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G W N

Simple Summary: Metastatic colorectal cancer (mCRC) has high incidence and mortality. Never-
theless, innovative biomarkers have been developed for predicting the response to therapy. We
have examined the ability of learning methods to build prognostic and predictive models to predict
response to chemotherapy, alone or combined with targeted therapy in mCRC patients, by targeting
specific narrative publications. After a literature search, 26 original articles met inclusion and exclu-
sion criteria and were included in the study. We showed that all investigations conducted in this field
provided generally promising results in predicting the response to therapy or toxic side-effects, using
a meta-analytic approach. We found that radiomics and molecular biomarker signatures were able to
discriminate response vs. non-response by correctly identifying up to 99% of mCRC patients who
were responders and up to 100% of patients who were non-responders. Our study supports the use
of computer science for developing personalized treatment decision processes for mCRC patients.

Abstract: Tailored treatments for metastatic colorectal cancer (mCRC) have not yet completely
evolved due to the variety in response to drugs. Therefore, artificial intelligence has been recently
used to develop prognostic and predictive models of treatment response (either activity /efficacy or
toxicity) to aid in clinical decision making. In this systematic review, we have examined the ability of
learning methods to predict response to chemotherapy alone or combined with targeted therapy in
mCRC patients by targeting specific narrative publications in Medline up to April 2022 to identify
appropriate original scientific articles. After the literature search, 26 original articles met inclusion and
exclusion criteria and were included in the study. Our results show that all investigations conducted
on this field have provided generally promising results in predicting the response to therapy or toxic
side-effects. By a meta-analytic approach we found that the overall weighted means of the area
under the receiver operating characteristic (ROC) curve (AUC) were 0.90, 95% C.I. 0.80-0.95 and
0.83,95% C.I. 0.74-0.89 in training and validation sets, respectively, indicating a good classification
performance in discriminating response vs. non-response. The calculation of overall HR indicates that
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learning models have strong ability to predict improved survival. Lastly, the delta-radiomics and the
74 gene signatures were able to discriminate response vs. non-response by correctly identifying up to
99% of mCRC patients who were responders and up to 100% of patients who were non-responders.
Specifically, when we evaluated the predictive models with tests reaching 80% sensitivity (SE) and
90% specificity (SP), the delta radiomics showed an SE of 99% and an SP of 94% in the training set
and an SE of 85% and SP of 92 in the test set, whereas for the 74 gene signatures the SE was 97.6%
and the SP 100% in the training set.

Keywords: artificial intelligence; chemotherapy; targeted therapy; responders; radiomics; biomarkers;
algorithm; colorectal cancer metastasis

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers and a main leading cause
of cancer death in the world [1,2]. The most recent data from GLOBOCAN recorded more
than 1.88 million cases and 916,000 deaths per year [3]. Despite the effort of screening
programs for early detection of CRC, about 20% of CRC patients present with metastatic
disease at diagnosis (synchronous metastases), with low curative surgical control and
high rate of tumor-related deaths [4]. In addition, about 25% of patients who present
with localized disease will develop metastases at a later time (metachronous metastases)
even after radical loco-regional treatment (surgery, radiotherapy) of the primary tumor
and adjuvant chemotherapy [4]. When localized, the vast majority of CRC patients are
curable by surgery (stage I and low-risk stage II), but the prognosis for metastatic CRC
(mCRC) patients remains poor. Indeed, while the the 5-year overall survival (OS) rate
for localized CRC is approximately 90%, this estimate drastically decreases for patients
with metastatic CRC (mCRC) to a mere 15.5% (https:/ /seer.cancer.gov/statfacts /html/
colorect.html (accessed on 30 April 2022)). Treatment strategies are commonly based on
clinical staging, with surgery, neoadjuvant (either with chemotherapy or radiation therapy),
and postoperative adjuvant chemotherapy for high-risk locally advanced stages (high-
risk stage II and stage III) and with systemic anticancer drugs as primary treatment for
metastatic disease.

A combination of cytotoxic agents including fluoropyrimidine, oxaliplatin and/or
irinotecan, with a targeted agent, either an anti-epidermal growth factor receptor (EGFR)
or an anti-vascular endothelial growth factor (VEGF) monoclonal antibody (MoAb), is
nowadays considered the primary standard treatment for mCRC patients to achieve im-
proved disease control and prolong survival [5,6]. Results from the first phase III clinical
trial evaluating the addition of the anti-VEGF MoAb bevacizumab to 5-fluorouracil and
irinotecan represented the beginning of a new era for mCRC treatment by showing that
such combined treatment could result into a significant improvement in tumor objective
response (OR), progression-free survival (PFS), and OS [7]. While the median OS for mCRC
patients following single agent 5-fluorouracil or biochemical modulation of 5-fluorouracil
by folinic acid ranged from 10 to 12 months in the 1980s, it has now been significantly
increased, to approximately 26-33 months, by the introduction of targeted therapy [8].
Despite these treatment advances, therapeutic outcomes are still unsatisfactory and vari-
able among patients receiving the same drugs [9], due to the occurrence of tumor drug
resistance either at the time of initial treatment (intrinsic resistance) or after the first-line
treatment with cytotoxic and targeted agents (acquired resistance) in nearly all patients [10].
Moreover, a large part of mCRC patients can experience several adverse effects, as anemia,
neutropenia, nausea, vomiting, diarrhea and cardiotoxicity [11] that might cause treatment
delay or even discontinuation.

Evolution of genetically and/or epigenetically diverse tumor-cell populations during
tumor growth and progression is considered the main factor causing tumor heterogeneity,
displaying inherent functional variability in tumor propagation potential and tolerance


https://seer.cancer.gov/statfacts/html/colorect.html
https://seer.cancer.gov/statfacts/html/colorect.html

Cancers 2022, 14, 4012

30f38

to pharmacological treatment with either cytotoxic or targeted cancer therapeutics [5].
Personalized treatments for mCRC disease are today limited to a small number of drugs
towards molecular targets such as anti-VEGEF, anti-EGFR for RAS wild-type tumors, enco-
rafenib for BRAF (V600E) mutated tumors, programmed death-ligand 1/programmed cell
death-1(PDL-1/PD-1) inhibitors for mismatch repair deficiency (AMMR)/microsatellite
instability-high (MSI-H) tumors, and possibly KRAS tyrosine kinase inhibitors for G12C
KRAS mutated tumors [12]. Recent additions to the mCRC armamentarium are the in-
hibitors of HER2 (rarely overexpressed in CRC, with a higher prevalence in RAS/BRAF-
wild type tumors) and NTRK gene fusions (limited to cancers that are wild-type for KRAS,
NRAS, and BRAF) [13,14]. As above reported, although VEGF and its receptors (VEGFR)
inhibitors have a therapeutic role in the treatment of mCRC [6] resulting in angiogenic
blockade, their use still lacks stratification based on predictive biomarkers of drug re-
sponse of clinical relevance, especially in terms of resistance [15]. The use of intensive
chemotherapy combination regimens requires also a fine balance between clinical outcome
and treatment related toxicity. Therefore, there is an unmet need for early identification of
mCRC cases who will be responsive to specific regimens and clinical indicators of toxicity
burden. Indeed, at the present, no imaging criteria or molecular biomarkers are available
in clinical practice today for early identification of treatment response before the start of
the therapy and even the radiologists cannot have sufficient imaging information on the
baseline examination to predict which tumor lesions will respond to the treatments.

Artificial intelligence (Al), a field of computer science that mimics human intelligent
behavior and performs tasks that commonly require human intervention, has gained in-
terest in the field of cancer research for its problem solving, decision making and pattern
recognition abilities [16]. Machine learning (ML) and deep learning (DL), two subsets of
Al have emerged as important tools that could effectively improve the field of molecular
cancer characterization, from epidemiology [17], to diagnosis, prognosis and patient classi-
fication [18], with higher performance than traditional approaches [19-24]. Accumulating
evidence suggests that radiomics can be used to study tumor heterogeneity and to predict
therapy in CRC [25]. Biological insight on data-driven radiomics features has been recently
provided by different biological metrics such as gene expression, immunohistochemistry
staining intensity and microscopic histologic textures [26]. In particular, radiomics in
combination with molecular biomarkers has even been shown to be capable of predict-
ing genetic mutations including both KRAS mutations and KRAS/BRAF status in CRC
patients [25]. Nevertheless, there are only scattered reports on applying Al techniques to
predict treatment response in oncology, especially for metastatic colorectal disease; there-
fore, a systematic review and meta-analysis was designed to assess the effectiveness of
learning algorithms to predict the response to chemotherapy alone or combined to targeted
therapy, as well as the individual toxicity of standard regimens in this patient setting. To
the best of our knowledge, this represents the largest meta-analysis of predictive classifiers
for mCRC so far, aimed at validating or refuting previous findings, with the final goal of
evaluating whether learning models could be used in clinical trials to assess prognosis or
toxicity in standard of care settings and as predictors of therapy response.

1.1. Machine and Deep Learning Techniques

In recent years, the application of computer aided intelligence has expanded to health-
care for finding novel clinical solutions drawing on the subfields of the traditional ML and
the cutting-edge DL architectures and seeking improved performance in respect to tradi-
tional statistical methods [18]. They are both capable of learning from data and identifying
the distribution and patterns of key features, but have different learning structures, with
DL mimicking the property of the human brain for data processing using multi-layered
structured models [18]. ML has emerged as a powerful computational approach that uses
algorithms to iteratively and automatically learn from data to perform a task without being
specifically programmed [27]. Main ML analytical tasks consist in classification, pattern
recognition, clustering, key feature identification and construction of predictive models
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using three different approaches: (i) supervised, (ii) unsupervised, and (iii) reinforcement
learning [16]. In supervised learning, labeled data are used to train algorithms to classify
data or predict outcomes; while in unsupervised learning, unlabeled or uncategorized
data are used in learning processes and relationships are discovered on the basis of hid-
den similarities; lastly, reinforcement learning is an environment-driven approach, i.e., it
enables software agents to automatically receive rewards or penalties to improve their
performance [27]. Supervised algorithms can be grouped in classification and regression
applications, where the former refers to the prediction of categorical outcomes, and the
latter to the prediction of continuous outcomes. Common supervised ML models are
Support Vector Machines (SVM), Decision Trees (DT), and Artificial Neural Networks
(ANN). SVM is one of the most used algorithms which map the input variables into a
feature space of higher dimensionality using the kernel trick [28] and identify the best
decision surface, the hyperplane, which separates the dataset into two different classes.
The DTs are tree-based classification models where the dataset is split at each node of the
tree using input feature thresholds and leaves represent the final classification decision. A
DT performs features selection at each node using metrics as information gain to select the
most informative features during its training. DTs can be used for solving regression and
classification problems also by learning simple decision rules inferred from prior data in
the training process [18]. ANNs are biologically inspired computational networks based
on studies of the brain and nervous system, that can compute values from inputs and
examine interactions between groups of representative features to predict outcomes [29].
Unsupervised algorithms analyze unlabeled datasets for clustering, density estimation,
feature learning, dimensionality reduction, finding association rules and anomaly detection.
Clustering is a common task in biomedical research employing molecular profiling to find
similarities among samples and allow stratification of patients into clinically-meaningful
subgroups. Among the available techniques, the most frequently used are hierarchical
and k-means clustering. Besides clustering, Principal Component Analysis (PCA), factor
analysis, or more complex techniques such as matrix factorization are frequently used
techniques to address dimensionality reduction especially for datasets with large number
of variables and relative small numbers of samples [30]. Semi-supervised learning methods
also exist which exploit labeled and unlabeled data to train a model [27]. On the other
hand, DL is a subfield of Al technique that uses multi-layered neural network algorithms
similar to the neurological architecture to infer predictions [31]. DL is essentially a compu-
tational architecture composed by different processing layers, namely an input, (multiple)
hidden, and an output layer [27]. In respect of ML, the neural network architecture is
used for deep processing, automated feature extraction and pattern recognition along
complex data, as large-scale image classification. In DL architecture, the representation
of output data produced by each layer is used as input to the subsequent layer and so
forth, retaining the data of interest and discarding other information. By this approach,
DL can identify complex combinations of original features within combinations of deeper
layers and extrapolate new features that will increase the predictive value in respect to
original ones [31]. Common DL methods are the Recurrent Neural Networks (RNN) and
the Convolutional Neural Networks (CNN). RNNs are designed for making predictive
models based on temporal sequences using current and past features to automatically
construct algorithms. CNN is a type of network that is specified for image analysis and
computer vision. CNN is able to perform specific tasks such as image classification and
automated features extractions [32]. In ML/DP, the quality of the datasets is fundamental
and a preprocessing strategy, encompassing feature standardization and extraction is a
necessary step before applying any learning algorithm.

1.2. Standard Chemotherapy, Targeted Therapy and Mutational Profiles

Since the Sixties, 5-fluorouracil represents the basis of mCRC treatment. In the last
25 years, capecitabine, a pro-drug of 5-fluorouracil, oxaliplatin, a platinum compound, and
irinotecan, a topoisomerase I inhibitor, have also been introduced in the clinical practice
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leading to improved patient outcomes [33,34]. Currently, the main doublet chemother-
apies used in first-line treatment are FOLFIRI (5-fluorouracil/folinic acid plus irinote-
can) and FOLFOX (5-fluorouracil/folinic acid plus oxaliplatin) regimens, while CapeOX
(capecitabine plus oxaliplatin) and XELIRI (capecitabine plus irinotecan) represent less
commonly used chemotherapy regimens. A triple chemotherapy, the FOLFOXIRI or
FOLFIRINOX (5-fluorouracil/folinic acid plus oxaliplatin and irinotecan) regimen, is also a
first-line treatment option in selected cases [5,35]. The availability of anti-EGFR MoAbs,
such as cetuximab or panitumumab, and of anti-VEGF MoAbs, such as bevacizumab, from
the early years after 2000 have further increased activity and efficacy of first-line drug
treatment in mCRC when combined with the above chemotherapy regimens [5]. These bio-
logical therapeutics can act directly on tumor cells through different mechanisms including
targeting cell surface receptors for specific relevant growth factors (e.g., EGF) and conse-
quently by blocking oncogenic signaling leading to cell proliferation arrest, inhibition of cell
differentiation and cell migration, interference with cell cycle progression and enhancement
of apoptotic death. They can also act indirectly on tumor cells through inhibition of blood
vessels in the tumor microenvironment by targeting specific endothelial cell membrane
receptors or their growth factors (e.g., VEGF) [5]. More recently, immune checkpoint in-
hibitors (ICIs), working by blocking immunoinhibitory signals and enabling patients to
induce an anti-tumor action, have also proven active in the treatment of mCRC [36]. ICIs
targeting PD-1 are in fact highly effective in a selected mCRC patient population whose
tumors display dMMR or MSI-H [37].

In the case of anti-EGFR MoAbs, the study of mutational profiling in KRAS and
NRAS sequences is highly relevant for the choice of clinical treatments [38]. Patients with
colorectal metastasis bearing mutations in KRAS or NRAS are considered non-responders
or poor responders to anti-EGFR therapy, whereas the presence of BRAF V600E mutation
identifies a very poor-prognosis subgroup of patients [39], who also display resistance to
anti-EGFR MoAbs [40,41]. In BRAF mutated tumors the use of a potent BRAF tyrosine
kinase inhibitor, such as encorafenib, can overcome resistance to anti-EGFR MoAbs [5]. In
RAS wild-type tumors, cetuximab and panitumumab in combination with chemotherapy
can instead significantly improve the median OS of mCRC patients [6]. Difference in
response to chemotherapy can exist among patients carrying the same mutation profiles,
since patients with KRAS or NRAS wild-type tumors can be partially not responsive to
anti-EGFR agents [42]. Besides the above mentioned V600E BRAF mutations, also PIK3CA
mutations, PTEN loss, HER2 overexpression/amplification or MET amplification have been
linked to resistance to anti-EGFR targeted therapies [43]. Interestingly, excision repair cross
complementation group 1 (ERCC1) expression is inhibited by KRAS mutation, making
tumors more sensitive to cytotoxic treatments [44]. This has led to hypotheses that several
other genetic and epigenetic mechanisms can be involved in primary or secondary drug
resistance and tumor progression [45].

As above reported, AIMMR/MSI-H are predictive biomarkers of tumor response to
ICIs pembrolizumab and nivolumab MoAbs against PD-1 [2,6]. Indeed, PD-1 blockade with
pembrolizumab or nivolumab in this setting of mCRC patients has provided an efficacious
treatment option for chemotherapy resistant tumors [46—49]. In this regard, later phase III
clinical studies of pembrolizumab versus standard chemotherapy in patients with previ-
ously untreated MSI-H or dAMMR mCRC have shown that pembrolizumab significantly
improves PFS [50] and OS [51] as first-line therapy as well as health-related quality of
life [37,52]. These data have supported FDA and EMA approvals of pembrolizumab as a
new standard of care in this mCRC subpopulation. Indeed, a treatment based on “double
immunity” with nivolumab in combination with ipilimumab has also been evaluated in a
non-randomized phase II trial in first-line setting with an OR rate of 69%, and a median
PFS and OS not yet reached at a 24-month follow-up [53]. The v1.2021 NCCN guidelines
now recommend nivolumab = ipilimumab or pembrolizumab as a first-line treatment for
patients with unresectable advanced or mCRC with MSI-H/dMMR status (NCCN Clinical
Practice Guideline in Oncology. Version 1.2021. Available at: Rectal Cancer.NCCN.org (ac-
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cessed on 30 April 2022)). ICIs have not yet shown definitive evidence of clinical efficacy in
patients with proficient MMR or MS-stable mCRC. However, a recent study has shown that
nivolumab added to encorafenib and cetuximab in V600E BRAF mutated, microsatellite-
stable mCRC induces higher response rates [54] when compared with encorafenib and
cetuximab alone from the previously reported study [55]. Moreover, retrospective studies
have shown that patients with distal primary tumors have improved outcomes as com-
pared to those with proximal tumors [56]. Proximal tumors are more aggressive and differ
from distal tumors in showing diverse molecular and pathological characters [57]. Tumor
location can be also associated with the response to targeted therapy. mCRC patients with
distal tumors respond better to anti-EGFR agents than those with proximal tumors [39], pos-
sibly due to the different embryologic origin of distal tumors, whether embryonic hindgut
or embryonic midgut. Interestingly, differences in embryologic origin are associated to
different phenotypes, with proximal tumors carrying RAS and BRAF mutations, whereas
distal tumors carry KRAS, APC, PIK3CA, and TP53 mutations [58]. Similarly, therapy
responses can be different among these two kinds of colorectal tumors: cancer patients
with left-sided tumors may be responsive to anti-EGFR targeted therapy, while those with
right-sided tumors do not have the same benefit from conventional treatments [59].

In addition to somatic mutations, gene expression may contribute to tumor drug
response. Through the years, different approaches have been used to identify genes whose
expression levels could discriminate between responders and non-responders to pharmaco-
logical treatment in CRC. The “candidate gene” approach, widely used in the past years, has
led to the identification of a number of potential biomarkers of drug response [60-65]. More
recently, genes potentially predictive of drug response in CRC have also been identified
and validated starting from an RNA seq transcriptomic approach [66,67]. In addition, by
using unsupervised clustering methods, CRC transcriptomic data provided new molecular
classifications, including the “consensus molecular subtypes” (CMS) [68] and the “cancer
cell intrinsic transcriptional traits” (CRIS) [69]. Both of them, although not currently rec-
ommended in clinical practice, are good predictors of prognosis whereas their ability to
predict drug response has not been proven.

2. Methods

This review and meta-analysis was conducted according to the Preferred Report-
ing Items for Reviews and Meta-Analyses (PRISMA) guidelines [70] and not registered
in PROSPERO.

2.1. Search Strategy and Data Extraction

A systematic literature search was performed using National Library of Medicine
medical literature database (PubMed, https://pubmed.ncbinlm.nih.gov/ (accessed on
30 April 2022)) from January 2005 up April 2022, to identify studies performed with Al tech-
niques for the development and validation of accurate prognostic tools to be employed for
predicting treatment response and/or individual toxicity in mCRC patients. This objective
was obtained by targeting specific narrative publications in medical literature and identi-
fying appropriated original scientific articles. The publications were searched with main
domains connected by the Boolean operators “AND” and “OR”: “artificial intelligence”,
“machine learning”, “deep learning”, “neural networks”, “predictor”, “classifier”, “signature’
OR “radiomics” AND “metastatic colorectal cancer” OR “colorectal cancer” AND “chemother-
apy”, “targeted therapy”, “cytotoxic regimens”, “immunotherapy”, “response to therapy” OR
“responders”. To supplement PubMed search, additional articles were collected by checking
reference lists of identified studies, reviews and systematic reviews. Two investigators (EL
and VR) have independently screened the PUBMED publications against the criteria of
inclusion and exclusion. In case of disagreement, the opinion of a third investigator (MP)
was requested.

When available, the following variables were extracted for each eligible study: first line
and previous chemotherapy and/or targeted therapy, Al networks (ML or DL), total sample
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size, training and validation cohort sample sizes, input features used to feed algorithms,
signature used for learning models (radiomics or molecular biomarkers), learning model
performances at training and/or at validation sets. We distinguished performance metrics
based on the task, e.g., classification or regression/survival analysis, for each study. A
detailed description of each metric is reported in Table 1.

Table 1. Evaluation measures.

Problem Type Measure Explanation
Area under the receiver operating characteristic (ROC) curve. The
. ROC curve is created by plotting the true positive rate (TPR) against
lassif; A . . SR
Classification uc the false positive rate (FPR) at various discrimination threshold
settings for binary classifiers.
Sensitivity or true positive rate (TPR), is the fraction of actual positive
SE cases that has been predicted as positive in the population. It is an
evaluation measure for binary classifiers.
Specificity or true negative rate (TNR) refers to the fraction of true
SP negative that has been predicted as negative in the population. It is
an evaluation measure for binary classifier.
ACC Accuracy is the ratio of the number of correct predictions to the total
number of input samples.
Positive predictive value is the ratio of patients truly diagnosed as
PPV positive to all those who had positive test results. It is an evaluation
measure for binary classifiers.
Negative predictive value refers to the fraction of subjects truly
NPV diagnosed as negative among those who had negative test results. It
is an evaluation measure for binary classifiers.
Classification Precision Same as PPV
F1 score It is defined as the harmonic mean of the precision and recall
PLR The Positive Likelihood Ratio is defined as the ratio between the true
positivity rate and the false positivity rate.
NLR The Negative Likelihood Ratio is the opposite of the PLR.
Regression\Survival DFS Disease-Free Survival is defined as the time from randomization to
Analysis recurrence of tumor or death.

Time-to-next treatment is defined as the time between baseline
TTINT (randomization, inclusion or treatment initiation) and the date of
subsequent systemic treatment initiation.

Harrell’s concordance C-index: used to evaluate risk models in
survival analysis. It is computed as the fraction of concordant patient
C-index pairs on the sum of concordant and discordant patient pairs, where
two patients are considered concordant if the patient with the higher
risk score is the one having a shorter time-to-disease.

In survival analysis, the hazard ratio is defined as the ratio of the
HR hazard rates corresponding to the conditions described by two levels
of an explanatory variable (e.g., cases vs. controls)

2.2. Study Selection

Studies had to meet the following prespecified inclusion criteria: (1) patients with
mCRC; (2) use of Al algorithms to assess response to therapy or side effects; and (3) pub-
lished in English language. Exclusion criteria were: (i) case reports, review articles, edi-
torials, letters, comments, and conference abstracts; (ii) studies lacking therapy response
analysis; and (iii) studies lacking learning model performance evaluation.
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2.3. Objectives

The primary objective of the study was to evaluate the effectiveness of learning algo-
rithms in the prediction of the response to chemotherapy alone or combined to targeted ther-
apy and/or side effects for mCRC patients. The secondary objective was to assess the effi-
cacy of the aforementioned algorithms in discriminating responder mCRC patients/treated
metastatic lesions vs. non-responders mCRC patients/untreated metastatic lesions.

2.4. Publication Quality

The study of publication quality was assessed by two investigators (MP and EL) using
study quality items that were criteria of quality publication in the Luo scale [71], in keeping
with a recent systematic review on ML studies [72].

2.5. Rational Framework

A rational framework for interpreting model performances was developed using the
area under the receiver operating characteristic (ROC) curve (AUC), and the sensitivity (SE)
and the specificity (SP) estimates reported in the Al models. AUC values were interpreted
as follows: 0.6-0.7 (worthless), 0.7-0.8 (poor), 0.8-0.9 (good), and >0.9 (excellent) [73]. In
addition, the SE was referred to the ability of a test to correctly identify patients who
are responders, whereas the SP to the ability to correctly classify those who are non-
responders [74,75].

2.6. Statistical Analysis

A meta-analysis was carried out including only the studies reporting the AUC or HR
estimates with 95% C.I. in training and/or validation sets. The random effects model [76-78]
was used to calculate global response to therapy, reported as overall AUC calculated from
the receiver operating characteristic (ROC) analyses or overall HR with 95% ClIs from
proportional hazards models (Cox regression). The pooled HR was considered statistically
significant if the 95% C.I. did not include 1.0 while the confidence intervals for global AUC
not including 0.50 suggest that the test is able to discriminate between the comparison
groups. To stabilize the within-study variance, the logit of the AUC and the natural
logarithm of HR were used for the statistical analysis. To assess whether the pooled
performances were stable or significantly dependent on one or more studies, sensitivity
analyses were conducted by interactively recalculating the overall estimates after exclusion
of one study at a time. Egger’s test was also applied to assess the occurrence of publication
bias. All statistical analyses were conducted using Stata Software version 14.2 (StataCorp
LLC, College Station, TX, USA).

3. Results

A total of 1947 records were identified from databases using the predefined search
criteria (Figure 1). After a review of titles and abstracts, duplicates and papers not related
to prediction models were rejected. 221 remaining manuscripts were analyzed in-depth
to evaluate their concordance with inclusion and exclusion criteria. Other articles were
collected by checking reference lists of identified studies, reviews and systematic reviews.
The final database consisted of 26 studies with 50,257 patients eligible for inclusion in the
database [74,75,79-102]. Tables 2 and 3 show the 26 original Al studies that were included
in the systematic review. There were 13 studies with 4193 patients, 5 of radiomics and
8 of molecular biomarkers learning models, that evaluated the response to chemotherapy
alone, and 2 other studies with 36,050 patients that assessed the individual toxicity of
standard regimens.
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| Identification of studies via databases

Database searches:

g National Library of Medicine Additional records
g Medical literature database identified through reviews
i from 2005 to April 2022 in=3)

FubMed (n = 1942 records)

L >y
i i Duplicate records removed
in=75)
Records screened —_—
(n = 1945) Records removed for title and abstract
in=1632)
g
@
Reports assessed for eligibility Reports excluded
I
(n=238) n=219)

Additional records

identified through references

Studies included in the systematic review
(n=26)

Studies included in the meta-analysis
n=10)

Figure 1. Systematic review flow diagram. The PRISMA flow diagram for the systematic review
detailing the database searches, the number of abstracts screened and the full texts retrieved.

Likewise, there were 14 studies, with 3 investigations in common with Table 3, with
10,014 patients, 7 of radiomics and 7 of molecular biomarkers based classifiers that analyzed
the response to targeted therapy. The Al studies were listed and divided in predictive
learning models of response or side effects to chemotherapy alone and predictive learning
models of response to targeted therapy. Investigations collected under each category were
stratified in imaging, molecular and clinical biomarkers based models, summarized in
detail and discussed. Tables 2 and 3 report the variables extracted for each eligible study.
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molecular or clinical biomarkers based learning models.

Table 2. Artificial intelligence analysis of the response to standard chemotherapy alone for patients with colorectal metastasis. Data are grouped for imaging or

Evaluated Models and

Therapy Al Total, Training, Test Input Features Signature Selected Model Training Set * Test Set * Reference
Imaging biomarkers learning models
Contrast-enhanced computed Linear SVM
tomography (CT) scans at differential Logistic regression Response vs. non-response: Response vs. non-response:
First-line FOLFOX ML 57 time points Delta-radiomics Generalized linear Model AUC =0.99,95% C.I.0.97-1.0, AUC =0.93,95% C.I. 0.87-0.96, [75]
chemotherapy (242,172,70 features) 14 lesion shape-based with Poisson distribution 99% SE, 94% SP, 97% ACC, 95% 85% SE, 92% SP, 86% ACC,
18 images intensity-based statistics Random Forest PPV, 99% NPV 90% PPV, 97% NPV
75 images gray level-based statistics Decision Tree
T R Res onse vs. non-response: Res onse vs. non-response:
First-line oxaliplatin- based 42 Contrast-enhanced CT scans P
regimens ML (126,94,32 features) at baseline Radiomics 0 771 009:‘?81 95% C 0 617 O%Zg9 95% C [79]
Response vs. non-response: Response vs. non-response:
AUC =0.903, 95% C.I. AUC = 0.745, 95% C.I.
. 0.851-0.955, 84.7% SE, 84.8% SP, 0.659-0.831, 90% SE, 73% SP,
First-line CAPEOX or 192 144,48 E)(r);\grast—eﬁlhanced multidetector . 84.7% ACC (radiomics model) 85.4% ACC (radiomics model)
,144, graphy (MDCT) scans at baseline; . Lo _ .
FOLFOX and FOLFIRI or DL (3490 features) 583 radiomics feat traditional Fusion radiomics RESNET Response vs. non-response: Response vs. non-response: [80]
XELIRI chemotherapies d.ra iomics features (traditiona AUC =0.935, 95% C.1. AUC = 0.830, 95% C.I.
radiomics) 0.897-0.973, 89.8% SE, 84.8% SP,  0.688-0.973, 90.9% SE, 73.3%
88.2% ACC (fusion radiomics SP, 85.4% ACC
model) (fusion radiomics model)
Response vs. non-response:
61% SE, 60% SP, 61% ACC,
: : Response vs. non-response: 57% PPV, 64% NPV
First-line FOLFOX or ML 925438 CT scans at baseline Radiomics I\G/[a‘ﬁ.sfan NI?“’e Bayes 76% SE, 67% SP, 72% ACC, 69%,  (per-lesion 3D set) [81]
FOLFIRI chemotherapies i 75 radiomics features Gu ! §yers‘;311;f[eptron PPV, 75% NPV (per-lesion 3D Response vs. non-response:
aussian set) 41% SE, 21% SP, 32% ACC,
38% PPV, 23% NPV
(per-patient 3D set)
RELIEF
Fisher Score
Chi Squared
High and standard quality (HQ and ?_/[FF Nt[R Response vs. non-response: Response vs. non-response:
) ) SQ_ sets) CT scans at differential time Wiﬁ:soxon AUC =0.75,95% C.1. 0.63-0.85 AUC =0.59, 95% C.1. 0.44-0.72
First-line FOLFIRI ML 129,78,51 (HQ set) points Radiomics Univariate models (HQCT cohort) (HQCT cohort) 187]

chemotherapy

236,158,78 (SQ set)

1749 Radiomics Features
1742 VGG16 extracted image features
8 rim specific features

For classification:
SVM

KNN

Naive Bayes
Bagging

Lasso

Random Forest

Response vs. non-response:
AUC =0.75,95% C.I. 0.67-0.82
(SQCT cohort)

Response vs. non-response:
AUC =0.55,95% C.I. 0.43-0.66
(SQCT cohort)
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Table 2. Cont.

Evaluated Models and

Therapy Al Total, Training, Test Input Features Signature Selected Model Training Set * Test Set * Reference
Molecular biomarkers learning models
o . : Response vs. non-response:
First-line FOLFOX : : Iterative supervised Response vs. non-response: P P
chemotherapy ML 115,83,32 Microarray gene-expression data 74 genes learning (IML) 97.6% SE, 100% SP 3%8313.;1 Zs. 36.6 mo [95]
Feature selection:
Firstli Ensemble of statistical and
reeme R 16 long machine learning models Response vs. non-response:
5—ﬂ}10rourac11—based ML 2317,2277,40 Immune infiltration data noncoding RNA Survival analysis: AUg —0.843 P [94]
regimens C .
ox proportional
hazard model
Feature selection:
First-li Ensemble of statistical and
irst-line i i
. s . 16 long machine learning models Response vs. non-response: ,
5—ﬂ}10rourac1l—based ML 2307,2277,30 Immune infiltration data noncoding RNA Survival analysis: AUC = 0.765 P [94]
regimens C i
ox proportional
hazard model
Feature selection:
First.Ji Ensemble of statistical and
irst-line L . 16 long machine learning models Response vs. non-response:
5—ﬂ}10r0urac1l—based ML 2201,2277,124 Immune infiltration data noncoding RNA Survival analysis: AUg ~0.709 P [94]
regimens C ional
OX proportiona
hazard model
SVM
Logistic regression
KINN Decreased survival:
. X . . Multilayer Perceptron ’
First-line FOLFIRI Next generation sequencing (NGS) Lay HRes =2.631,
chemotherapy ML 8227,55 data 67 genes Naive Ba}yes' L 95% C.I. 1.041-6.649, [99]
Quadratic Discriminant 0OS = 18.7 vs. 34.4 mo
analysis ’ T
Gaussian Process
Random Forest Ensemble
Response vs. non-response:
AUC =0.877,95% C.I.
SVM 0.747-1.00, 85% SE, 69.2% SP
KNN Improved survival:
First-line FOLFOX ML 83.54.29 Microarray differentially expressed 18 Gradient Boosting Machine OH%%S_E %‘0}53{ igﬁecglllﬂati on [101]
chemotherapy 7o (DE) gene profiles genes Random Forest of MLK1
EQCISI?III\ITI;‘EA? K Improved survival:
cural Networks HRos = 0.563, 95% C.1.
0.336-0.943 in up-regulation
of CCDC124
. . SVM Response vs. non-response:
First-line FOLFIRI ML 75,54,21 Microarray DE gene profiles 18 genes Neural Networks AUC =0.778, 95% C.1. [101]

chemotherapy

Random Forest

0.575-979
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Table 2. Cont.

Evaluated Models and

Therapy Al Total, Training, Test Input Features Signature Selected Model Training Set * Test Set * Reference
Feature selection:
bl 1At Response vs. non-response: Response vs. non-response:
E‘irrf‘:)tleli‘aen‘f]’;zlsfclla:e‘;‘;ens ML 176,99,77 Cytokine expression data 17 cytokines M tion 83.5% SE, 80% SP, 81% ACC, 83.1% SE, 66.7% SP, 74.9% [83]
Multiple linear regression OS =18.4 vs. 51.5 mo ACC), OS =16.8 vs. 55.9 mo
s Random Forest for feature
First-line FOLFOX : - : ; : Response vs. non-response: Response vs. non-response:
chemotherapy ML 83,54,29 Microarray DE gene profiles 14 genes selectlon,' Quth'er detection 91.3% SE, 95.6% SP, 80.2% ACC 80% SE, 92.8% SP, 69.2% ACC [82]
and classification
First-line FOLFOX . . Response vs. non-response: ,
chemotherapy ML 44 Protein pattern data 6-proteins 92.9% SE, 81.3% SP [84]
First-line FOLFIRI . : Response vs. non-response: )
chemotherapy ML 26 Protein pattern data 7-proteins 92.3% SE, 92.3% SP [84]
First-line FOLFIRT : - Response vs. non-response:
chemotherapy ML 21 Microarray DE gene profiles 14-genes 92% SE, 100% SP, 95% ACC [92]
Clinical biomarkers learning models
Demographic data .. . B
Liver function tests Classification: gg‘)’;olcs%ldg(-)gifg}?}'%}/jiag74’
Tumor markers BSLR: Backward Stepwise (leukopenia)
Pharmacokinetic parameters Logistic <P ffect:
Irinotecan plus FOLFIRI ML 20 Anticancer treatment information; i.e., 3pharmaco Regression (diarrhea) ESZ;ICSSEId%% 237?09 CAEg‘SB’ [93]
chemotherapy prior nonfuoropyrimidine regimen, parameters C4.5 algorithm (netoltro/ er\i;) s 970 :
prior surgery, prior radiation, Random Forest for toxigsi de-effect: AUC = 0.95
fuoropyrimidine-based chemotherapy, (leukopenia) 81% SE. 100% SP = 100%.
concurrent surgery, concurrent SVM (neutropenia) 91% ACC (diarrhea)
radiation (categorical variables)
Anticancer treatment information; i.e.,
prior nonfuoropyrimidine regimen,
prior surgery, prior radiation,
fuoropyrimidine-based chemotherapy,
concurrent surgery, concurrent
36,030 patients radiation
(training set size not -cancer i_nformation; i.e., cancer stage,
reported, used data fumor sizes. i i Toxic side-effect:
First-line from 2006-11 + demographic variables; i.e., age, sex, Logistic Regression ision = 0.621, F1 = 0.396
fluoropyrimidine-based ML 10-fold cross race, and geographic areas Random Forest precision = 0.621, F1 = 0. [96]

regimens

validation)

(test set size not
reported, used data
from 2012-14)

socioeconomic status; i.e., county-level
median household income, education
prior cardiovascular disease histories
and other comorbidities; i.e.,
hypertension, hyperlipidemia,
diabetes

prior medications; i.e., beta-blockers,
angiotensin-converting enzyme

(ACE) inhibitors

XGBoost

AUC =0.801,95% C.1.
0.781-0.821 (cardiotoxicity)

Al artificial intelligence; ML, machine learning; DL, deep learning. AUC, receiver operating characteristic curve; SE, sensitivity; SP, specificity; ACC, accuracy; PPV, positive predictive
value; NPV, negative predictive value; HR, hazard ratio.
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learning models.

Table 3. Artificial Intelligence analysis of the response to targeted therapy for patients with colorectal metastasis. Data are grouped for imaging or biomarkers based

Evaluated Models and

Therapy Al Total, Training, Test Input Features Signature Selected Model Training Set Test Set Reference
Imaging biomarkers learning models
Response vs. non-response:
Second-line anti-VEGF therapy Automatically extracted features Response vs. non-response: oc_g{lgd%xg%z(%g”’ 9d50{3 cL
fli lus FOLFIRI, pri L i . - ' ;07U mocde
Sevl::fchgag “fuso sprior - pp (1:;)725;51(’5622{’893 lesions) from CT scans at differential time ~ Radiomics GoogleNet + LSTMwith4  _jndex - 0678, 95% C-Indexos = 0.694, 95% C.I. [85]
liplatin-b p d reoi ’ ’ points p 0.650-0.706 (DL model) 0.661-0.720 (DL model)
oxaliplatin-based regimens) 0S = 18 vs. 10.4 mo (HR = 0.49,
95% C.I. 0.40-0.61)
RAS mutation status and
non-responder to anti-EGFR
. therapy: AUC = 0.79, 95% C.1. i
Features Selection: o S RAS mutation status and
First-line anti-VEGF therapy Magnetic resonance imagin. Lasso 967(1);/02%58 t/" StE' 74.2 C/{‘ SP, non-responder to anti-EGFR
(bevacizumab plus MI%I baseli ging Classification:LDA - Dh 1 ( ele urte an del) therapy: 83.3% SE, 75% SP,
oxaliplatin/fluoropyrimidine- ML  76,52,24 ( ) at baseline Radiomics SVM morphological features mode 79.2% ACC (texture and [91]
48 texture features . Response vs. non-response .
based 15 morphological feat KNNArtificial neural . . morphological features model)
A phological features network according to RAS mutation 91.7% SE. 83.3% SP, 87.5%
regimens) Decision tree status: AUC =0.84, 95% C.L ACCO(tex't re fgat res hlc;)del)
0.780-0.91, 90% SE, 67.8% SP, v v
76.9% ACC (texture features
model)
Response vs. non-response:
AUC =0.849, 95% C.IL
. . . .737-0.926, 91.7% SE, 75% SP,
First-line anti-VEGF therapy g . amo) NI S
(bevacizumab with or without ?g\g ((;(f)ﬁzfsegt{iéog (I)) 321?1'7 o
OLF}?X/ ;OI}I}:IIRI{XI%%(’ DL (15303’12061 4’719 69 lesions) MRI at differential time points Radiomics DC3CNN Response vs. non-response: [98]
KRAS. NRAS and BRAE (o AUC =0.833,95% C.I.
o an 0.695-1.000, 91.9% SE, 75% SP,
wild-types) ACC of 88.5%, 69.2% NPV,
93.8% PPV (four features
model)
202.162.40 Treated /untreated
irst-li i-VEGF th (treated /untreated lesion classification: . .
\First-line anti-VEGF therapy classification) Contrast-enhanced (CT) scans DT, SVM-RBF, ANN, Response vs. non-response: Response vs. non-response:
(bevacizumab plus FOLFOX DL 120 84,1224 at baseline Radiomics Inception-inspired CNN AUC =0.83,95% C.I. 0.78-0.87, AUC =0.88,95% C.I1.0.85-0.94,  [86]
chemotherapy) (tre/atrr/uer{t response Texture analysis (TA) features Treat'm?nt response 97% SE, 59% SP, 78% ACC) 98% SE, 54% SP, 76% ACC
classification) prediction:

CNN
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Table 3. Cont.
Therapy Al Total, Training, Test Input Features Signature EZ{’;E&?‘M\(/){;&EIS and Training Set Test Set Reference
RELIEF
Fisher ScoreChi Squared
High and standard quality (HQ M%{MR
o . and SQ) CT scans at differential ‘t/;,.leSt Response vs. non-response: Response vs. non-response:
First-line anti-EGFR therapy 116,78,38 (HQ set) time points Url‘fo"r‘l"} model AUC =0.83,95% C.I1.0.75-0.92,  AUC = 0.80, 95% C.I. 0.69-0.94,
(cetuximab plus FOLFIRI ML e (SQSS‘;O 1749 Radiomics Features Radiomics For Unsaification: 77% SE, 85% SP (HQ cohort) 80% SE, 78% SP (HQ cohort) [87]
chemotherapy) e 1742 VGG16 extracted S\/Mi AUC =0.84,95% C.1. 0.76-0.89 AUC =0.72,95% C.I. 0.59-0.83,
image features KNN (SQ cohort) 82% SE, 61% SP (SQ cohort)
8 rim specific features Naive Bayes
Bagging
Lasso
Random Forest
First-line anti-EGFR therapy Clustering: Response vs. non-response in
(cetuximab plus FOLFIRI or ML 1886 CT scans and MRI at baseline Radiomics K_lﬁ ez;u;g' KRAS mutated tumors: [88]
FOLFOX chemotherapies) HRos =1.44,95% C.1. 1.08-1.92
Response vs. non-response in
. . . Response vs. non-response in RAS wild-type and HER2
Last-line dual anti-HER2 therapy Features Selection pon P WrAtyp
(lapatinib plus trastuzumab or ML 38,28,10 patients CT scans at baseline Radiomi Genetic algorithms (GAs) RAS W}ld—type an'd PEERZ am lified tumors: 9(1% SE, [74]
pertuzumab plus 141,108,33 lesions 24 radiomics features adiomics ClassificationGaussian am léfled E}lmOI‘S‘ 890//0 SE, 412 o SP, 73 é" FP V, 71% NPV
bemantansine) naive Bayesian classifier 85% SP, 93% PPV, 78% NPV (lesion model)
trastuzuma (lesion model) 92% SE, 86% SP, 96% PPV,
75% NPV (patient model)
Molecular biomarkers learning models
Feature selection:
o . Ensemble of statistical and
First-line anti-VEGF therapy 16-long hine 1 i del '
(bevacizumab plus ML 2289,2277,12 Immune infiltration data noncoding g:lii,i;r;? ;:;F 181157 modets Kﬁgo,n %e;%' non-response: [94]
5-fluorouracil-based regimens) RNA -ySIs: e
& Cox proportional
hazard model
Feature selection:
. . . Ensemble of statistical and
First-line anti-VEGF therapy 16-long hine 1 i del: .
(bevacizumab plus ML 2291,2277,14 Immune infiltration data noncoding rsrrrcvigﬁ aﬁ}r{;}g modess i%s 0=r1%e6\§56. non-response: [94]
5-fluorouracil-based regimens) RNA Cox proporti onaIA :
hazard model
Feature selection:
s . Ensemble of statistical and
First-line anti-VEGF therapy 16-long hine 1 i del :
(bevacizumab plus ML 2305227728 Immune infiltration data noncoding Survival amalysier RESRONSE NS MONTIESPONSE: oy
. . ysis: AUC =0.781
5-fluorouracil-based regimens) RNA

Cox proportional
hazard model
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Table 3. Cont.
Therapy Al Total, Training, Test Input Features Signature SZ{’;&?;?VP(/)[&)(SEIS and Training Set Test Set Reference
SVM Improved survival:
IIZ(I)\%Il\?hC regression glsz §N0T6=7 2537, 95% C.L I . -
sratli ; : .428-0. mproved survival:
FblrSt h.ne antLV]IEG};gE;%?(I ML 650,105,545 Next generation sequencing 67 II\\I/[;l‘flelaB);ereIS’erceptron TTNT =11.5 vs. 8.2 mo HRIZ)S =0.629,95% C.I. 99
(bevacizumab plus e (NGS) data -gene d 'yD' - Improved survival: 0.404-0.981 [99]
chemotherapy) Srﬁygshc iscriminant HRos = 0.466, 95% C.1. 05 =30 vs. 15.9 mo
Gaussian Process 00ng 4%6‘/750 24.5 mo
Random Forest Ensemble T
SVMLogistic regression
Mulilayer P
First-line anti-VEGF therapy Multilayer Perceptron Improved survival:
(bevacizumab plus FOLFOXIRI ML 208,105,103 NGS data 67-gene aive Bayes i FiKos = 0483, 957 C.1. [99]
h therapy) Qua rgtlc iscriminant .2700.
chemo 1% analysis OS =30 vs. 15.9 mo
Gaussian Process
Random Forest Ensemble
Survival in KRAS wild-type
with CBP rs129963 T/ T variant:
OS =228 vs. 26 mo and
PFS =9.5 vs. 10.5 mo
Survival in KRAS wild-type o .
Feature selection: with TBK1 rs7486100 A/ A Survwa! in KRAS mutant with
Random Survival Forests variant: OS = 31.3 vs. 24.8 mo {3-catenin rs3864004 A/A
First-line anti-VEGF therapy Variable importance and I_’FS = 11.3 vs. 10.3 mo genotype: OS =16.3 vs.
(bevacizumab plus FOLFIRT ML 488,345,143 Genotyping data 27 SNPs Minimal depth Survival in CCL2 rsd586 T/T 353 mo and PFS=7.8 vs. [102]
chemotherapy Survival analysis: carriers: OS = 30.9 vs. 22.8 mo .6mo )
Kaplan—Meier curves Survival in VEGFR2 rs2305948 Survival in KRAS mutant with
ap any C carriers: TBK1 rs7486100 A/ A variant:
Log-rank test OS =262 vs. 17.0 mo PFS =10.3 vs. 8.6 mo
Survival in DMRT1 rs755383
any T carriers:
PFS =9.4vs. 9.0 mo
Survival in MMP2 rs243865 any
T carriers: OS = 28.5 vs. 20.3 mo
Improved survival:
HRpps = 0.52, 95% C.I. 0.33-0.83
Decreased survival:
HRpps = 2.3, 95% C.I. 1.19-4.57
Decreased survival in NLRP1 Improved survival:
Combination of two Cox any A and SRL AA carriers: HRpgs = 0.42,95% C.1.
First-line anti-VEGF therapy penalized regression HRpgs =8.3,95% C.I. 3.3-21 0.21-0.85 in the NLRP1
(bevacizumab plus FOLFIRI ML 558,180,378 Exome-sequencing data 1 or 2-SNPs models: and 2.2,95% C.I. 1-5 TT carriers [89]

chemotherapy)

Lasso
Elastic Net

Decreased survival in KRAS
wild-type and concomitant
carriers in combination with
NLRP1 any A and SRL AA:
HRpgs = 8.3, 95% C.I. 3.3-21
and 2.2,95% C.I. 1-5

OS =12 vs. 27 mo

Decreased survival:
HRpgs = 2.5,95% C.I. 1.12-5.5
in the SRL AA carrier
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Table 3. Cont.

Therapy Al Total, Training, Test Input Features Signature EZ{’;E&?‘M\(/){;&EIS and Training Set Test Set Reference
Second-line anti-EGFR therapy In}proved- survival in KRAS
(panitumumab with or without ;‘gl/d'éyf’% 3}71R6’F759: 0.54,
irinotecan, prior ML 499,274,225 Immunochemistry (THC) data Amphiregulin 0S = 8.0 vs, 32 mo [97]
fluoropyrimidine-based e y /epiregulin Impro{/e d survival in KRAS
regimens, WIFh or and BRAF wild-types:
without oxaliplatin) HRpgs = 0.53, 95% C.1. 0.36-0.78

Response vs. non-response:

HRpenetit = 0.69, 95% C.I.

Modified Random Forest 0.49-0.98
1 . . using SurvDiff in place of Response vs. non-response:
First-line anti-EGFR therapy Genome wide Gini index to split the data  HRyo perefit = 1.32, 95% C.L.
(CAPEOX-B chemotherapy plus ML 553,368,185 genotyping and 781-SNPs at each node 1.07-162 (SNP model) [90]
or without cetuximab) survival data Classic RF with survival Response vs. non-response:
derived data labels HRpepefit = 0.52,

95% C.I. 0.35-0.76

(sex chromosome model)
First-line anti-EGFR therapy
(FOLFIRI) or anti-VEGF therapy
(fluoropyrimidine-based 7-gene Decreased survival:
regimens, with or without ML 859,471,388 NGS data classifier HRpps = 16.9, 95% CI 4.2-68.0 [100]

oxaliplatin or irinotecan or
FOLFOXIRI or other regimens
plus or without bevacizumab)

Al, artificial intelligence; ML, machine learning; DL, deep learning. AUC, receiver operating characteristic curve; SE, sensitivity; SP, specificity; ACC, accuracy; PPV, positive predictive
value; NPV, negative predictive value; HR, hazard ratio; TTNT, time-to-next treatment.
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3.1. Outcomes and Performance Estimates of Predictive Models

Different clinical endpoints, including the median values of the OS, the PFS, the
TTNT or the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, were used
to analyze the response to therapy in periods of time consistent between different studies,
commonly after 6 or more months from the last cycle of chemotherapy, but shorter time
pharmacoparameters were employed to study toxic side-effects. Several performance
metrics, such as the AUC, the Harrell’s concordance C (C-index), the SE, the SP, the accuracy
(ACCQ), the positive predictive value (PPV) and the negative predictive value (NPV), the
classification precision and F1 scores (the harmonic means of the precision and recall) and
patient survival estimation by hazard ratio (HR) were used to evaluate the predictive power
of various algorithms for correctly classifying response vs. non-response.

3.2. Publication Validation

When data quality was assessed in the 26 Al study included in the systematic review
and the meta-analysis [74,75,79-102], we identified a common gap that consisted in the lack
of an external validation cohort, that was missing in more than the half of the investigations
(Table 4 and Supplementary Table S1). Outliers, missing values and C.I. were also not
handled by most of the studies.

Table 4. Least frequently met study quality items modified by Brnabic and Hess [72].

Study

State if Outliers with State How External Validation If Possible, Report the Meta-Analysis References

Impossible or Extreme Missing Values Should also Be Parameter Estimates in the Inclusion

Responses Are Removed;  Were Handled. Performed Whenever Model and Their Confidence

State Any Criteria Used Possible Intervals or Report

for Outlier Removal. Non-Parametric Estimates

from Bootstrap Samples.

Johnson (2022) Yes Yes Yes No No [100]
Li (2022) Yes Yes Yes Yes No [96]
Liu (2022) No No Yes No No [94]
Giannini (2022) Yes Yes Yes Yes Yes [75]
Granata (2021) Yes Yes Yes Yes No [91]
Abraham (2021) No No Yes Yes Yes [99]
Naseem (2021) No No Yes No No [102]
Defeudis (2021) Yes No No No No [81]
Nakanishi (2021) Yes Yes No Yes Yes [79]
Wei (2021) No No No No Yes [80]
Williams (2021) No No No Yes No [97]
Tian (2021) Yes Yes Yes Yes No [95]
Lu (2021) No No No Yes No [85]
Giannini (2020) Yes Yes No No No [74]
Ubels (2020) No No No Yes Yes [90]
Dercle (2020) No Yes No Yes Yes [87]
Barat (2020) No No Yes Yes No [89]
Zhu (2020) No Yes Yes Yes Yes [98]
Maaref (2020) No No No Yes Yes [86]
Lu (2020) No No No Yes Yes [101]
Vera-Yunca (2020) Yes No No Yes No [88]
Oyaga-Iriarte (2019)  No No No No No [93]
Chen (2014) No No No Yes No [83]
Tsuji (2012) Yes Yes No No No [82]
Yuan (2012) No No No No No [84]
Del Rio (2007) No No No Yes No [92]

3.3. Artificial Intelligence Predictive Models

In the following paragraphs, we provide a perspective of the progress in computer
science by reviewing the roles that learning techniques have played in cancer research with
predictive algorithms of response to chemotherapy alone or combined with targeted therapy
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as well as for predicting individual toxicity for mCRC patients. As shown in Tables 2 and 3,
26 studies were conducted to develop and validate different predictive algorithms for
mCRC patients [74,75,79-102]. In the Al investigations, cohorts were generally divided
into a training and a validation set to train and validate the developed models to avoid
overfitting, with the exception of three studies [79,92,93], that did not split the data. Data
on training and validation set were also not always reported. In radiomics studies, different
timepoints in the same person were often used in both the training and testing sets, e.g.,
at baseline and after chemotherapy. The distribution of the outcome cases, e.g., numbers of
responders vs. non-responders, was commonly different in the testing and training data sets of
the 26 Al investigations. Information on the distribution of the outcome cases, e.g., numbers of
responders vs. non-responders, was generally missing, with the exception of three Al studies,
where the following frequency were reported: 131 responder vs. 61 non-responders in the
study of Wei et al. [80], 42 responder vs. 41 non responders in the study of Tian et al. [95],
and 184 responders vs. 210 non responders in the study of Liu et al. [94].

3.4. Cytotoxic Chemotherapy and Radiomics Learning Models

As mentioned above, oxaliplatin is widely used as part of first-line therapy in mCRC
patients. However, only some patients achieve OR, and most of them will progress in the
subsequent months [5]. To evaluate the treatment response of mCRC to first-line FOL-
FOX chemotherapy, Giannini et al. [75] have employed several ML networks to build a
radiomic signature using texture features from contrast-enhanced computed tomography
(CT) scans of liver metastasis performed at baseline and at subsequent time points. In
that investigation, the authors published a delta-radiomic signature capable of correctly
identifying lesions as responder vs. non-responder to oxaliplatin-based regimen. The best
performance was shown by a tree-structured algorithm in respect to other networks, a SVM
and a random forest, with AUCs of 0.99 (95% C.I. 0.97-1.0, 99% SE, 94% SP, ACC of 97%)
and 0.93, (95% C.I. 0.87-0.96, 85% SE, 92% SP, ACC of 86%) in training and validation sets,
respectively. In another study, Nakanishi et al. [79] developed computer-aided prognostic
models aiming to distinguish mCRC patients suitable for standard chemotherapy. Specifi-
cally, they used a learning regression model to construct a radiomic signature for assessing
the response to oxaliplatin-based first-line chemotherapy using the texture features from
pretreatment contrast-enhanced CT scans of liver metastases. The radiomic signature
built was able to discriminate responders vs. non-responders and the performance of the
learning model reached AUCs of 0.851, 95% C.I. 0.771-0.930 and 0.779, 95% C.IL. 0.617-0.940,
in training and validation arms, respectively.

Using a computational approach, Wei et al. [80] have evaluated the power of a DL
model to predict the response to first-line regimens including oxaliplatin or irinotecan for
mCRC or recurrent CRC patients using data from pretreatment contrast-enhanced multide-
tector tomography (MDCT) scans of liver metastases. The radiomic signature constructed
by a residual network architecture algorithm reached a high predictive performance for
chemotherapy response with an AUC of 0.903, 95% C.I. 0.851-0.955. The classifier was
found to be able to identify responders vs. non-responders with 84.7% SE, 84.8% SP, ACC
of 84.7% on the training set, but lower estimates were observed in the validation set (AUC
of 0.745, 95% C.1. 0.659-0.831, 90% SE, 73% SP and ACC of 85.4%). A better performance
was instead obtained by the final fusion radiomic signature that integrated the response of
carcinoembryonic antigen serum level, with AUCs of 0.935, 95% C.1. 0.897-0.973 and 0.830,
95% C.I. 0.688-0.973 on training and validation sets, respectively.

To identify radiomics signatures predictive of response to standard chemotherapy (i.e.,
first-line FOLFOX or FOLFIRI) for mCRC patients, Defeudis et al. [81], have developed
and validated several ML technologies for predicting the response to first-line FOLFOX
or FOLFIRI using data derived from pretreatment CT scans of metastatic lesions. In that
study, different radiomic features were fed as inputs to the learning model, including those
extracted from the whole metastasis by a 3D approach and others from the traditional
region of interest. The best performance in identifying responder vs. non-responder lesions
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was given by a SVM classifier with 3D data approach rather than by a Gaussian naive
Bayes or a multilayer perceptron algorithms in per-lesion analysis. The performance of SVM
showed 76% SE, 67% SP, ACC of 72%, 69% PPV, 75% NPV and 61% SE, 60% SP, ACC of
61%, 64% NPV, 57% PPV in training and validation sets, respectively. Conversely, when
SVM algorithms were carried out in per-patient analysis, the model yielded only an ACC of
32%, 41% SE and 21% SP, with 23% NPV and 38% PPV on validation set.

3.5. Cytotoxic Chemotherapy Alone and Biomarkers and Clinical Learning Models

Tian et al. [95] have investigated the response to FOLFOX chemotherapy by ML
technique using publicly available genomic data of mCRC patients from GSE28702 and
GSE72970 cohorts. In this study, a 74-gene signature, identified by different learning algo-
rithms in the top rank 250 genes, was used by an iterative supervised learning (IML) method
to classify mCRC cases into responder or non-responder. The learning prediction model
showed a SE of 97.6% and a SP of 100% in the training set, whereas the survival analysis
resulted in a HR of 2.6 in the validation set with a median OS time of 13.4 months in non-
responders vs. 36.6 months in responders. The pattern of gene signature of non-responders
showed increased expression of ERCC excision repair 1, endonuclease non-catalytic subunit
(ERCC1) and dihydropyrimidine dehydrogenase (DPYD) genes, suggesting high catabolism
rate and efficient nucleotide excision repair.

Long noncoding RNAs (IncRNAs) have been involved in most of fundamental tumor
processes including epithelial-to mesenchymal transition (EMT), immunity and angiogene-
sis [103,104], through a IncRNA transcriptome analysis that identified IncRNAs associated
with these and other features in CRC. However, the clinical significance of IncRNAs is still
unclear. To explore this issue, Liu et al. [84] have employed different ML models to develop
and validate an immune related signature able to predict the response to 5-fluorouracil-
based regimens with or without anti-VEGF therapy. In particular, immune infiltration
data of CRC patients, including cohorts of patients with CRC metastasis, from the TCGA
Research Network portal (https://portal.gdc.cancer.gov/ (accessed on 30 April 2022))
and Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ (accessed on
30 April 2022)) were used. In this system, 235 IncRNA modulators of immune-related
pathways, including the T cell receptor signaling and antigen processing and presentation
pathways, were identified by integrated algorithms using molecular data derived from
immune infiltration patterns of the TCGA-CRC database (https:/ /portal.gdc.cancer.gov/
(accessed on 30 April 2022)). Forty-three potential predictive IncRNAs were then used to
build a consensus immune-related IncRNA signature (IRLS) by an integrative combination
of Lasso and stepwise Cox regression, which identified a final signature formed by 16 pre-
dictive IncRNAs. The classifier was formed by immune-related IncRNAs encoded from the
following RNA genes, the imprinted maternally expressed transcript (H19), the long intergenic
non-protein coding RNA 308 (LINC00308), the epithelial cellular adhesion molecule (EpCAM),
the SEPTIN7 divergent transcript (SEPTIN7-DT), the ASH1 like histone lysine methyltransferase
(ASH1L), the MRGPRG antisense RNA 1 (MRGPRG-AS1), the MIR210 host gene (MIR210HG),
the uncharacterized LOC100507250 (LOC100507250), the fibrous sheath interacting protein 1
(FSIP1), the leucine-rich repeat-containing protein 61 (LRRC61-1) and the long intergenic non-
protein coding RNA 2560 (LINC02560). In this study, responders to chemotherapy were
characterized as having higher levels of IRLS signature than non-responders, whereas the
levels of IRLS signature were decreased in metastatic or recurrent CRC patients who were
sensitive to anti-VEGF therapy. In particular, the IRLS signature was found to predict the
response to fluorouracil-based regimens for metastatic or recurrent CRC patients on the
GSE19860 (AUC of 0.843), GSE69657 (AUC of 0.765), and GSE72970 (AUC of 0.709) cohorts,
as well as the benefits of adding bevacizumab on the GSE19860 (AUC of 0.771), GSE72970
(AUC of 0.781) and GSE19862 (AUC of 0.694) cohorts. Of note, performance estimates
might reflect small sample size of different GSE cohorts (Tables 2 and 3).

Prognosis for mCRC can be influenced by different gene expression profiles [105].
Hence Lu et al. [101] have investigated the performance of several ML techniques to
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predict the response to first-line FOLFOX chemotherapy using gene expression data. In this
investigation, the authors identified 18 differentially expressed genes (DEGs), that were
enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling,
apoptosis, and antifolate resistance pathways, between FOLFOX responders and non-
responders. Based on the 18-gene classifier, a random forest was able to predict the response
to FOLFOX chemotherapy with a performance (AUC) of 0.877, 95% C.I. 0.747-1.00, with
85% in SE and 69.2% in SP in validation set. In addition, the authors demonstrated that the
over expression of the mixed lineage kinase domain like pseudokinase (MLKL) and the coiled-coil
domain containing 124 (CCDC124) genes were associated with increased survival (HR of
0.358,95% C.I. 0.178-0.717 and 0.563, 95% C.1. 0.336-0.943, respectively). However, when
the learning models were applied to predict the response to FOLFIRI chemotherapy, the
best model was the neural network algorithm with an AUC of 0.778, 95% C.I. 0.576-0.979.

Chen et al. [83] had the aim of constructing a learning model predictor for the response
to oxaliplatin- or irinotecan-based regimens using circulating cytokines in mCRC patients.
In that study, the authors identified a predictive signature of 17-cytokines using univariate
SVMs, including the fibroblast growth factor-2 (FGF-2), a growth factor and signaling
protein, the transforming growth factor o« (TGF«), an angiogenic cyfokine and an endothelial
growth factor, the cytokine Fms-like tyrosine kinase 3 ligand (F1t3), an important regulator of
hematopoiesis, the human interferon x-2 (INFx2), the inflammatory interleukins 2, 7, 8 and
10 (IL-2, IL-7, IL-8, and IL-10), the soluble form of IL-2 receptor (sIL-2Ra), the tumor necrosis
factor o (TNF«), the inflammatory cytokines monocyte chemotactic proteins 1 and 3 (MCP-1
and MCP-3), the VEGE, the macrophage-derived chemokine (MDC), and the granulocyte-
macrophage colony-stimulating factor (GM-CSF) [106]. Based on the 17-cytokine signature,
a COX proportional hazard model was able to predict a worst survival in the group of
high-risk patients characterized by high-cytokine expression, with an overall SE of 83.5%,
80% in SP, and an ACC of 81% on the training set. Comparable estimates were computed on
the validation set (83.1% in SE, 66.7% in SP, and 74.9% ACC). Moreover, high-risk patients
showed a worst OS as compared to low-risk patients in both training and validation arms.

Tsuji et al. [82] utilized a random forest to build a learning model that could predict
the response to first-line FOLFOX chemotherapy using gene-expression data from mCRC
patients. In this study, the authors determined a gene signature for FOLFOX based on
the gene expression of 14 classifier genes. In more detail, the 14-gene signature was
constituted by different genes, including the smad ubiquitin requlatory factor 2 (SMURF2), a
negative regulator of TGF-f signaling with a tumor-suppressive role [107], the Mbt domain
containing 1 (MBTD1), encoding a potent transcriptional coactivator [108], the adaptor
related protein complex 3 subunit Mu 2 (AP3M2), the RING finger protein 141 (RNF141), a
gene reported to interact with KRAS promoting CRC progression [109], the aminopeptidase
puromycin sensitive (NPEPPS), encoding key zinc metallopeptidases [110], the bromodomain
PHD finger transcription factor (BPTF), a chromatin remodeling-related gene [111], the family
with sequence similarity 73, member A (FAM73A), the amyloid beta precursor protein binding
protein 2 (APPBP2), the archaelysin family metallopeptidase 2 pseudogene 1 (AMZ2P1), the
SLIT-ROBO rho GTPase activating protein 1 (SRGAP1), that encodes a protein mediating
cell migration associated with CRC tumor progression and poor prognosis [112], the N-
myristoyltransferase-1 (NMT1), necessary for lysosomal degradation and mammalian target
of rapamycin (mTOR) signaling pathway [113], the centrosome and spindle pole associated
protein 1 (CSPP1), whose circ-CSPP1 was found to be significantly overexpressed in CRC
tissues [114], the eukaryotic translation initiation factor 1 (EIF1), and the centrosomal protein 290
(CEP290) genes. Using the 14-gene classifier, the learning model was capable of classifying
responders with an overall SE of 91.3% compared with non-responders with 95.6% in SP,
achieving an ACC of 80.2%. In addition, responders showed an extent of 22.7 more months
of median OS compared with non-responders in the training set.

Yuan et al. [84] have constructed a protein-based prediction model for analyzing the
response to first-line with FOLFOX or FOLFIRI regimens for mCRC patients. Using this
protein-based algorithm, responders to both treatments were identified with an overall
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SE of 92.9% and an 81.3% SP for FOLFOX and a SE of 92.3% and 92.3% SP for FOLFIRI
regimens. Similarly, Del Rio et al. [92] have used ML approaches to build a predictor of
chemotherapy response using gene expression data for mCRC receiving FOLFIRI regimens.
By a learning approach, a pattern of 14 highly discriminatory genes involved in several
pathways was investigated for assessing the potential predictivity. The main pathways
were including RNA splicing (U2AF1L2), regulation of transcription (ZNF32 and ZNF582),
cell adhesion (F8, galectin-8, PSGY), cell differentiation (SERPINE2, BOLL), ion transport
(ATP50), signal transduction (DRDb5), development (ANGPTL2) and visual perception
(EML2). In this investigation, a SVM model reached 92% SE, 100% SP and 95% ACC in
classifying mCRC patients and identifying the subset of them who could benefit from
FOLFIRI chemotherapy.

Irinotecan-based regimens can cause a heavy collateral effect leading to the delay or
even the suspension of chemotherapy with a subsequent impact on the survival of mCRC
patients. The study of pharmacokinetic parameters is a valuable option to improve both
efficacy and safety of cancer drugs administration. In mCRC treatment, pharmacokinetic
studies have revealed that systemic exposure to irinotecan is highly variable among pa-
tients. Therapeutic drug monitoring and genotype-driven studies might thus be helpful
in applying dosage adjustments for this drug. Oyaga-Iriarte et al. [93] developed various
ML algorithms for predicting side effects of irinotecan regimens using pharmacokinetic
parameters in mCRC patients. In this network, the best mathematical model for predicting
leukopenia in patients with liver metastasis was built by random forests (AUC of 0.74, 89%
in SE, 60% in SP, and 76% ACC). The more performant model for predicting neutropenia
was the supervised SVM algorithm (AUC of 0.88, 70% in SE, 70% in SP, and 75% ACC),
while the best learning model for predicting diarrhea was the backward stepwise logistic
regression (AUC of 0.95, 81% in SE, 100% in SP, and 91% ACC).

To develop a predictive model for the risk of cardiotoxicity, a severe side effect of stan-
dard chemotherapy, Li et al. [96] employed different ML methods to analyze the outcome
of 30-day cardiotoxicity—using any cardiotoxicity event—on a large cohort of 36,030 CRC
patients undergoing fluoropyrimidine-based chemotherapy. The cardiotoxicity events
were correlated to six broad classes of variables available in the SEER-Medicare database,
including anticancer treatment information, cancer information, demographic variables,
socioeconomic status, prior cardiovascular disease histories and other comorbidities, prior
medications. The algorithm reaching the highest performance was an extreme gradient
boosting (XGBoost) algorithm, based on cardiovascular features such as ischemic heart
diseases, cardiomyopathy, arrhythmia and stroke, that showed a precision of 0.621, F1
score of 0.396 and an AUC of 0.801, 95% C.I. 0.781-0.821 in predicting cardiotoxicity in
mCRC patients.

3.6. Targeted Therapy and Radiomics Learning Models

Tumor response assessment is commonly based on tumor size change on instrumental
images, but morphological changes in tumor can occur earlier in response to antiangiogenic
agents. To face this limit, Lu et al. [85] utilized data derived from pretreatment and follow-
up CT scans of metastases and lymph nodes to construct DL networks aimed to predict
the response to anti-VGEF agents in mCRC patients from the VELOUR trial [115]. In this
investigation, the DL network architecture constructed with CNN and RNN networks and
based on the quantitative characterization of tumor morphological changes, was able to
give an early prediction of treatment response. The performance of the DL model showed C-
indexes of 0.678, 95% 0.650-0.706 and 0.649, 95% C.I. 0.619-0.679 on training and validation
arms. The integration of the DL network with traditional size-based methodology still
improved the performance with a C-Index of 0.694, 95% C.I. 0.661-0.720. The DL network
also reached higher power in classifying responders and non-responders to antiangiogenic
drugs with responders having a better OS than the non-responders, with median OS
18 vs. 10.4 months, respectively (HR of 0.49, 95% C.I. 0.40-0.61).



Cancers 2022, 14, 4012

22 of 38

Learning models combined with the analysis of RAS mutations can offer important
advantages for predicting the response to treatments of CRC metastases. Patients with
tumors carrying RAS mutations are in fact considered non-responders to anti-EGFR therapy
whereas those with wild-type RAS status are not always sensitive to anti-EGFR antibodies
due to the less frequent mutations in the EGFR signaling pathway [39]. To correlate radiomic
parameters to RAS mutational status, Granata et al. [91] have examined the association of
RAS mutational status with anti-EGFR therapy by ML using data derived from pretreatment
contrast enhanced magnetic resonance imaging (MRI) of liver metastases in mCRC patients
from the OBELICS cohort [116]. Using a radiomic signature based on both textures and
morphological features, RAS mutational status was better detected by a supervised SVM
algorithm as compared to other learning algorithms, as a k-nearest neighbors (KNN), an
ANN, and a DT network (AUCs of 0.79, 95% C.I. 0.70-0.85, 78% SE, 74.2% SP, ACC of 76.1%
and 83.3% SE, 75% SP, ACC of 79.2% in training and validation sets). However, the best
result was obtained by a supervised KNN algorithm exclusively fed with robust textures
as predictors (AUC of 0.84, 95% C.I. 0.780-0.91, 90% SE, 67.8% SP, ACC of 76.9% and 91.7%
SE, 83.3% SP, ACC of 87.5% on training and validation arms).

Zhu et al. [98] analyzed the response to anti-VEGF therapy by DL, using features
extracted from preoperative and post-operative MRI of no more than five liver metastatic
lesions in mCRC patients. Using a densely connected center cropping CNN (DC3CNN)
architecture, features from input data, pre-treatment T2-weighted image, post-treatment
data, were extracted to construct three predictive models. The best performance for differ-
entiating non-responder and responder patients was obtained by the DL model containing
all the features with an AUC of 0.849, 95% C.I. 0.737-0.926, 91.7% SE, 75% SP, ACC of 87.5%,
75% NPV, 91.7% PPV in the validation set. In addition, the performance of the radiomic
signature was further validated in an external independent cohort, with AUC of 0.833,
95% C.I. 0.695-1.000, 91.9% SE, 75% SP, ACC of 88.5%, 69.2% NPV, 93.8% PPV. DL also
demonstrated better PFS and OS in responder vs. non-responder groups.

Maaref et al. [86] utilized a DL computational tool to predict the response to anti-VEGF
therapy using the textures derived from pretreatment contrast enhanced CT scans of liver
metastases of mCRC patients. In this work, a fully automated network (DCNN) achieved
higher performance to identify new lesions appearing on CT images by classifying tumors
in “treated” vs. “untreated lesions” as compared to other algorithms, as DT, SVM, and
ANN models, with AUCs of 0.97 vs. 0.66, 0.60 and 0.62, respectively. The unsupervised
DCNN algorithm showed early detection of non-responsive patients with respect to all
untreated lesions with AUCs of 0.83 (95% C.I. 0.78-0.87, 97% SE, 59% SP, ACC of 78%)
and 0.88 (95% C.1. 0.85-0.94, 98% SE, 54% SP, ACC of 76%) in the training and validation
arms, respectively.

Dercle et al. [87] conducted a study aiming to develop an algorithm predictive of
tumor sensitiveness to standard chemotherapy with or without anti-EGFR agents by ML,
using data derived from pretreatment and follow-up CT scans for mCRC patients from the
CRYSTAL cohort [9]. The authors observed that the radiomic signature based on spatial
and temporal heterogeneity of tumors was highly performant to predict treatment-sensitive
tumors to anti-EGFR targeted therapy. The best predictive model was constructed by a
random forest algorithm using high quality medical images with AUCs of 0.83 (95% C.I.
0.75-0.92, 77% SE, 85% SP) and 0.80 (95% C.I. 0.69-0.94, 80% SE, 78% SP) in the training and
validation sets, respectively. Comparable results were obtained using standard of care scans
with AUCs of 0.84 (95% C.I. 0.76-0.89) and 0.72 (95% C.I. 0.59-0.83) in the training and
validation arms, respectively. The high-risk radiomic signature was associated to shorter
OS as compared to the patients with low-risk signature in both training and validation
sets. However, such radiomic signatures failed to predict sensitivity when the response to
chemotherapy alone was investigated.

Vera-Yunca et al. [88] constructed a predictive model of response to anti-EGFR therapy
by learning algorithms using features derived from pretreatment CT scans and MRI for
mCRC patients from the CRYSTAL [9], APEC [117], Study 045 [118] and OPUS [119] cohorts.
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In this investigation, the k-means clustering constructed with data of tumor heterogeneity
in lesion dynamics was predictive of OS in mCRC patients. The model showed that high
tumor heterogeneity was associated with a worst OS with an HR of 1.44, 95% C.1. 1.08-1.92,
mostly in patients with KRAS mutated tumors.

Recently, anti-HER?2 therapy has proven to be a beneficial treatment option for mCRC
patients with HER2 amplification or overexpression [43]. Therefore, to predict the response
to dual anti-HER?2 therapy, Giannini et al. [74] developed and validated ML networks
predictive of the response to trastuzumab and lapatinib using data from baseline CT scans
of liver metastases of mCRC patients with RAS wild-type and HER2 amplified tumors
from the HERACLES cohort [120]. In this network, a Gaussian naive Bayesian classifier
reached high performance in identifying responder vs. non-responder lesions in patients
with heterogeneous response, with 89% SE, 85% SP, 93% NPV, 78% PPV, and 90% in SE, 42%
in SP, 73% NPV, 71% PPV, in training and validation lesions sets, respectively. Comparable
high predictive values were also obtained by the radiomic score in predicting overall patient
response with 92% SE, 86% SP, 75% NPV, 96% PPV in patient arm.

3.7. Targeted Therapy and Biomarkers Learning Models

The reported limited clinical efficacy of angiogenesis inhibitors [5] has prompted
the need for better understanding of resistance mechanisms and the elucidation of novel
predictive models. To direct attention to this item, Abraham et al. [99] studied the response
to anti-VEGF therapy, including bevacizumab plus FOLFOX or FOLFOXIRI regimens,
by a learning approach using data from next generation sequencing (NGS) in mCRC
patients from the TRIBE2 cohort [121]. In that investigation, the genomic features of
592-gene data fed as inputs into more than one hundred learning models, produced a final
model containing a 64-gene classifier. This 64-gene predictive classifier, named FOLFOXai,
consisted of several genes involved in relevant pathways. The following genes were
included in the signatures: the mediating WNT signaling (BCL9 and CDX2), epithelial-to-
mesenchymal transition (EMT, INHBA, PRRX1, PBX1, and YWHAE), chromatin remodeling
(EP300, ARID1A, SMARC4, and NSD3), DNA repair (WRN and BRIP1), NOTCH signaling
(MAML?2), and cell-cycle regulation (CNTRL and CCNE1). By FOLFOXai, mCRC patients
were distinguished in “increased benefit” (IB) vs. “decreased benefit” (DB), where the
category of IB showed improved clinical outputs in both oxaliplatin-containing arms.
Moreover, the signatures showed a median TTNT of 11.5 months for IB and 8.2 months
for DB, HR of 0.537, 95% C.I. 0.428-0.674, as well as a median OS of 42 months for IB and
24.5 months for DB, HR of 0.466, 95% C.I. 0.325-0.670 in the FOLFOX/bevacizumab arm.
Conversely, the FOLFOXai prediction resulted inverted in FOLFIRI cohort with a median
OS of 18.7 months for IB and 34.4 months for DB, HR of 2.631, 95% C.I. 1.041-6.649. A
median PFS of 9.6 months for IB vs. 8.7 months for DB, HR of 0.757, 95% C.I. 0.505-1.135 and
a median OS of 24.8 months for IB vs. 18.7 months, HR of 0.629; 95% C.I. 0.404-0.981 were
detected in the FOLFOX /bevacizumab arm. Improved median PFS of 13.8 vs. 7.6 months,
HR of 0.683, C.I. 0.396-1.181 and higher median OS of 30 vs. 15.9 months, HR of 0.483, C.I.
0.270-0.864 were even reported in the FOLFOXIRI/bevacizumab arm.

KRAS mutation profiles status can predict the response to treatment in mCRC [39],
therefore Naseem et al. [102] have investigate by random survival forests method selected
single nucleotide polymorphisms (SNPs) potentially predictive of the response to anti-
VEGEF therapy, including bevacizumab plus FOLFIRI, in both KRAS mutant and wild-type
mCRC patients from the TRIBE and FIRE-3 cohorts [121]. Among 27 SNPs, the learning
algorithms identified that SNPs in Wnt/f3-catenin, tumor associated macrophage and
sex-differentiation pathways were predictive of OS and/or PFS in mCRC patients treated
with FOLFIRI/bevacizumab. In detail, the CBP rs129963 T/T variant and the 3-catenin
rs3864004 A/ A genotype were associated with worst OS and PFS in KRAS wild-type (OS of
22.8 vs. 26 months and PFS of 9.5 vs. 10.5 months) and mutant (OS of 16.3 vs. 26.3 months
and PFS of 7.8 vs. 9.6 months) patients, respectively. Conversely, improved OS and PFS
were observed in both KRAS mutant (PFS of 10.3 vs. 8.6 months) and wild-type (OS of



Cancers 2022, 14, 4012

24 of 38

31.3 vs. 24.8 months and PFS of 11.3 vs. 10.3 months) patients with the TBK1 rs7486100
A/A variant. Higher estimates were also obtained for the CCL2 rs4586 T/T carriers (OS of
30.9 vs. 22.8 months), the VEGFR2 rs2305948 any C carriers (OS of 26.2 vs. 17.0 months)
and in the MMP2 rs243865 any T carriers (OS of 28.5 vs. 20.3 months).

In order to identify single nucleotide polymorphisms (SNPs) potentially predictive of
the mechanisms of response and resistance associated to anti-VEGF therapy, Barat et al. [89]
analyzed by learning methods the association between SNPs and the response to beva-
cizumab plus FOLFIRI chemotherapy using data from exome-sequencing in mCRC patients
from the ANGIOPREDICT, MAVERICC and TRIBE cohorts [121]. In this study, 47 novel
predictive SNPs were selected by learning algorithms across all exomes. Along the novel
SNPs, two SNPs alone, the NLRP1 rs12150220 and the SRL rs13334970, one of which
encodes a pro-inflammatory gene (NLRP1I), were found to be associated with response
to anti-VEGF therapy. For the rs12150220, missense at amino acid 155 of NLRP1 (NLR
Family Pyrin Domain Containing 1), TT carriers had better median PFS than AA carriers
in the ANGIOPREDICT and MAVERICC cohorts, HRs of 0.52, 95% C.I. 0.33-0.83 and
0.42, 95% C.I. 0.21-0.85, respectively. Conversely, for the rs13334970, mapping to SRL
(Sarcalumenin), AA carriers showed shorter median PFS than carriers of at least one G
allele in ANGIOPREDICT and MAVERICC cohorts, HRs of 2.3, 95% C.I. 1.19-4.57 and 2.5,
95% C.I. 1.12-5.5, respectively. The NLRP1 any A and the SRL AA carriers had worse PFS
in ANGIOPREDICT and MAVERICC datasets, HR of 8.3, 95% C.I. 3.3-21 and 2.2, 95% C.I.
1-5, respectively. Association with worse outcomes was found with KRAS wild-type and
concomitant carriers in combination with the NLRP1 any A and the SRL AA, HRs of 7.8,
95% C.I. 2.5-24.4 and 3, 95% C.I. 1.2-8 in MAVERICC and TRIBE. In KRAS wild-type
patients, the NLRPI any A and the SRL AA carriers showed a worse PFS than in the other
two genotype combinations with shorter median PFS (4 vs. 11 and 15 months), and also
shorter median OS (12 vs. 27 months).

Williams et al. [97] have examined by a ML approach using immunohistochemical
data the response to anti-EGFR therapy with or without irinotecan regimens in mCRC
patients with KRAS wild-type from the PICCOLO dataset [122]. By whole slide learning
and computer vision techniques, the percentage of positively stained tumor cells within the
tumor areas for EGFR ligands amphiregulin (AREG) and epiregulin (EREG) were found to
predict benefit from the anti-EGFR agent panitumumab. Higher PFS was associated to the
response to targeted therapy in patients with KRAS wild-type and high ligand expression
as compared to those receiving standard regimens (8.0 vs. 3.2 months, HR of 0.54, 95% C.IL
0.37-0.79), and in those with both KRAS and BRAF wild-type, HR of 0.53 (0.36-0.78).

Ubels et al. [90] have recently evaluated whether genome-wide genotyping could be
used to predict the efficacy of cetuximab in mCRC patients from the CAIRO2 dataset [123].
In this study, a random forest approach based on 781-SNP signature was able to classify
mCRC patients in two classes, “benefit” vs. “no benefit”; a subset of patients showed
benefit from receiving anti-EGFR therapy demonstrated by a higher median PFS (HR of
0.69, 95% C.I. 0.49-0.98), as compared to the category ‘no benefit’ (HR of 1.32, 95% C.I.
1.07-1.62). A greater performance was even found when chromosomal sex was incorpo-
rated in learning models (HR of 0.52, 95% C.I. 0.35-0.76).

Johnson et al. [100] have investigated by a ML approach with gene-mutation data
the response to standard chemotherapy with or without target therapy in mCRC patients
from the MSK cohort [124]. In this study, mutation profiles fed as inputs into a RF model,
produced a final model containing a classifier based on mutation profiles of KRAS, BRAF,
ERBB2, MAP2K1, TSC2, TP53, and APC. The 7-gene algorithm showed high predictive
power for PFS to identify responder (non-progressed) vs. non-responder (progressed)
mCRC patients with HR of 16.9, 95% C.I. 4.2-68.0.

3.8. Meta-Analysis

We performed a meta-analysis of the 9 Al studies reporting performance estimates of
the response to therapy and 95% C.I. with 2.441 patients [75,79,80,85-87,98,99,101]. Table 5



Cancers 2022, 14, 4012

25 of 38

reports the estimates of AUCs and HRs and their C.I. used for discriminating response to
therapy that were extracted from the predictive models from the aforementioned studies.
Results of meta-analysis are shown in Figure 2 reporting the single study and the overall
weighted mean of AUC and HR with their 95% C.I. The sensitivity analysis showed that
no study heavily influenced the result of this meta-analysis. In addition, it was found
that the occurrence of publication bias was unlikely. Using the random-effect model, we
calculated summary risk estimates in training and validation sets. Overall weighted means
of AUCs are 0.90, 95% C.I. 0.80-0.95 and 0.83, 95% C.I. 0.74-0.89 in training and validation
sets, respectively, showing good classification performance in discriminating response vs.
non-response. On the other hand, an overall HR of OS of 0.51, 95% C.I. 0.43-0.60 was found
for the learning models that significantly predict improved survival (Figure 1).

Table 5. The 21 artificial intelligence models reporting the estimates of receiver operating character-
istic curve (AUCs) and/or hazard ratios (HRs) and 95% Confidence Intervals (C.I.) for evaluating
predictive response or overall survival included in the meta-analysis. Classifiers, cytotoxic chemother-
apy, targeted therapy, population size, AUCs, HRs and 95% C.I. in training and /or validations sets
are reported.

Study Included, Signature and Regimens Performance Estimates References
Training sets n AUC, 95% C.I.

Giannini (2022), radiomics signature and chemotherapy 172 0.99, 95% C.I. 0.97-1.00 [75]
Nakanishi (2021), radiomics signature and chemotherapy 94 0.851, 95% C.1. 0.771-0.93 [79]
Wei (2021), radiomics signature and chemotherapy 144 0.935, 95% C.I. 0.897-0.973 [80]
Dercle (2020), radiomics signature and chemotherapy 78 0.75, 95% C.I. 0.63-0.85 [87]
Dercle (2020), radiomics signature and targeted therapy 78 0.83,95% C.I. 0.75-0.92 [87]
Maaref (2020), radiomics signature and targeted therapy 162 0.83,95% C.I. 0.78-0.87 [86]
Validation sets AUC, 95% C.L

Giannini (2022), radiomics signature and chemotherapy 70 0.93, 95% C.I. 0.87-0.96 [75]
Nakanishi (2022), radiomics signature and chemotherapy 32 0.779, 95% C.1. 0.617-0.94 [79]
Wei (2021), radiomics signature and chemotherapy 48 0.830, 95% C.I. 0.688-0.973 [80]
Lu (2020), 18-gene signature and chemotherapy (FOLFOX) 29 0.877,95% C.1. 0.747-1.00 [101]
Lu (2020) 18-gene signature and chemotherapy (FOLFIRI) 21 0.778, 95% C.1. 0.575-0.979 [101]
Dercle (2020), radiomics signature and chemotherapy 51 0.59,95% C.1. 0.44-0.72 [87]
Dercle (2020), radiomics signature and targeted therapy 38 0.80, 95% C.I. 0.69-0.94 [87]
Zhu (2020), radiomics signature and targeted therapy 79 0.849, 95% C.I. 0.737-0.926 [98]
Zhu (2020), radiomics signature and targeted therapy 73 0.833, 95% C.I. 0.695-1.00 [98]
Maaref (2020), radiomics signature and targeted therapy 40 0.88, 95% C.I. 0.85-0.94 [86]
Validation sets HR, 95% C.I.

Lu (2020), MLK1-gene signature and chemotherapy (FOLFOX) 29 0.358, 95% C.1. 0.178-0.717 [101]
Lu (2020), CCDC124-gene signature and chemotherapy (FOLFOX) 29 0.563, 95% C.I. 336-0.943 [101]
Lu (2021), radiomics learning models and targeted therapy 526 0.49, 95% C.1. 0.4-0.61 [85]
Abraham (2021), 67-gene signature and targeted therapy 103 0.483, 95% C.I. 0.270-0.864 [99]
Abraham (2021), 67-gene signature and targeted therapy 545 0.629, 95% C.I. 0.404-0.981 [99]

Using the random-effect model, we calculated summary risk estimates in training
and validation sets. Overall weighted means of AUCs were 0.87, 95% C.1. 0.80-0.92 and
0.79, 95% C.I. 0.69-0.87 in training and validation cohorts, respectively, showing high
classification performance in discriminating responder mCRC patients/treated lesions
vs. non-responder mCRC patients/untreated lesions to standard chemotherapy alone or
combined with targeted therapy. On the other hand, overall HR of OS of 0.51, 95% C.I.
0.43-0.60 was found for learning models that significantly predict improved survival
(Figure 1).
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Figure 2. Meta-analysis of 21 artificial intelligence predictive models of response to therapy for
metastatic colorectal cancer (mCRC) patients. The efficacy of learning algorithms in discriminating
responders mCRC patients/treated metastatic lesions vs. non-responders mCRC patients/untreated
metastatic lesions was analyzed by estimating the area under the receiver operating characteristic
(ROC) curve (AUC) and 95% Confidence Intervals (C.I.) in training (A) and validation sets (A,B).
(C) shows efficacy of the Hazard Ratios (HRs) and 95% C.I. from proportional hazards models (Cox
regression) to predict improved survival.
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3.9. Predictive Model Performances

Model performances were then analyzed in 13 Al studies that reported AUCs, SE
and SP estimates [74,75,79-81,86,87,94,95,98,99,101]. Considering the Al studies that have
analyzed the model performance using the AUCs, Table 6 shows that both radiomics and
molecular signatures were effective in predicting the response to therapy with good or
excellent estimates in both the training and the validation sets. Comparable estimates of
the global AUCs were also reported by our meta-analysis. Moreover, when we evaluated
the Al investigation with tests that reached the 80% SE and the 90% SP, there were the delta
radiomics that showed the SE of 99% and the SP of 94% in the training set and the SE of
85% and the SP of 92 in the test set, and the 74 gene signatures that obtained the SE of 97.6%

and the SP of 100% in the training set.

Table 6. Performances of the artificial intelligence studies.

Therapy Al Signature Training Set Test Set Reference
Excellent, 99% correctly classified ~ Excellent, 85% correctly classified
Chemotherapy ML Delta-radiomics as responders, 94% correctly as responders, 92% correctly [75]
classified as non-responders classified as non-responders
ML Radiomics Good Poor [79]
Excellent, 84.7% correctly
classified as responders, Poor, 90% correctly classified as
84.8% correctly classified as responders, 73% correctly
non-responders classified as non-responders
. L (radiomics model) (radiomics model)
DL Fusion radiomics Excellent, 89.8% correctly Good, 90.9% correctly classified as (801
classified as responders, responders, 73.3% correctly
84.8% correctly classified as classified as non-responders
non-responders (fusion (fusion radiomics model)
radiomics model)
61% correctly classified as
responders, 60% correctly
76% correctly classified as classified as non-responders
L responders, 67% correctly (per-lesion 3D set)
ML Radiomics classified as non-responders 41% correctly classified as (811
(per-lesion 3D set) responders, 21% correctly
classified as non-responders
(per-patient 3D set)
Poor (high standard quality
computed tomography scan,
- HQCT, set) Failed (HQCT set)
ML Radiomics Poor (high standard quality Failed (SQCT set) 871
computed tomography scan,
SQCT, set)
97.6% correctly classified as
ML 74 genes responders, 100% correctly [95]
classified as non-responders
ML 16 long noncoding RNA Good [94]
ML 16 long noncoding RNA Poor [94]
ML 16 long noncoding RNA Poor [94]
Good, 91.7% correctly classified as
responders, 75% correctly
classified as non-responders
L (four features model)
Targeted therapy DL Radiomics Good, 91.9% correctly classified as 98]
responders, 75% correctly
classified as non-responders
(four features model)
Good, 97% correctly classified as ~ Good, 98% correctly classified as
DL Radiomics responders, 59% correctly responders, 54% correctly [86]

classified as non-responders

classified as non-responders
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Table 6. Cont.

Therapy Al Signature Training Set Test Set Reference
Good, 80% correctly classified as
Good, 77% correctly classified as  responders, 78% correctly
responders, 85% correctly classified as non-responders
L classified as non-responders (HQ cohort)
ML Radiomics (high quality, HQ, cohort) Poor, 82% correctly classified as 871
Good (standard quality, responders, 61% correctly
SQ, cohort) classified as non-responders
(SQ cohort)
90% correctly classified as
responders, 42% correctly
89% correctly classified as classified as non-responders
N responders, 85% correctly (lesion model)
ML Radiomics classified as non-responders 92% correctly classified as (741
(lesion model) responders, 86% correctly
classified as non-responders
(patient model)
ML 16-long noncoding RNA Poor [94]
ML 16-long noncoding RNA Worthless [94]
ML 16-long noncoding RNA Poor [94]
ML 67-gene Good Poor [99]
Chemotherapy Imaging /molecular Present meta-
and targeted ML/DL _agihis/molecia Good Good esen’ metd
signatures analysis
therapy

ML, machine learning; and DL, deep learning.

4. Discussion

Selection of the optimal first-line treatment represents a crucial step in the therapeutic
pathway of mCRC patients, in order to obtain a significant improvement of PFS and, possi-
bly, OS due to the development and combination of cytotoxic and biologic drugs chosen on
the basis of the tumor mutational status. However, biological drugs, being directed towards
specific “actionable” targets, might cause a heterogeneous tumor response, depending on
clinical characteristics and/or disease biology of each patient. Therefore, despite selection
of optimal therapy based on the patient’s molecular phenotype, a percentage of patients
is not responsive to targeted therapy, leaving us to hypothesize that additional mediators
could be involved in the dysregulation of molecular mechanisms, that expression of further
potentially actionable genes might intervene and/or that mechanisms of innate/acquired
resistance to target inhibitors occur. Even the presence of genetic mutations in tumor
RAS or BRAF sequences and MSI status cannot always predict the therapeutic response in
mCRC patients [5]. No imaging criteria are also available that could predict the response to
therapy before the start of the therapy and or even predict the kind of metastatic lesions
that will respond to the treatment [125]. To face these limits, the design of optimal strategy
for mCRC on a case by case basis has been proposed, where therapeutic interventions
should be modulated depending on patient/tumor’s characteristics. Therefore, it is rel-
evant to characterize CRC complexity at the individual level to understand if a patient
will respond to a specific therapy or will show resistance, considering the opportunity to
leverage new emerging computer science solutions from research to real-world conditions.
In this regard, growing emphasis has been put on clinical decision support systems based
on Al in general, and ML techniques, in particular, to develop predictive models of cancer
progression or response to treatment using ML techniques, especially in mCRC. This ap-
proach has already proven capable of exploiting significant patterns in routinely collected
demographic, clinical and biochemical data and allowed the design of clinical decision
support systems (DSS) that can be easily adapted to different tumors [126,127].

Our review summarizes the current literature exploring the use of machine and deep
learning methods in predicting the response to cytotoxic and/or targeted treatments in
mCRC patients. Tables 1 and 2 show that most of the studies have benefited from the
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availability of high-throughput information from radiomics data and different genomic
characterization levels, as genome, transcriptome, proteome, and metabolome. All investi-
gations conducted in this field have shown promising outcomes. As reported in Table 2,
ML networks were mostly utilized to analyze standard therapy response in mCRC pa-
tients, with the exception of the study of Wei et al. [80] that employed a residual network
architecture DL model. In five studies [75,79-81,87], imaging biomarkers, including delta
and fusion radiomic signatures, were used to evaluate the response to therapy. Molec-
ular biomarkers classifiers, ranging from IncRNAs to gene-expression signatures were
chosen by the authors of the other ten investigations for developing predictive models
that could assist clinicians in decision making processes [82-84,92-96,99,101]. Results in
Table 2 show that the algorithm most predictive of response to standard chemotherapy in
mCRC patients was built using a delta-radiomic signature [75], where a trees structured
algorithm reached the highest performance by classifying patients into responders vs.
non-responders (AUC = 0.93). Importantly, this ML signature evaluating temporal changes
in tumor phenotype was created as intermediate surrogate biomarker to support treatment
continuation decisions in clinical yardsticks. Inconclusive findings were instead reported by
the investigation of Dercle et al. [87], where a temporal radiomic signature failed to predict
the treatment response. Great predictive performances in both training and validation sets
were obtained by a DL model based on a fusion radiomic signature [80].

On the other hand, when we have examined the findings of the eleven studies based on
molecular biomarkers [82-84,92-96,99,101,102], we found that microarray gene expression
data were more often chosen by the different authors for building molecular biomarkers
based classifiers [82,92,95,101]. Noteworthy, molecular information from immune infiltra-
tion, circulating cytokine expression, and pharmacokinetics and cardiovascular parameters
were also often employed to fed as inputs learning models aimed to classify mCRC patients
in responders vs. non-responders, as well as for evaluating side effects of standard regi-
mens [82-84,93,94,96]. Along the molecular biomarker-based learning models, the greatest
predictive performances were obtained by both 16-long noncoding RNA (AUC = 0.843)
and 18-gene signatures (AUC = 0.877) [94,101]. Even a multiple linear regression model
was able to correctly evaluate the response to chemotherapy [83]. However, the prediction
of FOLFOXai classifier resulted inconclusively in the FOLFIRI cohort [99]. In addition,
results indicate that pharmacokinetics and cardiovascular features could be used to predict
different side effects, including cardiotoxicity and leukopenia, caused by standard cytotoxic
regimens [93,96].

An improved knowledge of the mechanisms involved in colorectal carcinogenesis
and tumor progression has allowed the development of biological agents with targeted
actions, as inhibitors of angiogenesis, EGFR-targeted therapy, and immunotherapy [5]. As
shown in Table 3, ML models [74,87-91,94,97,99,100,102] were mainly utilized to analyze
the response to targeted therapy rather than DL networks [85,86,98]. Findings show that
the prognostic and predictive values of radiomics and molecular biomarkers in predicting
the benefit of targeted therapy in CRC metastases have been extensively analyzed, with
seven radiomic studies demonstrating the utility of diagnostic imaging in predicting clinical
outcomes [74,85-88,91,98] and with seven molecular biomarkers based investigations that
developed successful predictive molecular classifiers [89,90,94,97,99,100,102]. Other inputs
can come from a recent study of Lindner et al. [128], where several signaling proteins
and phosphoproteins associated with EGFR and other relevant cancer signaling pathways
when examined across mouse models. In that investigation an ML approach allowed
identification of a 14-phospoprotein signature associated with EGFR and other relevant
cancer signaling pathways including PDK1, caspase-8, Shc, Stat3, p27, GSK-33, HERS3,
PKC-a, EGFR, Akt, 56 ribosomal protein, HER3, NF-kB-p65 and Gab-1, potentially able to
discriminate tumors sensitive and insensitive to targeted therapy.

In this context, our meta-analysis demonstrated a good performance power of the
learning models used to predict response to chemotherapy alone or combined with targeted
therapy by discriminating response vs. non-response. The calculation of overall HR also
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shows that learning models have strong ability to predict improved survival. Next, when
we analyzed performance, both radiomics and molecular signatures showed the capacity
to predict the response to therapy with good or excellent values. In particular, we found
that both the delta radiomics and the 74 gene signatures were able to discriminate response
vs. non-response by correctly classifying up to 99% of mCRC patients as responders and
up to 100% of patients as non-responders.

There are several limitations to this study. First, in some cases, data of the same cohort
were shared between training and test sets, whereas the use of an external validation cohort,
that is critical to ensure model accuracy, was noted only in the half of the publications.
In addition, three studies did not split the data [79,92,93]. This can be due to the lack of
appropriate cohorts or the lack of awareness of the importance of an external validation
cohort before its application in clinical settings. Missing data and outliers were also not
appropriately managed by most of the Al studies. Some of them also have small sample
sizes that could impact on study outcomes and decrease the statistical power. Then, the size
of the validation sets was generally lower than that observed in the training sets, possibly
reflecting the low number of mCRC patients that were available overall. Nevertheless, the
use of k-fold validation that allows proper stratification of predictive outcomes [94,101] has
been performed by the majority of the studies (77%), even at greater rate than in a previous
review [72].

Al techniques can provide novel methods for clinicians focusing on predictive mod-
eling for conventional chemotherapy alone or combined with target therapy as com-
pared to previous statistical methods, that were more based on the study of data as-
sociations [24,129,130]. Al is indeed becoming popular for developing predictive modeling
and defining treatment effects in epidemiology. Improving these approaches in molecular
epidemiology will be useful for explaining cancer risk factors, including nature and nur-
ture factors [24,131-134], in public health. Until now, researchers have benefited from a
variety of Al methods for supervised and unsupervised pattern analysis in large big data
originating from multiple sources, including serial imaging and molecular biomarkers. The
major challenges are data variability, inter- and intra-study, and the lack of large amounts
of high-quality labeled data, which both limit the potentiality of ML and DL models [135].
Privacy related issues, challenges in the patient enrollment process and cumbersome bu-
reaucratic procedures do not allow researchers to easily obtain high quantities and/or high
quality data.

When resistance to treatments occurs, few treatment options are available for resistant
mCRC that may be difficult to tackle through non-cross-resistant anticancer drugs for
second and subsequent lines of therapy despite new diagnostic and therapeutic meth-
ods [10]. Currently, about 20-25% of mCRC patients with hepatic metastasis are resectable,
60-70% of distal mCRC patients will develop local or distal recurrence, while only 20%
will achieve long-term remission [136]. Up to 41% of mCRC patients receiving routine care
have a poor performance status, and have more toxic side-effects if they are treated as well
as inferior survival outcomes [137]. Furthermore, we cannot stratify mCRC patients or
those who are at risk of developing colorectal metastasis at diagnosis using biomarkers
or other currently available techniques. Even the presence of genetic mutations in tumor
RAS or BRAF sequences and MSI status cannot always predict the therapeutic response
in mCRC patients [5]. On the other hand, Al signatures can reach better performance
in distinguishing responders from non-responders in respect to routine clinical indica-
tors, such as cancer stage, adjuvant therapies, surgery on primary tumor and RECIST
criteria [5,80,83,85,98,100,138]. New classifications of mCRC based on Al parameters will
soon emerge and we will be able to identify new subtypes of mCRC patients, for whom
the definition will be based on combinations of radiomics and/or molecular signatures
contributing to improve the clinical management of mCRC and clinical decision making.
Al approaches might provide innovative tools to distinguish between responders and non-
responders before treatment starts, to know if a mCRC patient will respond to a specific
therapy or will show resistance.
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In the future, especially with regard to clinical trials, our findings suggest that mCRC
patients would be randomized to treatment based on a predictive model vs. usual treatment.
However, the possibility of employing predictive models in choosing the most effective
and cost-effective therapeutic intervention for cancer patients relies on the development of
improved and innovative Al based computational frameworks. These models require the
evaluation of a huge amount of clinical data, with emphasis on factors influencing positive
and negative responses, prognostic biomarkers, and molecular predictors of therapeutic
response or disease to be appropriately advanced to make such trials ethically correct.
A rigorous process must always underlie any Al model to ensure reliable prediction of
mCRC patient response to treatments. In this field, we are awaiting the first results of the
European Union funded study titled “Targeted therapy for advanced colorectal cancer
patients, REVERT” (https:/ /www.revert-project.eu/ (accessed on 30 April 2022)) aimed at
strengthening this ambitious goal by addressing the specific challenge of understanding at
system level the pathophysiology of mCRC cancer in patients responding well or poorly to
therapies, to design optimal strategies for mCRC on a case by case basis, with therapeutic
interventions modulated depending on the patient’s features.

5. Conclusions

Our systematic review shows that a good performance in predicting the response to
therapy was obtained by the different algorithms that were analyzed by a meta-analytic
approach. The calculation of overall HR indicates that learning models have a strong ability
to predict improved survival. In addition, the delta-radiomics and the 74 gene signatures
were found to able to discriminate between response vs. non-response by correctly iden-
tifying up to 99% of mCRC patients who are responders and up to 100% of patients who
are non-responders. Our findings support the use of computer science for developing
personalized treatment decision processes for mCRC patients. The identification of clinical,
pathological and molecular comprehensive markers/signatures predictive of efficacy and
toxicity could be useful for validation in prospective clinical trials. Further understanding
of CRC biology linked to Al approaches will be able to improve matching mCRC patient
individual traits with appropriate therapies to increase their survival and quality of life.
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