure 6a and shows a clear positive slope, 318 319 strongly suggesting that variable degrees of partial melting are at least partially responsible for 320 compositional variation in these magmas, with the higher values representing smaller melt 321 fractions (cf. Mahood and Baker, 1986). A plot of Sm_N/Yb_N versus La_N/Yb_N (Figure 6b) reveals four sub-groups, which we term LIN-A (corresponding to the Linosa Trend-A described above), 322 323 LIN-B (Linosa Trend-B), PNL-L (consisting of neo-Pantelleria and geochemically similar paleo-Pantelleria samples), and PNL-H (which includes both the high-Ti and P paleo-Pantelleria 324 325 and the Seamount samples). Although the first three sub-groups may represent consanguineous magmatic suites, PNL-H is clearly an *ad hoc* group consisting of lavas that are unlikely to be 326 related to either each other or the other groups. The lack of collinearity between these sub-327 groups suggest that although internal variation within them may be attributed to varying degrees 328 329 of partial melting, the difference in Sm_N/Yb_N at a given value of La_N/Yb_N requires different mantle sources, with the higher Sm_N/Yb_N sub-groups sources being higher in garnet. La_N/Sm_N is 330

331	a sensitive indicator of partial melting, and therefore its overall positive correlation with
332	La_N/Yb_N (Figure 6c) reinforces support of variation both between and within the groups as
333	attributable to variable melt fractions; however, as with Sm_N/Yb_N , the different trends formed by
334	the Linosa and Pantelleria groups strongly point to compositionally different mantle source
335	regions. This is also seen in a plot of Dy/Dy* (= $Dy_N / [La_N^{4/13}Yb_N^{9/13}]$; Davidson et al., 2013)
336	versus Dy_N/Yb_N (Figure 6d), which reveals three subparallel trends. In this diagram, sub-suite
337	trends with higher Dy_N/Yb_N also indicate a source more enriched in garnet, and the variability
338	within each trend can be attributed to differentiation. The presence of eclogite in the PNL-L
339	source region (and for most of the paleo-Pantelleria samples in PNL-H) may be flagged by the
340	decoupled behavior of Sm_N/Yb_N and Zr/Yb seen in Figure 6e. Experimental work has shown
341	that Zr is much less incompatible and possibly compatible in grossular-rich (eclogitic) garnet
342	compared to pyrope-rich (peridotitic) garnet, whereas $D_{\text{Sm}}/D_{\text{Yb}}$ is similar in both lithologies (Van
343	Westrenen et al., 2001; Pertermann et al., 2004; Stracke and Bourdon, 2009). Further evidence
344	for this may come from the negative correlation between Sm_N/Yb_N and Rb/La (Figure 6f);
345	Avanzinelli et al. (2014) documented a negative correlation between ²⁰⁶ Pb/ ²⁰⁴ Pb and Rb/La
346	within the SSRZ basalts and suggested that this ratio may be used a tracer of recycled MORB in
347	the source region following Willbold and Stracke (2006), who demonstrated that (Rb,Ba,K)/La
348	ratios are systematically lower in basalts sourced from HIMU-like mantle. From these
349	observations, we hypothesize: (1) LIN-A and LIN-B are not related by fractional crystallization
350	processes; (2) LIN-A and LIN-B have similar Dy_N/Yb_N and therefore may have similar mantle
351	sources with respect to garnet, with LIN-B derived from a higher melt fraction; (3) the PNL sub-
352	groups cannot be related via fractional crystallization; and (4) PNL-L and PNL-H are either
353	derived from different mantle sources or their differences reflect different degrees of partial

355 the more fusible, recycled material (as eclogite). 356 Spider diagrams of representative analyses from each of the sub-groups ordered by increasing compatibility in oceanic basalts (following Sun and McDonough, 1989) and 357 normalized to depleted MORB mantle (DMM; Salters and Stracke, 2004) are presented in Figure 358 359 7. These are plotted with the results of 1% (F = 0.01) non-modal fractional melting of depleted garnet peridotite (GD) and spinel peridotite (SD) using the model parameters of McKenzie and 360 361 O'Nions (1991, 1995) and trace element partition coefficients of Gibson and Geist (2010). The model results for partial melting of DMM form patterns very similar to those formed by all four 362 363 sub-groups. Most notably all groups form trends that run subparallel to the model results with excellent fits for the LREE and more compatible elements, consistent with a similar origin by 364 365 small degrees of partial melting of depleted peridotite in the spinel-garnet transition zone followed by fractional crystallization. However, several notable anomalies require additional 366 367 explanation: (1) in addition to DMM, the source regions for all four groups require a component enriched in LILE; (2) in addition to the other LILE, the source region beneath Pantelleria must 368 be especially enriched in Ba; (3) a positive P anomaly is present in both Pantelleria groups, and 369 is especially prominent in the PNL-H lavas; (4) PNL suites are characterized by relatively high 370 371 Ti and low Zr; and (5) the strong variability in PNL-H LILE contents and ratios strongly suggests that several different components must be present in the source region for these diverse 372 magmas which clearly must not be related by either partial melting or fractional crystallization 373 processes. Therefore, we posit: (1) all magmas originate in the spinel-garnet transition zone 374 375 from a source region dominated by depleted MORB peridotite (Civetta et al., 1998; Neave et al., 2012; Avanzinelli et al., 2014); (2) first-order differences between Pantelleria and 376

melting, with the relatively lower-melt fraction PNL-H sub-suite preserving more of the signal of

354

Commentato [DN7]: Maybe highlight how good the fit is for elements of comparable incompatibility to the REEs, anticipating your subsequent comments about LILEs.

Commentato [DN8]: Is there an particular precedent? Or does it mean that P is simply in the wrong place on the spider diagram?

Commentato [WJ-ES9R8]: I reordered this diagram following Sun and McDonough (1988)—the P has moved to the left, so the positive anomaly is less obvious, but it's still present (and elevated above the model results for PNL compared to LIN, anyway.)

377	Linosa/Seamounts are due to a greater amount of lithologically-enriched and possibly eclogitic	
378	material mixed with peridotite in the former (cf. Avanzinelli et al., 2014); (3) differences	
379	between the Seamounts, Linosa-A, and Linosa B are due to variable degrees of partial melting,	
380	with Seamounts being derived from the smallest melts and Linosa-B being derived from higher	
381	degrees of partial melting; (4) differences in degree of partial melting between the Seamounts	
382	and Linosa may simply be due to do differences in lithospheric thickness (cf. Niu et al., 2011);	
383	(5) compositional diversity within the paleo-Pantelleria suite must reflect the presence of	
384	additional diverse components in the mantle source; and (6) compositional homogeneity in the	
385	LIN-B and PNL-L is likely due to magma mixing in high-level magma reservoirs, which	
386	obfuscates the variability from partial melting seen in LIN-A and heterogeneity observed in	
387	PNL-H (e.g., Maclennan, 2008; McGee and Smith, 2016). In most PNL-L samples and some	
388	PNL-H samples there is also a positive Ba anomaly which may be the result of a small amount of	
389	assimilation of high-Ba alkali feldspar cummulate rock at Pantelleria (White et al., 2012; Wolff,	
390	2017).	
391	4.2 Trace element models of partial melting.	
392	Whole-rock REE concentrations, along with major- and selected trace-element	
393	concentrations, were used to model the conditions of partial melting beneath Pantelleria and	
394	Linosa by means of the INVMEL program (McKenzie and O'Nions, 1991, 1995, 1998) as	
395	modified by White et al. (1992). This program inverts REE geochemical data to find the best-fit	
396	relationship between melting conditions (depth to the bottom and top of melting column, degree	
397	of partial melting) by running a forward non-modal fractional melting model with the trial	

- 398 parameters, predicting the weighted average composition of the fractional melt, calculating the
- 399 root-mean square (RMS) error between the predicted and observed calculations, and then

Commentato [DN10]: We should probably comment on the different fusibilities of potential mantle components at some point (probably not here). This is important because low-degrees of melting will preferentially sample lithologically enriched domains (i.e. eclogites etc.). This means that there would have to be significant differences in mantle composition between Linosa and Pantelleria for Pantelleria with its higher-F melting to preserve a greater signal of lithological enrichment in the mantle. Some key reference here would be Hirschmann & Stolper (1996), Kogiso et al. (1998), Shorttle et al. (2014) and Jennings et al (2016).

Commentato [WJ-ES11R10]: Addressed below.

Commentato [DN12]: I know he was my supervisor, but it could be good to back this concept up with a neatly aligned reference. Also, the LIN-A and PNL-H groups potentially represent the groups with the lowest magma fluxes, which would be entirely consistent with them interacting least on their way to the surface.

400	adjusting the melt depth and degree curve to iteratively minimize the error. After the best-fit
401	parameters producing the least misfit have been calculated, a forward non-modal fractional
402	melting model is run through the remaining major- and trace-element data to evaluate the
403	robustness of fit. Results are considered acceptable if $RMS < 1$ and the melting curve is
404	relatively smooth. The program also estimates the quantity of olivine and clinopyroxene
405	fractionation (F), and the final melt fraction is adjusted by multiplication by $1/(1-F)$. The mantle
406	source is set with the ϵ_{Nd} parameter, which calculates a mixture of depleted MORB mantle
407	(DMM: ϵ_{Nd} = +10, 0.815 ppm Nd) and bulk silicate earth ("Plume" Mantle, PM: ϵ_{Nd} = 0, 1.08
408	ppm Nd) (McKenzie and O'Nions, 1991, 1998). The latter component does not necessarily
409	represent primitive mantle or deep mantle plume material, but serves as a proxy for various
410	enriched components such as recycled oceanic lithosphere well-mixed with peridotite whose
411	compositions are not well-constrained (Gibson and Geist, 2010). Model mineral proportions and
412	chemical composition of DMM and PM sources are from McKenzie and O'Nions (1991, 1995),
413	with the mineral-liquid trace element partition coefficients compiled by Gibson and Geist (2010).
414	Models were calculated with the top of the melting column fixed at 60 km, consistent
415	with the geophysical evidence for the lithosphere-asthenosphere boundary in the SSRZ (Della
416	Vedova et al., 1995; Civile et al., 2008); variable parameters were the depths of the garnet-spinel
417	transition zone and the bottom of the melting column. It is important to note that the results of
418	these models are relative rather than absolute-for instance for a given mantle source, a model
419	produced with a 60 km top, 70-90 km transition zone, and 100 km bottom provides the exact
420	same results as one produced with a 70 km top, 80-100 km transition zone, and 110 km bottom.
421	Inversion models for the three subgroups that are plausibly cogenetic (LIN-A, LIN-B,
422	and PNL-L) are presented in Figure 8. Average ε_{Nd} values from Linosa (5.89) were used to set

Commentato [DN13]: As far as I can tell from re-reading the McKenzie papers, the only difference between the DMM and PLUME sources is in their trace element contents, not their mineral modes etc. While this is a totally fine simplifying assumption to make, I think it's important to keep it in mind. I guess a key thing to build into the argument below is that simply using a DMM source could not reproduce the chemical trends we observe.

423	the mantle source region for both LIN-A and LIN-B, and the average ϵ_{Nd} for neo-Pantelleria
424	(6.01), which correspond to similar mantle sources consisting of 65.5% and 67% DMM
425	respectively. For 60 km thick lithosphere, the best-fit garnet-spinel transition zone was also
426	similar for all three models (~72-92 km), which implies mantle potential temperatures beneath
427	the SSRZ of ~1425°C (Klemme and O'Neill, 2000); however, it is worth repeating that this
428	temperature estimate is coupled with the model parameters—if the lithosphere is set to 63 km
429	and the transition zone is lowered to 75-95 km the results are the same, which suggests a mantle
430	potential temperature of ~1450°C. All models fit the observed REE data well and within
431	1σ (Figures 8a, b, c), although the observed Eu concentration in PNL-L is noticeably higher. In
432	the forward models (Figures 8d, e, f), the model results also fit the observed major and trace
433	element data well, with a few notable exceptions: Th and Nb are ubiquitously high, but within
434	error; Sr and Zr are low at Linosa, but just barely within 1σ , and below this at Pantelleria.
435	Despite these similarities, the calculated melting curves (Figures 8g, h, j) reveal greater
436	complexity. Calculated depths for both Linosa groups are similar (102 km) and slightly above
437	the intersection of the peridotite mantle solidus (Katz et al., 2003) and the 1425°C adiabat
438	(McKenzie and Bickle, 1988; Putirka et al., 2007) at 103 km, with depth calculated from
439	pressures using the crustal structure and densities of Civile et al. (2008), a mantle density of 3.3
440	g/cm ³ , and a total crustal thickness of 20 km (depth results calculated with a crustal thickness of
441	25 km instead of 20 km differ by <1 km.). These results suggest that the Linosa basalts are the
442	result of variable degrees of partial melting (1.8% for LIN-A and 3.5% for LIN-B) of similar
443	peridotitic asthenosphere. The presence in each diagram of a small, low-fraction melt "tail" at
444	the base of the melting column may flag the presence of a minor amount lithologically enriched
445	and possibly water-rich material (Gibson and Geist, 2010). This "tail" is much larger and much

Commentato [DN14]: FYI, I obtained similar estimates when doing INVMEL modelling but didn't put them in the paper because I was confused. I think I am still a bit confused, but it seems like slightly elevated potential temperatures are a common and robust feature of continental rift zone magmatism.

Commentato [DN15]: This is also likely to be lithologically enriched and possibly water-rich too. I think McKenzie comments on this in his 1991 and 1995 papers.

446	more prominent in the PNL-L melting curve, which supports the hypothesis that the mantle
447	source beneath Pantelleria is much more enriched in incompatible trace elements. Likewise, the
448	predicted melting column extends below the peridotite solidus to 110 km at $T_P = 1425^{\circ}C$,
449	consistent with early melting of pyroxenitic material, which is more fusible that peridotite and
450	under these conditions would begin melting between 115-130 km (Hirschmann and Stolper,
451	1996; Kogiso et al., 1998; Pertermann and Hirschmann, 2003). The model for PNL-L also
452	suggests a fraction of partial melting nearly identical to LIN-B (~3.5%); this value is similar to
453	the 3% partial melting suggested by Avanzinelli et al. (2014) on the basis of U-series modelling.
454	The INVMEL model was applied to Pantelleria basalts by Neave et al. (2012), who reported
455	similar results (melting across 100-60 km with the garnet-spinel transition zone between 90-70
456	km, corresponding to a mantle potential temperature of \sim 1400°C) but with a much lower melt
457	fraction (~1.7%). This lower value is likely due to the inclusion of high-La/Yb PNL-H samples
458	with the PNL-L basalts in their model.
459	These model results support the hypotheses described in section 4.1 and the
460	interpretations inscribed in Figure 6. Linosa basalts originate from a common mantle source, and
461	LIN-A and LIN-B can be considered to form collinear trends in each diagram related by partial
462	melting and fractional crystallization. This relationship can be specifically seen in Figure 6d:
463	LIN-A and LIN-B have similar values of $[Dy/Yb]_N$, indicating that their source region is similar
464	with respect to residual garnet, and the higher Dy/Dy* values for LIN-B are the result of higher
465	degrees of partial melting (which does not affect $[Dy/Yb]_N$). The diagonal trends in each group
466	towards lower values of Dy/Dy* and [Dy/Yb] $_{\rm N}$ are best explained by the effects of fractional
467	crystallization (Davidson et al., 2013). The higher $[Dy/Yb]_N$ and $[Sm/Yb]_N$ values for the
468	Pantelleria basalts indicate the greater influence of residual garnet in the mantle source region,

Commentato [DN16]: Aha. Yes! Hirschmann & Stolper (1996) and Kogiso et al. (1998)

Commentato [DN17]: Here could be good to note that I obtained similar, if slightly lower estimates in my 2012 paper? The approach you have taken is much, much better though. I would also highlight that you are working with a lot more carefully selected compositions. In particular, I think would have lumped your PNL-L and PNL-H groups together. However, I would certainly agree with your assessment that the PNL-H group is not convincingly cogenetic like the PNL-L group may well be.

470	melting and thicker lithosphere (e.g., Niu et al., 2011) but of a greater amount of lithologically
471	enriched and possibly eclogitic material, which is supported both by the model results and the
472	relatively low values of Zr/Yb and Rb/La (and higher ²⁰⁶ Pb/ ²⁰⁴ Pb) for these basalts. However,
473	many of the seamount data appear to form collinear trends with the Linosa basalts and have
474	higher values of both $[Dy/Yb]_N$ and $[Sm/Yb]_N$; we suggest that for these, the mantle source is
475	the same as Linosa (and may represent the "typical" SSRZ mantle) and are the result of smaller
476	degrees of partial melting owing to thicker lithosphere.
477	4.3 Primary magma compositions and constraints on pressure and temperature of melt
478	generation.
479	An estimate of the composition of primary basalts is necessary in order to determine the
480	conditions of partial melting in the mantle, such as the source composition, temperature, and
481	pressure/depth of melt segregation. However, every basalt has undergone some degree of
482	fractionation and assimilation prior to eruption and even if assimilation is assumed to be
483	
	negligible, once the fractionating magma is multiply saturated it becomes very difficult to back-
484	negligible, once the fractionating magma is multiply saturated it becomes very difficult to back- calculate the liquid line of decent (O'Hara, 1968). To do so, of course, first requires the
484	calculate the liquid line of decent (O'Hara, 1968). To do so, of course, first requires the
484 485	calculate the liquid line of decent (O'Hara, 1968). To do so, of course, first requires the assumption that the rock sample is relatively unweathered and has undergone only olivine
484 485 486	calculate the liquid line of decent (O'Hara, 1968). To do so, of course, first requires the assumption that the rock sample is relatively unweathered and has undergone only olivine fractionation; for this reason, we include only relatively primitive samples characterized by very

but in this case the so-called "garnet signature" is not the result of lower degrees of partial

469

490 Linosa-A (see Figures 3, 4). Therefore most of the remainder of the discussion will focus on the

Commentato [DN18]: I am slightly uneasy about describing the enriched source as eclogitic like this. I think there's a really strong argument that this material must be lithologically enriched, but whether it is in fact eclogitic would be really hard if not impossible to determine. In a paper I've just submitted about Iceland I tended to refer to enriched mantle components like this as 'lithologically enriched'. How about something like 'lithologically enriched and potentially eclogitic'? I'm happy to go with your final decision, whatever that might be!

Commentato [DN19]: A classic! Actually the paper I just submitted about Iceland touches on this very point!

origin of the basalts of this sub-group, with inferences made for the origin of the others bycomparison.

The composition of the primary magma parental to a basaltic rock may be estimated by 493 iteratively "correcting" it for olivine fractionation until the recalculated basalt has an Mg# that 494 has been experimental determined to be in equilibrium with mantle peridotite with an expected 495 496 olivine composition of ~Fo₉₀ (Lee et al., 2009). Calculated (anhydrous) primary basalts in equilibrium with peridotite with Fo₉₀ and Fe³⁺/ Σ Fe = 0.10 for all samples of that meet the criteria 497 above (n = 25) are very similar, classifying as alkali basalts with $SiO_2 = 46.04 \pm 0.29$ wt%, TiO_2 498 $=1.92 \pm 0.07$ wt%, Al₂O₃ $= 13.17 \pm 0.50$ wt%, Fe₂O₃ $= 1.06 \pm 0.03$ wt%, FeO $= 9.92 \pm 0.18$ 499 wt%, MnO = 0.16 ± 0.01 , MgO = 15.65 ± 0.35 wt%, CaO = 8.32 ± 0.42 wt%, Na₂O = 2.59 ± 0.42 wt%, Na₂O = 500 501 0.24 wt%, and Ka₂O = 1.13 ± 0.14 wt%. Various tests have been proposed to determine the source material for basalts based on their major-element content, but these provide equivocal 502 503 results. The calculated composition of primary magma for Linosa-A places it within the field of 504 experimental partial melts of peridotite (Dasgupta et al., 2010), although the PRIMELTS3 505 algorithm places it in the field of partial melts of "pyroxenite" (Herzberg and Asimow, 2008). 506 The Yang and Zhou (2013) test for mantle source composition is also equivocal: the FC3MS 507 (wt% FeO^T/CaO – 3MgO/SiO₂) value of the calculated primary basalt (0.27) is within the range for both peridotite (-0.07 ± 0.51) and pyroxenite (0.46 ± 0.96) partial melts. Other major-508 509 element ratios purported to flag source compositions for basalts include CaO/Al₂O₃, K₂O/TiO₂ (Jackson and Dasgupta, 2008), and Fe/Mn (Davis et al., 2013) and provide similarly ambiguous 510 results: CaO/Al₂O₃ (0.63 \pm 0.04) and K₂O/TiO₂ (0.60 \pm 0.08) plot nearest the EM1 component 511 and furthest from the MORB-HIMU array, inconsistent with isotopic evidence; and Fe/Mn for all 512 basalts from both islands is 61.1 ± 5.6 (62.0 ± 0.7) in the model primary magma), which is at the 513

proposed boundary (62) for peridotite- vs. eclogitic-derived melts. Therefore, we suggest that
although these tests provide ambiguous results, they also suggest that that unenriched fertile
lherzolite is an unlikely source by itself.

The olivine-liquid thermobarometer of Lee et al. (2009) provides a weighted average of 517 the temperature and pressure of polybaric melting for the calculated primary basalts of $1463 \pm$ 518 519 12°C and 2.69 \pm 0.15 GPa; this corresponds to a partial melt fraction of 0.028 \pm 0.009 and a mantle potential temperature (T_P) of 1446 ± 14°C (Putirka et al., 2007) (Figure 9). On the basis 520 521 of thermodynamic modelling, White et al. (2009) suggested that the most primitive Pantelleria basalts may have 0.5-1.0 wt% H2O; Gioncada and Landi (2010) reported 0.9-1.6 wt% H2O from 522 a relatively more evolved basalt (5.67 wt% MgO) on Pantelleria. If we assume that Linosa 523 basalts have ~ 1 wt% H₂O, the calculated primary basalt has major element oxide values only 524 525 $\sim 1\%$ different from those estimated under anhydrous conditions, but the differences are enough to result in significantly lower model melt fractions (0.018 ± 0.009) —strikingly similar to the 526 527 value predicted by INVMEL modelling above-as well as lower olivine-liquid temperatures $(1435 \pm 13^{\circ}C)$ and mantle potential temperatures $(1415 \pm 13^{\circ})$ than those for anhydrous 528 basalts—only pressure $(2.62 \pm 0.15 \text{ GPa})$ is very similar. Therefore, it might be reasonable to 529 infer mantle potential temperatures in the SSRZ between ~1400-1460°C and average melt 530 531 segregation depths between 83 and 93 km, with depths calculated from pressures using 20 km thick crust, an average crustal density of 2.70 g/cm³ (Civile et al., 2008), and mantle density of 532 3.30 g/cm³. Model temperatures are higher than those determined for "ambient" MORB mantle 533 $(T_P \approx 1350^{\circ}C, 0.7-1.7 \text{ GPa})$ and similar to those determined for extension-related intraplate 534 535 volcanism in the Basin and Range province where the continental lithosphere has been similarly

Commentato [DN20]: I think a summary sentence would be useful here, even if the "answer" is somewhat unclear. So, it seems to me that, when taken together, these various tests are indicative of a source more enriched than a classical fertile lherzolite, but are equivocal about what it could be.

Commentato [DN21]: Probably worth adding that this approach gives the weighted average P-T of ultimately polybaric melt generation. Both Lee and we know this, but reviewers can be picky! It might be easiest to reword this first sentence to this effect.

Commentato [DN22]: This strikes me as very similar to the results of the INVMEL modelling. It would probably be good to mention this here too.

thinned, such as Owens Valley (southeastern California, USA; ~1425°C, 60-80 km; Lee et al.,

537 2009) and Snow Canyon (southwestern Utah, USA; ~1422°C, 58 km; Plank and Forsythe, 2016).

538 *4.4 Thermodynamic models of partial melting and magma evolution.*

539 4.4.1. Partial melting and melt sources

Mantle sources and conditions of partial melting for primary magmas may be semi-540 541 quantitatively constrained by comparing the compositions of calculated primary basalts with experimental melts. Shorttle and Maclennan (2011) presented a method to do so whereby the 542 calculated basalt is comparedon an oxide-by-oxide basis to experimental partial melts from an 543 extensive database, with the sum of the absolute differences between them providing a total 544 misfit value (Misfit%). The misfit is then adjusted by adding or subtracting olivine from the 545 original calculated primary magma until the misfit is minimized and the results are reported. A 546 547 limitation of this method is that experimental results represent partial melts formed at a specific temperature and pressure conditions, whereas natural melts from intraplate settings initially form 548 549 at the intersection of the solidus and the mantle adiabat and evolve as they isentropically rise to the base of the lithosphere (Niu et al., 2011). In order to account for the great diversity of 550 551 putative primary melts we modelled the partial melting of various potential mantle lithologies under conditions similar to those beneath the SSRZ. Models were produced with the pMELTS 552 553 algorightm (v. 5.6.1; Ghiorso et al., 2002), with model parameters selected based on the results of the INVMEL model and the primary liquid models previously presented . For each potential 554 mantle source composition, isentropic partial melting models were calculated from 3.0 GPa (the 555 upper limit of the pMELTS calibration) to 1.8 GPa (corresponding to the base of ~60 km thick 556 557 lithosphere) for starting temperatures of 1431, 1456, and 1481°C, corresponding to mantle potential temperatures of 1400, 1425, and 1450°C at 3.0 GPa (McKenzie and Bickle, 1988; 558

Commentato [DN23]: I think this is quite an important observation. Maybe we could incorporate a more recent and in depth study of the Basin and Range (Plank & Forsythe, 2016; G3), which also notes elevated temperatures in some locations.

559	Putirka et al., 2007). Model starting compositions were KLB-1 (fertile lherzolite), KG1 and
560	KG2 (50% and 33% mixtures of average MORB mixed with KLB-1, respectively; Kogiso et al.,
561	1998) and various mixtures of MPY90 and GA1 (MORB pyrolite and average altered oceanic
562	basalt; Yaxley and Green, 1998). All models presented were performed under anhydrous
563	conditions with oxygen fugacities buffered at FMQ; models calculated with more reduced
564	conditions (FMQ-1) provided similar results with slightly higher melt fractions, MgO, FeO, and
565	CaO (~0.003, ~0.21 wt%, ~0.28 wt% and ~0.51 wt% higher respectively), but lower SiO ₂ , TiO ₂ ,
566	and K ₂ O (~0.44 wt%, ~0.11 wt% and ~0.02 wt% lower respectively).

567	For each calculated result, the initial primary basalt (section 4.3) was adjusted by
568	iteratively calculating K_D (Fe-Mg) ^{ol/liq} using the method of Tamura et al. (2000) and then adding
569	or subtracting equilibrium olivine in 0.05 wt% steps following the technique of Herzberg and
570	O'Hara (2002) until the misfit was minimized and the results reported. For each new "best-fit"
571	primary basalt, the average temperature and pressure of melt segregation was then calculated
572	using the geothermobarometer of Lee et al. (2009). These results are presented in Table 2 with
573	selected results also presented in Figure 10. Model results that result in melts with an $Mg\# < 71$
574	(the highest values recorded in LIN-A excluding samples with evidence of olivine accumulation)
575	or with $%F < 0$ (indicating an olivine-liquid temperature greater than the initial temperature) are
576	considered unreasonable and inalid. For the remainder, these results show that under anhydrous
577	conditions the consistently best results require low degrees of partial melting (<5%) at higher
578	mantle potential temperatures (1450°C) with a mantle source consisting of between 100 and
579	62.5% MORB pyrolite mixed with up to 37.5% recycled MORB material. As noted earlier, a
580	slightly hydrous mantle produces very similar results, but with a lower mantle potential
581	temperatures, so 1450°C should be considered a maximum. The pMELTS results confirm the

582	experminetal results of Kogiso et al. (1998), who showed that an addition of basalt to peridotite
583	results in partial melts higher in FeO and TiO_2 at a given value of MgO. However, TiO_2 is also
584	responsible for the greatest misfit between the model primary basalt and the pMELTS-calculated
585	values. Unlike the pMELTS model, which produced melts up to 1.5 wt% TiO ₂ , Kogiso et al.
586	(1998) generated melts with $TiO_2 > 2.5$ wt% for their 33% (KG2) and 50% (KG1) mixtures of
587	basalt with peridotite although their results for partial melting of peridotite (KLB-1) were similar
588	those calculated by pMELTS. Since the behavior of TiO_2 will primarily be controlled by
589	clinopyroxene-melt equilibria, this discrepancy may partly reflect an inadequacy of the
590	clinopyroxene thermodynamic model in the pMELTS program.
591	4.4.2. Fractional crystallization and magma storage
592	Pearce (1968) element ratio (PER) diagrams graph ratios of major elements with a
593	conserved, or incompatible, element (e.g., Mg/K, Ca/K) and are presented in Figure 11. PER
594	diagrams are based on the stoichiometry of rock-forming minerals, and slopes of data
595	distributions are equal to major element ratios of minerals lost or gained during differentiation of
596	a cogenetic suite of rocks (Russell and Nicholls, 1988). For example, data plotted with Mg/K on
597	the ordinate and Ca/K on the abscissa will form a linear trend with a slope that varies depending
598	on the fractionating or accumulating assemblage from horizontal for a phase with non-
599	stoichiometric Ca such as olivine to vertical for a phase with non-stoichiometric Mg such as
600	plagioclase. Assemblages with multiple minerals and/or minerals in solid-solution will plot
601	slopes with intermediate values. Diagrams plotting Mg/K versus Al/K (Figure 11a) and Ca/K
602	(Figure 11b) can therefore be used to discriminate between fractionation of olivine (horizontal
603	trends on both diagrams with decreasing Mg/K), clinopyroxene (horizontal trend with Al/K and a

positive sloping trend with Ca/K versus Mg/K), and plagioclase (vertical trends on bothdiagrams).

606	The two trends ("A" and "B") observed in the major- and trace-element variation
607	diagrams (Figures 3 and 4) are also seen in the PER diagrams (Figure 11). These preclude the
608	possibility of a similar parental magma for the two trends; linking trends A and B by fractional
609	crystallization would require the crystallization of geologically implausible mineral assemblages.
610	PER diagrams show that Trend-A is formed by a paragenetic sequence of olivine to olivine +
611	clinopyroxene to clinopyroxene + plagioclase \pm olivine and Trend-B is formed by a continuous
612	sequence of plagioclase + clinopyroxene \pm olivine. Samples with Mg/K > 12 have MgO > 14
613	wt% and are most likely the result of olivine accumulation and have been excluded from this
614	figure. Both trends converge at Mg/K \approx 4, which corresponds to MgO ≈ 6.5 wt%.
615	We have modelled these trends using the MELTS algorithm (rhyolite-MELTS v. 1.0.2;
616	Ghiorso et al., 1995; Asimow and Ghiorso, 1998; Gualda et al., 2012), the results of which are
617	superimposed on the data in Figure 10. Trend-A is most successfully modeled as fractional
618	crystallization from the calculated anhydrous primary basalt (section 4.2) at 0.5 GPa and oxygen
619	fugacities defined by the FMQ buffer. At this pressure, olivine (Fo90) is the liquidus phase at
620	1432°C, and is joined by clinopyroxene at 1252°C (MgO ^{liq} = 8.18 wt%, F = 0.80), magnetite at
621	1202°C (MgO ^{liq} = 5.54 wt%, F = 0.60) and plagioclase at 1192°C (MgO ^{liq} = 5.03 wt%, F = 0.60)
622	0.55). In contrast, Trend-B is best modelled as the result of fractional crystallization from the
623	most primitive Arena Bianca basalt (LNS11; Bindi et al., 2002) at 0.2 GPa and oxygen fugacities
624	defined by FMQ. At this pressure, olivine (Fo_{82}) is the liquidus phase at 1217°C, and is quickly
625	joined by plagioclase at 1207°C (MgO ^{liq} = 7.38 wt%), clinopyroxene at 1178°C (MgO ^{liq} = 6.28
626	wt%), and magnetite at $1142^{\circ}C$ (MgO ^{liq} = 4.82 wt%). These models are consistent with the

627	conclusions of Bindi et al. (2002), who suggested that the pressure of fractionation at Linosa
628	increased with time based on the clinopyroxene crystal chemistry and structure. Although
629	regarded by most workers to be comprised of attenuated continental crust, a study by Manuella et
630	al. (2015) has suggested an oceanic affinity for the Hyblean-Pelagic basement; these results are
631	more consistent with the former model, and specifically the crustal structure of Civille et al.
632	(2008). Using their model, these pressures would place the 0.5 GPa LIN-A magma chamber at
633	about 17-25 km (approximately the depth of the Moho) and the 0.2 GPa LIN-B magma chamber
634	at about 8-9 km (the top of the crystalline basement / bottom of the sedimentary cover).
635	Pantelleria-L samples form trends subparallel to Linosa-B samples offset to lower Mg/K values
636	for given values of Al/K and Ca/K. The simplest explanation for this is fractional crystallization
637	of these basalts under lower pressures (0.1 GPa, or ~4 km) or under similar pressures but more
638	hydrous conditions (cf. White et al., 2009; Giocanda and Landi, 2009).
639	

640 5.0 Conclusions

Despite having very similar isotopic characteristics with respect to Sr-Nd-He, there are 641 significant compositional differences both within and between the islands and seamounts with 642 respect to major- and trace-element geochemistry and Pb isotopes (Avanzinelli et al., 2014) that 643 644 can be attributed to several factors: (1) although broadly similar and dominated by depleted MORB lherzolite, the mantle source is apparently more LILE-enriched and possibly more 645 heterogeneous beneath Pantelleria than Linosa; (2) Linosan mantle may represent the "ambient" 646 mantle in the SSRZ region, as the Seamounts appear to have been derived from a similar source; 647 648 (3) the fundamental differences between the two trends observed on Linosa (LIN-A and LIN-B) are due to variable degrees of partial melting (~2% and ~3.5%, respectively) as well as different 649

652	thicker lithosphere; (5) basalts on Pantelleria are sourced from a mantle similar to Linosa, but
653	with an additional lithologically enriched and possibly eclogitic component. Greater melt
654	productivity at Pantelleria and it's ability to drive felsic magmatism compared to the remainder
655	of the SSRZ and indeed the presence of the island itself may simply be due to the presence of
656	more fusible mantle beneath the island.
657	
658	Acknowledgements
659	This study was funded in part by a grant to the JCW from the University Research
660	Committee and the Rowlett Award from the Society of Foundation Professors at Eastern
661	Kentucky University. JCW would also like to thank Mitchell May and Cassie Simpson for their
662	assistance in the field and computer lab, respectively. DAN was supported by a Presidential
663	Fellowship from the University of Manchester.
664	
665	References
666	
667 668 669 670	 Aissi, M., Flovere, M., Würtz, M., 2015. Seamounts and seamount-like structures of Sardinia Channel, Strait of Sicily, Ionian Sea, and Adriatic Sea. In: Würtz, M., Rovere, M. (Editors), Atlas of the Mediterranean Seamounts and Seamount-like Structures. International Union for Conservation of Nature (IUCN), Gland, Switzerland and Málaga,

651 melting, which may be attributed to magma generation away from the rift grabbens and beneath

650

magma storage conditions; (4) Seamounts are likely the result of even lower degrees of partial

667	Aissi, M., Flovere, M., Würtz, M., 2015. Seamounts and seamount-like structures of Sardinia
668	Channel, Strait of Sicily, Ionian Sea, and Adriatic Sea. In: Würtz, M., Rovere, M.
669	(Editors), Atlas of the Mediterranean Seamounts and Seamount-like Structures.
670	International Union for Conservation of Nature (IUCN), Gland, Switzerland and Málag
671	Spain, 187-225.

- Argnani, A., Torelli, L., 2001. The Pelagian Shelf and its graben system (Italy/Tunisia). In: 672 673 Ziegler, P.A., Cavazza, W., Robertson, A.H.F. and Crasquin-Soleau, S. (Editors), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du 674 675 Muséum National D'Histoire Naturelle 186, 529-544.
- 676 Arevalo, R., Jr., McDonough, W.F., Luong, M., 2009. The K/U ratio of the silicate Earth:
- 677 Insights into mantle composition, structure, and thermal evolution. Earth and Planetary Science Letters 278, 361-369, doi: 1016/j.espl.2008.12.023. 678

Commentato [DN24]: Again, I would probably be tempted to say something a little more tentative: "a lithologically enriched and potentially eclogitic component"

Commentato [DN25]: And it's ability to drive felsic volcanism?

- Asimow, P.D., Ghiorso, M.S., 1998. Algorighmic modifications extending MELTS to calculated
 subsolidus phase relations. American Mineralogist 83, 1127-1131.
- Avanzinelli, R., Bindi, L., Menchetti, S., Conticelli, S., 2004. Crystallization and genesis of
 peralkaline magmas from Pantelleria Volcano, Italy: An integrated petrological and
 crystal-chemical study. Lithos 73, 41-69, doi: 10.1016/j.lithos.2013.10.008.
- Avanzinelli, R., Braschi, E., Marchionni, S., Bindi, L., 2014. Mantle melting in within-plate
 continental settings: Sr-Nd-Pb and U-series isotope constraints in alkali basalts from the
 Sicily Channel (Pantelleria and Linosa Islands, Southern Italy). Lithos 188, 113-129. doi:
 10.1016/j.lithos.2013.008.
- Beccaluva, L., Colantoni, P., Di Girolamo, P., Savelli, C., 1981. Upper-Miocene submarine
 volcanism in the Strait of Sicily (Banco senza Nome). Bulletin of Volcanology 44, 573 581.
- Bellani, S., Calore, C., Grassi, S., Squarci, P., 1995. Thermal prospecting in Pantelleria island
 (Sicily Channel, Italy). World Geothermal Congress, Firenze 1995, 2, 767-770.
- Berrino, G., Capuano, P., 1995. Gravity anomalies and structures at the island of Pantelleria.
 Acta Vulcanologica 7, 19-26.
- Bindi, L., Tasselli, F., Olmi, F., Peccerillo, A., Menchetti, S., 2002. Crystal chemistry of
 clinopyroxenes from Linosa Volcano, Sicily Channel, Italy: implications for modelling
 the magmatic plumbing system. Mineralogical Magazine 66, 953-968.
- Calanchi, N., Colantoni, P., Rossi, P.L., Saitta, M., Serri, G., 1989. The Strait of Sicily
 continental rift systems: Physiography and petrochemistry of the submarine volcanic
 centers. Marine Geology 87, 55-83.
- Catalano, S., De Guidi, G., Lanzafame, G., Monaco, C., Tortorici, L., 2009. Late Quaternary
 deformation on the island of Pantelleria: New constraints for the recent tectonic evolution
 of the Sicily Channel Rift (southern Italy). Journal of Geodynamics 48, 75-82, doi:
 10.1016/j.jog.2009.06.005.
- Civetta, L., D'Antonio, M., Orsi, G., Tilton, G.R., 1998. The geochemistry of volcanic rocks
 from Pantelleria Island, Sicily Channel: Petrogenesis and characteristics of the mantle
 source region. Journal of Petrology 39, 1453-1491.
- Civile, D., Lodolo, E., Tortorici, L.Lanzafame, G., Brancolini, G., 2008. Relationships between
 magmatism and tectonics in a continental rift: The Pantelleira Island region (Sicily
 Channel, Italy). Marine Geology 251, 32-46.
- Coltelli, M., Cavallaro, D., D'Anna, G., D'Alessandro, A., Grassa, F., Mangano, G., Patanè, D.,
 Gresta, S., 2016. Exploring the submarine Graham Bank in the Sicily Channel. Annals of
 Geophysics 59(2), S0208, doi: 10.4401/ag-6929.
- Dasgupta, R., Jackson, M.G., Lee, C.-T.A., 2010. Major element chemistry of ocean island
 basalts Conditions of mantle melting and heterogeneity of mantle source. Earth and
 Planetary Science Letters 289, 377-392, doi: 10.1016/j.espl.2009.11.027.
- Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations arising from mantle sources and
 petrogenetic processes. Journal of Petrology 54, 525-537, doi: 10.1093/petrology/egs076.
- Davis, F.A., Humayun, M., Hirschmann, M.M., Cooper, R.S., 2013. Experimentally determined
 mineral/melt partitioning of first-row transition elements (FRTE) during partial melting
 of peridotite at 3 GPa. Geochimica et Cosmochimica Acta 104, 232-260, doi:
- 722 10.1016/j.gca.2012.11.009.

- Della Vedova, B., Lucazeau, F., Pasquale, V., Pellis, G., Verdoya, M., 1995. Heat flow in the
 tectonic provinces crossed by the southern segment of the European Geotraverse.
 Tectonophysics 244, 57-74.
- Di Bella, M., Russo, S., Petrelli, M., Peccerillo, A., 2008. Origin and evolution of the Pleistocene
 magmatism of Linosa Island (Sicily Channel, Italy). European Journal of Mineralogy 20:
 587-601.
- Esperança, S., Crisci, G.M., 1995. The island of Pantelleria: A case for the development of
 DMM-HIMU isotopic compositions in a long-lived extensional setting. Earth and
 Planetary Science Letters 136, 167-182.
- Fouré, E., Allard, P., Jean-Baptiste, P.,Cellura, D., Parello, F., 2012. 3He/4He ratio in olivines
 from Linosa, Ustica, and Pantelleria Islands (Southern Italy). Journal of Geological
 Research, doi: 10.1155/2012/723839.
- Fulignati, P., Malfitano, G., Sbrana, A., 1997. The Pantelleria caldera geothermal system: Data
 from the hydrothermal minerals. Journal of Volcanology and Geothermal Research 75,
 251-270.
- Gemmellaro, C., 1831. Relazione dei fenomeni del nuovo vulcano sorto dal mare fra la costa di
 Sicilia e l'isola di Pantelleria nel mese di luglio 1831. Atti dell'Accademia Gioenia di
 Scienze Naturali in Catania 8, 271-298.
- Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extraplation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures.
 Contributions to Mineralogy and Petrology 119, 197-212.
- Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., Kress, V.C., 2002. The pMELTS: A revison
 of MELTS aimed at improving calculation of phase relations and major element
 partitioning involved in partial melting of the mantle at pressures up to 3 Gpa.
 Geochemistry, Geophysics, Geosystems 3(5), 10.1029/2001GC000217.
- Gibson, S.A., Geist, D., 2010. Geochemical and geophysical estimates of lithospheric thickness
 variation beheath Galápagos. Earth and Planetary Science Letters 300, 275-286, doi:
 10.1016/j.epsl.2010.10.002.
- Gioncada, A., Landi, P., 2010. The pre-eruptive volatile contents of recent basaltic and
 pantelleritic magmas at Pantelleria (Italy). Journal of Volcanology and Geothermal
 Research 189, 191-201, doi: 10.1016/j.jvolgeores.2009.11.006.
- Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., Carley, T.L., 2012. Rhyolite-MELTS: a modified
 calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal
 of Petrology 53, 875-890, doi: 10.1093/petrology/egr080.
- Haggerty, S.E., Fung, A.T., Burt, D.M., 1994. Apatite, phosphorous and titanium in eclogitic
 garnet from the upper mantle. Geophysical Research Letters 21, 1699-1702.
- Hanyu, T., Kaneoka, I., 1997. The uniform and low ³He/⁴He ratios of HIMU basalts as evidence
 for their origin as recycled materials. Nature 390, 273-276.
- Halliday, A.N., Lee, D.-C., Tommasini, S., Davies, G.R., Paslick, C.R., Fitton, J.G., James, D.E.,
 1995. Incompatible trace elements in OIB and MORB and source enrichment in the sub oceanic mangle. Earth and Planetary Science Letters 113, 379-395.
- Herzberg, C., Asimow, P.D., 2008. PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus.
 Geochemistry, Geophysics, Geosystems 16, 563-578, doi: 10.1002/2014GC00563.

- Herzberg, C., O'Hara, M.J., 2002. Plue-associated ultramafic magmas of Phanerozoic age.
 Journal of Petrology 43, 1857-1883.
- Hirschmann, M.M., Stolper, E.M., 1996. A possible role for garnet pyroxenite in the origin of the
 "garnet signature" in MORB. Contributions to Mineralogy and Petrology 124, 185-208.
- Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in oceanic basalts:
 new constraints on mantle evolution. Earth and Planetary Science Letters 79, 33-45.
- Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548.
- Jackson, M.G., Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from global trends
 between radiogenic isotopes and major elements in oceanic island basalts. Earth and
 Planetary Science Letters 276, 175-186, doi: 10.1016/j.espl.2008.09.023.
- Katz, R.F., Spiegelman, M., Langmuir, C.H., 2003. A new parameterization of hydrous manIte
 melting. Geochemistry Geophysics Geosystems 4(9), 1073, doi:
 10.1029/2002GC000433.
- Klemme, S., O'Neil, H.StC., 2000. The near-solidus transition from garnet lherzolite to spinel
 lherzolite. Contributions to Mineralogy and Petrology 138, 237-248.
- Kogiso, T., Hirose, K., Takahashi, E., 1998. Melting experiments on homogenous mixtures of
 peridotitee and basalt: application to the genesis of ocean island basalts. Earth and
 Planetary Science Letters 162, 45-61.
- Lanzafame, G., Rossi, P.L., Tranne, C.A., Lanti, E., 1994. Carta geologica dell'isola di Linosa.
 1:5000. Società Elaborazioni Cartografiche, Firenze.
- Lee, C.-T.A., Luffi, P., Plank, T., Dalton, H., Leeman, W.P., 2009. Constraints on the depths and
 temperatures of basaltic magma generation on Earth and other terrestrial planets using
 new thermobarometers for mafic magmas. Earth and Planetary Science Letters 279, 20 33, doi: 10.1016/j.espl.2008.12.020.
- Le Maitre, R.W. (Editor), 2002. Igneous rocks, a classification and glossary of terms:
 Recommendations of the International Union of Geological Sciences Subcomission on
 the Systematics of Igneous Rocks, 2nd Ed. Cambridge University Press, 236 p.
- Lodolo, E., Zampa, L., Civile, D., 2019. The Graham and Terrible volcanic province (NW
 Sicilian Channel): gravimetric constraints for the magmatic manifestations. Bulletin of
 Volcanology 81, 17, doi:10.1007/s00445-019-1274-0.
- Maclennan, J., 2008. Lead isotope variability in olivine-hosted melt inclusions from Iceland.
 Geochimica et Cosmochimia Acta 72, 4159-4176.
- Mahood, G.A., Baker, D.R., 1986. Experimental constraints on depths of fractionation of mildly
 alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily. Contributions to
 Mineralogy and Petrology 93, 251-264.
- Mahood, G.A., Hildreth, W., 1986. Geology of the peralkaline volcano at Pantelleria, Strait of
 Sicily. Bulletin of Volcanology 48, 143-172.
- Manuella, F.C., Scribano, V., Carbone, S., Brancato, A., 2015. The Hyblean xenolith suite
 (Sicily): an unexpected legacy of the Ionian-Tethys realm. International Journal of Earth
 Science 104, 1317-1336, doi: 10.1007/s00531-1151-9.
- McDonough, W.F., Sun, S.-s., 1995. The composition of the Earth. Chemical Geology 120, 223 253.
- McGee, L.E., Smith, I.E.M., Interpreting chemical compositions of small scale basaltic systems:
 A review. Journal of Volcanology and Geothermal Research 325, 45-60, doi:
- 813 10.1016/j.volgeores.2016.06.007.

- McKenzie, D., Bickle, M.J., 1988. The volume and composition of melt generated by extension
 of the lithosphere. Journal of Petrology 29, 625-679.
- McKenzie, D., O'Nions, R.K., 1991. Partial melt distributions from inversion of rare earth
 element concentrations. Journal of Petrology 32, 1021-1091, doi:
 10.1093/petrology/32.5.1021.
- McKenzie, D., O'Nions, R.K., 1995. The source regions of ocean island basalts. Journal of
 Petrology 36, 133-159.
- McKenzie, D., O'Nions, R.K., 1998. Melt production beneath oceanic islands. Physics of the
 Earth and Planetary Interiors 107, 143-182.
- Niu, Y., O'Hara, M.J., 2009. MORB mantle hosts the missing Eu (Sr, Nb, Ta, and Ti) in the
 continental crust: New perspectives on crustal growth, crust-mantle differentiation and
 chemical signature of the oceanic upper mantle. Lithos 112, 1-17, doi:
 10.1016/j.lithos.2008.12.009.
- Niu, Y., Wilson, M., Humphrey, E.R., and O'Hara, M.J., 2011. The origin of intra-plate ocean
 island basalts (OIB): the lid effect and its geodynamic implications. Journal of Petrology
 52, 1443-1468, doi: 10.1093/petrology/egr030.
- Neave, D.A., Fabbro, G., Herd, R.A., Petrone, C.M., Edmonds, M., 2012. Melting,
 differentiation and degassing at the Pantelleria Volcano, Italy. Journal of Petrology 53,
 637-663.
- Parello, F., Allard, P., D'Alessandro, W., Federico, C., Jean-Baptiste, P., Catani, O., 2000.
 Isotope geochemistry of Pantelleria volcanic fluids, Sicily Channel rift: a mantle volatile
 end-member for volcanism in southern Europe. Earth and Planetary Science Letters 180,
 325-339.
- Parker, D.F., White, J.C., 2008. Large-scale alkalic magmatism associated with the Buckhorn
 caldera, Trans-Pecos Texas, USA: Comparison with Pantelleria, Italy. Bulletin of
 Volcanology 70, 403-415.
- Pearce, T.H., 1968. A contribution to the theory of variation diagrams. Contributions to
 Mineralogy and Petrology 19, 142-157.
- Pertermann, M., Hirschmann, M.M., 2003. Partial melting experiments on a MORB-like
 pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt
 source retions from solidus location and melting rate. Journal of Geophysical Research
 108, no. B2, 2125, doi: 10.1029/2000JB000118.
- Pertermann, M., Hirschmann, M.M., Hametner, K, Günther, D., Schmidt, M.W., 2004.
 Experimental determination of trace element partitioning between garnet and silica-rich
 liquid during anhydrous melting of MORB-like eclogite. Geochemistry Geophysics
 Geosystems, 5(5), Q05A01, doi: 10.1029/2003/GC000638.
- Prytulak, J., Elliot, T., 2007. TiO₂ enrichment in ocean island basalts. Earth and Planetary
 Science Letters 263, 388-403, doi: 10.1016/j.epsl.2007.09.015.
- Putirka, K.D., Perfit, M., Ryerson, F.J., Jackson, M.G., 2007. Ambient and excess mantle
 termperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology,
 241, 177-206, doi: 10.1016/j.chemgeo.2007.01.014.
- Rossi, P.L., Tranne, C.A., Calanchi, N., Lanti, E., 1996. Geology, stratigraphy and
 volcanological evolution of the island of Linosa (Sicily Channel). Acta Vulcanologica 8,
 73-90.
- 858 Rotolo, S.G., Castorina, F., Cellura, D., Pompilio, M., 2006. Petrology and geochemistry of
- submarine volcanism in the Sicily Channel rift. Journal of Geology 114, 355-365.

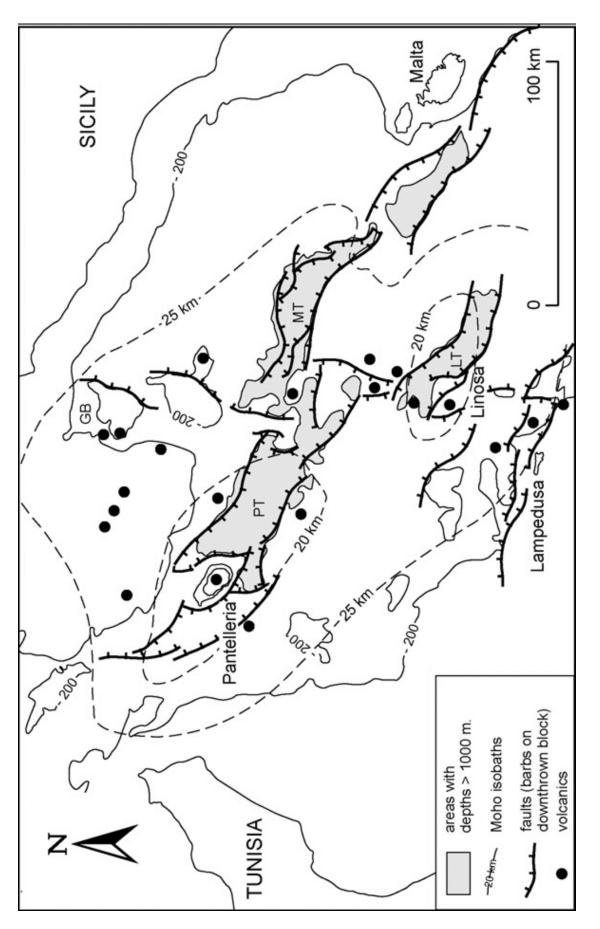
- Russell, J.K., Nicholls, J., 1988. Analysis of petrologic hypotheses with Pearce element ratios.
 Contributions to Mineralogy and Petrology 99, 25-35.
- Salters, V.J.M., Stracke, A., 2004. Composition of depleted mantle. Geochemistry, Geophysics,
 Geosystems 5(5), Q05004, doi:10.1029/2003GC000597.
- Scaillet, S., Vita-Scaillet, G., Rotolo, S.G., 2013. Millennial-scale phase relationships between
 ice-core and Mediterranean marine records: insights from high-precision ⁴⁰Ar/³⁹Ar dating
 of the Green Tuff of Pantelleria, Sicily Strait. Quaternary Science Reviews 78, 141-154.
- Shorttle, O., Maclennan, J., 2011. Compositional trends of Icelandic basalts: Implications for
 short-length scale lithological heterogeneity in mantle plumes. Geochemistry Geophysics
 Geosystems 12(11), Q11009, doi: 10.1029/2011GC003748.
- Stracke, A., Bourdon, B., 2009. The importance of melt extraction for tracing mantle
 heterogeneity. Geochimica et Cosmochimica Acta 73, 218-238, doi:
 10.1016/j.gca.2008.10.015.
- Stracke, A., 2012. Earth's homegenous mantle: A product of convection-driven interacton
 between crust and mantle. Chemical Geology 330-331, 274-299, doi:
 10.1016/j.chemgeo.2012.08.007.
- Sun, S.-s., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:
 implications for mantle composition and processes. Geological Society, London, Special
 Publications 42, 313-345, doi: 10.1144/GSL.SP.1989.042.01.19.
- Tamura, Y., Yuhara, M., Ishii, T., 2000. Primary arc basalts from Daisen Volcano, Japan:
 equilibrium crystal fractionation versus disequilibrium fractionation during super cooling. Journal of Petrology 41, 431-448.
- Tang, M., Rudnick, R.L., McDonough, W.F., Gaschnig, R.M., Huang, Y., 2015. Europium
 anomalies constrain the mass of recycled lower continental crust. Geology 43, 703-706,
 doi: 10.1130/G36641.1.
- Tang, M., McDonough, W.F., Ash, R.D., 2017. Europium and strontium anomalies in the
 MORB source mantle. Geochimica et Cosmochimica Acta 197, 132-141, doi:
 10.1016/j.gca.2016.10.025.
- van Westrenen, W., Blundy, J.D., Wood, B.J., 2001. High field strength element / rare earth
 element fractionation during partial melting in the presence of garnet: Implications for
 identification of mantle heterogeneities. Geochemistry Geophysics Geosystems, doi:
 10.1029/2000GC000133.
- Washington, H.S., 1909. Art. VIII.—The submarine eruptions of 1831 and 1891 near Pantelleria.
 American Journal of Science 27, 131-150, n. 158, doi: 10.2475/ajs.s4-27.158.131.
- White, R.S., McKenzie, D., O'Nions, R.K., 1992. Oceanic crustal thickness from seismic
 measurements and rare earth element inversions. Journal of Geophysical Research 97,
 19683-19715.
- White, J.C., Parker, D.F., Ren, M., 2009. The origin of trachyte and pantellerite from Pantelleria,
 Italy: Insights from major element, trace element, and thermodynamic modelling. Journal
 of Volcanology and Geothermal Research 179, 33-55.
- White, J.C., Espejel-García, V.V., Anthony, E.Y., Omenda, P., 2012. Open system evolution of
 peralkaline trachyte and phonolite from the Suswa volcano, Kenya rift. Lithos 152, 84 104.
- Wolff, J.A., 2017. On the syenite-trachyte problem. Geology 45, 1067-1070, doi:
 10.1130/G39415.1.

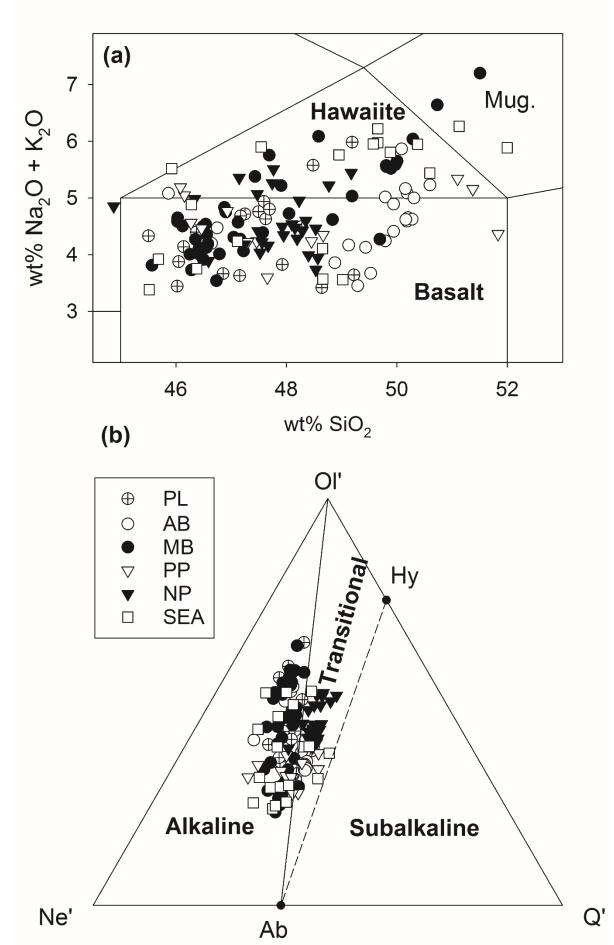
- Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members:
 Implications for recycling of oceanic and upper and lower continental crust.
 Geochemistry Geophysics Geosystems 7(4), Q04004, doi: 10.1029/2005GC001005.
- Yang, Z.-F., Zhou, J.-H., 2013. Can we identify source lithology of basalt? Scientific Reports 3, 1856, doi: 10/1038/srep01856.
- Yaxley, G.M., Green, D.H., 1998. Reactions between eclogite and peridotite: mantle
 refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und
 Petrographische Mitteilungen 78, 243-255
- Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary
 Sciences 14, 493-571.
- 915

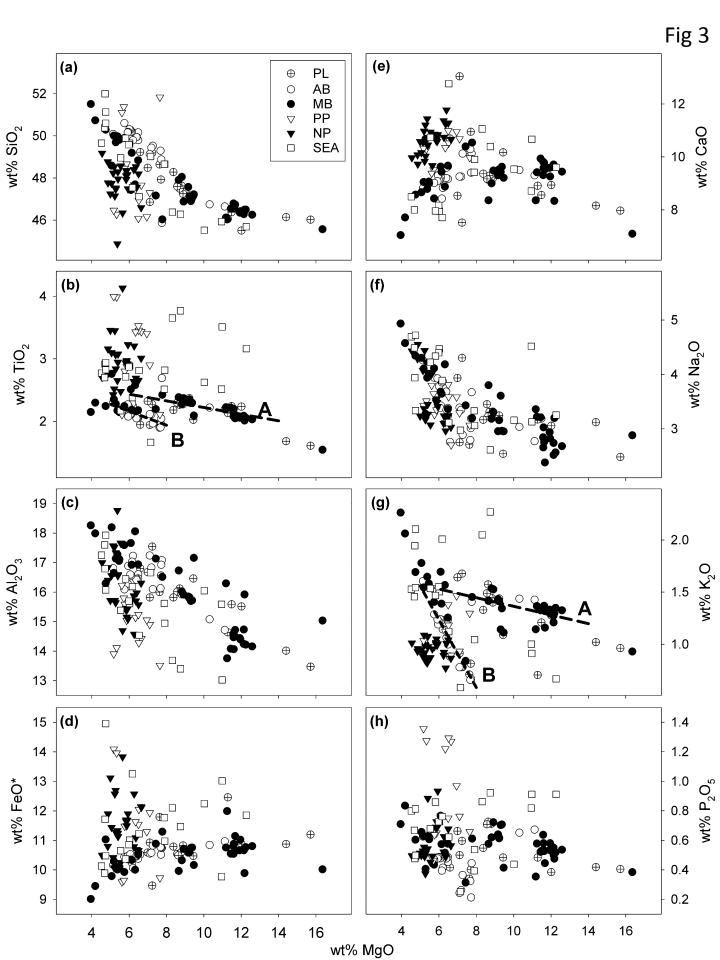
916 FIGURE CAPTIONS

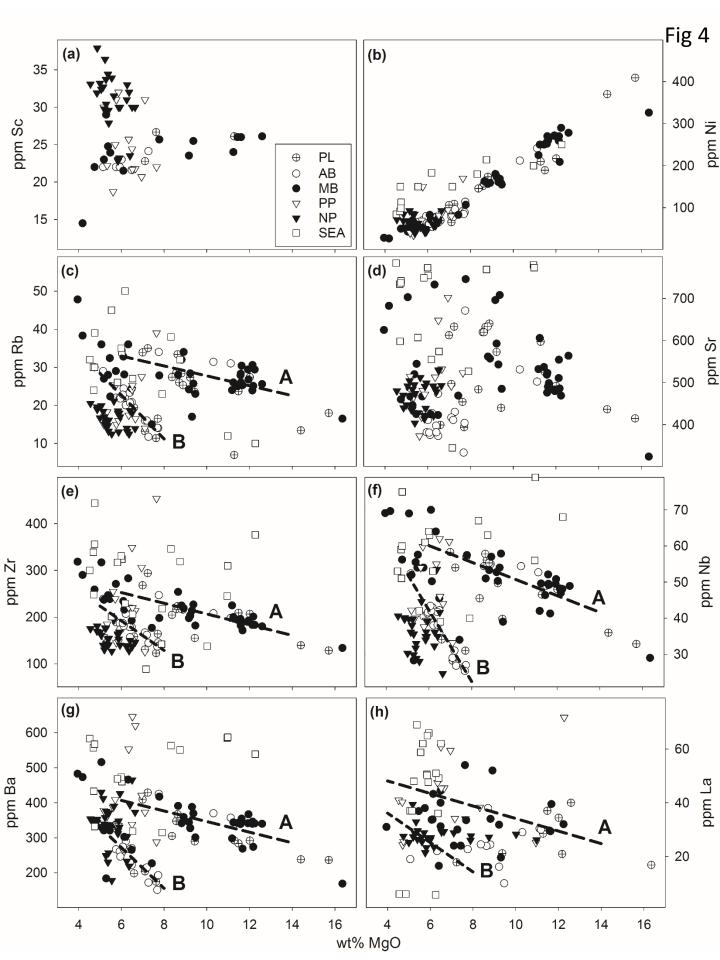
- 917
- 918Figure 1. Schematic structural map of the Strait of Sicily. PT: Pantelleria trough; MT, Malta
- 919 trough; GB, Graham Bank. Used with permission from Catalano et al. (2009).
- 920

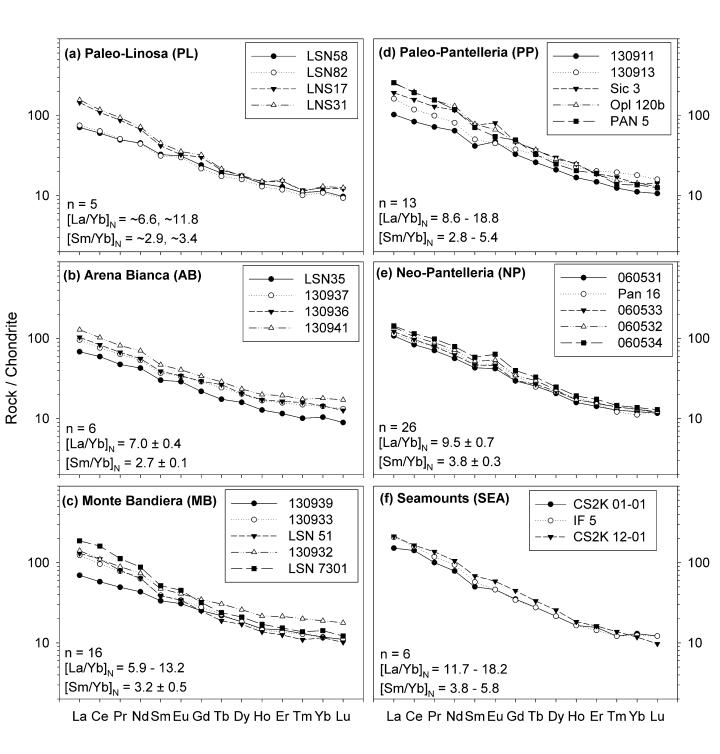
921 Figure 2. (a) Total-alkali versus silica (TAS) diagram for the classification of volcanic rocks (Le Maitre, 2002). (b) Basalt tetrahedron projected from clinopyroxene: Q' = Q + 0.4Ab + 0.25Hy; 922 923 Ol' = Ol + 0.75Hy; Ne' = Ne + 0.6Ab (Irvine and Baragar, 1971). Alkali basalts plot below the plane of critical silica undersaturation (solid line); transitional basalts plot below the plane of 924 925 critical silica saturation (dashed line). Units: PL, Paleo-Linosa; AB, Arena Bianca (Linosa); MB, Monte Bandiera (Linosa); PP, Paleo-Pantelleria; NP, Neo-Pantelleria; SEA, Semounts. 926 927 928 Figure 3. Major-element variation diagrams that use MgO as the differentiation index. Dashed 929 lines illustrate the two major trends (see text for details.) Units: PL, Paleo-Linosa; AB, Arena Bianca (Linosa); MB, Monte Bandiera (Linosa); PP, Paleo-Pantelleria; NP, Neo-Pantelleria; 930 931 SEA, Seamounts. Trends labeled A and B correspond to the Linosa trends of Di Bella et al. (2008). 932 933 Figure 4. Trace-element variation diagrams that use MgO as the differentiation index. Units: PL, 934

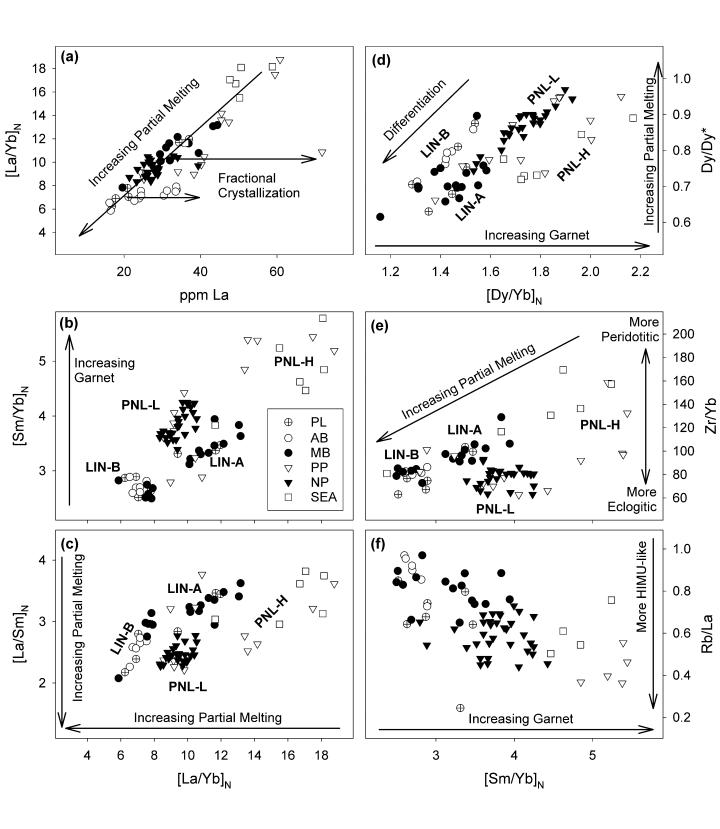

Paleo-Linosa; AB, Arena Bianca (Linosa); MB, Monte Bandiera (Linosa); PP, Paleo-Pantelleria;
NP, Neo-Pantelleria; SEA, Seamounts Trends labeled A and B correspond to the Linosa trends
of Di Bella et al. (2008).

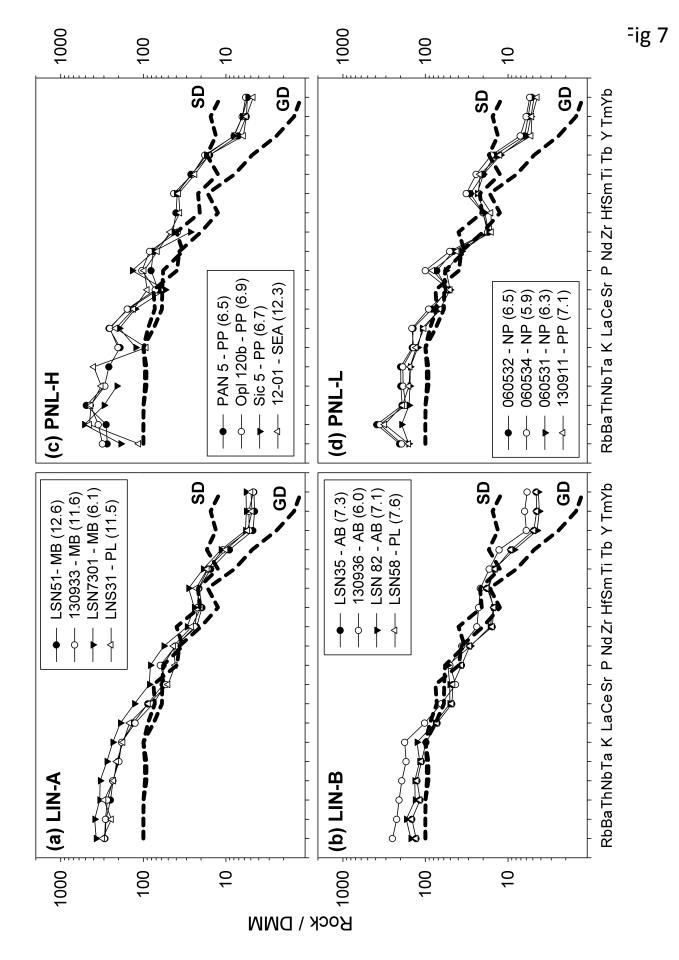

938

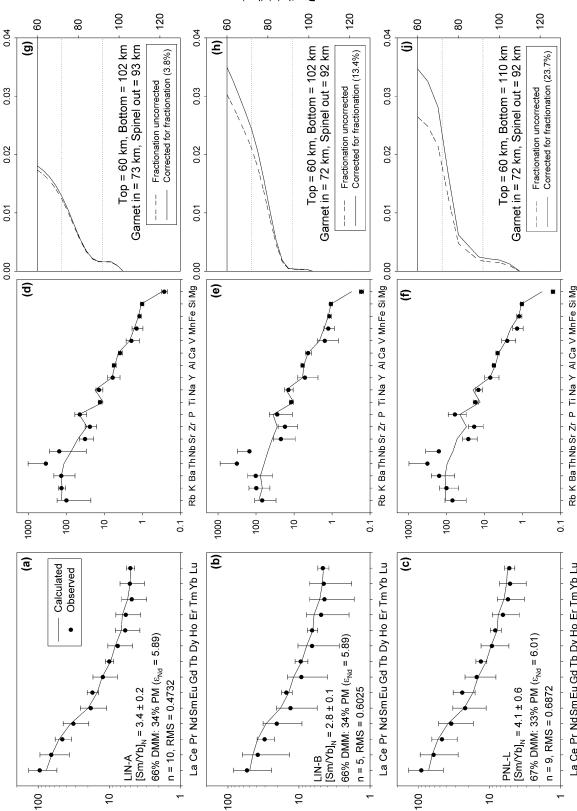

939	Figure 5. Representative rare-earth element diagrams (normalized to C1 Chondrite; McDonough
940	and Sun, 1995). In each graph, n = the total number of analyses in the dataset. REE ratios are
941	reported either as a range or averages with standard deviation.
942	
943	Figure 6. Trace element ratio diagrams, with REE ratios normalized to C1 Chondrite
944	(McDonough and Sun, 1995). Units: PL, Paleo-Linosa; AB, Arena Bianca (Linosa); MB, Monte
945	Bandiera (Linosa); PP, Paleo-Pantelleria; NP, Neo-Pantelleria; SEA, Seamounts. Identified
946	geochemical groups are labelled, as are the interpretations of the variation as discussed in the
947	text.
948	
949	Figure 7. Spiderdiagrams of representative samples (normalized to depleted MORB mantle
950	[DMM]; Salters and Stracke, 2004) for each of the geochemical groups identified in Figure 6.
951	Values in parenthesis are wt% MgO of each sample. The dotted lines superimposed on each
952	represent model non-modal fractional melts ($F = 0.01$) of DMM for garnet peridotite (GD) and
953	spinel peridotite (SD) (see text for details).
954	
955	Figure 8. Results of rare-earth element inverse modelling (a, b, c), major- and trace-element
956	forward model predictions (d, e, f), and calculated melting curves (g, h, j) for LIN-A, LIN-B, and
957	PNL-L.
958	
959	Figure 9. FractionatePT3 (Lee et al., 2009) model results for Linosa-A magmas. LAB:


960 lithosphere-asthenosphere boundary. Gt-In, Sp-Out: garnet-spinel transition zone (Klemme and


- 961 O'Neil, 2000). Dry fertile lherzolite solidus from Katz et al. (2003). Adiabats calculated
- 962 following McKenzie and Bickle (1988) and Putirka et al. (2007).
- 963
- 964 Figure 10. Compositions for selected pMELTS models plotted versus compositions of LIN-A
- 965 basalts and the average model primary basalt compositions (the symbol width corresonds to
- 966 approximately 1σ , as shown in Figure 10a). The MELTS model for fractional crystallization of
- 967 this primary basalt to produce the LIN-A magmas is also shown (see also Figure 11.)
- 968
- 969 Figure 11. Pearce (1968) element ratios plotted with the results of MELTS (rhyolilte-MELTS
- 970 v.1.0; Gualda et al., 2012) models of fractional crystallization at 0.2 and 0.5 GPa.







Normalized to Mantle Source Concentrations

Fig 8

La Ce Pr NdSmEu Gd Tb Dy Ho Er Tm Yb Lu

Depth (z) (km)

Melt Fraction (F)

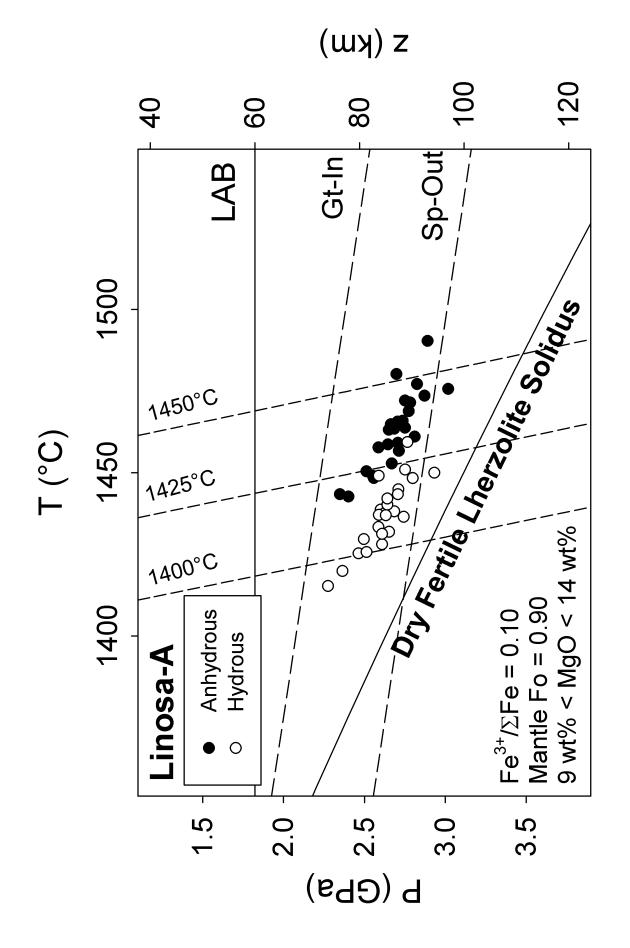
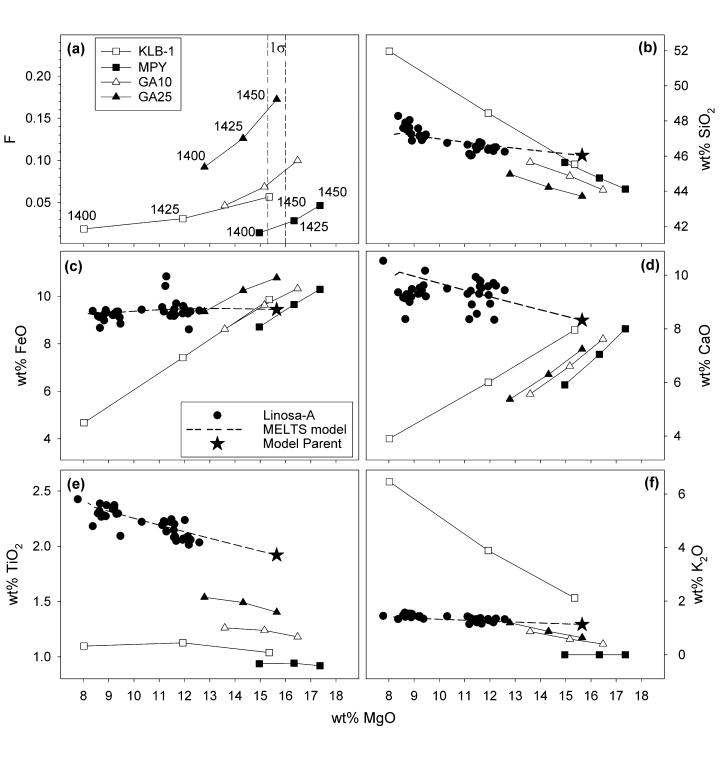
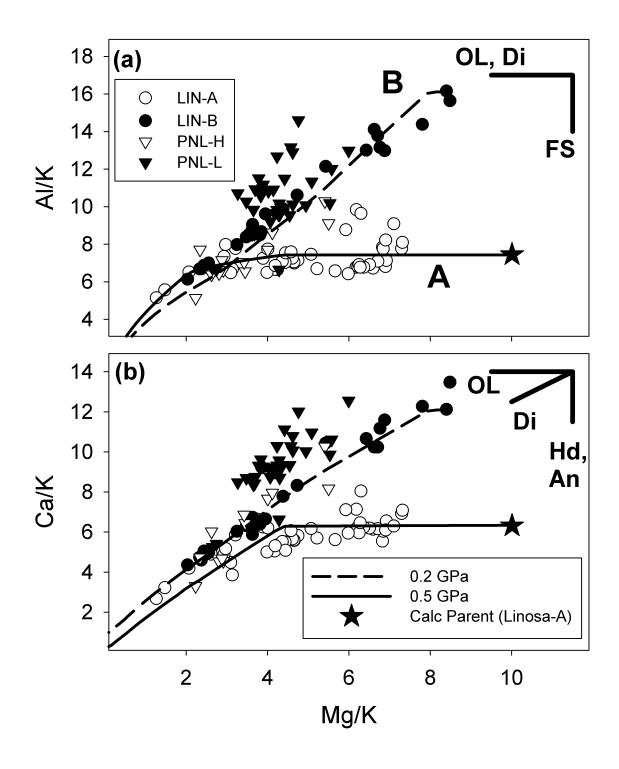




Fig 9

and:	Major and trac Pantelleria											_	Linosa									
mple ID:	130912	130911	060532	030512	060531	030508	130916	060533	060534	130914	130913	130915	130934	130933	130931	130936	130937	130935	130939	130938	130941	130932
ase:	PP	PP	NP	NP	NP	NP	PP	NP	NP	PP	PP	PP	MB	MB	MB	AB	AB	AB	MB	MB	AB	MB
t (N):	36.8353	36.8107	36.8311	36.8366	36.8269	36.8197	36.8261	36.8389	36.8361	36.8217	36.8214	36.8260	35.8745	35.8728	35.8643	36.8261	35.8629	35.8635	35.8624	35.8568	35.8580	35.8549
ng (E):	11.9691	11.9286	11.9367	11.9477	11.9556	11.9286	11.9364	11.9519	11.9678	11.9519	11.9287	11.9799	12.8709	12.8790	12.8815	11.9364	12.8545	12.8586	12.8620	12.8717	12.8676	12.8805
ass:	tB	aB	aB	tB	aB	AB	aB	aB	aB	aB	HAW	aB	aB	aB	aB	tB	HAW	HAW	tB	HAW	HAW	HAW
0 ₂ , wt%	50.36	47.14	47.72	47.83	48.23	46.52	48.69	47.93	46.31	48.59	50.90	46.22	46.37	45.71	46.18	49.62	49.43	49.56	48.87	49.22	49.63	50.8
O₂ ₂O₃	2.05 13.13	2.89 14.85	2.63 15.42	2.65 15.47	2.63 15.82	3.13 14.22	2.88	2.94 15.02	3.15 14.71	2.81 15.63	2.14 15.65	3.97 13.83	2.21 14.03	2.16 13.81	2.23 13.80	2.19 15.97	2.24 16.05	2.19 15.76	2.24 16.85	2.32 16.39	2.28 16.66	2.2 16.4
203 203 ^T	10.50	14.65	15.42	13.47	15.82	14.22	15.05 12.98	12.66	14.71	12.79	10.62	15.58	14.03	13.81	12.03	11.50	11.46	11.36	11.04	11.26	11.19	10.4
	0.17										0.18				0.18							
nO gO	7.43	0.19 7.08	0.17 6.44	0.16 6.27	0.16 6.23	0.18 6.12	0.19 5.87	0.18 5.82	0.18 5.79	0.18 5.78	5.66	0.22 5.15	0.18 11.40	0.18 11.39	11.28	0.17 5.93	0.17 5.84	0.17 5.63	0.14 5.20	0.18 5.10	0.18 5.10	0.1 4.7
90 10	9.69	10.65	11.17	11.08	11.33	10.48	10.69	10.56	10.57	10.89	9.42	10.27	9.90	9.41	9.45	8.98	8.95	8.83	10.50	8.91	8.74	4.7
10 a ₂ 0	2.98	3.28	3.21	2.92	3.09	3.16	3.35	3.52	3.33	3.27	3.61	3.41	3.20	2.97	3.43	3.73	3.87	3.86	3.22	4.04	4.22	4.3
0	1.26	0.93	1.03	0.76	0.89	0.90	1.00	1.04	0.98	0.98	1.50	1.03	1.32	1.30	1.37	1.20	1.22	1.26	0.98	1.52	1.59	1.7
0 ₅	0.64	0.76	0.67	0.48	0.52	0.61	0.65	0.72	0.91	0.64	0.46	1.35	0.52	0.57	0.58	0.48	0.47	0.46	0.40	0.62	0.62	0.6
DI	0.24	-0.36	0.00	0.00	0.00	0.00	-0.67	0.00	0.00	-0.60	0.20	-0.88	0.11	-0.14	0.44	-0.34	0.03	-0.49	0.87	0.03	-0.46	-0.3
tal	98.45	100.63	100.19	99.77	100.84	98.95	100.68	100.40	98.82	100.96	100.34	100.15	100.92	99.23	100.77	99.44	99.73	98.59	100.32	99.59	99.75	
9#	0.61	0.54	0.55	0.53	0.53	0.50	0.50	0.50	0.50	0.50	0.54	0.42	0.68	0.68	0.67	0.53	0.53	0.52	0.51	0.50	0.50	0.4
, ppm	22	31	30	32	31	33	32	30	30	31	25	30	26	26	24	23	22	22	29	23	22	2
	176	307	274	280	295	323	320	312	320	313	226	374	233	228	219	206	202	204	236	204	199	20
	270	90	130	101	120	91	100	100	70	100	100	30	450	490	420	180	160	160	290	120	100	10
)	37	43	36	64	39	58	38	29	35	38	32	38	50	53	51	35	34	33	32	31	28	2
	170	80	65	57	60	57	50	41	43	150	70	40	250	270	250	80	80	70	70	60	60	5
1	20	40	53	n.a.	78	n.a.	40	33	44	40	50	20	50	60	50	60	60	40	60	30	40	4
1	130	90	75	94	76	103	100	80	82	100	110	180	80	90	90	110	100	100	170	100	100	11
3	22	19	19	17	20	17	21	16	19	21	22	22	18	18	18	21	21	21	20	22	22	2
9	1.8	1.7	1.1	1.6	1.1	1.6	2	0.9	1.2	1.6	1.7	1.7	1.6	1.5	1.7	1.6	1.8	1.7	2.3	1.7	1.6	1
)	39	14	18	12	14	13	16	13	17	15	25	15	25	26	26	22	22	22	16	27	29	3
	523	492	530	485	492	421	472	491	499	481	418	515	537	523	606	411	427	422	446	467	488	46
	45.0 454	21.4 126	25.6 137	22.1 128	23.9 136	25.3 139	24.4 147	22.2 153	28.9 140	23.9 145	32 239	31.2 158	20.1 194	21.3 189	22.1 200	24.5 186	24.1 187	24.4 189	22 139	28.9 237	28.9 239	30. 25
)	106.0	33.2	41.6	53.5	32.3	36.1	39.4	36.2	39.1	37.6	239 59.8	42.2	46.4	49.2	49.6	40.6	41.3	40.5	28.3	237 52	52.4	56.
, 1	288	373	465	219	233	304	335	348	426	338	409	378	342	344	43.0 344	257	261	40.5	184	321	330	34
	71.80	24.3	32.9	213	25.5	28.80	25.6	28.9	420	25.2	38.3	34.1	29.6	29.4	32	24.5	201	23.9	16.5	31.2	30.4	33.
•	136.00	51.3	64.3	49.6	51.3	56.77	54.5	59.6	70.4	53.1	72.6	73.5	60.1	58.9	64.1	51.1	46.8	49.5	35.5	63	62.9	67.
•	15.80	6.67	8.24	6.12	6.56	6.98	6.97	7.37	9.15	6.74	9.24	9.98	7.17	7.29	7.69	6.24	5.91	6.17	4.59	7.77	7.55	8.2
i	59.20	29.5	32.9	27.4	25.8	31.04	30.4	28.4	36.2	29.6	37	44	28.9	28.9	30.7	25.6	24.4	25.8	19.8	31.8	32.1	33
n	11.90	6.17	7.7	6.35	6.37	7.37	6.76	6.92	8.64	6.63	7.45	9.4	5.71	5.79	6.33	5.78	5.49	5.82	4.96	7.07	6.94	7.0
	2.75	2.65	3.02	2.30	2.37	2.74	2.65	2.59	3.58	2.44	2.53	3.66	2	1.92	2.1	1.93	1.9	2.01	1.74	2.34	2.29	2.3
ł	10.80	6.54	6.87	6.39	5.89	7.32	6.59	5.95	7.93	6.35	7.5	9.66	5.65	5.56	5.98	5.83	5.76	6.04	5.02	6.75	6.75	6
	1.72	0.94	1.08	1.02	0.92	1.12	1.01	0.97	1.19	0.96	1.18	1.41	0.84	0.82	0.87	0.96	0.88	0.96	0.79	1.05	1.04	1
,	9.46	5.17	5.61	5.24	5.07	5.91	5.38	5.4	6.1	5.16	6.59	7.22	4.57	4.49	4.67	5.06	5.01	5.19	4.51	5.99	5.77	6.3
)	1.75	0.92	0.94	0.95	0.87	1.07	0.95	0.94	1.05	0.95	1.24	1.28	0.84	0.79	0.89	0.94	0.92	0.95	0.82	1.12	1.09	1.1
	4.96	2.38	2.5	2.54	2.28	2.82	2.52	2.5	2.79	2.54	3.24	3.21	2.29	2.18	2.4	2.63	2.52	2.61	2.32	3.14	3.11	3.4
n	0.73	0.308	0.342	0.332	0.316	0.38	0.323	0.346	0.361	0.317	0.482	0.438	0.34	0.317	0.339	0.394	0.369	0.377	0.323	0.461	0.432	0.49
)	4.49	1.80	2.12	1.94	1.97	2.19	1.9	2.11	2.22	2	2.9	2.52	1.99	1.87	2.14	2.33	2.3	2.35	1.91	2.8	2.89	3.0
	0.64	0.262	0.3	0.296	0.288	0.33	0.298	0.294	0.319	0.294	0.393	0.345	0.295	0.276	0.3	0.312	0.326	0.316	0.272	0.422	0.422	0.43
	10.80	3.2	4	4.2	3.8	4.29	3.7	4	4	3.5	5.5	3.9	4.6	4.4	4.5	4.4	4.3	4.5	3.2	5.2	5.1	5
I	5.96	2.11	2.75	2.97	2.1	3.17	2.18	2.51	2.59	2.28	3.43	2.64	2.73	2.72	3.29	2.55	2.28	2.36	1.73	3.03	2.89	3.2
1	10.10	2.59	2.62	2.10	2.16	2.20	2.58	2.38	2.37	2.72	4.71	3.01	3.99	3.74	4.06	2.88	2.74	2.85	1.74	4.27	4.12	4.1

Phases of mafic volcanism for Pantelleria (following Civetta et al., 1998; Avanzinelli et al., 2004); PP, paleo-Pantelleria (120 and 80 ka); NP, neo-Pantelleria (29 and 10 ka). Phases of mafic volcanism for Linosa (following Lanzafame et al., 1994): AB, Arena Bianca (700 ka); MB, Monte Bandiera (530 ka). Class (Le Maitre, 2002): aB, Alkali Basalt; tB, Transitional Basalt; HAW, Hawaiite. Fe₂O₃^T, total iron reported as Fe₂O₃; LOI, Loss on Ignition; Mg# = mol Mg/(Mg+Fe²⁺), assuming Fe²⁺ = 0.9Fe^T; n.a., not analyzed.

Table 2. Summary of the results of pMELTS models of isentropic partial melting (3.0 - 1.8 GPa) under anhydrous conditions and fO₂ = FMQ(T,P)

		Ν	Antle Sour	ce	Calculated Melt Parameters			Original Misfit (wt%)			Adjusted Primary Basalt / Misfit (wt%)								
Material	T _P (°C)	Mantle	%Lherz	%MORB	LAB T (°C)	wt% TiO ₂	Mg#	CMAS	+TNK	Mg#	T ^{ol-liq} (°C)	P ^{ol-liq} (GPa)	Fo _{mantle}	%F	wt% TiO ₂	CMAS	+TNK		
KLB1	1450	PM	100	0	1434	1.04	76.1	4.11	6.88	73.45	1455	2.59	0.90	3.3	1.94	3.84	6.59		
MPY	1450	DM	100	0	1429	0.92	77.6	6.16	10.75	75.70	1513	3.18	0.91	-4.5	1.82	4.70	9.26		
MPY+GA1	1450	DM	90	10	1420	1.18	76.6	6.07	10.16	74.77	1488	2.92	0.90	-1.1	1.87	5.21	9.30		
MPY+GA1	1450	DM	75	25	1411	1.40	74.9	5.90	9.73	73.85	1464	2.69	0.90	2.1	1.92	5.89	9.72		
MPY	1425	DM	100	0	1413	0.94	77.7	6.59	12.57	74.62	1484	2.88	0.90	-4.4	1.88	5.94	11.90		
MPY+GA1	1450	DM	62.5	37.5	1405	1.50	73.3	6.78	10.50	73.03	1445	2.51	0.90	4.7	1.96	6.13	9.88		
MPY+GA1	1450	DM	50	50	1398	1.61	71.3	7.99	11.70	71.51	1412	2.22	0.89	9.2	2.02	6.23	9.97		
MPY+GA1	1425	DM	90	10	1403	1.24	76.5	7.25	12.53	73.20	1449	2.54	0.90	0.3	1.95	6.79	12.06		
MPY+GA1	1425	DM	50	50	1381	1.72	70.1	10.39	14.88	69.82	1378	1.96	0.88	10.1	2.09	7.31	11.84		
MPY+GA1	1425	DM	75	25	1393	1.49	74.3	8.86	13.66	72.16	1425	2.33	0.89	3.6	2.00	7.34	12.18		
MPY+GA1	1425	DM	62.5	37.5	1387	1.60	72.3	9.69	14.32	71.23	1408	2.19	0.89	5.9	2.03	7.55	12.21		
MPY	1400	DM	100	0	1393	0.94	78.2	8.36	16.22	72.95	1443	2.49	0.90	-2.7	1.96	7.67	15.20		
MPY+GA1	1400	DM	90	10	1384	1.26	76.8	10.68	17.27	71.13	1404	2.16	0.89	2.7	2.04	8.45	15.08		
MPY+GA1	1400	DM	50	50	1362	1.80	69.2	13.39	19.16	67.75	1340	1.69	0.87	11.5	2.18	8.66	14.23		
MPY+GA1	1400	DM	75	25	1374	1.54	74.1	12.04	18.06	70.03	1382	1.99	0.88	5.7	2.09	8.87	14.83		
MPY+GA1	1400	DM	62.5	37.5	1368	1.67	71.7	12.74	18.74	69.06	1366	1.87	0.88	7.9	2.12	9.00	14.85		
MPY+GA1	1450	DM	25	75	1372	2.11	65.3	19.06	22.80	62.54	1270	1.27	0.85	29.0	2.34	9.73	13.20		
KLB1	1425	PM	100	0	1415	1.13	77.0	14.95	20.92	68.49	1358	1.81	0.88	12.8	2.14	9.90	15.76		
KG2	1450	PM	67	33	1404	1.44	70.2	11.06	14.12	74.24	1474	2.78	0.90	0.8	1.90	10.69	13.74		
KG1	1450	PM	50	50	1401	1.62	68.2	11.24	14.37	73.85	1464	2.69	0.90	2.1	1.92	11.18	14.31		
KG2	1400	PM	67	33	1369	1.68	68.4	13.58	18.43	70.54	1394	2.08	0.89	4.0	2.06	11.18	16.07		
KG2	1425	PM	67	33	1387	1.59	69.0	12.20	16.13	72.60	1435	2.42	0.89	2.2	1.98	11.30	15.25		
MPY+GA1	1425	DM	25	75	1356	2.32	64.1	22.45	27.00	60.04	1242	1.13	0.84	29.2	2.40	11.67	15.55		
KG1	1425	PM	50	50	1382	1.79	66.5	13.53	17.52	72.07	1423	2.32	0.89	3.9	2.00	12.24	16.25		
KG1	1400	PM	50	50	1363	1.91	65.4	15.17	20.09	70.03	1382	1.99	0.88	5.7	2.09	12.35	17.31		
MPY+GA1	1400	DM	25	75	1339	2.50	63.3	26.09	31.87	57.14	1214	1.00	0.82	29.4	2.47	14.66	19.00		
KLB1	1400	PM	100	0	1395	1.10	78.5	28.50	38.32	60.63	1248	1.16	0.84	24.5	2.38	18.20	27.58		

Material: See text for details; T_p: Mantle potential temperature; Mantle: PM, Primitive Mantle; DM, Depleted Mantle; PXN, Pyroxenite; %Lherz-%MORB: Relative abundances of each component

in peridotite:pyroxenite mixtures; LAB T: final (lithosphere-asthenosphere) melt temperature; Mg# = $100*Mg/(Mg+Fe^{2+})$; CMAS: sum of the absolute differences between the pMELTS result and the calculated primary melt of CaO + MgO + FeO + Fe₂O₃ + Al₂O₃ + SiO₂; +TNK: Same as CMAS, plus TiO₂+Na₂O+K₂O. Original misfit results compare the final pMELTS liquid with the one

calculated from Lee et al. (2009); Adjusted primary basalt paramters are for the misfit-minimized melt composition following Schorttle and Maclennan (2011) (see text for details.) T^{ol-liq} and P^{ol-liq} are the recalculated average temperatures and pressures of melt segregation calculated following Lee et al. (2009); Fo_{mantle} is the composition of olivine in the mantle in equilibrium with the recalculated primary basalt; %F is an estimate of the degree of partial melting following Putrika et al. (2007): %F = 100(T₀(P^{ol-liq}) - T^{ol-liq})C_P/ Δ H_{fus} and T₀(P^{ol-liq}) = T_Pexp(10000P α V/C_P), where C_P = 192.4 J mol⁻¹ K⁻¹, Δ H_{fus} = 128.3 kJ mol⁻¹, α = 3 x 10⁻⁵ K⁻¹. Pressure (P) is in GPa. Negative values of %F suggest that the calculated olivine-liquid temperature of the recalculated basalt exceed the experimental mantle conditions given the constants chosen.