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1 Abstract
The stopp R package deals with spatio-temporal point processes which might have occurred on the
Euclidean space or on some specific linear networks such as roads of a city. The package contains
functions to summarize, plot, and perform different kinds of analyses on point processes, mainly
following the methods proposed in some recent papers in the stream of scientific literature. The
main topics of such works, and of the package in turn, include modeling, statistical inference, and
simulation issues on spatio-temporal point processes on Euclidean space and linear networks, with
a focus on their local characteristics. We contribute to the existing literature by collecting many
of the most widespread methods for the analysis of spatio-temporal point processes into a unique
package, which is intended to welcome many further proposals and extensions.

2 Introduction
Modelling real problems through space-time point processes is crucial in many scientific and engi-
neering fields such as environmental sciences, meteorology, image analysis, seismology, astronomy,
epidemiology and criminology. The growing availability of data is a challenging opportunity for
the scientific research, aiming at more detailed information through the application of statistical
methodologies suitable for describing complex phenomena.

The aim of the present work is to contribute to the existing literature by gathering many of
the most widespread methods for the analysis of spatio-temporal point processes into a unique
package, which is intended to host many further extensions. The stopp (R Core Team, 2022)
package provides codes, related to methods and models, for analysing complex spatio-temporal
point processes, proposed in the papers Siino et al. (2018a,b); Adelfio et al. (2020); D’Angelo et al.
(2021, 2022b,c). The main topics include modelling, statistical inference, and simulation issues
on spatial and spatio-temporal point processes, point processes on linear networks, non-Euclidean
spaces. The context of application is very broad, as the proposed methods are of interest in
describing any phenomenon with a complex spatio-temporal dependence. Some examples, include
seismic events (D’Angelo et al., 2022e), GPS data (D’Angelo et al., 2022a), crimes (D’Angelo
et al., 2022d), and traffic accidents. Moreover, local methods and models can be applied to different
scientific fields and could be suitable for all those phenomena for which it makes sense to hypothesize
interdependence in space and time.

The main dependencies of the stopp package are spatstat Baddeley and Turner (2005), stpp
Gabriel and Diggle (2009), and stlnpp Moradi and Mateu (2020). In the purely spatial context,
spatstat is by far the most comprehensive open-source toolbox for analysing spatial point pat-
terns, focused mainly on two-dimensional point patterns. We exploit many functions from this
package when needing purely spatial tools while performing spatio-temporal analyses. Turning
to the spatio-temporal context, stpp represents the main reference of statistical tools for ana-
lyzing the global and local second-order properties of spatio-temporal point processes, including
estimators of the space-time inhomogeneous K-function and pair correlation function. The pack-
age is documented in the paper Gabriel et al. (2013). While stpp allows for the simulation of
Poisson, inhibitive and clustered patterns, the stppSim (Adepeju, 2022) package generates arti-
ficial spatio-temporal point patterns through the integration of microsimulation and agent-based
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models. Moreover, splancs (Rowlingson and Diggle, 2022) fosters many tools for the analysis of
both spatial and spatio-temporal point patterns (Rowlingson and Diggle, 1993; Bivand and Geb-
hardt, 2000). Moving to spatio-temporal point patterns on linear networks, the package stlnpp
provides tools to visualise and analyse such patterns using the first- and second-order summary
statistics developed in Moradi and Mateu (2020); Mateu et al. (2020). Other worth-to-mention
packages dealing with spatio-temporal point pattern analysis include etasFLP Chiodi and Adelfio
(2014), mainly devoted to the estimation of the components of an ETAS (Epidemic Type After-
shock Sequence) model for earthquake description with the non-parametric background seismicity
estimated through FLP (Forward Likelihood Predictive) Adelfio and Chiodi (2020), and SAPP,
the Institute of Statistical Mathematics package (Ogata et al., 2006; Ogata, 2006), which provides
functions for the statistical analysis of series of events and seismicity. Finally, we highlight some
R packages that implement routines to simulate and fit log-Gaussian Cox processes (LGCPs). In
particular, the package stpp implements code to simulate spatio-temporal LGCP with a separable
and non-separable covariance structure for the Gaussian Random Field (GRF). Instead, the pack-
age lgcp Taylor et al. (2015) implements code to fit LGCP models using methods of the moments
and a Bayesian inference for spatial, spatio-temporal, multivariate and aggregated point processes.
Furthermore, the minimum contrast method is used to estimate parameters assuming a separa-
ble structure of the covariance of the GRF. Both packages do not handle for non-separable (and
anisotropic) correlation structures of the covariance structure of the GRF.

The outline of the paper is as follows. First, we set the notation of spatio-temporal point pro-
cesses, both occurring on Euclidean space and on linear networks. Then, we introduce the main
functions for handling point processes objects, data, and simulations from different point process
models. We then move to the Local Indicators of Spatio-Temporal Association functions, recalling
their definition on the spatio-temporal Euclidean space and introducing the new functions to com-
pute the LISTA functions on linear networks. Then, we illustrate how to perform a local test for
assessing the local differences in two point patterns occurring on the same metric space. Hence,
the functions available in the package for fitting models are illustrated, including separable Poisson
process models on both the Euclidean space and networks, global and local non-separable inho-
mogeneous Poisson processes and LGCPs. Then, methods to perform global and local diagnostics
on both models for point patterns on planar and linear network spaces are presented. The paper
ends with some conclusions.

3 Spatio-temporal point processes and their second-order prop-
erties

We consider a spatio-temporal point process with no multiple points as a random countable subset
X of R2 ×R, where a point (u, t) ∈ X corresponds to an event at u ∈ R2 occurring at time t ∈ R.
A typical realisation of a spatio-temporal point process X on R2 ×R is a finite set {(ui, ti)}ni=1 of
distinct points within a bounded spatio-temporal region W × T ⊂ R2 ×R, with area |W | > 0 and
length |T | > 0, where n ≥ 0 is not fixed in advance. In this context, N(A×B) denotes the number
of points of a set (A×B)∩X, where A ⊆W and B ⊆ T . As usual (Daley and Vere-Jones, 2007),
when N(W × T ) < ∞ with probability 1, which holds e.g. if X is defined on a bounded set, we
call X a finite spatio-temporal point process.

For a given event (u, t), the events that are close to (u, t) in both space and time, for each
spatial distance r and time lag h, are given by the corresponding spatio-temporal cylindrical
neighbourhood of the event (u, t), which can be expressed by the Cartesian product as

b((u, t), r, h) = {(v, s) : ||u− v|| ≤ r, |t− s| ≤ h}, (u, t), (v, s) ∈W × T,

where || · || denotes the Euclidean distance in R2. Note that b((u, t), r, h) is a cylinder with centre
(u, t), radius r, and height 2h.

Product densities λ(k), k ∈ N and k ≥ 1, arguably the main tools in the statistical analysis of
point processes, may be defined through the so-called Campbell Theorem (see Daley and Vere-
Jones (2007)), that constitutes an essential result in spatio-temporal point process theory, stating
that, given a spatio-temporal point process X, for any non-negative function f on (R2 × R)k

2



E

[ 6=∑
ζ1,...,ζk∈X

f(ζ1, . . . , ζk)

]
=

∫
R2×R

· · ·
∫
R2×R

f(ζ1, . . . , ζk)λ(k)(ζ1, . . . , ζk)

k∏
i=1

dζi,

where 6= indicates that the sum is over distinct values. In particular, for k = 1 and k = 2, these
functions are respectively called the intensity function λ and the (second-order) product density
λ(2). Broadly speaking, the intensity function describes the rate at which the events occur in
the given spatio-temporal region, while the second-order product densities are used for describing
spatio-temporal variability and correlations between pair of points of a pattern. They represent the
point process analogues of the mean function and the covariance function of a real-valued process,
respectively. Then, the first-order intensity function is defined as

λ(u, t) = lim
|du×dt|→0

E[N(du× dt)]
|du× dt|

,

where du × dt defines a small region around the point (u, t) and |du × dt| is its volume. The
second-order intensity function is given by

λ(2)((u, t), (v, s)) = lim
|du×dt|,|dv×ds|→0

E[N(du× dt)N(dv× ds)]
|du× dt||dv× ds|

.

Finally, the pair correlation function g((u, t), (v, s)) = λ(2)((u,t),(v,s))
λ(u,t)λ(v,s) can be interpreted formally

as the standardised probability density that an event occurs in each of two small volumes, du× dt
and dv× ds, in the sense that for a Poisson process, g((u, t), (v, s)) = 1.

In this package, the focus is on second-order characteristics of spatio-temporal point patterns,
with an emphasis on the K-function (Ripley, 1976). This is a measure of the distribution of the
inter-point distances and captures the spatio-temporal dependence of a point process. A spatio-
temporal point process is second-order intensity reweighted stationary and isotropic if its intensity
function is bounded away from zero and its pair correlation function depends only on the spatio-
temporal difference vector (r, h), where r = ||u − v|| and h = |t − s| (Gabriel and Diggle, 2009).
For a second-order intensity reweighted stationary, isotropic spatio-temporal point process, the
space-time inhomogeneous K-function takes the form

K(r, h) = 2π

∫ r

−r

∫ h

0

g(r′, h′)r′dr′dh′ (1)

where g(r, h) = λ(2)(r, h)/(λ(u, t)λ(v, s)), r = ||u−v||, h = |t− s| (Gabriel and Diggle, 2009). The
simplest expression of an estimator of the spatio-temporal K-function is given as

K̂(r, h) =
1

|W ||T |

n∑
i=1

∑
j>i

I(||ui − uj || ≤ r, |ti − tj | ≤ h). (2)

For a homogeneous Poisson process E[K̂(r, h)] = πr2h, regardless of the intensity λ. The K-
function can be used as a measure of spatio-temporal clustering and interaction (Gabriel and
Diggle, 2009; Møller and Ghorbani, 2012). Usually, K̂(r, h) is compared with the theoretical
E[K̂(r, h)] = πr2h. Values K̂(r, h) > πr2h suggest clustering, while K̂(r, h) < πr2h points to a
regular pattern.

Point processes on linear networks are recently considered to analyse events occurring on partic-
ular network structures such as the traffic accidents on a road network. Spatial patterns of points
along a network of lines are indeed found in many applications. The network might reflect a map
of railways, rivers, electrical wires, nerve fibres, airline routes, irrigation canals, geological faults
or soil cracks (Baddeley et al., 2020). Observations of interest could be the locations of traffic
accidents, bicycle incidents, vehicle thefts or street crimes, and many others. A linear network
L = ∪ni=1li ⊂ R2 is commonly taken as a finite union of line segments li ⊂ R2 of positive length.
A line segment is defined as li = [ui, vi] = {kui + (1− k)vi : 0 ≤ k ≤ 1}, where ui, vi ∈ R2 are the
endpoints of li. For any i 6= j, the intersection of li and lj is either empty or an endpoint of both
segments.

3



A spatio-temporal linear network point process is a point process on the product space L × T ,
where L is a linear network and T is a subset (interval) of R. We hereafter focus on a spatio-
temporal point process X on a linear network L with no overlapping points (u, t), where u ∈ L
is the location of an event and t ∈ T (T ⊆ R+) is the corresponding time occurrence of u. Note
that the temporal state-space T might be either a continuous or a discrete set. A realisation of
X with n points is represented by x = (ui, ti), i = 1, . . . , n where (ui, ti) ∈ L × T . A spatio-
temporal disc with centre (u, t) ∈ L × T , network radius r > 0 and temporal radius h > 0 is
defined as b((u, t), r, h) = {(v, s) : dL(u,v) ≤ r, |t − s| ≤ h}, (u, t), (v, s) ∈ L × T where | · |
is a numerical distance, and dL(·, ·) stands for the appropriate distance in the network, typi-
cally taken as the shortest-path distance between any two points. The cardinality of any subset
A ⊆ L × T,N(X ∩ A) ∈ 0, 1, . . ., is the number of points of X restricted to A, whose expected
value is denoted by ν(A) = E[N(X ∩ A)], A ⊆ L × T, where ν, the intensity measure of X, is a
locally finite product measure on L×T (Baddeley et al., 2006). We now recall Campbell’s theorem
for point processes on linear networks (Cronie et al., 2020). Assuming that the product densi-
ties/intensity functions λ(k) exist, for any non-negative measurable function f(·) on the product
space Lk, we have

E

[ 6=∑
ζ1,...,ζk∈X

f(ζ1, . . . , ζk)

]
=

∫
Lk

f(ζ1, . . . , ζk)λ(k)(ζ1, . . . , ζk)

k∏
i=1

dζi. (3)

Assume that X has an intensity function λ(·, ·), hence Equation (3) reduces to E[N(X ∩ A)] =∫
A
ν(d(u, t)) =

∫
A
λ(u, t)d2(u, t), A ⊆ L× T, where d2(u, t) corresponds to integration over L× T .

The second-order Campbell’s theorem is obtained from (3) with k = 2

E

[ 6=∑
(u,t),(v,s)∈X

f
(
(u, t), (v, s)

)]
=

∫
L×T

∫
L×T

f
(
(u, t), (v, s)

)
λ(2)

(
(u, t), (v, s)

)
d2(u, t)d2(v, s).

(4)
Assuming that X has a second-order product density function λ(2)(·, ·), we then obtain

E[N(X ∩A)N(X ∩B)] =

∫
A

∫
B

λ(2)((u, t), (v, s))d2(u, t)d2(v, s), A,B ⊆ L× T.

Finally, an important result concerns the conversion of the integration over L × T to that over
R× R (Rakshit et al., 2017). For any measurable function f : L× T → R∫

L×T
f(u, t)d2(u, t) =

∫ ∞
0

∫ ∞
0

∑
(u,t)∈L×T :
dL(u,v)=r,
|t−s|=h

f(u, t)drdh. (5)

Letting f(u, t) = η(dL(u,v), |t− s|) then∫
L×T

η(dL(u,v), |t− s|)d2(u, t) =

∫ ∞
0

∫ ∞
0

η(r, h)M((u, t), r, h)drdh

where M((u, t), r, h) is the number of points lying exactly at the shortest-path distance r ≥ 0 and
the time distance h ≥ 0 away from (u, t).

4 Main functions for handling point processes objects, data,
and simulations

The stp function creates a stp object as a dataframe with three columns: x, y, and t. If the linear
network L, of class linnet, is also provided, a stlp object is created instead. The methods for
this class of objects: (1) print the main information on the spatio-temporal point pattern stored
in the stp object: the number of points, the enclosing spatial window, the temporal time period;
(2) print the summary statistics of the spatial and temporal coordinates of the spatio-temporal
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point pattern stored in the stp object; (3) plot the point pattern stored in the stp object given in
input, in a three-panel plot representing the 3Dplot of the coordinates, and the marginal spatial
and temporal coordinates.

> set.seed(12345)
> rpp1 <- stpp::rpp(lambda = 200, replace = FALSE)
> is.stp(rpp1)
[1] FALSE

> stp1 <- stp(cbind(rpp1$xyt[, 1], rpp1$xyt[, 2], rpp1$xyt[, 3]))
> is.stp(stp1)
[1] TRUE

> stp1
Spatio-temporal point pattern
208 points
Enclosing window: rectangle = [0.0011366, 0.9933775] x [0.0155277, 0.9960438] units
Time period: [0.004, 0.997]

Some functions are implemented to convert the stp and stlp classes to those of the stpp and
stlnpp packages, and vice-versa.

Moreover, the package is furnished with the greececatalog dataset in the stp format con-
taining the catalog of Greek earthquakes of magnitude at least 4.0 from year 2005 to year 2014,
analysed by mean of local log-Gaussian Cox processes in D’Angelo et al. (2022e) and D’Angelo
et al. (2022c). Data come from the Hellenic Unified Seismic Network (H.U.S.N.). The same data
have been analysed in Siino et al. (2017) by hybrids of Gibbs models, and more recently by Gabriel
et al. (2022).

> plot(greececatalog, tcum = TRUE)
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Figure 1: Plots of Greek data.

A dataset of crimes occurred in Valencia, Spain, in 2019 is available, together with the lin-
ear network of class linnet of the Valencian roads, named valenciacrimes and valencianet,
respectively.

Finally, the linear network of class linnet of the roads of Chicago (Illinois, USA) close to the
University of Chicago, is also available. It represents the linear network of the Chicago dataset
published and analysed in Ang et al. (2012). The network adjacency matrix is stored as a sparse
matrix.

Moving to simulations, the rstpp function creates a stp object, simulating a spatio-temporal
Poisson point pattern, following either a homogeneous or inhomogeneous intensity.
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> h1 <- rstpp(lambda = 500, nsim = 1, seed = 2, verbose = TRUE)
> plot(h1, tcum = TRUE)
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Figure 2: Simulated homogeneous point pattern.

> inh <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)}, par = c(2, 6),
nsim = 1, seed = 2, verbose = TRUE)

> plot(inh, tcum = TRUE)
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Figure 3: Simulated inhomogeneous point pattern.

The rstlpp function creates a stlp object instead, simulating a spatio-temporal Poisson point
pattern on a linear network. Furthermore, the rETASp function creates a stp object, simulating
a spatio-temporal ETAS (Epidemic Type Aftershock Sequence) process. It follows the generating
scheme for simulating a pattern from an ETAS process (Ogata and Katsura, 1988) with conditional
intensity function (CIF) as in Adelfio and Chiodi (2020). The rETAStlp function creates a stlp
object, simulating a spatio-temporal ETAS process on a linear network. The simulation scheme
previously introduced is adapted for the space location of events to be constrained on a linear
network, being firstly introduced and employed for simulation studies in D’Angelo et al. (2021).

5 Local Indicators of Spatio-Temporal Association functions
Local Indicators of Spatio-Temporal Association (LISTA) are a set of functions that are individually
associated with each one of the points of the point pattern, and can provide information about
the local behaviour of the pattern. This operational definition of local indicators was introduced
by Anselin (1995) for the spatial case, and extended by Siino et al. (2018b) to the spatio-temporal
context.
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If λ(2)i(·, ·) denotes the local version of the spatio-temporal product density for the event (ui, ti),
then, for fixed r and h, it holds that

λ̂
(2)
ε,δ (r, h) =

1

n− 1

n∑
i=1

λ̂
(2)i
ε,δ (r, h), (6)

where λ̂(2)iε,δ (r, h) = n−1
4πr|W×T |

∑
j 6=i κε,δ(||ui−vj ||−r, |ti−sj |−h), with r > ε > 0 and h > δ > 0, and

κ a kernel function with spatial and temporal bandwidths ε and δ, respectively. Any second-order
spatio-temporal summary statistic that satisfies the operational definition in (6), which means that
the sum of spatio-temporal local indicator functions is proportional to the global statistic, can be
called a LISTA statistic (Siino et al., 2018b).
In Adelfio et al. (2020), local versions of both the homogeneous and inhomogeneous spatio-temporal
K-functions on the Euclidean space are introduced. Defining an estimator of the overall intensity
by λ̂ = n/(|W ||T |), they propose the local version of (2) for the i-th event (ui, ti)

K̂i(r, h) =
1

λ̂2|W ||T |

∑
(ui,ti) 6=(v,s)

I(||ui − v|| ≤ r, |ti − s| ≤ h) (7)

and the inhomogeneous version

K̂i
I(r, h) =

1

|W ||T |
∑

(ui,ti) 6=(v,s)

I(||ui − v|| ≤ r, |ti − s| ≤ h)

λ̂(ui, ti)λ̂(v, s)
, (8)

with (v, s) being the spatial and temporal coordinates of any other point. The authors extended the
spatial weighting approach of Veen and Schoenberg (2006) to spatio-temporal local second-order
statistics, proving that the inhomogeneous second-order statistics behave as the corresponding
homogeneous ones, basically proving that the expectation of both (7) and (8) is equal to πr2h.

5.1 LISTA on linear networks
The functions localSTLKinhom and localSTLginhom implement the inhomogeneous LISTA func-
tions proposed in D’Angelo et al. (2022b). The local spatio-temporal inhomogeneous K-function
for the i-th event (ui, ti) on a linear network is

K̂i
L,I(r, h) =

1

|L||T |
∑

(ui,ti) 6=(v,s)

I{dL(ui,v) < r, |ti − s| < h}
λ̂(ui, ti)λ̂(v, s)M((ui, ti), dL(ui,v), |ti − s|)

,

and the corresponding local pair correlation function (pcf)

ĝiL,I(r, h) =
1

|L||T |
∑

(ui,ti)6=(v,s)

κ(dL(ui,v)− r)κ(|ti − s| − h)

λ̂(ui, ti)λ̂(v, s)M((ui, ti), dL(ui,v), |ti − s|)
,

with

D(X) =
n− 1

|L||T |

n∑
i=1

∑
i 6=j

1

λ̂(ui, ti)λ̂(uj , tj)

normalization factor. This leads to the unbiased estimators 1
D(X)K̂

i
L,I(r, h) and 1

D(X) ĝ
i
L,I(r, h).

The homogeneous versions (D’Angelo et al., 2021) can be obtained by weighting the second-
order summary statistics (either K or pcf) by a constant intensity λ̂ = n/(|L||T |), giving

K̂i
L(r, h) =

1

λ̂2|L||T |

∑
(ui,ti)6=(v,s)

I{dL(ui,v) < r, |ti − s| < h}
M((ui, ti), dL(ui,v), |ti − s|)

,

and
ĝiL(r, h) =

1

λ̂2|L||T |

∑
(ui,ti)6=(v,s)

κ(dL(ui,v)− r)κ(|ti − s| − h)

M((ui, ti), dL(ui,v), |ti − s|)
.
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These can be computed easily with the functions localSTLKinhom and localSTLKginhom, by
imputing a lambda vector of constant intensity values, the same for each point.

The proposed functions are the local counterparts of STLKinhom and STLKginhom by Moradi
and Mateu (2020), available in the stlnpp package (Moradi et al., 2020).

> set.seed(10)
> X <- stlnpp::rpoistlpp(.2, a = 0, b = 5, L = stlnpp::easynet)
> lambda <- density(X, at = "points")
> x <- as.stlp(X)
> k <- localSTLKinhom(x, lambda = lambda, normalize = TRUE)

## select an individual point
> j = 1
> k[[j]]

## plot the lista function and compare it with its theoretical value
> inhom <- list(x = k[[j]]$r, y = k[[j]]$t, z = k[[j]]$Kinhom)
> theo <- list(x = k[[j]]$r, y = k[[j]]$t, z = k[[j]]$Ktheo)
> diff <- list(x = k[[j]]$r, y = k[[j]]$t, z = k[[j]]$Kinhom - k[[j]]$Ktheo)
> oldpar <- par(no.readonly = TRUE)
> par(mfrow = c(1, 3))
> fields::image.plot(inhom, main= "Kinhom", col = hcl.colors(12, "YlOrRd", rev = FALSE),

xlab = "Spatial distance", ylab = "Temporal distance")
> fields::image.plot(theo, main = "Ktheo", col = hcl.colors(12, "YlOrRd", rev = FALSE),

xlab = "Spatial distance", ylab = "Temporal distance")
> fields::image.plot(diff, main = "Kinhom - Ktheo", col = hcl.colors(12, "YlOrRd", rev = FALSE),

xlab = "Spatial distance", ylab = "Temporal distance")
> par(oldpar)
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Figure 4: Observed vs theoretical K-function.

5.2 Local test for assessing the second-order differences between of two
point patterns

The function localtest performs the permutation test of the local structure of spatio-temporal
point pattern data, proposed in Siino et al. (2018b). The network counterpart is also implemented,
following D’Angelo et al. (2021). This test detects local differences in the second-order structure of
two observed point patterns x and z occurring on the same space-time region. This procedure was
firstly introduced in Moraga and Montes (2011) for the purely spatial case, and then extended in
the spatio-temporal context by Siino et al. (2018b). Finally, test has been made suitable also for
spatio-temporal point patterns with spatial domain coinciding with a linear network by D’Angelo
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et al. (2021). In general, for each point (u, t) in the spatio-temporal observed point pattern x, we
test{
H0 : no difference in the second-order local structure of (u, t) w.r.t {{x \ (u, t)} ∪ z}
H1 : significant difference in the second-order local structure of(u, t) w.r.t {{x \ (u, t)} ∪ z}

The sketch of the test is as follows:

1. Set k as the number of permutations

2. For each point (ui, ti) ∈ x, i = 1, . . . , n:

• Estimate the LISTA function L̂(i)(r, h)

• Compute the local deviation test

T i =

∫ t0

0

∫ r0

0

(
L̂(i)(r, h)− L̂−(i)H0

(r, h)
)2

drdh,

where L̂−(i)H0
(r, h) is the LISTA function for the ith point, averaged over the j = 1, . . . , k

permutations

• Compute a p-value as pi =
∑k
j=1 1(T i,jH0

≥ T i)/k

The test ends providing a vector p of p- values, one for each point in x.
If the test is performed for spatio-temporal point patterns as in Siino et al. (2018b), that is, on

an object of class stp, the LISTA functions L̂(i) employed are the local K-functions of Adelfio et al.
(2020), computed by the function KLISTAhat of the stpp package (Gabriel et al., 2013) . If the
function is applied to a stlp object, that is, on two spatio-temporal point patterns observed on the
same linear network L, the local K-functions used are the ones proposed in D’Angelo et al. (2021),
documented in localSTLKinhom. Details on the performance of the test are found in Siino et al.
(2018b) and D’Angelo et al. (2021) for Euclidean and network spaces, respectively. Alternative
LISTA functions that can be employed to run the test are LISTAhat of stpp and localSTLginhom
of stopp, that is, the pcfs on Euclidean space and linear networks respectively.

The methods for this class of objects: (1) print the main information on the result of the
local permutation test performed with localtest on either a stp or stlp object: whether the
local test was run on point patterns lying on a linear network or not; the number of points in the
background X and alternative Z patterns; the number of points in X which exhibit local differences
in the second-order structure with respect to Z, according to the performed test; (2) plot the result
of the local permutation test performed with localtest: it highlights the points of the background
pattern X, which exhibit local differences in the second-order structure with respect to Z, according
to the previously performed test. The remaining points of X are also represented; it also shows
the underlying linear network, if the local test has been applied to point patterns occurring on the
same linear network, that is, if localtest has been applied to a stlp object. In the following, we
provide an example of two point processes, both occurring on the unit cube.

## background pattern
> set.seed(12345)
> X <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)}, par = c(.05, 4),

nsim = 1, seed = 2, verbose = TRUE)

## alternative pattern
> set.seed(12345)
> Z <- rstpp(lambda = 25, nsim = 1, seed = 2, verbose = TRUE)

## run the local test
> test <- localtest(X, Z, method = "K", k = 9, verbose = FALSE)

> test
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Test for local differences between two
spatio-temporal point patterns
--------------------------------------
Background pattern X: 17
Alternative pattern Z: 20

1 significant points at alpha = 0.05
> plot(test)
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Figure 5: Output of the local test.

6 Model fitting
The description of the observed point pattern intensity is a crucial issue dealing with spatio-
temporal point pattern data, and specifying a statistical model is a very effective way compared to
analyzing data by calculating summary statistics. Formulating and adapting a statistical model to
the data allows taking into account effects that otherwise could introduce distortion in the analysis
(Baddeley et al., 2015). In this section, we outline the main functions to fit different specifications
of inhomogeneous spatio-temporal Poisson process models.

6.0.1 Spatio-temporal Poisson point processes with separable intensity

When dealing with intensity estimation for spatio-temporal point processes, it is quite common to
assume that the intensity function λ(u, t) is separable (Diggle, 2013; Gabriel and Diggle, 2009).
Under this assumption, the intensity function is given by the product

λ(u, t) = λ(u)λ(t) (9)

where λ(u) and λ(t) are non-negative functions on W and T , respectively (Gabriel and Diggle,
2009). Under this assumption, any non-separable effects are interpreted as second-order, rather
than first-order. Suitable estimates of λ(u) and λ(t) in (9) depend on the characteristics of each
application. The functions here implemented use a combination of a parametric spatial point
pattern model, potentially depending on the spatial coordinates and/or spatial covariates, and a
parametric log-linear model for the temporal component. Also, non-parametric kernel estimate
form(s) are legit but still not implemented. The spatio-temporal intensity is therefore obtained by
multiplying the purely spatial and purely temporal intensities, previously fitted separately. The
resulting intensity is normalised, to make the estimator unbiased, making the expected number of
points

E
[ ∫

W×T
λ̂(u, t)d2(u, t)

]
=

∫
W×T

λ(u, t)d2(u, t) = n,
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and the final intensity function is obtained as

λ̂(u, t) =
λ̂(u)λ̂(t)∫

W×T λ̂(u, t)d2(u, t)
.

The function sepstppm fits such a separable spatio-temporal Poisson process model. The
function plot.sepstppm shows the fitted intensity, displayed both in space and in space and time.

> df1 <- valenciacrimes[valenciacrimes$x < 210000 & valenciacrimes$x > 206000
& valenciacrimes$y < 4377000 & valenciacrimes$y > 4373000, ]

> mod1 <- sepstppm(df1, spaceformula = ~x * y, timeformula = ~ crime_hour + week_day)

For linear network point patterns, non-parametric estimators of the intensity function λ(·, ·)
have been proposed (Mateu et al., 2020), suggesting any variation of the distribution of the process
over its state-space L × T . A kernel-based intensity estimator for spatio-temporal linear network
point processes, based on the first-order separability assumption, considered in Moradi and Mateu
(2020), is obtainable with the package stnlpp. The functions sepstlppm and plot.sepstlppm
implement the network counterparts of the spatio-temporal Poisson point process with separable
intensity and fully parametric specification.

> mod1 <- sepstlppm(valenciacrimes[1:2500, ], spaceformula = ~x,
timeformula = ~ crime_hour + week_day, L = valencianet)

6.0.2 Global inhomogeneous spatio-temporal Poisson processes trough quadrature
scheme

For a non-separable spatio-temporal specification, we assume that the template model is a Poisson
process, with a parametric intensity or rate function

λ(u, t; θ), u ∈W, t ∈ T, θ ∈ Θ. (10)

The log-likelihood of the template model is

logL(θ) =
∑
i

λ(ui, ti; θ)−
∫
W

∫
T

λ(u, t; θ)dtdu

up to an additive constant, where the sum is over all points ui in the spatio-temporal point process
X. We might consider intensity models of log-linear form

λ(u, t; θ) = exp(θZ(u, t) +B(u, t)), u ∈W, t ∈ T (11)

where Z(u, t) is a vector-valued covariate function, and B(u, t) is a scalar offset. In point process
theory, the variables Z(u, t) are referred to as spatio-temporal covariates. Their observable values
are assumed to be knowable, at least in principle, at each location in the spatio-temporal window.
For inferential purposes, their values must be known at each point of the data point pattern and
at least at some other locations. This is the reason why we first implmented the dependence of
the intensity function λ(u, t; θ) on the space and time coordinates first.
The stppm function fits a Poisson process model to an observed spatio-temporal point pattern
stored in a stp object, assuming the template model (10).

Estimation is performed by fitting a glm using a spatio-temporal version of the quadrature
scheme by Berman and Turner (1992). We use a finite quadrature approximation to the log-
likelihood. Renaming the data points as x1, . . . ,xn with (ui, ti) = xi for i = 1, . . . , n, then generate
m additional ’dummy points’ (un+1, tn+1) . . . , (um+n, tm+n) to form a set of n + m quadrature
points (where m > n). Then we determine quadrature weights a1, . . . , am so that a Riemann sum
can approximate integrals in the log-likelihood∫

W

∫
T

λ(u, t; θ)dtdu ≈
n+m∑
k=1

akλ(uk, tk; θ)
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where ak are the quadrature weights such that
∑n+m
k=1 ak = l(W × T ) where l is the Lebesgue

measure. Then the log-likelihood of the template model can be approximated by

logL(θ) ≈
∑
i

log λ(xi; θ) +
∑
j

(1− λ(uj , tj ; θ))aj =
∑
j

ej log λ(uj , tj ; θ) + (1− λ(uj , tj ; θ))aj

where ej = 1{j ≤ n} is the indicator that equals 1 if uj is a data point. Writing yj = ej/aj this
becomes

logL(θ) ≈
∑
j

aj(yj log λ(uj , tj ; θ)− λ(uj , tj ; θ)) +
∑
j

aj .

Apart from the constant
∑
j aj , this expression is formally equivalent to the weighted log-likelihood

of a Poisson regression model with responses yj and means λ(uj , tj ; θ) = exp(θZ(uj , tj)+B(uj , tj)).
This is maximised by this function by using standard GLM software. In detail, we define the spatio-
temporal quadrature scheme by considering a spatio-temporal partition of W ×T into cubes Ck of
equal volume ν, assigning the weight ak = ν/nk to each quadrature point (dummy or data) where
nk is the number of points that lie in the same cube as the point uk (Raeisi et al., 2021). The
number of dummy points should be sufficient for an accurate estimate of the likelihood. Following
Baddeley et al. (2000) and Raeisi et al. (2021), we start with a number of dummy points m ≈ 4n,
increasing it until

∑
k ak = l(W × T ).

The AIC.stppm and BIC.stppm functions return the AIC = 2k−2 log(L̂) and BIC = k log n−
2 log(L̂) of a point process model fitted through the function stppm applied to an observed spatio-
temporal point pattern of class stp. As the model returned by stppm is fitted through a quadrature
scheme, the log-likelihood is computed through the quantity

− logL(θ̂;x) =
D

2
+

n∑
j=1

Ij logwj + n(x).

## Homogeneous
> set.seed(2)
> ph <- rstpp(lambda = 200, nsim = 1, seed = 2, verbose = TRUE)
> hom1 <- stppm(ph, formula = ~ 1)

> hom1
Homogeneous Poisson process
with Intensity: 202.093

Estimated coefficients:
(Intercept)

5.309

## plot(hom1) won’t show any plot, due to the constant intensity

> coef(hom1)
(Intercept)

5.308728

## Inhomogeneous
> set.seed(2)
> pin <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)}, par = c(2, 6),

nsim = 1, seed = 2, verbose = TRUE)
1.
> inh1 <- stppm(pin, formula = ~ x)

> inh1
Inhomogeneous Poisson process
with Trend: ~x
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Estimated coefficients:
(Intercept) x

2.180 5.783

> plot(inh1)
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Figure 6: Output of the model fitting.

6.0.3 Local inhomogeneous spatio-temporal Poisson processes trough local log-likelihood

The locstppm function fits a Poisson process model to an observed spatio-temporal point pattern
stored in a stp object, that is, a Poisson model with a set of parameters θi for each point i.
We assume that the template model is a Poisson process, with a parametric intensity or rate
function λ(u, t; θi) with space and time localtions u ∈W, t ∈ T and parameters θi ∈ Θ. Estimation
is performed through the fitting of a glm using a localised version of the quadrature scheme by
Berman and Turner (1992), firstly introduced in the purely spatial context by (Baddeley, 2017),
and in the spatio-temporal framework by D’Angelo et al. (2022c).

The local log-likelihood associated with the spatio-temporal location (v, s) is given by

logL((v, s); θ) =
∑
i

wσs(ui−v)wσt(ti− s)λ(ui, ti; θ)−
∫
W

∫
T

λ(u, t; θ)wσs(ui−v)wσt(ti− s)dtdu

where wσs
and wσt

are weight functions, and σs, σt > 0 are the smoothing bandwidths. It is
not necessary to assume that wσs

and wσt
are probability densities. For simplicity, we shall

consider only kernels of fixed bandwidth, even though spatially adaptive kernels could also be
used. Note that if the template model is the homogeneous Poisson process with intensity λ,
then the local likelihood estimate λ̂(v, s) reduces to the kernel estimator of the point process
intensity with kernel proportional to wσs

wσt
. We now use an approximation similar to logL(θ) ≈∑

j aj(yj log λ(uj , tj ; θ)−λ(uj , tj ; θ)) +
∑
j aj , but for the local log-likelihood associated with each

desired location (v, s) ∈W × T , that is:

logL((v, s); θ) ≈
∑
j

wj(v, s)aj(yj log λ(uj , tj ; θ)− λ(uj , tj ; θ)) +
∑
j

wj(v, s)aj ,

where wj(v, s) = wσs
(v−uj)wσt

(s− tj). Basically, for each desired location (v, s), we replace the
vector of quadrature weights aj by aj(v, s) = wj(v, s)aj where wj(v, s) = wσs

(v− uj)wσt
(s− tj),

and use the GLM software to fit the Poisson regression. The local likelihood is defined at any
location (v, s) in continuous space. In practice, it is sufficient to consider a grid of points (v, s). We
refer to D’Angelo et al. (2022c) for further discussion on bandwidth selection and on computational
costs.
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> inh00_local <- locstppm(pin, formula = ~ 1)

> inh00_local

Homogeneous Poisson process
with median Intensity: 7.564067

Summary of estimated coefficients
V1

Min. :3.981
1st Qu.:7.291
Median :7.564
Mean :7.316
3rd Qu.:7.669
Max. :7.854

> inh01_local <- locstppm(pin, formula = ~ x)

> inh01_local

Inhomogeneous Poisson process
with Trend: ~x

Summary of estimated coefficients
V1 V2

Min. :1.282 Min. :0.7667
1st Qu.:2.634 1st Qu.:4.5470
Median :3.059 Median :5.0662
Mean :3.082 Mean :5.0373
3rd Qu.:3.528 3rd Qu.:5.5636
Max. :4.709 Max. :6.9729

6.0.4 Log-Gaussian Cox processes estimation trough (locally weighted) joint mini-
mum contrast

In the Euclidean context, LGCPs are one of the most prominent clustering models. By specifying
the intensity of the process and the moments of the underlying GRF, it is possible to estimate both
the first and second-order characteristics of the process. Following the inhomogeneous specification
in Diggle et al. (2013), a LGCP for a generic point in space and time has the intensity

Λ(u, t) = λ(u, t) exp(S(u, t))

where S is a Gaussian process with E(S(u, t)) = µ = −0.5σ2 and so E(expS(u, t)) = 1 and with
variance and covariance matrix C(S(ui, ti), S(uj , tj)) = σ2γ(r, h) under the stationary assumption,
with γ(·) the correlation function of the GRF, and r and h some spatial and temporal distances.
Following Møller et al. (1998), the first-order product density and the pair correlation function of
an LGCP are E(Λ(u, t)) = λ(u, t) and g(r, h) = exp(σ2γ(r, h)), respectively.

The stlgcppm function estimates a local log-Gaussian Cox process (LGCP), following the
locally weighted minimum contrast procedure introduced in D’Angelo et al. (2022c). Three co-
variances are available: separable exponential, Gneiting, and DeIaco-Cesare. If both the first and
second arguments are set to global, a log-Gaussian Cox process is fitted by means of the joint
minimum contrast procedure proposed in Siino et al. (2018a).

We may consider a separable structure for the covariance function of the GRF (Brix and Diggle,
2001) that has exponential form for both the spatial and the temporal components,

C(r, h) = σ2 exp

(
−r
α

)
exp

(
−h
β

)
, (12)
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where σ2 is the variance, α is the scale parameter for the spatial distance and β is the scale
parameter for the temporal one. The exponential form is widely used in this context and nicely
reflects the decaying correlation structure with distance or time.
Moreover, we may consider a non-separable covariance of the GRF useful to describe more general
situations. Following the parametrisation in Schlather et al. (2015), Gneiting covariance function
(Gneiting et al., 2006) can be written as

C(r, h) = (ψ(h) + 1)−d/2ϕ

(
r√

ψ(h) + 1

)
r ≥ 0, h ≥ 0,

where ϕ(·) is a complete monotone function associated to the spatial structure, and ψ(·) is a
positive function with a completely monotone derivative associated to the temporal structure of
the data. For example, the choice d = 2, ϕ(r) = σ2 exp(−( rα )γs) and ψ(h) = ((hβ )γt + 1)δ/γt yields
to the parametric family

C(r, h) =
σ2

((hβ )γt + 1)δ/γt
exp

(
−

( rα )γs

((hβ )γt + 1)δ/(2γt)

)
, (13)

where α > 0 and β > 0 are scale parameters of space and time, δ takes values in (0, 2], and σ2 is
the variance.
Another parametric covariance implemented belongs to the Iaco-Cesare family (De Cesare et al.,
2002; De Iaco et al., 2002), and there is a wealth of covariance families that could well be used for
our purposes.

Following Siino et al. (2018a), the second-order parameters ψ are found by minimising

MJ{ψ} =

∫ hmax

h0

∫ rmax

r0

φ(r, h){ν[Ĵ(r, h)]− ν[J(r, h;ψ)]}2drdh,

where φ(r, h) is a weight that depends on the space-time distance and ν is a transformation function.
They suggest φ(r, h) = 1 and ν as the identity function, while rmax and hmax are selected as 1/4
of the maximum observable spatial and temporal distances.
Following D’Angelo et al. (2022c), we can fit a localised version of the LGCP, that is, obtain a
vector of parameters ψi for each point i, by minimising

MJ,i{ψi} =

∫ hmax

h0

∫ rmax

r0

φ(r, h){ν[J̄i(r, h)]−ν[J(r, h;ψ)]}2drdh with J̄i(r, h) =

∑n
i=1 Ĵi(r, h)wi∑n

i=1 wi

is the average of the local functions Ĵi(r, h), weighted by some point-wise kernel estimates. In
particular, we consider Ĵi(·) as the local spatio-temporal pair correlation function (Gabriel et al.,
2013) documented in LISTAhat.

The print and summary functions give the main information on the fitted model. In case of
local parameters (both first- and second-order), the summary function contains information on
their distributions. Next, we perform and example with a complex seismic point pattern.

> data("greececatalog")

If both first and second arguments are set to "global", a log-Gaussian Cox process is fitted by
means of the joint minimum contrast.

> lgcp1 <- stlgcppm(greececatalog, formula = ~ 1, first = "global", second = "global")
> lgcp1

Joint minimum contrast fit
for a log-Gaussian Cox process with
global first-order intensity and
global second-order intensity
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--------------------------------------------------
Homogeneous Poisson process
with Intensity: 0.00643

Estimated coefficients of the first-order intensity:
(Intercept)

-5.046
--------------------------------------------------
Covariance function: separable

Estimated coefficients of the second-order intensity:
sigma alpha beta
6.989 0.225 156.353

--------------------------------------------------
Model fitted in 1.014 minutes

If first = "local", local parameters for the first-order intensity are provided. In this case, the
summary function contains information on their distributions.

> lgcp2 <- stlgcppm(greececatalog, formula = ~ x, first = "local", second = "global")
> lgcp2

Joint minimum contrast fit
for a log-Gaussian Cox process with
local first-order intensity and
global second-order intensity
--------------------------------------------------
Inhomogeneous Poisson process
with Trend: ~x

Summary of estimated coefficients of the first-order intensity
(Intercept) x

Min. :-6.400 Min. :-0.90689
1st Qu.:-2.526 1st Qu.:-0.38710
Median : 2.333 Median :-0.26876
Mean : 2.153 Mean :-0.26744
3rd Qu.: 5.070 3rd Qu.:-0.06707
Max. :16.323 Max. : 0.10822

--------------------------------------------------
Covariance function: separable

Estimated coefficients of the second-order intensity:
sigma alpha beta
2.612 0.001 36.415

--------------------------------------------------
Model fitted in 3.634 minutes

The plot function shows the fitted intensity, displayed both in space (by means of a density
kernel smoothing) and in space and time. In the case of local covariance parameters, the func-
tion returns the mean of the random intensity, displayed both in space (by means of a density
kernel smoothing) and in space and time. The localsummary.stlgcppm function breaks up the
contribution of the local estimates to the fitted intensity, by plotting the overall intensity and the
density kernel smoothing of some artificial intensities obtained by imputing the quartiles of the
local parameters’ distributions. Finally, the function localplot.stlgcppm function plots the local
estimates. In the case of local covariance parameters, the function displays the local estimates of
the chosen covariance function.

16



  
  

First−order Intensity in space 
 Density Kernel Smoothing

−
4.

5
−

4
−

3.
5

−
3

  
  

Min. First−order Intensity in space 
 Density Kernel Smoothing

−
31

−
30

−
29

−
28

−
27

−
26

−
25

  
  

1st Qu. First−order Intensity in space 
 Density Kernel Smoothing

−
13

−
12

.5
−

12
−

11
.5

−
11

−
10

.5

  
  

Median First−order Intensity in space 
 Density Kernel Smoothing

−
5

−
4.

5
−

4
−

3.
5

  
  

3rd Qu. First−order Intensity in space 
 Density Kernel Smoothing

3.
3

3.
4

3.
5

3.
6

  
  

Max. First−order Intensity in space 
 Density Kernel Smoothing

18
.6

18
.8

19
19

.1
19

.3

Figure 7: Output of the localsummary function.
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Figure 8: Estimated local coefficients.

7 Diagnostics
Inhomogeneous second-order statistics can be constructed and used for assessing the goodness-
of-fit of fitted first-order intensities. Nevertheless, it is a widespread practice in the statistical
analysis of spatial and spatio-temporal point pattern data primarily comparing the data with
a homogeneous Poisson process, which is generally the null model in applications for the fitted
model. Indeed, when dealing with diagnostics in point processes, often two steps are needed: the
transformation of data into residuals (thinning or rescaling (Schoenberg, 2003)) and the use of
tests to assess the consistency of the residuals with the homogeneous Poisson process (Adelfio and
Schoenberg, 2009). Usually, second-order statistics estimated for the residual process (i.e. the
result of a thinning or rescaling procedure) are analysed. Essentially, to each observed point a
weight inversely proportional to the conditional intensity at that point is given. This method was
adopted by Veen and Schoenberg (2006) in constructing a weighted version of the K-function of
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Ripley and Kelly (1977); the resulting weighted statistic is in many cases more powerful than
residual methods (Veen and Schoenberg, 2006).
The spatio-temporal inhomogeneous version of the K-function in (2) is given by Gabriel and Diggle
(2009) as

K̂I(r, h) =
|W ||T |
n(n− 1)

n∑
i=1

∑
j>i

I(||ui − uj || ≤ r, |ti − tj | ≤ h)

λ̂(ui, ti)λ̂(uj , tj)
, (14)

where λ(·, ·) is the first-order intensity at an arbitrary point. We know that E[K̂I(r, h)] = πr2h,
that is the same as the expectation of K̂(r, h) in (2), when the intensity used for the weighting is
the true generator model. This is a crucial result that allows the use of the weighted estimator
K̂I(r, h) as a diagnostic tool, for assessing the goodness-of-fit of spatio-temporal point processes
with generic first-order intensity functions. Indeed, if the weighting intensity function is close
to the true one λ(u, t), the expectation of K̂I(r, h) should be close to E[K̂(r, h)] = πr2h for the
Poisson process. For instance, values K̂I(r, h) greater than πr2h indicates that the fitted model is
not appropriate, since the distances computed among points exceed the Poisson theoretical ones.

The globaldiag function performs global diagnostics of a model fitted for the first-order in-
tensity of an spatio-temporal point pattern, using the spatio-temporal inhomogeneous K-function
(Gabriel and Diggle, 2009) documented by the function STIKhat of the stpp package (Gabriel
et al., 2021). It can also perform global diagnostics of a model fitted for the first-order intensity
of an spatio-temporal point pattern on a linear network, by means of the spatio-temporal inhomo-
geneous K-function on a linear network (Moradi and Mateu, 2020) documented by the function
STLKinhom of the stlnpp package (Moradi et al., 2020). They both return the plots of the inho-
mogeneous K-function weighted by the provided intensity to diagnose, its theoretical value, and
their difference.

> globaldiag(greececatalog, lgcp1$l)
[1] "Sum of squared differences = 318213525081.852"

> globaldiag(greececatalog, lgcp2$l)
[1] "Sum of squared differences = 147029066885.741"
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Figure 9: Output of the global diagnostics for the two fitted LGPCs.
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Moving to the local diagnostics, Adelfio et al. (2020) derived the expectation of the local in-
homogeneous spatio-temporal K-function, under the Poisson case: E[K̂i(r, h)] = πr2h. Moreover,
they found that when the local estimator is weighted by the true intensity function, its expecta-
tion, E[K̂i

I(r, h)], is the same as the expectation of K̂i(r, h). These results motivate the usage of
such local estimator K̂i

I(r, h) as a diagnostic tool for general spatio-temporal point processes for
assessing the goodness-of-fit of spatio-temporal point processes of any generic first-order intensity
function λ. Indeed, if the estimated intensity function used for weighting in our proposed LISTA
functions is the true one, then the LISTA functions should behave as the corresponding ones of
a homogeneous Poisson process, resulting in small discrepancies between the two. Therefore, this
function computes such discrepancies by means of the χ2

i values, obtained following the expression

χ2
i =

∫
L

∫
T

((
K̂i
I(r, h)− E[K̂i(r, h)]

)2
E[K̂i(r, h)]

)
dhdr,

one for each point in the point pattern. Basically, departures of the LISTA functions K̂i
I(r, h)

from the Poisson expected value rh directly suggest the unsuitability of the intensity function λ(·)
used in the weighting of the LISTA functions for that specific point. This can be referred to as
an outlying point. Given that D’Angelo et al. (2022b) proved the same results for the network
case, that is, E[K̂i

L(r, h)] = rh and E[K̂i
L,I(r, h)] = E[K̂i

L(r, h)] when K̂i
L,I(r, h) is weighted by the

true intensity function, we implemented the same above-mentioned diagnostics procedure to work
on intensity functions fitted on spatio-temporal point patterns occurring on linear networks. Note
that the Euclidean procedure is implemented by means of the local K-functions of Adelfio et al.
(2020), documented in KLISTAhat of the stpp package (Gabriel et al., 2013). The network case
uses the local K-functions on networks (D’Angelo et al., 2022b), documented in localSTLKinhom.

The localdiag function performs local diagnostics of a model fitted for the first-order intensity
of an spatio-temporal point pattern, by means of the local spatio-temporal inhomogeneous K-
function (Adelfio et al., 2020) documented by the function KLISTA of the stpp package (Gabriel
et al., 2013). It returns the points identified as outlying following the diagnostics procedure on
individual points of an observed point pattern, as introduced in Adelfio et al. (2020). The points
resulting from the local diagnostic procedure provided by this function can be inspected via the
plot, print, summary, and infl functions. localdiag is also able to perform local diagnostics of a
model fitted for the first-order intensity of an spatio-temporal point pattern on a linear network, by
means of the local spatio-temporal inhomogeneous K-function on linear networks D’Angelo et al.
(2021) documented by the function localSTLKinhom. It returns the points identified as outlying
following the diagnostics procedure on individual points of an observed point pattern, as introduced
in Adelfio et al. (2020), and applied in D’Angelo et al. (2022b) for the linear network case.

> set.seed(12345)
> stlp1 <- rETASlp(cat = NULL, params = c(0.078915 / 2, 0.003696, 0.013362, 1.2,

0.424466, 1.164793),
betacov = 0.5, m0 = 2.5, b = 1.0789, tmin = 0, t.lag = 200,
xmin = 600, xmax = 2200, ymin = 4000, ymax = 5300,
iprint = TRUE, covdiag = FALSE, covsim = FALSE, L = chicagonet)

> res <- localdiag(stlp1, intensity = density(as.stlpp(stlp1), at = "points"))
> res

Points outlying from the 0.95 percentile
of the anaysed spatio-temporal point pattern on a linear network
--------------------------------------------------
Analysed pattern X: 65 points
4 outlying points

> plot(res)
> infl(res)
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Obj = χi
2
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Figure 10: Output of the local diagnostics via the plot.localdiag function.
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Figure 11: Output of the local diagnostics via the infl.localdiag function.

8 Conclusions
This work has introduced the stopp R package, which deals with spatio-temporal point processes
occurring either on the Euclidean space or on some specific linear networks, such as streets of a
city.

The package includes functions for summarizing, plotting, and performing various analyses on
point processes; these functions mostly use the approaches suggested in a few recent works in
scientific literature. Modelling, statistical inference, and simulation difficulties on spatio-temporal
point processes on Euclidean space and linear networks, with a focus on their local properties, are
the core topics of such research and the package in turn.

To start with, we set the notation for spatio-temporal point processes that can occur in both
linear networks and Euclidean spaces. After that, we went over the main methods implemented in
the stopp package for dealing with simulations, data, and objects in point processes. After having
recalled the definition of Local Indicators of Spatio-Temporal Association (LISTA) functions, we
have moved to introduce the new functions that compute the LISTAs on linear networks. We
then illustrated functions to run a local test to evaluate the local differences between two point
patterns occurring on the same metric space. Moreover, many examples of the models included in
the package are provided. These examples include: models for separable Poisson processes on both
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Euclidean space and networks, global and local non-separable inhomogeneous Poisson processes,
and LGCPs. Then, techniques for performing both global and local diagnostics on such models
(but not limited to those only) for point patterns on linear networks and planar spaces are provided.

The package tools are not exhaustive. This work represents the creation of a toolbox for
different kinds of spatio-temporal analyses to be performed on observed point patterns, following
the growing stream of literature on point process theory. The presented work contributes to the
existing literature by framing many of the most widespread methods for the analysis of spatio-
temporal point processes into a unique package, which is intended to foster many further extensions.
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