
Vol.:(0123456789)

Environmental and Ecological Statistics
https://doi.org/10.1007/s10651-023-00593-4

1 3

Severe convective storms’ reproduction: empirical analysis 
from the marked self‑exciting point processes point of view

Giada Lo Galbo1 · Marcello Chiodi1

Received: 9 October 2023 / Revised: 19 December 2023 / Accepted: 20 December 2023 
© The Author(s) 2024

Abstract
The paper focuses on the evaluation of hailstorms’ and thunderstorms winds’ events 
in the United States of America, in the period from 1996 to 2022, under the marked 
spatio-temporal self-exciting point processes point of view. The aim of the present 
article is the assessment and description of the spatio-temporal spontaneous and 
reproducing activity of severe hailstorms’ and thunderstorms winds’ processes. The 
present application shows how the spatio-temporal pattern is well-fitted and clearly 
explainable, according to the flexible semi-parametric ETAS model fitting.

Keywords Declustering method · Epidemic Type-Aftershocks Sequence (ETAS) 
model · Marked spatio-temporal point process · Semi-parametric modeling 
approach · Severe convective storms

1 Introduction

Severe storms’ events, such as hailstorms and thunderstorms winds, have significant 
impacts on human activities and infrastructures. Namely, their increasing occur-
rence in space and in time has a significant impact in terms of economic damages 
and heavy losses (Kossin et al. 2017). As stated by the Insurance Information Insti-
tute (2021), among severe storms’ types, hailstorms and thunderstorms winds result 
to be the most dangerous events, in terms of insurance losses (Gao and Shi 2022), as 
well as life losses (Kunkel et al. 2013). Hailstorms and thunderstorms winds’ events 
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are described as severe local storms and are classified as severe convective ones 
(Brooks 2013). Severe convective storms earn their designation based on the magni-
tudes of their grasps. A convective storm related to a hailstorm’s event is considered 
severe if the hail diameter extension (National Center for Environmental Informa-
tion (NCEI) of the National Oceanic and Atmospheric Administration (NOAA) of 
the United States of America (USA) 2022b) is higher than 2.50 cm ≈ 0.98�� (inches), 
while that related to a gust wind’s event is considered severe if its wind speed is 
higher than 95.00 km/h ≈ 0.03 km/s (Kunkel et  al. 2013). Both thunderstorms 
winds’ and hailstorms processes are sensible to climate change (Raupach et al. 2021) 
as their relationship with environmental, meteorological and climatological covari-
ates (Brown and Murphy 1996; Brooks et al. 2003) has been investigated through 
regression techniques, such as Principal Component Regression (PCR), Partial Least 
Squares Regression (PLSR—Eccel et al. 2011), Poisson counting regression models 
(Allen et al. 2015) and intensity estimation (Gensini and Allen 2018).

The spatio-temporal dynamics and the occurrence of severe storms’ events 
are complex and require sophisticated modeling techniques (Sobash et  al. 2011; 
Dehshiri and Firoozabadi 2023; Fortuin et al. 2022), that are not even enough satis-
factory to describe their spatio-temporal structural and reproduction characteristics. 
Spatio-temporal dynamics of hailstorms have recently been evaluated according to 
replicated spatial point processes’ models (Gao and Shi 2022), and that of thunder-
storms winds have been evaluated through temporal Poisson renewal processes (Li 
2000). Furthermore, extreme environmental hazards’ processes involving the most 
violent gusty winds, i.e., tornadoes, are already evaluated from the spatio-tempo-
ral point processes point of view (González et al. 2014, 2019; Valente and Laurini 
2020).

Spatio-temporal point processes’ models have been used to understand the mech-
anism of the spatio-temporal evolution of phenomena (González et al. 2016), in spe-
cialized fields, such as epidemiology (Quesada et al. 2017) and seismology (Adelfio 
and Chiodi 2020). However, recently, their application has been developed in other 
fields such as ecology/biology (Soriano-Redondo et al. 2019), social sciences (Tang 
et  al. 2022), finance (Adelfio et  al. 2020). Spatio-temporal point processes allow 
the description of a point pattern’s first-order characteristics, related to the spatio-
temporal locations or in asymmetric relationships with the available environmental 
covariates, and its second-order characteristics. The latter involves the spatio-tem-
poral interactions or interpoint distances. In summary, point processes allow for the 
recognition of the so-called generating process, i.e. the underlying spatio-temporal 
point process (Diggle 2006a, b; Illian et al. 2007).

An important issue in the assessment of the dynamics of thunderstorms winds 
and hailstorms processes relates to their mark variables, i.e. their extension and 
wind speed, respectively (Gao and Shi 2022). Models for marked spatio-temporal 
point patterns are suitable for the evaluation of spatio-temporal environmental haz-
ards’ processes (Mateu and Ignaccolo 2015), such as for seismological phenomena 
(Adelfio and Chiodi 2020). Our interest is to evaluate the historical processes of 
severe hailstorms and thunderstorms winds that occurred in the USA, from 1996 to 
2022. More precisely, we aim to evaluate the dynamics of hailstorms and thunder-
storms winds using stochastic point processes theory, and according to the marked 
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spatio-temporal self-exciting point processes approach. As well as many other natu-
ral phenomena, thunderstorms winds and hailstorms processes are characterized by 
an additional random variable indicating the power of occurrence at each spatio-
temporal location. This power is measured in terms of the so-called mark, which 
represents the phenomenon’s driving force. Marked self-exciting point processes, 
as well as log-Gaussian Cox processes for the unmarked case and patterns where 
the driving force is represented by the random intensity function, are suitable mod-
els for assessing the underlying processes of marked clustered patterns. Besides 
the aggregated nature of the data, they require an additional assumption regarding 
the real-valued driving random variable, or mark, that makes them marked. Each 
marked self-exciting process has a spatio-temporal distribution (and the associated 
spatio-temporal conditional intensity function) which depends on the mark distribu-
tion. Marked self-exciting point processes assume that the process self-excites with 
a higher frequency of offspring events conditional to a high value of the mark; i.e. 
the higher the mark value, the higher the offspring productivity, in the immediate 
nearest neighbourhood, according to some specific spatial and temporal reproduc-
tion laws. As well as seismic sequences, both hailstorms’ and thunderstorms winds’ 
after-sequences could be produced starting from spatio-temporal decay laws. The 
subject of the analysis is of great importance and allows for the explanation, as 
well as the possible forecast, of catastrophic events, damages and hazards resulting 
from severe convective storms, using the dataset provided by the National Center 
for Environmental Information (NCEI) of the National Oceanic and Atmospheric 
Administration (NOAA) of the USA (2022a).

This work aims to understand the spatio-temporal dynamics of severe hailstorms 
and thunderstorms winds coherently with stochastic processes’ theory. We are here 
interested in the evaluation of thunderstorms winds’ and hailstorms’ processes in 
terms of Windowed ETAS models (Nicolis et  al. 2015), over several temporal (in 
particular yearly) sub-patterns.

In order to fit and attempt to explain the spatio-temporal data related to the his-
torical severe storms in the USA, according to the marked self-exciting spatio-tem-
poral point processes theory, the formulation of the extended Hawkes (1971)—the 
Epidemic Type-Aftershocks Sequence (ETAS—Ogata 1988)—model is considered.

The paper is organized as follows: after this brief introduction, Sect.  2 introduces 
the point process framework related to spatio-temporal point processes and the 
ETAS model; Sect.  3 shows the case study, the exploratory analysis and the model 
fitting results; Sect.  4 provides the interpretation of ETAS model fitting; and finally, 
Sect. 5 provides a brief discussion and some concluding remarks on methodology 
and future developments.

2  Spatio‑temporal point processes and conditional intensity 
function (CIF)

Let X be a marked spatio-temporal point process, so a random countable subset 
X ∈ ℝ

2 ×ℝ
+ ×M , where a point (u, t,m) ∈ X corresponds to an event at u ∈ ℝ

2 
occurring at time t ∈ ℝ

+ , with attached mark value m ∈ ℝ
+ . A marked point pattern, 
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which is a realization of a marked spatio-temporal point process X, is a finite set of 
distinct points of size n > 0 , {ui, ti,mi}

n
i=1

 , within a bounded spatio-temporal region 
W × T ×M ⊂ ℝ

2 ×ℝ
+ ×ℝ

+ , with area |W| > 0 , length |T| > 0 and marking struc-
ture M ∈ ℝ

+ (Daley et al. 2003). Let N be a counting measure, such that N(A × B) 
denotes the number of (unmarked) points of a set (A × B)

⋂
X , with A ⊆ W and 

B ⊆ T .
First- and second-order properties, representing the point process character-

istics associated with the mean and the covariance functions, respectively, are 
described by the corresponding first, �(u, t,m) , ∀{(u, t,m)} ∈ X , and second-order, 
�(2)

(
(u, t,m), (v, l,m�)

)
 , ∀{(u, t,m), (u, l,m�)} ∈ X , intensity functions. A refined ver-

sion (Illian et al. 2007) of the intensity function, ��(u, t,m) , is the so-called condi-
tional intensity function, �(u, t,m|F) , where F  indicates the filtration, given by a 
sequence of sub �-algebras to which the evaluation of the pattern is subject (each 
time, whenever a new event occurs). The conditional intensity function is a stochas-
tic process itself and  completely characterizes the associated spatio-temporal point 
pattern (Adelfio and Chiodi 2014; Daley et al. 2003). If the filtration is represented 
by the past history of the process, including the marks: Ht =

{
(ui, ti,mi) ∶ ti < t

}
 , 

then the conditional intensity function is defined as:

where JM(m) is a probability density function describing the mark distribution; i.e., 
the mark density distribution function, which describes the expected number of off-
springs of an event of magnitude m, where m ≥ m0 ; �(u, t ∣ Ht) is the conditional 
intensity function of the unmarked spatio-temporal point pattern; Ht  is the past his-
tory of the marked point pattern (Ogata 1988; Stindl and Chen 2022; Zhuang et al. 
2002). No inference about the mark density distribution function is provided in the 
paper.

Under the assumption of underlying marked self-exciting spatio-temporal point 
process, the conditional intensity function of the corresponding unmarked spatio-
temporal point pattern, �(u, t ∣ Ht) , is defined as:

where �[⋅] is the expectation operator; Δu and Δt are spatial and temporal infini-
tesimal increments; Ht  is the spatio-temporal occurrence history of the pro-
cess up to time t. This is also a conditional expectation, and represents the his-
tory-dependent (conditional) probability that an event occurs in the volume 
{[u,u + Δu] × [t, t + Δt]} , around the location (u, t) ∈ X and up to time t (Adelfio 
and Ogata 2010).

2.1  The Epidemic Type‑Aftershocks Sequences (ETAS) model

A branching process is a Markov process in which each individual in the nth 
generation produces random numbers of individuals in the (n + 1) th generation, 

(1)�(u, t,m ∣ Ht) = JM(m)�(u, t ∣ Ht)

(2)�(u, t|Ht) = lim
Δu,Δt→0

�
[
N([u, u + Δu] × [t, t + Δt])|Ht

]

ΔuΔt
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according to a probability distribution function which is repeated from individual 
to individual. Branching processes are generally used to model reproduction phe-
nomena (Adelfio and Chiodi 2014).

The conditional intensity function of a spatio-temporal branching model cor-
responds to the sum between a term indicating spontaneous or background activ-
ity and a term indicating induced or triggered activity. The triggered component 
evaluates the interaction activity with the events characterizing the past history of 
the process, and the parametric conditional intensity function is:

where � = (�,�) is the vector of parameters of the background ( � ) and the induced 
( � ) intensity, respectively; f (u) is the spatial density; ��(u, t) is the conditional trig-
gered intensity to the mark value attached to the corresponding point. Under the 
assumption of spatio-temporal separability, the latter, ∀j ∶ tj < t , can be further fac-
torized (Stindl and Chen 2023; Molkenthin et al. 2022) as the product between the 
spatial occurrence rate, g(u − uj) , the temporal occurrence rate, t(t − tj) , and a boost 
function, which expresses the proportionality with the shifted/truncated exponential 
law associated to the magnitude distribution, �(mj) , i.e.:

An Epidemic Type-Aftershocks Sequence (ETAS—Ogata 1988) model, which can 
be considered as an extension of the Hawkes (1971) model, assumes a branching 
process of descendants (Adelfio et al. 2006), and is defined according to a paramet-
ric conditional intensity function which is expressed as:

where the triggered component results from the product between three components, 
which are those listed below:

– the Modified Omori Law (Omori 1895; Utsu 1961), representing the density 
of aftershocks in time, defining the occurrence rate of aftershocks at time t, 
following the earthquake of time tj , which is represented by a non-stationary 
Poisson process (Ogata 1983), and which is expressed as: 

 where c and p are the temporal displacement and decay parameters; �0 is the 
normalizing constant linked to the aftershock productivity;

– the density of aftershocks in space, associated with the spatio-temporal loca-
tion of the same event, 

(3)𝜆�(u, t|Ht) = 𝜇f (u) + 𝜏�(u, t) with: 𝜏�(u, t) =
∑

tj<t

𝜈�(u − uj, t − tj ∣ mj)

(4)��(u − uj, t − tj ∣ mj) = f (t − tj)g(u − uj)�(mj)

(5)𝜆�(u, t|Ht) = 𝜇f (u) + 𝜅0

∑

tj<t

e𝛼(mj−m0)
{
(u − uj)

2 + d
}−q

(t − tj + c)p

(6)f (t − tj) =
𝜅0

(t − tj + c)p
with: t > tj
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 where d and q are the spatial displacement and decay parameters, respectively;
– the boost function, �(mj) , which indicates the mark density distribution 

function and is proportional to the assumed shifted exponential density 
JM(m) = � exp{−�(mj − m0)} in (3), as follows: 

 where: mj represents the magnitude of the jth event; � = b log(10) is the rate 
value, which is a function of the b parameter describing the Gutenberg–Richter 
recurrence law (Gutenberg and Richter 1944—as detailed in Sect.   3.4); m0 is 
the completeness magnitude threshold; � describes the expected number of off-
springs generated by a single event.

The modified Omori Law in (6) describes the decay of the number of aftershocks 
after a mainshock event. The decay rates of aftershocks, including the modified 
Omori Law, are both described by power law decay functions.

The log-likelihood function to be maximized is expressed as:

2.2  Parameters estimation

The set of parameters � = {�, �0, c, p, �, d, q} is generally estimated through the 
maximum likelihood (ML) approach (Ogata 1988) or by implementing the expec-
tation-maximization (EM) algorithm to maximize the expected complete data 
log-likelihood function (Veen and Schoenberg 2008). The background spatial 
intensity, f (⋅) , is generally estimated through non-parametric methods (Chiodi 
and Adelfio 2008), involving kernel-based techniques. Namely, the latter can be 
estimated through a weighted Gaussian Kernel estimator (Sheather 2004; Silver-
man 1981), whose formulation is:

where the weight �i is the estimated probability that the event (ui, ti) belongs to the 
background component, and is given by:

(7)g(u − uj) =
1

[(u − uj)
2 + d]q

(8)�(mj) = exp{�(mj − m0)} ∝ � exp{−�(mj − m0)} with:m0 ≤ mj

(9)

�X(�;X) = log
[
LX(�;X)

]
=

n∑

i=1

log
[
��(ui, ti|Ht)

]
− ∫

T

0 ∫W

��(u, t|Ht)dudt

(10)f̂
�
(u) =

n∑

i=1

𝜌iK(u − ui,�)

n∑

i=1

𝜌i
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where: �̂� is the estimated temporal background intensity; f̂
�
(ui) is the Gaussian Ker-

nel estimate of the ith point; �̂��̂�(ui, ti|Ht) is the estimated conditional intensity value 
of the ith point, all estimated by the ETAS model.

For the evaluation of the bandwidth, the classical Silverman’s rule of thumb can 
be used, as well as the cross-validation one proposed in Adelfio and Ogata (2010), 
or the semi-parametric, simultaneous and alternated Forward Likelihood-based Pre-
dictive (FLP) approach, proposed by Chiodi and Adelfio (2017), which maximizes 
the predictive information. For further details about the FLP approach, see Chiodi 
and Adelfio (2008) and Adelfio et al. (2013).

3  Results

3.1  Data

The Storm Events Database (National Center for Environmental Information 
(NCEI) of the National Oceanic and Atmospheric Administration (NOAA) of 
the USA 2022a) is an integrated database containing information on severe weather 
events that occurred in the USA, from 1950 to 2023. For each severe event, a vari-
ety of variables are collected, including severe event type, magnitude (severity), 
magnitude type, spatio-temporal location, start and end time, event azimuth, direct 
and indirect impacts, such as the cost of damage to property and crops. Events are 
recorded if they are of sufficient intensity to cause loss of life, injury, significant 
property damage and/or disruption of commerce; or if they are considered rare and 
unusual enough to attract media attention; or if they are associated with other mete-
orological or climatic events; or if they are consistent with concurrently recorded 
maximum or minimum temperature values or precipitation amounts. Preliminary 
information and data are included in the Storm Prediction Center (2023) reports, 
during the first 120 days from the day of occurrence.

The corresponding documentation is prepared and published by the National 
Weather Service (1999). The recorded severe occurrences cover 40 types of mete-
orological and climatic events, including severe convective storms and, in particular, 
thunderstorms winds and hailstorms. The latter are the most frequent and spatio-
temporally dynamic (Kelly et al. 1985) storms in the USA’s history of natural dis-
asters, and they are the only two types of severe weather events that have their own 
magnitude accompanying them.

In this application, the listed variables are considered for each severe convective 
storm event:

– Spatial location, related to longitude and latitude values, recorded in decimal 
degrees and converted into km;

(11)𝜌i =
�̂�f̂

�
(ui)

�̂��̂�(ui, ti|Ht)
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– Temporal location, related to the exact occurrence’s hour and day;
– Magnitude value, i.e., hail extension for hailstorms, recorded and analysed in 

inches, wind speed for thunderstorms winds, recorded in MPH and analysed in 
km/s.

The total number of recorded hailstorms’ events, from 1996 to 2022, is 288, 126. 
The total number of recorded thunderstorms winds’ events, from 2003 to 2022, is 
240, 040. They are yearly analysed because of the lack of knowledge about the gen-
erating processes of both severe convective storms, i.e., as a first understanding of 
the hypothesized dynamics of both processes.

The marked spatio-temporal distributions of hailstorms’ (green, Fig.  1a) and 
thunderstorms winds’ (blue, Fig.  1b) selected events, that occurred within the 
USA territory, are represented in Fig. 1.

In Fig. 1, events are represented according to their spatio-temporal locations. Spa-
tial (longitude and latitude) and temporal locations are represented in km and days, 
respectively. The time domain corresponds to the temporal distance, in days, from 
the occurrence of the first event. Each point is represented with size and color pro-
portional to the recorded magnitude value, represented by hail extension in inches 
(for hailstorms, Fig. 1a) and thunderstorms winds’ speed in km/s (for thunderstorms 
winds, Fig. 1b): the higher the recorded magnitude value, the darker and larger the 
point, for both spatio-temporal patterns.

Only events belonging to the complete catalogues—according to the complete-
ness magnitude thresholds values, as detailed in Sect.   3.4—are shown, i.e., only 
hailstorms whose hail extension is greater than 0.8 inches and thunderstorms winds 
with wind speed greater than 1.35 km/s. The total number of hailstorms and thun-
derstorms winds above the corresponding magnitude threshold, is 188,  075 and 
163, 783, respectively. Both patterns are yearly analysed from the marked self-excit-
ing point processes’ point of view. In particular, the occurrence of hailstorms is ana-
lysed for each year ranging from 1996 to 2022; the occurrence of thunderstorms 

Fig. 1  Marked spatio-temporal distribution of hailstorms’ (a) and thunderstorms winds’ (b) selected 
events
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winds is yearly analysed for the years that go from 2003 to 2022 (due to the lack of 
occurrence for the years 1996/2002).

3.2  Exploratory analysis

Figure 2 shows the temporal distribution of the total number of daily recorded hail-
storms’ (green, Fig. 2a) and thunderstorms winds’ (blue, Fig. 2b) events.

As shown in Fig. 2, both patterns follow a seasonal yearly pattern, and a higher 
number of events is recorded during mid-year. The highest number of severe hail-
storms (Fig. 2a) is 488, which occurred on March 21, 2011. More than 400 severe 
hailstorms are observed on April 9 and 10, 2009, and on May, 21/22 and 24/26, 
2011. In 2011, the higher severe hailstorm occurrence with hail extension greater 
than 0.8 inches are recorded. The highest number of severe thunderstorms winds 
(Fig. 2b) is 721, which occurred on June 29, 2012. More than 500 severe thunder-
storms winds are recorded on 29/30 June, 2012 and on February 28 and March 1, 
2017. Finally, at least one severe convective storm is observed within the USA, per 
type, between January 1st, 2003 and December 31st, 2022.

Figure 3 shows the spatial distributions of the magnitudes, and in particular of 
the hail extensions, in inches (green, Fig. 3a), and the wind speeds, in km/s (blue, 
Fig.  3b); the longitude and latitude coordinates’ values are shown in km, and the 
higher the recorded magnitude value, the darker and larger the associated point.

Fig. 2  Temporal distribution of the total number of daily recorded hailstorms’ (a) and thunderstorms 
winds’ (b) events

Fig. 3  Spatial distribution of hail extension (a) and wind speed (b)
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As shown in Fig. 3, both hailstorms’ and thunderstorms winds’ patterns are mainly 
detected in the areas from the Central to the Northern-East. As shown in Fig. 3a, events 
with the highest hail extension, ranging from 5 to 8 inches, are recorded in the Central 
areas, and other events with higher hail extension are observed in the Northern-East 
areas. Some aggregations, as well as a dominating general trend towards spatial hetero-
geneity and sparsity, conditionally to the extension, are observed. As shown in Fig. 3b, 
thunderstorms winds’ events with the highest wind speeds are grouped in well-defined 
areas, i.e. nearest to each other if with higher wind speed values. Otherwise, thunder-
storms winds’ pattern shows a dominating general trend towards spatial aggregation, 
conditionally to wind speed.

Figure 4 shows the average daily distributions of hail extension (green, Fig. 4a) and 
wind speed (blue, Fig.  4b) over the completeness magnitude threshold values, with 
associated daily minimum and maximum values (grey).

As shown in Fig. 4, seasonal yearly and grouping behaviour is observed in both hail-
storms’ and thunderstorms winds’ average magnitude values, conditionally to the mag-
nitude values. For each year, during 1th and 4th quarters and during 2nd and 3th quar-
ters, respectively, the lowest and highest average daily magnitude values are observed. 
As shown in Fig. 4a, the average daily hail extension mainly ranges between 0.8 and 2, 
and a whole decreasing trend (from 2007 to 2019), which becomes increasing (from 
2020 to 2022) is observed. As shown in Fig. 4a, the average wind speeds mainly range 
between 1.35 and 2.20, though some peaks over 2.20 km/s are observed in 2003, 2005, 
from 2009 to 2012 and from 2017 to 2022. A general increasing trend, as well as 
increasing variability, from 2003 to 2022, is observed.

3.3  ETAS models identification

The aggregation behaviour of the yearly spatio-temporal patterns is evaluated accord-
ing to the empirical unweighted K-functions (Ripley 1976; Gabriel and Diggle 2009), 
whose formulation is:

(12)K(r, h) = 2𝜋 ∫
h

0 ∫
r

0

𝜆(2)((u, t), (v, l))

𝜆(u, t)𝜆(v, l)
drdh r, h > 0

Fig. 4  Average, minimum and maximum daily distribution of hail extension (inches, a) and wind speeds 
(km/s, b) patterns
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where: r = ‖u − v‖ , is the Euclidean distance (or distance in norm L2 ) between spa-
tial locations u and v ; h = |t − l| is the Manhattan distance (or distance in norm L1 ) 
between temporal locations t and l. Under Complete Spatial and Temporal Random-
ness (CSTR), the second-order function takes values as that describing the spatio-
temporal homogeneous Poisson process: K(r, h) = 2�hr2 . The unbiased weighted 
spatio-temporal K-functions’ estimator, K̂I(r, h) , is:

where: �̂�(u, t) and �̂�(v, l) are the inhomogeneous intensity values evaluated by the 
model, at points (u, t) and (v, l) ; w((u, t), (v, l)) is a correction weight which adjusts 
for possible biases due to the spatio-temporal domain definition (Baddeley and 
Turner 2000; Gabriel et al. 2013); 1[⋯] is the indicator operator, which takes a value 
of 1, if the statement ⋯ is true and 0 otherwise. Any positive deviation from CSTR 
indicates spatio-temporal clustering with respect to the spatio-temporal Poisson 
distribution.

Finally, the chosen correction method is the translation (Ohser 1983) one, which 
allows amendment with respect to events lying further away from spatial and tem-
poral bounded domains, with respect to those assessed for the event (Gabriel and 
Diggle 2009).

It is important to highlight that LISTA functions, such as the K and pair correla-
tion functions, are also commonly used for the assessment of point processes’ mod-
els’ fitting. In this case, weighted second-order functions have to be computed under 
the assumption of known first-order intensity function, according to that estimated 
by the model. Further information on weighted second-order diagnostic methods 
can be found in Adelfio and Schoenberg (2008), Adelfio and Chiodi (2008) and 
Adelfio (2007).

Figure 5 shows the unweighted empirical spatio-temporal K-functions calculated 
for each yearly sub-pattern under translation edge correction, for hailstorms’ and 
thunderstorms winds’ patterns. In Fig. 5 green and blue surfaces are the empirical 
unweighted K-functions of the yearly hailstorms’ (green, Fig. 5a) and thunderstorms 
winds’ (blue, Fig. 5b) sub-patterns, respectively, whose intensity function estimates 
are computed under the assumption of spatio-temporal homogeneity (
�̂�(u, t) = �̂�(v, l) ≡ �̂� =

N(W×T)

|W||T|

)
 ; black surfaces are the theoretical K-functions, 

computed under CSTR and grey surfaces are upper and lower 95% envelopes 
obtained with 39 Montecarlo simulations within the spatio-temporal domain where 
patterns are observed.

As shown in Fig. 5, yearly thunderstorms winds’ patterns (Fig. 5a) are the most 
aggregated and less variable, while hailstorms’ patterns (Fig. 5b) are the least aggre-
gated and most heterogeneous, along the years of observation. Once we have proved 
the aggregation behavior of yearly sub-patterns for each severe convective storm, 
we will try to evaluate them according to the marked self-exciting point processes’ 
model fitting.

(13)K̂I(r, h) =
�W��T�
n(n − 1)

�

(u,t)∈X

�

(v,l)X�{(u,l)}

1[‖u − v‖ ≤ r, �t − l� ≤ h]

�̂�(u, t)�̂�(v, l)w
�
(u, t), (v, l)

�
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The proposed application for the evaluation of severe convective storms’ under-
lying processes is based on a declustering technique for clustered processes. The 
whole pattern is hypothesized to be a superposition of a spatio-temporal Poisson 
(background) and a clustered (triggered) point pattern. For the resulting pattern to be 
declustered, the definition of two intensity functions—the former for the background 
pattern and the latter for the triggered one—is needed. We decide to assume a self-
exciting spatio-temporal underlying generating process, subject to a driving random 
variable (the magnitude).

3.4  Empirical choice of the magnitude threshold

Based on the ETAS model fitting, an important parameter to be chosen in advance  
is the completeness magnitude threshold, m0 , which is assumed to be the minimum 
value above which all events are included in the catalogue; i.e. the minimum value 
assumed by the model for the magnitude distribution. The completeness magnitude 
threshold is linked to the frequency-magnitude distribution (Ishimoto 1939), which 
for seismic processes is shown to be well approximated by an exponential function, 
and in particular the Gutenberg–Richter law (Gutenberg and Richter 1944), which is 
expressed as:

where Nm is the cumulative number of earthquakes with a magnitude value greater 
than m ∈ M ; log10(⋅) is the logarithm with base 10; a and b are constants. The com-
pleteness magnitude threshold is the value of the maximum frequency at which 
events are observed.

(14)log10(Nm) = a − bm

Fig. 5  Empirical unweighted K-functions for each yearly hailstorms’ (a) and thunderstorms winds’ (b) 
pattern, theoretical K-function (black) and 95% envelopes (grey) under CSTR 
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The log-cumulative frequencies plot, with corresponding completeness magni-
tude threshold values (in violet) of hailstorms’ (in green, Fig. 6a) and thunderstorms 
winds’ (in blue, Fig. 6b) patterns is shown in Fig. 6.

Both values of the completeness magnitude threshold are graphically identified, 
through the log-cumulative frequency plots. For each plot, the former is identified as 
a point for which there is a strong change in the line slope. The completeness mag-
nitude threshold values are m0 = 0.80 inches, for hailstorms’ pattern, and m0 = 1.35 , 
for thunderstorms winds’ pattern.

3.5  Yearly models fitting

We fit an ETAS model for each year of observation, from 1996 to 2022 for the hail-
storms pattern, and from 2003 to 2022 for the thunderstorms winds’ pattern. The 
temporal parameters are estimated by setting up the day on which the events occur, 
while the spatial parameters refer to longitude and latitude values recorded in kilo-
meters. We tried to consider a linear predictor within which we inserted a linear 
predictor containing trigonometric functions (such as sin(⋅) and cos(⋅) functions), to 
capture the daily within-year seasonality effect (clearly shown in Subsect.  3.2), but 
the estimated parameters for the same covariates are not statistically significant. In 
this paper, we used the R algorithms in the etasFLP package (Chiodi and Adelfio 
2023). For parameter estimation and bandwidth lengths evaluation an Expectation-
Maximization (EM) type algorithm—with a weighting step—is used. Namely, dur-
ing the Expectation step, the bandwidth lengths are evaluated, using Silverman’s 
rule of thumb and according to the set of weights [each computed with the formula-
tion in (11)] attributed to each point; during the Maximization step, the log-likeli-
hood function (9) is maximized with a Newton-type algorithm, to obtain the set of 
parameter estimates. The corresponding stop criterion is defined according to some 
convergence criterions. For the details on the used algorithm, see: Chiodi and Adel-
fio (2017).

The results of the ETAS model fitting are shown in Figs.  7 and  8, for marked 
spatio-temporal hailstorms’ and thunderstorms winds’ patterns, respectively. In 
Figs. 7 and 8, the black lines represent the values of the parameter estimates, and the 
colored lines above and below are the associated ± estimated standard errors.

Fig. 6  Log-cumulative frequency plot of hail extension (a) and wind speed (b), with corresponding com-
pleteness magnitude threshold’s values lines
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According to the results shown in Fig. 7, the of background events (Fig. 7a) var-
ies between 0.5 and 2 (according to the estimated minimum and maximum values, 
in 2007 and 2012) each day. The aftershocks productivity parameter (Fig. 7b) esti-
mate is the highest in 2003 and the lowest in 1998. Several peaks are observed, in 

Fig. 7  Yearly parameter estimates of the ETAS models for hailstorms’ patterns

Fig. 8  Yearly parameter estimates of the ETAS models for thunderstorms winds’ patterns
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2003, 2006 and 2009, where the background component of the patterns recorded the 
highest amount of offsprings generation. The spatial (Fig. 7e) and temporal (Fig. 7c) 
displacement parameter estimates, as well as the spatial (Fig. 7f) and the temporal 
(Fig. 7d) decay parameter estimates, follow an overall decreasing trend, i.e. the pat-
tern’s ability to reproduce itself decreases over years. According to the estimated 
parameters of the offspring generation (Fig. 7g) over the years of observation, the 
hail extension value has an increasingly positive effect on the spatio-temporal repro-
ductivity of the phenomenon, although its estimated uncertainty is the highest.

As shown in Fig. 8, the daily rate of background events (Fig. 8a) varies between 
0.5 and 1 (according to the estimated minimum and maximum values, in 2010 and 
2017); the aftershock productivity parameter (Fig. 8b) follows a variable trend, i.e., 
peaks are continuously observed, as well as for the temporal displacement (Fig. 8d) 
parameter, according to which the temporal decay is highly variable along the years 
of observation. The spatial decay rate (Fig. 2a) follows a constant and mainly uncer-
tain trend, and the estimated spatial displacement parameter’s value (Fig. 8c) slowly 
decreases until it maintains a constant trend. Finally, the estimated magnitude’s off-
spring generation’s (Fig. 8g) parameters follow a decreasing trend over the years of 
observation, i.e., thunderstorms winds’ speed has a decreasing effect on the spatio-
temporal reproductivity of the phenomenon.

Finally, Fig. 9 shows the yearly number of events included within the catalogues 
(Fig. 9a, c) and the estimated proportions of background events (Fig. 9b, d) by the 
yearly ETAS models, for hailstorms’ (first row) and thunderstorms winds’ (second 
row) patterns.

As shown in Fig. 9, the number of recorded severe (with high magnitude values) 
events increases until 2011, for both patterns (Fig. 9a, c), and decreases in the follow-
ing years. Regarding the yearly proportions of background events for the hailstorms’ 

Fig. 9  Total number of events and estimated proportions of background events by each yearly ETAS 
model, for hailstorms’ (a, b) and thunderstorms winds’ (c, d) patterns
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patterns (Fig. 9b): the maximum number of estimated mainshocks occurs in 1998, 
when 16% of events are classified as mainshocks, and linearly decreases until 2008, 
when 4% of events are classified as mainshocks. After 2008, the estimated propor-
tion of mainshock events linearly increases until 2022. About the yearly proportions 
of background events for the thunderstorms winds’ patterns (Fig. 9d): the maximum 
number of estimated mainshocks occurs in 2022, when ≈ 6% of events are classified 
as mainshocks. The lowest number of mainshock events is estimated at 2010, and 
for the remaining years, it varies between 2.3% and 5.5% . For both severe convective 
storms’ sub-patterns, the lower the number of severe convective storms, the higher 
the proportions of events classified as mainshocks, by the ETAS models.

3.6  Second‑order diagnostics

The evaluation of the model fitting, in terms of residual analysis, is carried out by 
computing the yearly weighted K-functions, with the estimated conditional intensity 
functions by the fitted ETAS models, under translation edge correction. Figure 10 
shows the yearly weighted K-functions (the black and grey surfaces are the same 
used in Fig. 5), for each yearly hailstorms (green, Fig. 10a) and thunderstorms winds 
(blue, Fig. 10b) pattern.

As shown in Fig. 10, most of the weighted surfaces are completely covered by the 
95% envelopes around the theoretical K-function under CSTR, and some are close 
to them. As shown in Fig. 10a, one surface is above the 95% envelopes, and refers 
to the year 2008, for the associated severe hailstorms yearly process; similarly, as 
shown in Fig. 10b, one surface is above the 95% envelopes and refers to the year 

Fig. 10  Weighted K-functions for each yearly hailstorms (a) and thunderstorms winds’ (b) pattern, com-
puted under the assumption of known conditional intensity function by the fitted ETAS models, theoreti-
cal K-function and 95% envelopes (grey) under CSTR 
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2011, for the corresponding severe thunderstorms winds yearly process. In both 
cases, there are some patterns that have not been fully captured by the fitted ETAS 
models (for the same years, and the associated patterns, the analysis should be fur-
ther deepened).

4  Interpretation of the ETAS models’ results

According to the results of the fitted ETAS models, the analysed hailstorms pat-
terns recorded within the USA, between 1996 and 2022, are described according 
to the following interpretation:

– the number of severe hailstorms increases over time, and at least 1 hailstorm 
daily occurs, from 1996 to 2022, in the USA;

– the proportion of mainshock events, with respect to the detected severe events 
(events estimated as parents of a group of offspring events), decreases with 
time, i.e. all minor events are produced according to the spatio-temporal decay 
of the mainshock events, whose effect spatio-temporally lasts with an ever 
decreasing (and almost constant) displacement;

– the hail extension has an increasingly positive and strong effect on the off-
spring generation of small grasps;

– the higher the occurrence of daily mainshock events, the higher the after-
shocks productivity effects.

while about the analysed thunderstorms winds’ patterns recorded within the USA, 
between 2003 and 2022, we have:

– the proportion of mainshock events tends to be low and increases in 2022, 
when the number of severe convective (thunder)storms is the lowest recorded 
within the observation period;

– the higher the number of mainshock events, the higher the aftershock produc-
tivity rate;

– a decreasing temporal displacement effect along the years of observation is 
associated with a variable temporal decay, i.e. the mainshock effects on the 
generation of offspring contract and expand with some variability along the 
years of observation;

– the decreasing spatial displacement effect is always associated with a constant 
and approximately equal to 1 spatial decay, i.e. there is no variability around 
the estimated spatial decay, despite the decreasing trend of the spatial dis-
placement;

– the wind speed of thunderstorms winds has a decreasing positive effect on the 
spatio-temporal phenomenon reproductivity.
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5  Conclusions

In this paper, we focused on the use of stochastic process theory to evaluate the 
spatio-temporal behaviour of historical severe convective storms that occurred 
in the USA, starting from the available Storm Events Database (National Center 
for Environmental Information (NCEI) of the National Oceanic and Atmospheric 
Administration (NOAA) of the USA 2022a). We considered the hailstorms’ and 
the thunderstorms winds’ processes and evaluated their spatio-temporal aggrega-
tion behaviour from the marked self-exciting point processes point of view.

Our aim was to find a way to capture the yearly spatio-temporal behaviours, i.e. 
by dividing the temporal domain into sub-intervals, each associated with the corre-
sponding year. We chose the temporal Windowed ETAS model approach, so that we 
could evaluate the behaviour of the sub-processes for each year of observation. We 
aimed to fit yearly spatio-temporal ETAS models for our first understanding of the 
most frequent severe convective storm processes (related to hailstorms and thunder-
storms winds) that occurred in the USA (Kelly et al. 1985), between 1996 and 2022, 
from the marked self-exciting point processes point of view.

We evaluated the yearly patterns’ behaviours and discovered how processes tend 
to spatio-temporally aggregate in all years of observations, conditionally to the mag-
nitude values: hailstorms’ pattern showed an aggregation behaviour mainly observed 
in the Central areas of the USA and along the days of the year (for each year), as well 
as a general trend towards sparsity and heterogeneity of the spatial hail extension 
within the whole territory; thunderstorms winds’ pattern showed a spatial aggrega-
tion behaviour mainly observed in several sub-areas located from the Central to the 
Northern-East areas of the USA territory, as well as the highest temporal variability 
along each year of observation. For both patterns, given the aggregated nature of the 
data, it seemed reasonable to assume spatio-temporal self-exciting underlying pro-
cesses. We then computed the yearly local indicators of spatio-temporal association 
(LISTA—Siino et al. 2018), i.e. the unweighted spatio-temporal K-functions. Taking 
into account the just-evaluated spatio-temporal aggregation behaviour of the yearly 
patterns, we fitted several yearly spatio-temporal ETAS models, such that yearly 
patterns were evaluated as self-exciting types. The yearly ETAS models were fitted 
according to the choice of the completeness magnitude threshold, i.e. by selecting 
only the events that make the catalogue complete. The complete magnitude thresh-
old values were graphically assessed, according to the magnitude-frequency distri-
butions plots (describing an exponential Richter-Gutenberg decay law). The chosen 
completeness magnitude threshold values were m0 = 0.80 inches, for hail exten-
sion, and m0 = 1.35 km/s, for thunderstorms winds’ speed. Beyond these values, the 
catalogue should be complete, i.e. without missing events. The number of selected 
severe convective storms increased until 2011, and then slowly decreased in the suc-
cessive years.

For all years of observation, the estimated parameters are always significant and 
we noticed how in some cases they follow a coherent (increasing or decreasing) 
long-term trend, or how they show a variable, jagged and (in some cases) uncertain 
trend.
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For hailstorms’ pattern, after 2008, a decrease in the spatial and temporal dis-
placements and an associated decrease in the spatial and temporal decay laws is 
estimated, along the years of observation, so the spatio-temporal reproduction 
effects around the parents’ centers, in terms of spatio-temporal distances, tend 
to reduce, as well as the aftershock productivity (and the number of offspring 
events) tends to be subject to the occurred mainshocks at highest spatio-tempo-
ral distances. The recorded magnitude values tend to have an increasing positive 
effect on the offspring generation, while the marginal aftershocks productiv-
ity parameter is estimated to have an increasing value, until 2010, to gradually 
decrease until 2017, and again to slowly increase along the remaining years of 
observation. The average number of days between two mainshocks tends to vary 
between the minimum temporal interval, corresponding to a half of day, and a 
maximum temporal interval of two days. For thunderstorms winds’ patterns, a 
decrease in the spatial displacement is observed, as well as a tendency of the 
temporal displacement and decay laws estimated parameters, to assume lower and 
lower values, along the years of observation. For thunderstorms winds’ patterns, 
the spatial decay law estimate is approximately equal to 1, and at a higher num-
ber of mainshocks events, a higher aftershocks productivity is always associated. 
Finally, for thunderstorms winds’ patterns, a tendentially decreasing trend in the 
magnitude effect is estimated along the years of observation.

Finally, the estimated proportions of mainshock events tend to decrease for 
the hailstorms’ patterns: a mainshocks percentage between 4% and 16% is always 
observed, and those for thunderstorms winds’ patterns tend to vary along the 
years, until 2022, when the same assumes the highest value.

In further applications, we will consider the influence of covariates, as well 
as atmospheric and environmental variables, and eventually, several and different 
declustering techniques could be experimented.

Appendix

The statistical analysis is carried out through the statistical software R (R Core 
Team 2016). The packages used are plot3D (Soetaert 2014) for the graphical 
representations, stpp (Gabriel et al. 2013) for the exploratory and the inferential 
second-diagnostics, etasFLP (Chiodi and Adelfio 2023) for the ETAS model 
fitting, the first-order diagnostics and the spatial intensity function’s estimates. 
The last updating of the main library (etasFLP) was carried out on September 
2023.
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