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Part 1 – Pancreatic Adenocarcinoma and Radiomics 
 
 

1. INTRODUCTION 
 

 
Pancreatic adenocarcinoma stands out as one of the most aggressive malignancies 

globally, characterized by its late diagnosis, limited treatment options, and dismal 

prognosis. Despite strides in imaging techniques and therapeutic modalities, overall 

survival rates for pancreatic cancer patients have seen scant improvement over recent 

decades. Consequently, there is a pressing need for innovative approaches to 

comprehensively comprehend the disease's heterogeneity, predict patient outcomes, and 

tailor personalized treatment strategies accordingly. In this context, recent 

breakthroughs in medical imaging and computational analysis have given rise to 

radiomics, an exciting field that extracts quantitative features from standard imaging 

modalities like computed tomography (CT) and magnetic resonance imaging (MRI). By 

scrutinizing a myriad of imaging characteristics, radiomics endeavors to scrutinize tumor 

attributes often imperceptible to the human eye, thus providing novel insights into tumor 

biology, prognosis, and treatment response. 
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1.1 Pancreatic adenocarcinoma 
 
 

 
Pancreatic ductal adenocarcinoma (PDAC), constituting approximately 90% of all 

pancreatic cancer cases, is a profoundly malignant tumor (1). The prognosis for PDAC is 

predominantly based on the TNM-staging system (2). Despite extensive 

multidisciplinary efforts, the 5-year survival rate has shown only modest improvement, 

rising from 3.1% to 10% (1) (3). 

The majority of these tumors, approximately 60-70%, are localized in the head of the 

pancreas, with the remaining 30-40% occurring in the body- tail region (4). The 

aggressive nature of pancreatic adenocarcinoma is well- documented: early diagnosis is 

achieved in only 7% of cases, while in 85% of cases, the disease is diagnosed at such an 

advanced stage that it is deemed unresectable. This underscores the significant 

challenges posed by pancreatic adenocarcinoma and highlights the urgent need for 

improved screening methods and treatment options (5). 
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1.1.1 Epidemiology and risk factors 

 
 

Pancreatic adenocarcinoma is a significant global health concern, ranking as the sixth 

leading cause of cancer-related mortality worldwide. Its incidence is notably higher in 

industrialized countries, with rates of 28.7%/100,000 inhabitants in Europe and 

13.1%/100,000 inhabitants in North America, compared to developing countries where 

the incidence is lower, at 3.7%/100,000 inhabitants in Africa (Figure 1). 

 

 

 
Figure 1 – Incidence rates of pancreatic cancer globally (6). 
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This disparity in incidence is largely attributed to environmental risk factors prevalent in 

industrialized nations (7). Furthermore, the incidence of pancreatic adenocarcinoma is 

steadily rising (8), with projections indicating that it may become the second most 

common cancer globally by the year 2030 (5). 

This malignancy predominantly affects men more than women (9). Modifiable risk 

factors contributing to its development include cigarette smoking, which is estimated to 

confer a 25% increased risk, as well as obesity, sedentary lifestyle, and poor dietary 

habits. Studies (10) (11) (12) (13) have shown positive correlations between the 

consumption of red meat and animal fats and the risk of pancreatic cancer, while a 

negative correlation exists with the consumption of fruits, vegetables, and folates. 

Non-modifiable risk factors include genetic mutations and predisposing familial 

syndromes, mucinous pancreatic cysts, diabetes mellitus, and chronic pancreatitis. 

Chronic infections such as hepatitis B virus (HBV), hepatitis C virus (HCV), and 

Helicobacter pylori (H. pylori) have been weakly associated with pancreatic 

adenocarcinoma, while the relationship with alcohol consumption remains inconclusive 

(14). 

The intestinal microbiota appears to play a crucial role in the development of pancreatic 

adenocarcinoma, as disruptions in its composition can lead to chronic inflammation and 

the production of bacterial metabolites and toxins with carcinogenic properties (15). 
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Common genetic mutations observed in pancreatic adenocarcinoma include oncogenic 

mutations in genes like KRAS and loss-of-function mutations in tumor suppressors such 

as TP53, CDNK2A, DPC4/SMAD4, and BRCA2 (16). These genetic alterations 

contribute significantly to the pathogenesis of pancreatic adenocarcinoma and represent 

potential targets for therapeutic interventions. 
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1.1.2 Pathological anatomical features 
 
 
 

The World Health Organization (WHO) classification delineates pancreatic cancer into 

benign, pre-malignant (referred to as PanIN), and malignant forms. Among the 

malignant forms, there are various histotypes, with ductal adenocarcinoma and its 

variants being the most prevalent (85-90%). Other histotypes include IPMN (Intraductal 

Papillary Mucinous Neoplasm) associated with invasive carcinoma (2- 3%), MCN 

(Mucinous Cystic Neoplasm) associated with invasive carcinoma (1%), solid 

pseudopapillary neoplasm (<1%), acinar cell carcinoma (<1%), and pancreatoblastoma 

(<1%) (17). 

Pancreatic ductal adenocarcinoma (PDAC) represents the most commonly encountered 

pancreatic neoplasm. Macroscopically, on pathological examination, it presents as an 

isolated multinodular and sclerotic lesion with indistinct margins and a whitish cut 

surface. Histologically, PDACs are typically well-differentiated tumors surrounded by a 

prominent stromal reaction, which imparts a disorganized growth pattern and an 

obstructive character. 

When mixed differentiation cells with a squamous component exceeding 30% are 

present in PDAC, it is classified as adenosquamous carcinoma (ASqC). This variant of 

PDCA, believed to be a metaplastic evolution, is more aggressive and less recognized, 

representing approximately 1-4% of exocrine malignant neoplasms. 
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Other rarely encountered variants include colloid carcinoma (non-cystic mucinous 

adenocarcinoma), hepatoid carcinoma characterized by areas reminiscent of pure liver 

carcinoma, medullary carcinoma (MCP) distinguished by a sparsely syncytial growth 

pattern accompanied by extensive intralesional necrosis, and undifferentiated carcinoma, 

predominantly located in the head of the pancreas, exhibiting varying consistencies from 

hard to rubbery, with occasional cystic and/or necrotic contents (18). 

The differentiation of pancreatic carcinomatous lesions is one of the primary 

anatomopathological criteria for determining the resectability of pancreatic 

adenocarcinoma. This differentiation allows for the distinction between resectable 

tumors, borderline resectable tumors, locally advanced unresectable tumors, and 

metastatic tumors (19). The classification into these categories depends on factors such 

as the tumor's location within the pancreas, the degree of differentiation, and invasion of 

perineural, lymphatic, and vascular (arterial and venous) structures. Positivity to these 

parameters correlates with an unfavorable prognosis. Immunohistochemically, SMAD4 

(55%) and overexpressed p53 are frequently detected. 
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1.1.3 Radiological diagnosis 

 
When suspecting pancreatic neoplasia, the primary investigation methods employed are 

referred to as "cross-sectional imaging," namely CT and MRI with contrast medium (20). 

These imaging modalities play a pivotal role in diagnosing and screening pancreatic 

lesions. 

CT currently serves as the gold standard for diagnosing pancreatic adenocarcinoma 

≥2cm due to its widespread availability and repeatability. Although a single-phase CT 

scan at baseline may suffice for diagnosis, it is inadequate to evaluate tumor extension 

and distant metastases. A typical protocol involves biphasic CT with contrast medium, 

comprising two distinct phases: 

- Parenchymal (or arterial) phase: facilitates lesion identification, size evaluation, 

extension assessment, and arterial vascular structure involvement (indicative of locally 

advanced disease). This phase is acquired 40-50 sec. after contrast medium bolus 

administration. 

- Portal venous phase: optimizes visualization of the porto-mesenteric system, 

highlighting tumor involvement and revealing hepatic or peritoneal metastases or lymph 

node involvement. This phase is acquired 65-70 sec. post-contrast medium bolus 

administration (21). 

The administration of contrast medium is imperative for receiving and characterizing 

pancreatic tumors. Contrast enhancement enables differentiation between tumor tissue 

and healthy tissue, facilitating evaluation of vascular invasion. 
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Pancreatic adenocarcinoma typically exhibits reduced vascularity, appearing hypodense 

on CT compared to surrounding parenchyma. It is often associated with pancreatic duct 

dilation (manifested by the "double duct" sign) and pancreatic atrophy downstream of 

the lesion. These secondary characteristics may aid in early diagnosis and screening of 

the neoplasm. However, in 10% of cases, patients may present with small, isodense, and 

contrast- enhancing lesions, complicating diagnosis. Dual-energy CT (DECT) utilizes 

different photon energy spectra to discriminate elements (calcium, iodine) in tissues that 

would otherwise exhibit similar attenuation on conventional CT. This allows for 

improved lesion detection and characterization, particularly for cystic masses, as well as 

therapeutic monitoring. 

CT examination enables TNM staging of the neoplasm by evaluating its location, size 

(T), regional lymph node involvement (N), and the presence of vascular, perineural, and 

metastatic (M) involvement. Radiological documentation obtained from CT plays a 

pivotal role in determining staging and thus in defining a lesion as resectable or not. 

Particular attention should be paid, in the report, to the presence of inflammatory 

outcomes at the parenchymal level, secondary to neoadjuvant chemotherapy, 

radiotherapy, or treatments like endoscopic retrograde cholangiopancreatography 

(ERCP) or echoendoscopy associated with biopsy. These may mimic viable tumor, 

complicating resectability assessment (20). CT sensitivity ranges from 76 to 96%, while 

MRI sensitivity ranges from 83 to 93.5% (20) (21) (23) (24). 
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MRI serves as a secondary examination and is performed in patients with CT scanning 

contraindications. It is also preferred for identifying small lesions that may be missed on 

CT. Pancreatic adenocarcinoma exhibits different appearances on MRI depending on the 

acquisition phase/sequence: hypointense on pre-contrast images; moderately 

hyperintense on T2. The diffusion-weighted sequence (DWI) enhances sensitivity for 

detecting lesions ≤3cm in diameter, aiding in differential diagnosis from mass-forming 

chronic pancreatitis. DWI detects water molecule diffusion restriction, secondary to 

histopathological alterations, allowing for improved lesion diagnosability, especially in 

patients with potentially resectable pancreatic adenocarcinoma (25). 

Information obtained from diagnostic investigations allows for the evaluation of surgical 

resectability, particularly when aided by 3D imaging to study neoplastic mass 

relationships with surrounding vascular and parenchymal structures (26). 

The 2020 AIOM Guidelines also recommend performing a biopsy examination with 

endoscopic ultrasound guidance in cases of "absence of clear signs of malignancy and 

patients not suitable for surgery," to obtain a definitive diagnosis (27) (28). 
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1.1.4 Therapeutic options 
 
 

The treatment approach for pancreatic adenocarcinoma varies depending on the stage at 

which it is diagnosed: carcinoma detected at an early stage may be amenable to surgery 

aimed at complete resection, while carcinoma diagnosed at an advanced stage may 

necessitate palliative and symptomatic therapies aimed at maximizing the patient's 

quality of life (29). Surgical resection is the only treatment considered potentially 

curative. However, only a minority of patients (15-20% of total cases) are eligible for 

surgery due to diagnostic delays and vascular involvement at the time of diagnosis. The 

presence of liver, peritoneal, or other distant site metastases serves as an absolute 

contraindication to surgery. Partial involvement of arterial vessels (such as the superior 

mesenteric artery, aorta, or celiac tripod) and venous vessels (such as superior 

mesenteric vein, portal vessels, or inferior vena cava) constitutes a relative 

contraindication, often necessitating neoadjuvant therapy (radiotherapy and/or 

chemotherapy) before determining surgical suitability. Different types of surgery may be 

performed based on the location (head, body, and/or tail of the gland) and the extent of 

the mass, including pancreaticoduodenectomy or pancreatectomy, either complete or 

distal, sometimes combined with splenectomy. Additionally, more or less extensive 

lymphadenectomy may be required (30). Current pharmacological protocols for 

neoadjuvant and post-operative therapy include FOLFOX (comprising 5-

fluorouracil, leucovorin and oxaliplatin), FOLFIRINOX (comprising 5-fluorouracil, 

leucovorin, irinotecan, and oxaliplatin), and Gemcitabine. Meanwhile, ongoing research 

endeavors are focused on discovering new biological drugs that can facilitate increasingly 

targeted and functional therapy approaches (27) (31) (32). 
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1.1.1 Prognosis 
 

 
Prognosis in pancreatic adenocarcinoma varies depending on the histological grade and 

stage of the neoplasm, but most significantly, on the treatment approach adopted. 

Generally, prognosis is more favourable for patients who undergo surgical treatment 

with complete resection of the tumor, although the majority of these individuals still 

succumb to disease-related complications. Patients who do not undergo surgical 

treatment may experience slightly differing prognoses based on the stage, but 

outcomes typically remain poor regardless (33). 
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1.2 RADIOMICS 
 
 

 
Radiomics represents a cutting-edge frontier in medicine, aiming to extract quantitative 

information from radiological images. By harnessing advanced computational 

techniques, radiomics facilitates the extraction of a vast array of quantitative features 

from medical images, transcending traditional visual interpretation. This approach 

enables the characterization of tissue heterogeneity, spatial distribution of imaging 

biomarkers, and subtle patterns that may not be discernible to the naked eye. Radiomics 

holds immense promise in revolutionizing disease diagnosis, prognosis, and treatment 

response assessment across various medical disciplines, offering a deeper understanding 

of disease biology and personalized patient care. 

 
 
 

 
1.2.1 Basic principles 

 
The digitization of radiological sciences has transformed simple images into intricate 

arrays of pixels, which, when rendered in grayscale, offer insights into the diverse 

textures of tissues. Radiomics aims to enhance image evaluation by extrapolating a vast 

amount of data from the shape and heterogeneity of a lesion, providing 

pathophysiological insights that may not be discernible to the naked eye. These data, 

when combined with genomic, proteomic, transcriptomic, and other datasets, offer 

comprehensive   and   intricate   information   beyond   what   can   be 
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derived from simple visual observation. This expanded information spectrum enables 

diagnosis, prognostic predictions, and monitoring of lesion evolution during follow-up, 

both pre- and post-application of radiopharmacological treatments. Traditionally, tumor 

heterogeneity, considered a prognostic determinant of survival, has been studied through 

pathological anatomy, analyzing fragments or portions of a tumor mass. However, with 

radiomics, tumor heterogeneity can now be studied across the entire volume of the 

lesion. While radiomics initially focused on oncological lesions, particularly focal ones, 

its scope is expanding to encompass non-oncological and widespread pathologies (34) 

(35). 

 
 

Radiomics analysis entails several phases (figure 2): 
 

1. image acquisition and segmentation; 

2. features extraction and qualification; 
 

3. data handling and analysis; 
 

4. model building. 
 

. 
 

Figure 2 – The workflow of radiomics analysis (36). 
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Among these phases, segmentation is critical. While automated segmentation using 

advanced software is possible, manual segmentation is often preferred for its precision, 

albeit being operator- dependent. Artificial intelligence may be susceptible to imaging 

artifacts, which could distort the selection of regions of interest, thus compromising 

results. 

Another crucial stage is the extraction and characterization of features, also known as 

"high-dimensional features" or more commonly, "big data," owing to the multitude of 

variables identified. Once extracted, this data is used to develop classification models for 

predicting outcomes. 

Ultimately, the goal of radiomics is to enhance non-invasive diagnostic investigation 

methods by correlating imaging techniques with molecular and pathological analyses of 

lesions. 
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1.2.2 Texture features 

 
The quantitative data extracted from radiological images are derived from texture 

evaluation through textural analysis. Textural analysis delves into the characteristics of 

lesions in terms of intensity heterogeneity, which is detectable in single or correlated 

pixels and contextualized within specific regions of interest obtained through 

segmentation. 

While an in-depth understanding of radiomics features is not essential, it can aid in 

comprehending the results. Among the features are statistical ones (based on histograms 

and textures), model-based features, transformation-based features, and shape-based 

features. These features can be extracted from both two-dimensional and three- 

dimensional regions of interest. 

Texture features primarily rely on the diverse gray intensities between adjacent 

pixels/voxels and the arrangement of various gray shades in multidimensional matrices. 

Key texture features include: 

• Absolute gradient: Measures the degree of gray variation between adjacent 

pixels/voxels, with maximum variation in black-white comparison and minimum in 

white-white or black-black comparison. 

• Gray-level Co-occurrence Matrix (GLCM): Defines the spatial relationship between 

pairs of pixels/voxels in different directions. 

• Gray-Level Run-Length Matrix (GLRLM): Provides information on the spatial 

distribution of consecutive pixels with the same gray level in 
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multiple directions. 

 
• Gray-Level Size Zone Matrix (GLSZM) and Gray-Level Distance Zone Matrix 

(GLDZM): Characterizes groups or zones of pixels/voxels with the same gray levels. 

• Neighborhood Gray-Tone Difference Matrix (NGTDM): Quantifies the difference 

between the gray levels of a pixel or voxel and the primary gray level of neighboring 

pixels or voxels within a predefined distance. 

• Neighborhood Gray-Level Dependence Matrix (NGLDM): Establishes the connection 

between a pixel/voxel and its neighborhood based on the range differences in gray levels 

(35). 
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1.2.3 Segmentation techniques 

 
Segmentation involves identifying and delineating the area of the lesion being studied in 

two or three dimensions, thereby defining the regions of interest and volumes of interest, 

respectively. 

Various techniques can be employed for segmentation: 

 
• Manual segmentation involves the manual delineation of the lesion's boundary by an 

operator. 

• Semi-automatic segmentation utilizes standard image segmentation algorithms to 

identify the lesion's growth region or perimeter, followed by manual refinement if 

necessary. 

• Automatic segmentation relies on deep-learning algorithms, a type of machine learning 

based on multi-level models (37). This technique allows for rapid segmentation of a 

large number of lesions without significant intra- or inter-observer variability. 

Manual and semi-automatic techniques are commonly used and are sometimes more 

precise than automatic methods. However, they require more time for lesion selection 

and are operator-dependent. In contrast, automatic segmentation techniques offer rapid 

processing but may lose reliability in the presence of artifacts that could confuse the 

software (38). 
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1.2.4 Applications in the pancreas 
 

 
Over time, radiomics has emerged as a promising method for studying both focal and 

diffuse lesions of the pancreas (39). Numerous studies have underscored the potential 

of radiomics applied to this organ, with a focus on various aspects such as differential 

diagnosis between malignant and benign lesions, as well as between malignant lesions of 

different types. To date, research has identified differences between pancreatic ductal 

adenocarcinoma lesions and healthy tissue (40), focal pancreatitis (41), neuroendocrine 

tumors (42), pancreatic lymphoma (43), and autoimmune pancreatitis (44). Additionally, 

studies have explored the prediction of survival in patients with pancreatic ductal 

adenocarcinoma who undergo initial surgical resection (45). 

Despite these advancements, the use of radiomics has not yet been validated for 

differentiating the histological grade of pancreatic ductal adenocarcinoma. This 

represents an area of ongoing research and exploration within the field of radiomics. 



20  

Part 2 – Original Research: Role of radiomics in predicting biological aggressiveness and 

prognosis of pancreatic adenocarcinoma 

2 THE STUDY 
 
 

2.1 PURPOSE 

 
This study aims to investigate the efficacy of radiomics analysis using contrast-enhanced 

CT images in distinguishing between different histological grades of pancreatic ductal 

adenocarcinoma. The ultimate goal is to offer reliable and non-invasive assistance by 

establishing a correlation between radiomic features and histopathological data. Such 

correlations could significantly enhance the clinical decision-making process, aiding in 

the prediction of biological aggressiveness and prognosis of pancreatic adenocarcinoma. 

 
 
 

2.2 MATERIALS AND METHODS 
 

 
Our retrospective study, initiated in 2020, stemmed from a collaborative effort between 

the "Paolo Giaccone" University Hospital and the "La Maddalena" Level III Oncology 

Department. This multicenter collaboration aimed to pool resources and expertise in 

order to conduct a comprehensive analysis on pancreatic adenocarcinoma. 
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2.2.1 POPULATION 

 
For this study, 155 patients with pancreatic lesions were recruited, selected based on 

specific inclusion criteria: 

• Age >18 years. 

 
• Diagnosis of pancreatic lesion subjected to resection. 

 
• Patients undergoing CT and MRI investigations with contrast medium, including 

examination of the parenchymal and portal phases. 

• Patients not undergoing pre-resection treatment. 

 
Patients were excluded based on the following criteria (Figure 3): 

 
• Presence of secondary or primary lesions other than adenocarcinoma. 

 
• Patients who did not undergo CT/MRI examination or did not undergo evaluation with 

contrast medium. 

The initial population consisted of 155 patients, comprising n=81 women (51.9%) and 

n=74 men (48.1%), aged between 44 and 90 years, who underwent resection surgery of 

the pancreatic lesion between 2009 and 2020. Among these patients, n=104 underwent 

CT, including n=5 who had baseline CT, while n=55 underwent MRI, with n=3 

undergoing baseline MRI. 

The resected pancreatic lesions included: 

 
- Pancreatic ductal adenocarcinomas (n=90) 
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- Papilla neoplasms (n=12) 

 
- Neuroendocrine carcinomas (n=10) 

 
- Duodenal neoplasms (n=6) 

 
- Metastatic lesions of primary non-pancreatic tumors (n=5) 

 
- Cholangiocarcinomas (n=4) 

 
- Unspecified lesions (n=3) 

 
- Serous cystadenocarcinomas (n=2) 

 
- Inflammation (n=2) 

 
- GIST (Gastrointestinal Stromal Tumors) (n=2) 

 
- Lymphomas (n=2) 

 
- Mucinous cystic neoplasms (n=2) 

 
- Pseudopapillary solid epithelial neoplasms (n=2) 

 
- Gastric neoplasms (n=2) 

 
- Adrenal neoplasms (n=2) 

 
- Cysts (n=1) 

 
- Solitary cysts (n=1) 

 
- Dysplastic lesions (n=1) 

 
- Intestinal neoplasms (n=1) 
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- Hyperplastic lesions (n=1) 

 
- IPMN (Intraductal Papillary Mucinous Neoplasm) (n=1) 

 
- Mucinous neoplasms (n=1) 

 
- Chronic pancreatitis (n=1) 

 
- Squamous neoplasms (n=1). 

 
 
 

 
Figure 3 – Flow diagram of the study population 
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2.2.2 IMAGING TECHNIQUE – CT PROTOCOL 
 
 
 

Multiphasic CT investigations were conducted using a 128-detector row CT scanner. 

Each investigation followed a study protocol designed to examine the pancreatic 

parenchyma. This protocol included an initial acquisition before the administration of 

contrast medium, followed by a pancreatic phase at 35-40 seconds, acquired using the 

bolus tracking technique. Subsequently, a venous phase was captured 65-70 seconds 

after the administration of the contrast medium. 

The post-contrast study involved the intravenous administration of 110- 

120 ml of non-ionic contrast medium, such as 400 mg/ml Iomeprol (Iomeron 400, 

Bracco Imaging, Milan, Italy), 370 mg/dl Iopromide (Ultravist 370, Bayer Pharma), or 

350 mg/dl Iobitidrol (Xenetix 350, Guerbet; Omnipaque 350, GE Healthcare AS), 

depending on availability or at the discretion of the radiologist. The contrast medium 

bolus was administered through a venous catheter (18-20 gauge) using an injector at a 

flow rate of 3-5 mL/s, followed by a 20 mL saline bolus at the same flow rate. 
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2.2.3 SEGMENTATION AND EXTRACTION 

 
Initially, manual segmentation was performed by two radiologists, one of whom expert, 

blinded. Each contrast-enhanced CT exam was anonymized, imported into an open-

source DICOM viewer, and sent in DICOM format to a dedicated workstation integrated 

with radiomics analysis software called ITK-SNAP (Figure 4 and 5). Regions of interest 

were delineated in all slices where the lesion was visible in both the pancreatic and portal 

phases, resulting in a three-dimensional segmentation of the lesion (Figure 6, 7 and 8). 

A computer engineer was tasked with extracting data from the texture analysis using 

PyRadiomics (Figure 9) -version 3.0- software (46). For each region of interest, 120 

radiomic parameters were obtained, including first-order parameters (which provide 

information related to the gray level distribution without considering spatial relationships 

between voxels), second-order parameters (which consider spatial relationships between 

voxels), and third-order parameters (which consider relationships between a number of 

voxels ≥3). The texture parameters were calculated from histogram analysis of gray 

levels (e.g., mean, variance, skewness, kurtosis, and percentiles). Additionally, the co- 

occurrence matrix was calculated using five measurements (e.g., contrast, correlation, 

sum of squares, inverse difference moment, sum average, sum variance, sum entropy, 

difference variance, difference entropy), while the run-length matrix was calculated in 

four directions (e.g., run length non uniformity, grey-level non uniformity normalized, 

long run emphasis, short run emphasis). Later, we investigated the segmentation and 

resulting radiomic feature variations due to the inter-observer variability, involving two 

other radiologists, of which another expert.  
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Figure 4 and 5 – ITK-SNAP software application: Allows you to segment MRI and CT 

scan images, viewed in 3 planes of space, for clinical and research purposes. 
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Figure 6 – Example of segmentation in a 70-year-old patient with pancreatic 

adenocarcinoma at the level of the pancreatic body (arrow). Segmentation was 

performed in the pancreatic phase (A and B) and in the portal phase (C and D). 
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Figure 7 – Example of segmentation in a 67-year-old patient with pancreatic 

adenocarcinoma at the level of the pancreatic body (arrow). Segmentation was 

performed in the pancreatic phase (A and B) and in the portal phase (C and D). 
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Figure 8 – Example of segmentation in a 55-year-old patient with pancreatic 

adenocarcinoma at the level of the pancreatic head (with arrow) with presence of 

biliary stent (yellow arrow). Segmentation was performed in the pancreatic phase (A and 

B) and in the portal phase (C and D). 
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Figure 9 – Overview figure of the process of PyRadiomics. First, medical images are 

segmented. Second, features are extracted using the PyRadiomics platform, and third, 

features are analyzed for associations with clinical or biologic factors.  
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2.2.4 REFERENCE STANDARDS 

 
Anatomopathological confirmation, obtained post-surgical resection of the lesions, 

served as the gold standard for diagnosis. During histological fragment resection, the 

surgeon marked the margins to ensure proper orientation and precise perpendicular 

cutting of the tumor. 

A specialized anatomopathologist, focusing on pancreatic pathology, assessed various 

histological parameters including histological grading, margins, vascular invasion, 

perineural invasion, and metastatic lymph nodes. 

Histological grading denotes the level of cellular differentiation of a tumor relative to its 

tissue of origin, reflecting the proportion of undifferentiated cells. This grading is closely 

associated with tumor aggressiveness: a mass primarily comprising well-differentiated 

cells suggests lower aggressiveness, with slower growth rates and a lower likelihood 

of metastasis. Conversely, a mass predominantly composed of undifferentiated cells 

indicates higher aggressiveness, capable of migrating through blood, lymphatic, or 

perineural routes, leading to distant metastases. 

Different grades are distinguished (47): 

 
• Gx: Indeterminate grade; 

 
• G1: Well-differentiated (<25% undifferentiated cells); 

 
• G2: Moderately differentiated (<50% undifferentiated cells); 
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• G3: Poorly differentiated (50-75% undifferentiated cells); 

 
• G4: Undifferentiated (>75% undifferentiated cells). 

 
Assessing margins for tumor cell presence is crucial; cells at the margin indicate residual 

disease, signifying incomplete tumor resection (48) (49) (50). Different degrees of 

residual disease are classified based on tumor cell presence (51): 

• R0: Absence of tumor cells; 

 
• R1: Microscopic tumor residues; 

 
• R2: Macroscopic tumor residues. 

 
Invasion of neuronal, vascular, and lymphatic structures indicates tumor progression 

beyond the pancreas. Vascular invasion, affecting arterial and venous structures, occurs 

when tumor cells breach vessel walls and enter circulation. 

Perineural invasion, occurring when tumors invade nerve structures, signifies heightened 

aggressiveness. Pancreatic adenocarcinoma particularly exploits the nearby rich neural 

network near the uncinate process, involving the celiac plexus and associated ganglia 

(52). 

Lymph node involvement is another unfavorable prognostic factor. Lymph nodes 

adjacent to the tumor are removed during resection for histopathological examination. 

Positive findings suggest tumor spread through lymphatic pathways, increasing the risk 

of lymph node metastasis (53). 
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2.2.5 STATISTIC ANALYSIS 

 
The statistical and computational analysis was conducted by the same engineer 

responsible for extracting data from the regions of interest. For each phase (parenchymal 

and portal), various outcomes including differentiation, perineural invasion, vascular 

invasion, metastatic lymph nodes, and margins were assessed. To identify the most 

discriminative features, the punctual biserial correlation index was calculated between 

continuous variables and the dichotomous variable (reference standard), assuming values 

of 1 or 0. 

Discriminant analysis was employed to assess the performance of the radiomics model. 

Eighty percent of the samples were allocated for training the classifier, while the 

remaining 20% were reserved for testing its classification reliability. Predictive 

assessment of sensitivity, specificity, and accuracy was conducted for each selected 

outcome. Furthermore, p-values were computed, ROC curves were generated, and the 

areas under the curve (AUROC) along with their 95% confidence intervals were 

evaluated to gauge the diagnostic performance of the studied outcomes. 

The computational statistical analysis proposed was implemented using the MatLab 

R2019a simulation environment (MathWorks, Natick, MA, USA). Radiomic features 

from both the arterial and portal phases were subjected to robustness analysis using the 

intraclass correlation coefficient (ICC). ICC was calculated considering all four 

observers and separately for expert and non-expert observers. 
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The ICC estimates were categorized to indicate poor (ICC < 0.30), moderate (0.30 < ICC 

 
< 0.60), good (0.60 < ICC < 0.80), and excellent reliability (ICC > 0.80) of radiomic 

characteristics compared to reference results. 

Additionally, ICC was utilized to determine the reproducibility of radiomics features 

based on tumor location, pathological diameter, and the presence of biliary stents. 
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2.3 RESULTS 

 
2.3.1 POPULATION 

 
As depicted in Table 1, out of the initial population of 155 patients, a subset of 57 

individuals was selected, with an average age of 73.5 years. Among these, there were 26 

(45.6%) males and 31 (54.4%) females, all diagnosed with pancreatic ductal 

adenocarcinoma and evaluated through contrast-enhanced CT in both arterial and portal 

phases. 

Regarding the isolated lesions, which had an average diameter of 3.7cm, 43 (75.4%) 

were classified with G1-G2 grading, while 14 (24.6%) were classified with G3 grading. 

Margin involvement was observed in 29 cases (50.9%), whereas 28 cases (49.1%) had 

clear margins. Vascular invasion was present in 16 cases (28.1%) and absent in 41 cases 

(71.9%). Perineural invasion was found in 44 cases (77.2%), while 13 cases (22.8%) 

showed no perineural invasion. Lymph node metastases were detected in 40 patients 

(70.2%), while 17 patients (29.8%) did not exhibit lymph node involvement. Distant 

metastases, indicating non-resectable criteria, were identified post-resection in only 5 

cases (8.8%). 
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Table 1 – Characteristics of the study population 
 
 

 

Variables 
 

Sex-n. (%) 
-Males 
-Females 

 
26 (45,6%) 
31 (54,4%) 

Mean age (years) 73,5 

Mean lesion diameter (cm) 3,7 

Grading 
-G1-G2 
-G3 

 
43 (75,4%) 
14 (24,6%) 

Margins-n. (%) 
 
 

29 (50,9%) 
28 (49,1%) 

-Involved 
-Indemnified 

 
Vascular invasion-n. (%) 

 

-Present 16 (28,1%) 
-Absent 41 (71,9%) 

Perineural invasion-n. 
 
 

44 (77,2%) 
13 (22,8%) 

(%) 
-Present 
-Absent 

Lymph node metastases-n. 
 
 

40 (70,2%) 
17 (29,8%) 

(%) 
-Present 
-Absent 

Distant metastases -n. 
 
 

5 (8,8%) 
52 (91,2%) 

(%) 
-Present 
-Absent 
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2.3.2 RADIOMIC ANALYSIS 
 
 

As illustrated in Table 2, among the observed features, the radiomics feature "original 

NGTDM contrast" emerged as the most statistically significant predictor for the 

"differentiation" outcome, evident in both the arterial and portal phases, with a p-value 

of <0.001 in both instances. This suggests a strong association between this specific 

radiomics feature and the differentiation status of the lesions, highlighting its potential as 

a valuable diagnostic marker in both phases of contrast-enhanced CT imaging. 
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Table 2 – Characteristics identified by the statistical system based on the point-biserial 

correlation coefficient. 

 

 
OUTCOME ARTERIAL PHASE PORTAL PHASE 

 Feature P-value           Feature P-value 

 
        Differentiation 

Original 
NGTDM 
contrast 

<0,001 Original 
NGTDM 
contrast 

<0,001 

 
 
 

Perineural 

Original 
GLSZM Size 
Zone Non 
Uniformity 

0,052 Original GLSZM 
Large Area High 
Gray-Level 
Emphasis 

0,057 

invasion     

 Original First 
Order 

0,023   

 Interquartile 
Range 

   

 Original First 
Order 
Maximum 

0,181 Original 
NGTDM 
contrast 

0,051 

     
Vascular 
invasion  

    

 Original 
Shape 
Maximum 

0,050   

 2D Diameter 
Slice 

   

 Diagnostics 
Image original 

0,014 Diagnostics 
Image original 

0,014 

 
Lymph node 
metastases 

Minimum  Minimum  

 Original 
Shape 
Maximum 

0,001   

 2D Diameter 
Slice 

   

Margins 
     Original 

GLSZM Low 
Gray- Level 
Zone 
Emphasis 

0,050 Original GLCM 
Autocorrelation 

0,032 
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The results encompassing sensitivity, specificity, accuracy - expressed as percentages -, 

AUROC with 95% confidence interval, and corresponding p-values for each outcome are 

detailed in Table 3. 

In the arterial phase, differentiation emerges as the outcome with the highest statistical 

significance (p<0.001). It demonstrates a sensitivity of 67.1%, specificity of 86.2%, 

accuracy of 72%, and an AUROC value (95% CI) of 0.762 (0.597-0.927) for predicting 

poorly differentiated lesions (G3). 

Similarly, in the portal phase, differentiation stands out as the outcome with the most 

robust statistical performance (p=0.004). It exhibits a sensitivity of 76.0%, specificity of 

60.9%, accuracy of 71.9%, and an AUROC value (95% CI) of 0.758 (0.600-0.916) for 

predicting poorly differentiated lesions (G3). The ROC curves of the most discriminating 

feature in the arterial (A) and portal (B) phase for predicting outcomes with better 

statistical performance are depicted in Figures 9, 10, 11, 12 and 13.
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Table 3 – Performance of the discriminant analysis models based on the selected 

features. 

 
 
 

Outcome Sensitivity  Specificity Accuracy 
AUROC 
(95% CI) P-value 

ARTERIAL PHASE 

Differentiation 67.1% 86.2% 72% 
0.762 

(59,7%-92,7%) <0.001 

Perineural 
invasion 37.6% 83.7% 73.7% 

0.680 
(48,1%-87,9%) 0.294 

Vascular invasion 
57.8% 48.3% 55.1% 

0.630 
(46,9%-79,1%) 0.616 

Lymph node 
metastases 69.7% 83.4% 79.4% 

0.739 
(58,6%-89,2%) 0.510 

Margins 57.03% 49.0% 53.0% 
0.601 

(44,7%-75,4%) 0.194 

PORTAL PHASE 

Differentiation 76.0% 60.9% 71.9% 
0.758 

(60,0%-91,6%) 0.004 

Perineural 
invasion 5.9% 98.0% 79.9% 

0.467 
(24,4%-69,0%) 0.792 

Vascular invasion 
55.5% 60.1% 59.0% 

0.638 
(47,5%-80,0%) 0.082 

Lymph node 
metastases 53.5% 83.0% 74.4% 

0.618 
(43,6%-80,0%) 0.212 

Margins 63.2% 54.8% 58.9% 
0.637 

(48,7%-78,6%) 0.088 
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Figure 9 – ROC curve of the most discriminating feature on the arterial (A) and portal 
 

(B) phases for the prediction of poorly Differentiated lesions (G3). 
 

(A) 
 

 
 

(B) 
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Figure 10 – ROC curve of the most discriminating feature on the arterial (A) 
 

and portal (B) phases for the prediction of Perineural invasion. 

 
(A) 

 

 

 
 

(B) 
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Figure 11 – ROC curve of the most discriminating feature on the arterial (A) and portal 
 

(B) phases for the prediction of Vascular invasion. 
 

 
(A) 

 

 

 
 

(B) 
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Figure 12 – ROC curve of the most discriminating feature on the arterial 
 

(A) and portal (B) phases for the prediction of Lymph node metastases. 
 

 
(A) 

 

 

 
 

(B) 
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Figure 13 – ROC curve of the most discriminating feature on the arterial 

(A) and portal (B) phases for the prediction of Margins. 

 
(A) 

 

 

 
 

(B) 
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As illustrated in Table 4, the proportion of radiomic features demonstrating 

reproducibility with ICC > 0.80 was 33% among experienced radiologists and 24% 

among non-expert radiologists. Across both arterial and portal phases, reliability among 

all four observers was excellent for aspects such as adherence to the 0 value of 4/5 (80%) 

of the reference standard (ICC = 0.73-0.75), tumor positioning within the body- tail 

region (ICC = 0.73-0.74), pathological largest diameter of the tumor (ICC = 0.73-0.78), 

and absence of biliary stents (ICC = 0.73-0.74). 

Moreover, reproducibility of radiomic features displayed an inverse relationship with the 

aggressiveness of histological parameters, exhibiting poor reliability values in the 

presence of vascular invasion (ICC = 0.24). Conversely, reliability was directly 

proportional to tumor size, showcasing excellent reliability values for larger tumors 

(ICC > 0.80). 
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Table 4 – Outcomes evaluated using ICC to demonstrate the robustness and reliability 

of the radiomics analysis across different observers. 

 
Outcome              ICC Arterial phase             ICC Portal phase 

 All 4  
observers 

Observers 
1-3 

Observers  
2-4 

All 4  
observers 

Observers 
1-3 

Observers  
2-4 

Differentiation       

0 0.88 0.75 0.75 0.88 0.73 0.73 
1 0.63 0.63 0.63 0.74 0.71 0.71 

Perineural       

invasion 0.85 0.74 0.74 0.88 0.74 0.74 
0 0.56 0.41 0.41 0.56 0.33 0.33 
1       

Vascular       

invasion 0.86 0.75 0.75 0.88 0.73 0.73 
0 0.24 -0.04 -0.04 0.29 0.06 0.06 
1       

Lymph node       

metastases       

0 0.87 0.74 0.74 0.88 0.73 0.73 
1 0.63 0.62 0.62 0.67 0.63 0.63 

Margins       

0 0.63 0.11 0.11 0.72 0.25 0.25 
1 0.87 0.77 0.77 0.88 0.79 0.79 

Location       

0 0.87 0.74 0.74 0.88 0.73 0.73 
1 0.63 0.62 0.62 0.67 0.62 0.62 

Pathological       

diameter       

0 0.48 0.08 0.08 0.48 -0.02 -0.02 
1 0.85 0.73 0.73 0.88 0.78 0.78 

Stent       

0 0.85 0.74 0.74 0.88 0.73 0.73 
1 0.63 0.40 0.40 0.74 0.59 0.59 
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2.4 DISCUSSION 

 
Radiomics represents a novel methodology grounded in segmentation and extraction 

algorithms, facilitating the acquisition of quantitative data from radiological images that 

are otherwise imperceptible to the naked eye. Our retrospective study, initiated in 

2020, stems from a collaborative effort between Paolo Giaccone University Hospital and 

the "La Maddalena" level III Oncology Department. It juxtaposes and integrates 

radiological and histological reports of 57 patients diagnosed with pancreatic ductal 

adenocarcinoma. These patients underwent contrast- enhanced CT scans followed by 

surgical resection of the lesion and subsequent histopathological analysis. 

The study's aim is to validate the efficacy of radiomics in characterizing pancreatic 

ductal adenocarcinoma by evaluating lesions in both arterial and portal CT phases. 

Histopathological parameters such as grading, vascular invasion, perineural invasion, 

margin involvement, and lymph node metastases serve as reference standards. Promising 

results were achieved, particularly in predicting poorly differentiated lesions, across both 

arterial and portal phases. 

The clinical significance of these findings lies in the ability to non- invasively and 

accurately identify poorly differentiated pancreatic ductal adenocarcinoma. This 

facilitates the initiation of chemo-/neoadjuvant radiotherapy prior to surgery, thereby 

enhancing the patient's survival prospects during adenocarcinoma resection. 



49  

Identifying and pre-emptively treating poorly differentiated pancreatic ductal 

adenocarcinoma represents a scientific advancement aimed at improving prognosis, 

optimizing clinical timelines, enhancing patient compliance, and mitigating the 

psychophysical stress associated with potentially unfavorable surgical outcomes. 

Our study's outcomes align with recent scientific literature, which underscores the 

efficacy of machine learning tools in analyzing pancreatic lesion texture and predicting 

histological grading. Notable studies by Qiu (2019) (54), Kulkarni (2020) (55), and 

Chang (2020) (56) corroborate our findings, highlighting the potential of radiomics in 

evaluating histological outcomes. 

However, our study is not without limitations. These include its retrospective nature, the 

limited patient cohort, the absence of MRI data - justified by the infrequent use of MRI 

in studying these lesions - and the lack of an external validation cohort. 

This study is designed to showcase the reliability of CT radiomic features in comparison 

to histological parameters, which serve as pivotal reference standards in determining the 

operability of tumor predicting overall patient survival rates. The findings of our 

research indicate that the robustness of CT radiomic features tends to decrease when 

confronted with more aggressive histological characteristics, although an exception is 

noted in the case of larger tumors. This phenomenon can be attributed to the complex 

and infiltrative nature of aggressive tumors, which poses challenges in accurately 

delineating lesions on CT scans. The difficulty in segmentation arises due to the intricate 

boundaries of such tumors, making them less distinguishable on CT images. 
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On the flip side, when dealing with larger tumors, their increased size might actually aid 

in achieving clearer delineation of the tumor margins, thereby enhancing the accuracy of 

segmentation. Concerning the size factor, numerous studies have conducted comparative 

analyses between the predictive abilities of radiomics and those of the TNM clinical 

staging system, consistently demonstrating that radiomics outperforms the TNM staging 

system (57) (58). 

Given that radiomic analyses are primarily focused on a specific region of interest, 

typically the primary tumor, and involve fewer data points beyond the tumor boundaries, 

it was conjectured that the augmented prognostic value stemmed from extracting more 

comprehensive information beyond just the tumor size. Moreover, an important 

consideration in patients with pancreatic cancer is the potential development of biliary 

strictures necessitating the insertion of metallic stents within the bile duct. 

The presence of these biliary stents introduces a notable decrease in robustness, as 

reported in the literature (59) (60), primarily due to the occurrence of beam-hardening 

artifacts caused by the metallic composition of the devices. These artifacts detrimentally 

impact the quality of CT images by distorting pixel intensities and introducing streaking 

effects, thereby impeding the accurate evaluation of pancreatic lesions. Consequently, 

the compromised image quality resulting from beam-hardening artifacts poses a 

significant challenge in precisely characterizing and assessing the extent of pancreatic 

lesions in patients with biliary stents. 
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2.5 CONCLUSION 

 
This study presents promising findings regarding the application of radiomics in 

predicting histological grading and distinguishing poorly differentiated PDACs. The 

methodology involved extracting data from specific regions of interest identified in 

contrast-enhanced CT scans conducted during both arterial and portal phases of imaging. 

Furthermore, the study brought to light an important observation regarding the 

reproducibility of radiomic features, particularly in the context of varying histological 

parameters. It was noted that the reproducibility of these features significantly 

diminishes when confronted with more aggressive histological characteristics. This 

phenomenon suggests a prominent role of segmentation uncertainty, particularly evident 

in advanced PDAC cases. Segmentation uncertainty refers to the difficulty in accurately 

delineating tumor boundaries due to the complex and infiltrative nature of aggressive 

tumors, which leads to variability in the extracted radiomic features. 

Conversely, the study also revealed that higher reproducibility of radiomic features was 

observed in cases involving larger tumor dimensions. This finding underscores the 

significance of tumor volume in influencing segmentation variability and the stability of 

radiomic characteristics. Larger tumors typically exhibit clearer and more discernible 

boundaries, facilitating more consistent segmentation and extraction of radiomic 

features.  

In summary, the study highlights the potential of radiomics in predicting histological 

grading and identifying poorly differentiated PDACs. However, it also emphasizes the 

challenges associated with segmentation uncertainty, particularly in the context of 
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aggressive tumor phenotypes, while acknowledging the influence of tumor size on the 

reproducibility of radiomic features. 
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