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We provide a new perspective on shadow tomography by demonstrating its deep connections with
the general theory of measurement frames. By showing that the formalism of measurement frames offers a
natural framework for shadow tomography—in which “classical shadows” correspond to unbiased estima-
tors derived from a suitable dual frame associated with the given measurement—we highlight the intrinsic
connection between standard state tomography and shadow tomography. Such a perspective allows us to
examine the interplay between measurements, reconstructed observables, and the estimators used to pro-
cess measurement outcomes, while paving the way to assessing the influence of the input state and the
dimension of the underlying space on estimation errors. Our approach generalizes the method described
by Huang et al. [H.-Y. Huang et al., Nat. Phys. 16, 1050 (2020)], whose results are recovered in the spe-
cial case of covariant measurement frames. As an application, we demonstrate that a sought-after target
of shadow tomography can be achieved for the entire class of tight rank-1 measurement frames—namely,
that it is possible to accurately estimate a finite set of generic rank-1 bounded observables while avoiding
the growth of the number of the required samples with the state dimension.
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I. INTRODUCTION

The reliable reconstruction of the information encoded
in a quantum register is one of the stepping stones of any
quantum information processing device. In this respect,
quantum state tomography (QST), i.e., the task of esti-
mating quantum states from a measured data set, is the
gold standard for verification and benchmarking of quan-
tum devices [1–3]. QST has been performed in countless
experiments by measuring a complete set of observables
the expectation values of which determine the quantum
state.

As the typical representation of density matrices implies
a number of coefficients exponential in the number
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of constituent subsystems, the standard formulation of
tomography [4] of a generic state requires an expo-
nential time in the system size. Alternative methods
based on efficient representations of multiparty quantum
states—such as matrix product states [5]—have led to
improved schemes for state tomography. Such an advan-
tage, however, is achieved only for those states that are
efficiently represented in the ansatz that is chosen. On
the other hand, performing QST of d-dimensional quan-
tum states, within error ε (in trace distance), requires a
number of copies of the unknown state that scales poly-
nomially with d [2,4]. In this context, tight lower bounds
to single-copy nonadaptive state reconstruction have been
proven [6–9].

However, the reconstruction of specific features of
a state, rather than performing full tomographic recon-
struction, is achievable with a much smaller amount
of resources [10,11]. In particular, the number of mea-
surements required to estimate the expectation value
of M observables within error ε scales logarithmically
with M and does not depend explicitly on the state’s
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dimension—the associated task is referred to as “shadow
tomography” [12]. An explicit way to implement shadow
tomography via random Clifford circuits has recently been
proposed [13–15]. A review discussing some of the rela-
tions between state tomography and shadow tomography
can be found in Ref. [16]. In particular, a generalization
of shadow tomography to general quantum measurements
has recently been proposed in Ref. [17,18].

Here, we further the grounding of shadow tomogra-
phy for agile property reconstruction by highlighting its
deep connection with the approach of state tomography
via measurement frames [19–25]. Our formalism reduces
to the standard approach of Ref. [14] in special cases,
and is compatible with its generalizations presented in
Refs. [17,18]. We demonstrate that this general formalism
provides a simple framework to understand the relation-
ship between measurement, target observable, and estima-
tor used to postprocess measurement outcomes, as well
as how the input state and the dimension of the underly-
ing space affect the estimation error. This approach also
connects directly with general metrological considerations,
showing how classical shadows can be seen as minimum-
variance unbiased linear estimators. This formalism can
also potentially be of great use to study the efficiency
of state-estimation schemes involving generalized mea-
surements and single-setting measurement schemes, which
have recently attracted significant attention [26,27].

More specifically, we take the analysis of measurement
frames developed for state tomography and specialize it
to analyze estimation errors for shadow-tomography tasks.
We discuss how the mean-squared-error (MSE) matrix, a
quantity defined to study state tomography the trace of
which gives the estimation error, also reveals a powerful
tool to study errors in shadow tomography. We show how,
for any choice of measurement, multiple possible unbiased
estimators can be used to postprocess the measurement
data to recover the target observables and we discuss how
to find the unbiased estimator that minimizes the variance
with respect to any given input state, as well as the one with
minimum averaged variance—with the average taken with
respect to uniformly random input states. We also demon-
strate that the notion of shadow norm of an observable,
introduced in Ref. [14], emerges naturally in this more gen-
eral formalism. Furthermore, we examine the behavior of
errors for different choices of measurement, given a fixed
optimal estimator. A crucial feature of shadow tomogra-
phy is the favorable scaling of estimation errors with the
dimension of the state. Focusing on this aspect, we derive
explicit bounds for best- and worst-case estimation errors
corresponding to different measurement choices and find
a wide class of measurements that allow us to estimate
properties as efficiently as the protocol used in Ref. [14].

The remainder of this paper is organized as follows.
In Sec. II, we present a reformulation of shadow tomog-
raphy using the formalism of measurement frames. In

Sec. III, we introduce the notion of the canonical esti-
mator, review standard results for linear tomography in
the measurement-frames formalism, and highlight the
strong analogy between shadow and linear tomography. In
Sec. IV, we derive general bounds for the variance of the
introduced estimators, both in the averaged and best- and
worst-case settings, and establish general results connect-
ing the symmetry of the measurement with the associated
variances. In Sec. VI, we show explicitly how the formal-
ism introduced in Ref. [14] can be viewed as a special
instance of our approach, specifically when employing
covariant measurements and canonical estimators. Our
conclusions and an outlook are finally given in Sec. VII.
Additional in-depth discussions about the derivations and
formalism used throughout the paper can be found in the
appendixes.

II. SHADOW TOMOGRAPHY ON
MEASUREMENT FRAMES

In this section, we demonstrate explicitly how the
formalism of measurement frames provides a natural
framework for discussing shadow tomography on general
quantum measurements. The approach to shadow tomog-
raphy [12] introduced in Refs. [13,14] relies on the idea
of classical shadows, which are functions of the measure-
ment outcomes that can be used to derive good estimates
for target observables. These classical shadows can be
understood as a way to construct unbiased estimators
for the input state that operate on individual measure-
ment outcomes. Unbiased estimators for target observables
are then easily obtained via these classical shadows. By
not requiring us to recover a tomographically complete
description of the states, such specialized estimators allow
us to efficiently estimate desired features of input states. An
explicit protocol to perform shadow tomography with Clif-
ford circuits has recently been proposed in Refs. [13,14]
and some generalizations to general measurements have
been proposed in Refs. [17,18]. Here, we demonstrate that
frame theory [28,29]—and, in particular, the formalism
of measurement frames [19,30–32]—provide a remark-
ably simple conceptual framework to think about shadow
tomography and allow us to directly view the “classical
shadows” as the unbiased estimators that constitute the
elements of the dual measurement frame.

A. Notation

We will restrict our attention to finite-dimensional states
and measurements with a finite number of outcomes. This
constraint allows a more concise presentation and can
relaxed later without significantly changing the formal-
ism or the results. Following the notation of Ref. [33], we
will denote the real vector space of Hermitian operators
acting on a d-dimensional complex vector space Cd by
Herm(Cd), the set of positive semidefinite operators acting
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on the same space by Pos(Cd), and the subset of density
matrices by D(Cd) ⊂ Pos(Cd). To focus on the linear
algebraic properties involved in the calculations, we will
use the notation 〈X , Y〉 ≡ tr(X †Y) to denote the Hilbert-
Schmidt inner product between operators X and Y and
‖X ‖2 ≡

√
tr(X 2) for the corresponding operator norm. We

will denote a positive operator-valued measure (POVM)
with � outcomes by µ ≡ (μa)

�
a=1, whereμa ∈ Pos(Cd) and∑

a μa = I . Given a state ρ ∈ D(Cd), the associated out-
come probabilities are thus given by pa(ρ) = 〈μa, ρ〉. Any
procedure involving an arbitrary evolution followed by a
measurement in some basis can be concisely modeled via
one such POVM.

B. Frame theory

In linear algebra, a frame [28,29,34] for a vector space
V is a collection of vectors vk ∈ V such that, for all v ∈ V,
A‖v‖2 ≤ ∑

k |〈vk, v〉|2 ≤ B‖v‖2, for some 0 < A ≤ B <
∞. These can informally be thought of as overcomplete
bases: sets of vectors spanning the space, thus providing a
linear decomposition for all other vectors. For finite frames
in finite-dimensional spaces, a set (vk)k is a frame if and
only if it spans V [28]. Given a frame (vk)k, any v ∈ V can
be linearly decomposed as

v =
∑

k

〈vk, v〉ṽk =
∑

k

〈ṽk, v〉vk, (1)

where (ṽk)k is another frame, referred to as a dual frame of
(vk)k. A frame (vk)k admits infinitely many possible dual
frames if and only if it is not linearly independent—i.e., if
it is “overcomplete.”

If we want to estimate a given unknown state ρ from
measurement outcomes, a natural class of objects to study
are unbiased estimators. These are functions f̂ : � →
Herm(Cd), which map the set of measurement outcomes
� into Hermitian operators that, on average, reproduce the
measured state. That is, more precisely,

E[ f̂ |ρ] ≡
∑

a

〈μa, ρ〉f̂ (a) = ρ. (2)

The elements of a POVM µ ≡ (μa)a∈� are vectors in
Herm(Cd) and span linearly the space of Hermitian oper-
ators if and only if they are informationally complete
(IC) [33]. We can therefore think of µ as a frame of
operators in the real space Herm(Cd) equipped with the
Hilbert-Schmidt inner product. Such frames of operators
are referred to as measurement frames [19–21,23,35,36].
The task of finding unbiased estimators is thus equivalent
to that of finding dual measurement frames for a given IC
POVM µ. A natural choice of dual frame is the canonical
dual frame (μ�a)a∈� , defined via the frame superoperator

F ∈ Lin(Herm(Cd)) as

μ�a ≡ F−1(μa), F(X ) ≡
∑

a

〈μa, X 〉μa. (3)

This definition of a canonical dual frame is a direct appli-
cation of the standard procedure used in frame theory
for generic frames of vectors, where one can define a
frame operator that, acting on frame elements, gives the
corresponding canonical dual frame elements. Here, the
vectors making up the frame are operators themselves.
Therefore, in our context, such frame operators are linear
operators acting on operators. We will refer to this type
of linear transformation as a frame superoperator in order
to highlight such technical aspects. Equivalently, F and
F−1 can be thought of as quantum maps, which linearly
transform operators into other operators. The frame super-
operator can also be concisely written as F = ∑

a P(μa),
where P(Y) ∈ Pos(Herm(Cd)) denotes the outer product
of Y ∈ Herm(Cd) with itself, i.e., the superoperator acting
as P(Y) : ρ �→ 〈Y, ρ〉Y on any ρ ∈ Herm(Cd). In vector-
ized bra-ket notation, this is also often denoted by P(Y) ≡
|Y〉〉〈〈Y|. Note that P(Y) is therefore again a quantum map
and its action on an operator ρ would thus read explic-
itly P(Y)(ρ) = 〈Y, ρ〉Y ≡ tr(Y†ρ)Y. There are, in general,
infinitely many dual frames associated with any given µ,
each one corresponding to a different unbiased estima-
tor. These estimators are not generally equivalent and can
result in different reconstruction efficiencies. This will be
discussed in detail in Sec. III. In particular, while (μ�a)a∈�
is a standard choice of dual in the context of frame the-
ory, we will show that it is not in fact the optimal choice to
estimate properties of input states.

C. Estimators from measurement frames

In summary, for any IC POVM µ and dual measurement
frame µ̃, we have an unbiased estimator f̂ (b) ≡ μ̃b for the
unknown input state ρ and, vice versa, any such unbiased
estimator can be obtained from a dual measurement frame
of µ. If the goal is estimating the expectation value of
an observable O, we use the estimator ô(b) ≡ 〈O, f̂ (b)〉.
With this formalism, we can understand the main scaling
results of shadow tomography as the observation that by
carefully choosing the measurement µ and the associated
dual measurement frame µ̃, we obtain favorable scalings to
estimate (finite sets of) target observables. The connection
with the standard framing of shadow tomography is that
the classical shadows are precisely a particular—in some
sense optimal—choice of the state estimators f̂ . If a finite
set of outcomes {b1, . . . , bN } is collected, we compute and
store the values of the single-outcome estimators f̂ (bk)

and then build from these an estimator for the expectation
value—typically via the sample mean 1/N

∑N
k=1 f̂ (bk) or

the median of means. To estimate the expectation value
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of O, the average is instead computed on the values
〈O, f̂ (b)〉.

D. Variance of the estimators

A standard way to assess the magnitude of the statistical
fluctuations in the estimator is to consider its variance. For
state estimators, considering the errors in the L2 distance,
the variance reads

Var[ f̂ ] = E[‖f̂ − ρ‖2
2] =

∑

b

〈μb, ρ〉‖f̂ (b)− ρ‖2
2. (4)

Similarly, for observable estimators, the variance reads

Var[ô] = E[(ô − 〈O, ρ〉)2] =
∑

b

〈μb, ρ〉(ô(b)− 〈O, ρ〉)2.

(5)

These variances depend on the input state ρ, the mea-
surement µ, the estimator f̂ , and the target observable
O. For the sake of conciseness, the dependence on some
or all of these will often not be made explicit, using the
shorthand Var[ô] ≡ Var[ô|ρ, µ, f̂ ,O]. Knowledge of the
variance grants performance guarantees for the additive
estimation error, via standard statistical bounds such as
Chebyshev’s, Hoeffding’s, or Bernstein’s inequalities or
by employing median-of-means estimators. A recent dis-
cussion of these statistical bounds and their applications
to quantum state estimation is given in Ref. [16]. As will
be shown in detail in the following sections, for the entire
class of so-called “tight measurement frames,” we can
derive the unbiased estimator that minimizes the aver-
aged variance and show that its averaged variance does
not depend explicitly on the state dimension. Furthermore,
for any measurement frame that forms a 3-design, we
will prove that the worst-case-scenario variance can also
be similarly upper bounded. This generalizes some of the
results reported in Ref. [14] for random measurements.

E. Nonpositivity of state estimators

It is worth noting that the state estimators f̂ (b) obtained
with this scheme are Hermitian matrices but do not nec-
essarily have unit trace and are not necessarily positive
semidefinite. This means that if the goal is to estimate the
state itself, the estimated state might not be a valid den-
sity matrix. This is precisely what happens in the context
of linear state tomography and it is also the defining setting
of shadow tomography. This feature of the scheme is par-
ticularly unproblematic in the shadow-tomography setting
because the focus is on reconstructing expectation values
of observables, rather than on the density matrix itself.

F. Mean versus median-of-means estimators

The median-of-means estimator, which has been used
in, e.g., Ref. [14], has recently been found to not provide

an advantage over the standard mean estimator in some
situations [18,37]. More generally, Hoeffding-like bounds
provide the same scaling-performance guarantees for
any sub-Gaussian distribution and thus, in particular,
for bounded ones [38]. All the estimators for finite-
dimensional observables that we study are bounded by
construction: for any IC POVM µ, estimator µ̃, and
observable O, we have

|〈O, μ̃b〉| = |〈O,F−1(μb)〉| ≤ ‖O‖2‖F−1(μb)‖2

= ‖O‖2

√
〈μb,F−2(μb)〉 ≤ ‖O‖2‖F−2‖1/2

op ,
(6)

where F is the rescaled frame operator, ‖ · ‖op is the oper-
ator norm, and ‖X ‖2 ≡

√
tr(X †X ) is the L2 operator norm

of X . For the second identity, we have used the self-adjoint
nature of the linear operator F−1 to move it across the
inner product, thus obtaining

‖F−1(μb)‖2
2 = 〈F−1(μb),F−1(μb)〉 = 〈μb,F−2(μb)〉.

(7)

Moreover, we have used the shorthand notation F−2 ≡
F−1 ◦ F−1. The last step in the chain of relations in Eq. (6)
then follows from

〈μb,F−2(μb)〉 ≤ ‖μb‖2
2‖F−2‖op ≤ ‖F−2‖op. (8)

As this holds for all b, b �→ ô(b) is a bounded esti-
mator. This implies that Hoeffding-like performance
guarantees can always be used, i.e., that to have Pr(|oN −
E[ô]| ≥ ε) ≤ δ, where oN is the sample mean taken over
N independently drawn samples, it is sufficient to use
N ≥ C/ε2 log(2/δ), where C is a constant that is indepen-
dent of ε and δ. This matches the type of performance
guarantees provided by the median-of-means estimator,
explaining why in many practical scenarios the standard
mean can perform better than the median-of-means esti-
mator. Nonetheless, it is worth remarking that the constant
C will depend on the interval of values taken by the esti-
mator ô, which, as shown above, are only upper bounded
by ‖F−2‖1/2

op . This quantity can increase with the state
dimension d. Consequently, while the median of means is
never useful from the perspective of the scaling of N with
respect to ε and δ, it might provide advantages in higher-
dimensional spaces, as has been found to be the case in the
analytical derivation for Clifford circuits in Ref. [37]. It is
worth stressing that the results that we present in this paper
are completely agnostic to the choice of between means
and the median of means, as our analysis is performed
at the level of the single-shot estimator. It is therefore
entirely possible to apply the estimators that we propose
using either the standard mean or the median of means, or
possibly estimators that provide even more advantageous
bounds [39].
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III. CANONICAL ESTIMATORS

A. Minimum-variance unbiased estimators for
tomography

It has been shown [19,23,30], in the context of state
tomography, that the operators μ̃(ρ)b , defined as

μ̃
(ρ)

b ≡ F−1
ρ (μb)

〈μb, ρ〉 , Fρ ≡
∑

b

P(μb)

〈μb, ρ〉 , (9)

give an unbiased estimator that minimizes the L2
state-estimation error if the input state is ρ and the mea-
surement is µ. Here, Fρ is the frame superoperator asso-
ciated with the rescaled measurement frame with elements
μb/

√〈μb, ρ〉. Note that µ̃(ρ) ≡ (μ̃
(ρ)

b )b is a dual measure-
ment frame for µ but not its canonical dual measurement
frame. It is a suitably rescaled version of the canonical
dual to the rescaled measurement frame with elements
μb/

√〈μb, ρ〉. To use µ̃(ρ), one needs to already have a
good guess about the underlying state ρ that is being mea-
sured and we thus interpret ρ as the prior information on
the input state [40]. Thus, µ̃(ρ) is the minimum-variance
unbiased estimator when the input state is ρ. A conve-
nient tool to study the precision of an estimator is the MSE
matrix. Following Ref. [23], this is defined with respect to
a generic dual frame µ̃ and state ρ as

Cρ ≡
∑

b

〈μb, ρ〉P(μ̃b)− P(ρ). (10)

While we do not write the functional relationship explic-
itly, Cρ depends on the choice of µ, µ̃, and ρ. The
expected L2 state-estimation error associated with the esti-
mator f̂ (b) = μ̃b can be written concisely using the MSE
matrix as

Eρ ≡ E[‖ f̂ − ρ‖2
2] = tr(Cρ). (11)

When using the estimator μ̃b = μ̃
(ρ)

b , the MSE matrix
simplifies to

Eρ = tr(F−1
ρ )− tr(ρ2), (12)

which is the expected mean-squared error when using the
estimator with minimum variance when the input state is
ρ [41]. In the expression tr(F−1), the argument F−1 is a
superoperator but its trace is defined as in linear algebra
for a standard trace. However, it is often the case that the
trace of a superoperator is referred to as a “superopera-
tor trace.” Explicitly, the (superoperator) trace of a generic
superoperator � can be defined as tr(�) = ∑

k〈σk,�(σk)〉
for any orthonormal basis of operators {σk}k. In our case,
F−1
ρ is considered as an operator acting in the subspace of

Hermitian operators and its trace is thus

tr(F−1
ρ ) =

d2∑

k=1

〈σk,F−1
ρ (σk)〉, (13)

where {σk}d2

k=1 a generic orthonormal basis of Hermitian
operators and d is the dimension of the underlying space.
It is also often convenient to pick an orthonormal basis of
the form {I/√d} ∪ {σ̃k}d2−1

k=1 , where I/
√

d is the (normal-
ized) identity and {σ̃k}d2−1

k=1 forms an orthonormal basis for
the subspace of traceless Hermitian operators. This can
always be done and is very useful in our calculations for
a twofold reason. On one hand, it provides the following
decomposition for the (superoperator) trace:

tr(F−1
ρ ) = tr(F−1

ρ (I))

d
+

d2−1∑

k=1

〈σ̃k,F−1
ρ (σ̃k)〉. (14)

On the other, as F−1
ρ (I) = ρ—which follows directly from

the readily verifiable relation Fρ(ρ) = I—we reduce the
calculation of the trace to the calculation of the trace on
the subspace of traceless Hermitian operators.

B. Canonical estimator

A standard scenario is the lack of any prior informa-
tion about the input state. In such cases, because the error
will generally depend on the input state, it is common
to consider as “optimal” the estimator that minimizes the
average L2 estimation error, which corresponds to the opti-
mal estimator with respect to the reference state ρ = I/d.
Following Ref. [23], we will refer to this as the canonical
estimator, denoted by µ̃can ≡ µ̃(I/d), which is thus written
explicitly as

μ̃can
b ≡ dF−1

I/d(μb)

tr(μb)
, FI/d ≡ d

∑

b

P(μb)

tr(μb)
. (15)

It is worth noting that this is not the same as the canon-
ical dual with respect to the measurement frame µ [42].
The canonical estimator thus minimizes the L2 error aver-
aged over unitarily equivalent input states [19,30,43]. This
average L2 error turns out to depend only on the purity
P ≡ tr(ρ2) of the input state and will be denoted by EP. As
discussed in Ref. [23], this quantity is lower bounded by

EP ≥ d2 + d − 1 − P, (16)

with the lower bound saturated if and only if the mea-
surement is composed of projectors onto subnormalized
pure states that form a weighted 2-design. Such mea-
surements are referred to as tight rank-1 IC POVMs and
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have elements μb = wbP(ψb), with the weights satisfying∑
b wb = d and

1
d

∑

b

wbP(ψb)
⊗2 =

(
d + 1

2

)−1

�sym, (17)

where�sym is the projection onto the symmetric subspace,
which can be written explicitly as �sym = (I + W)/2, in
which W is the SWAP operator. For all tight rank-1 IC
POVMs, the canonical estimator has the form

μ̃can
b = (d + 1)P(ψb)− I (18)

and the MSE matrix equals

CI/d = d + 1
d

�H0 , (19)

where �H0 ≡ Id −P(I/
√

d) is the superoperator that
projects onto the subspace of traceless linear operators. A
more in-depth discussion of these results and, more gen-
erally, of the connection between weighted 2-designs and
tight IC POVMs, is given in Appendix D.

C. Estimation of observables

The usefulness of shadow tomography lies in the poten-
tially favorable scalings of the associated estimation errors
with respect to the state dimension d. More specifically, we
are interested in the variance of ô for different choices of
ρ, µ, µ̃, and O. For notational convenience, we indicate
explicitly only the dependence of the variance on ρ:

Var[ô|ρ] = E[|ô − 〈O, ρ〉|2] =
∑

b

〈μb, ρ〉〈O, μ̃b〉2

− 〈O, ρ〉2, (20)

for different choices of ρ, µ, µ̃, and O. This can be
conveniently written using the MSE matrix Cρ as

Var[ô|ρ] = 〈P(O), Cρ〉 ≡ 〈O, Cρ(O)〉. (21)

As discussed in detail in Appendix C, we can derive a
general expression for the minimum-variance unbiased
estimator for a given target observable and input state and
this is found to match the corresponding estimator for state
tomography on the support of the observable. More pre-
cisely, if µ̃(ρ) is a minimum-variance unbiased estimator
for state tomography with respect to the state ρ, then any
µ̃ such that 〈O, μ̃b〉 = 〈O, μ̃(ρ)b 〉 is a minimum-variance
unbiased estimator for O. Although derived using different
methods and notation, this result is similar to some of the
results reported in Refs. [20,21,44]. If we want an estima-
tor that gives small errors for arbitrary target observables,

the natural candidate to use is the one that minimizes the
variance averaged over the observables. In this case, the
minimum-variance unbiased estimator is again the one that
we have found for state tomography. Given that in shadow
tomography we do not generally want to fix the observ-
ables to be estimated beforehand, we can safely fix as
optimal estimators the µ̃(ρ) derived for state tomography.
We will furthermore focus on the scenario in which only
the purity of the input state is known beforehand and thus,
in the following, we will always use the canonical estima-
tor µ̃can given in Eq. (15). This has the added advantage of
being independent of both ρ and O, though the estimation
variance will still, in general, depend on these quantities.
In summary, if there is prior information suggesting that
the input state is or is close to ρ, the minimum-variance
estimator is given by µ̃(ρ), as discussed in this section
and proved explicitly in Appendixes B and C. If no prior
knowledge is assumed about the input state, the canoni-
cal estimator µ̃can can be used and provides the minimal
averaged estimation variance.

D. Numerical examples

We illustrate explicitly how different choices of dual
frames provide nonequivalent estimators in Figs. 1 and 2.
In particular, the canonical estimator µ̃can has, on average,
the lowest variance, albeit the estimator µ̃(ρ) can give even
lower variances if ρ matches the true input state. The non-
rescaled estimator µ� tends to perform worse than µ̃can,
consistently with the latter having a smaller averaged vari-
ance. On the other hand, using the estimator µ̃(σ )—which
has minimum variance when the input is σ—to estimate
properties of ρ �= σ will still, on average, reproduce the
correct expectation values but will result in a generally
larger estimation error.

E. Shadow tomography versus state tomography

It is worth stressing the tight relation between shadow
and state tomography emerging from the above discussion.
The general formalism of measurement frames clarifies
how these can be viewed as one and the same experimen-
tal protocol, with the only difference being how estimation
errors are evaluated. Both linear state tomography and
our formalism for shadow tomography can be performed
for arbitrary IC POVMs—albeit, as discussed previously,
not always with favorable error scalings—and the post-
processing procedure is the same in both cases. The core
difference is in the problem setting: whether the target
is recovering an approximation of the full density matrix
or just recovering the expectation values of finitely many
observables.

IV. BOUNDS ON AVERAGED VARIANCE

In this section, we will derive useful bounds for the
averaged estimation variance of an observable in terms
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O
O

O

(a)

(b)

FIG. 1. The probability distributions of the sample means.
Histograms of the probability distribution of the sample mean oN

with N = 103, obtained taking the average of ô(b) ≡ 〈f̂ (b),O〉
over N randomly sampled outcomes b, for different choices of
estimator f̂ . The histograms are computed using 104 realizations
of the sample mean. The input state is ρ ≡ P0 in all cases and the
measurements are random rank-1 POVMs built as μb = VPbV†

with V random isometries. In each case, we show the distribution
of the sample mean for the nonrescaled estimator μ� [cf. Eq. (3)];
the estimators μ̃(ρ) and μ̃(σ ) [cf. Eq. (9)] with σ ≡ P1; and the
canonical estimator μ̃can [cf. Eq. (15)]. We show the data for (a)
two-dimensional states with ten-outcome measurements and (b)
five-dimensional states and 100-outcome measurements.

of the eigenvalues of the frame superoperator associated
with the measurement. These eigenvalues will then be
bounded in terms of a quantity that measures how far a
given IC POVM is from being tight. Finally, we will show
that, for tight measurements and any suitable normalized
observable, the resources needed to estimate the expecta-
tion value of the observable via the shadow-tomography
apparatus do not scale with the dimension of the state.

A. Bounds via eigenvalues of frame superoperator

The variance averaged over unitarily equivalent input
states is

FIG. 2. The sample variance for different estimators. Exam-
ples of the behavior of the sample variance ŜN of the estima-
tor oN ≡ 1/N

∑N
k=1 ô(bk) as a function of N , computed with

respect to the estimators µ�, µ̃(ρ), and µ̃can. The sample variance
is defined as ŜN ≡ 1/(N − 1)

∑N
k=1(ô(bk)− oN )

2. The dashed
lines give the values of the variance Var[ô|ρ] in each case,
as computed via Eq. (20). The data are obtained using d = 2-
dimensional systems, with fixed input state ρ = P0, random
rank-1 POVMs with ten outcomes, and random target observ-
ables with tr(O) = 0 and tr(O2) = 1.

Var[ô|P,O, µ] ≡
∫

U(d)
dU Var[ô|UρU†]

=
∑

b

〈μb, I/d〉〈O, μ̃can
b 〉2

︸ ︷︷ ︸
=〈O,F−1

I/d(O)〉

−
∫

U(d)
dU〈O, UρU†〉2

︸ ︷︷ ︸
≡β

. (22)

As mentioned previously, the explicit dependence on O
and µ will be left implicit in the following for notational
conciseness and we will write this averaged variance as
simply Var[ô|P]. The coefficient β, the explicit expression
for which is reported in Appendix E, is computed explicitly
using known formulas to integrate polynomials in the com-
ponents of unitary matrices over the uniform Haar measure
[45,46] and does not depend on µ. Furthermore, as shown
in Appendix A, the canonical superoperator decomposes
as

FI/d = dP(I/
√

d)+ F̃I/d, (23)

where F̃I/d ≡ �H0FI/d�H0 is the projection of FI/d onto
the subspace of traceless operators. Using such a decom-
position, we rewrite

〈O,F−1
I/d(O)〉 = tr(O)2

d2 + 〈O, F̃−1
I/d(O)〉. (24)
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The second term can then be bounded in terms of the
eigenvalues of F̃I/d, as

Vd

λ+(F̃I/d)
≤ 〈O, F̃−1

I/d(O)〉 ≤ Vd

λ−(F̃I/d)
, (25)

where λ−(F̃I/d) and λ+(F̃I/d) denote the smallest
and largest eigenvalues of F̃I/d, respectively, and V ≡
tr(O2)/d − tr(O)2/d2 is the variance of O with respect
to the totally mixed state I/d. As further explained in
Appendix E, this expression is obtained observing that
F̃−1

I/d is a Hermitian linear (super)operator that only acts
nontrivially on the subspace of traceless Hermitian opera-
tors. Since F̃I/d is positive definite as an operator whenever
µ is informationally complete, we ensure that λ±(F̃I/d) >

0. For any µ, as again shown in Appendix E, the eigen-
values can be bounded as a function of a ≡ tr(F̃I/d) and
b ≡ tr(F̃2

I/d). Focusing on the variance for the hardest-
to-estimate observable, we find that the smallest such
variance compatible with a and b reads

max
O

Var[ô|P]
Vd

≥ 1
λ∗

1
− P − 1/d

d2 − 1
,

λ∗
1 ≡ a

d2 − 1
−
√
(d2 − 2)((d2 − 1)b − a2)

(d2 − 1)(d2 − 2)
.

(26)

This relation tells us that if µ gives a frame superoperator
such that a = tr(F̃I/d) and b = tr(F̃2

I/d), then the worst-
case average variance is lower bounded as in Eq. (26). In
other words, a and b define a bound on the best possible
performance of the canonical estimator (in the scenario in
which we average over input states and take the worst-case
scenario with respect to the observables).

B. Performance for tight measurements

In the case of tight measurements, F̃I/d is a multiple of
the identity, (d2 − 1)b = a2, and Eq. (26) simplifies to

Var[ô|P] = Vd
(

d2 + d − 1 − P
d2 − 1

)
, (27)

where the maximum over the observables no longer
applies, because all observables give the same expression
for the averaged average. We recognize, in particular, the
term d2 + d − 1 − P, which is the optimal state-estimation
L2 error discussed in Appendix D. Equation (27) shows
that for tight rank-1 measurements, the variance increases
with the state dimension only due to the variance V of
the observable calculated with respect to the totally mixed
state. Note that for rank-1 observables of the form O = Pψ

for any |ψ〉, we have Vd = 1 − 1/d, while for observables
normalized as tr(O) = 0 and tr(O2) = 1, we have Vd = 1.

It immediately follows that for all such cases, Vd → 1 for
large d and thus the variance does not increase with d,
converging asymptotically to V → 1. On top of estimat-
ing best- and worst-case scenarios for the variance, we
also show in Appendix F how to compute the variance
averaging with respect to unitarily equivalent observables.

We have thus shown that for the entire class of tight
rank-1 measurement frames, which includes but is not
limited to covariant measurements, the sampling statis-
tics required to estimate arbitrary rank-1 observables with
a bounded norm do not increase with the state dimen-
sion, in direct contrast to the corresponding results about
state tomography. More generally, we can explicitly char-
acterize the class of observables that correspond to such
favorable scalings. This directly implies that all these mea-
surements can be used to implement shadow-tomography
schemes. While not all such measurements will allow an
efficient circuit decomposition like the one presented in
Ref. [14], this will depend on the experimental context
that is being considered. Having a good characterization
of the general class of viable measurements can greatly
help to find measurement schemes to efficiently implement
shadow tomography in different experimental scenarios.

V. BEST- AND WORST-CASE SCENARIO
VARIANCES

In Sec. IV, we have derived bounds for the variance
averaged over input states. In this section, we focus instead
on the derivation of bounds for minimum and maximum
variance with respect to the input states. This is particu-
larly relevant for comparing with the results of Ref. [14]
because, as will be discussed in detail in Sec. VI, the often-
used “shadow norm” is precisely the variance maximized
over the input states.

A. Concise expression for variance via A operator

We first observe that the general expression for the
variance in Eq. (20), for a generic input state ρ, can be
rewritten as

Var[ô|ρ] + 〈O, ρ〉2 =
∑

b

〈μb, ρ〉〈O, μ̃b〉2 = 〈A, ρ〉,

(28)

where we have defined the operator

A ≡
∑

b

〈O, μ̃b〉2μb. (29)

Notably, the only part of Eq. (28) that is nonlinear with
respect to ρ is 〈O, ρ〉2, which does not depend on the
measurement choice and is bounded as 〈O, ρ〉2 ≤ tr(O2).
Furthermore, the linearity of 〈A, ρ〉 with respect to ρ

040328-8



SHADOW TOMOGRAPHY... PRX QUANTUM 4, 040328 (2023)

means that for any choice of measurement, estimator, and
observable, we can write the general bounds

λmin(A) ≤ 〈A, ρ〉 ≤ λmax(A) ≡ ‖A‖op, (30)

where λmin(A) and λmax(A) are the smallest and largest
eigenvalues of A, respectively. In particular, we have the
following upper bound for the worst-case (with respect to
input states) variance:

max
ρ

Var[ô|ρ] ≤ ‖A‖op. (31)

As will be further discussed in more detail in Sec. VI,
the right-hand side of this expression corresponds to the
so-called “shadow norm” ‖O‖2

sh = ‖A‖op introduced in
Ref. [14].

B. Explicit expression for 3-designs

In the case of rank-1 measurements that also give
a weighted 3-design, we can find a remarkably simple
expression for the state- and observable-dependent vari-
ance even in the nonaveraged scenario. To see this, we start
by observing that

∑

b

〈μb, ρ〉〈O, μ̃b〉2 =
〈

ρ ⊗ O ⊗ O,
∑

b

μb ⊗ μ̃b ⊗ μ̃b

〉

.

(32)

For any tight rank-1 POVM with elements μb = wbP(ψb),
using the canonical estimators μ̃can

b given in Eq. (18) we
can also write

∑

b

μb ⊗ μ̃can
b ⊗ μ̃can

b = (d + 1)2S3 − (d + 1)S2 + I ,

(33)

where S3 ≡ ∑
b wbP(ψb)

⊗3 and

S2 ≡
∑

b

wbP(ψb)
⊗2 ⊗ I +

∑

b

wbP(ψb)⊗ I ⊗ P(ψb).

(34)

If the states |ψb〉 form a complex projective 3-design,
then S3 = d�sym,3/

(d+2
3

)
where �sym,3 ∈ Lin((Cd)⊗3) is

the projection onto the completely symmetric subspace of
(Cd)⊗3, and S2

(d+1
2

) = d�(1,2)
sym,2 + d�(1,3)

sym,2 is a sum of the
projections on the symmetric subspace of (Cd)⊗2 on first
and second and first and third qubits, respectively. These
projections can be written more explicitly as �sym,2 =
(I ⊗ I + W)/2, where W is the SWAP operator, �sym,3 =
1
3!

∑
π∈S3

Wπ , with S3 denoting the symmetric group over

three elements, and Wπ is the unitary operator, defined
as [33]

Wπ =
∑

i1,i2,i3

∣∣iπ(1), iπ(2), iπ(3)
〉〈i1, i2, i3| . (35)

With these and Eq. (32), we can work out the explicit
expressions for state- and observable-dependent variances
and obtain

Var[ô|ρ] = − tr(O)2 + 2tr(O)tr(ρO)
d + 2

+ d + 1
d + 2

[
tr(O2)+ 2tr(O2ρ)

]− tr(Oρ)2.

(36)

This expression shows explicitly that for any rank-1 mea-
surement that forms a 3-design, we obtain an explicit
expression for the variance even in the nonaveraged
regime. This dramatically simplifies the study of the rela-
tions between best, worst, and average cases with respect
to both the input state and the target observable. Random
Clifford circuits and Haar-random unitaries, considered in
Ref. [14], as well as single-qubit mutually unbiased bases,
are examples of rank-1 measurements that form a 3-design
[48,49].

C. Worst-case variance bounds for 3-designs

The explicit expression for the variance for 3-designs
allows us to also derive general bounds for the vari-
ance maximized over the input states: given any rescaled
observable, tr(O) = 0, we obtain, from Eq. (36),

max
ρ

Var[ô|ρ] ≤ tr(O2)+ 2‖O2‖op ≤ 3tr(O2), (37)

which shows that by increasing the dimension d, even in
the worst-case scenario, the variance only increases with
d via the observable. Thus, for any rescaled observable
for which tr(O) = 0, tr(O2) = 1, we obtain a dimension-
independent upper bound. Note that the 3tr(O2) upper
bound is identical to the one derived in Ref. [14] for
random Clifford and unitary measurements.

D. Numerical examples with MUBs

In Fig. 3, we report numerical results obtained for the
average, minimum, and maximum variance, in the case of
mutually unbiased basis (MUB) measurements in prime
dimensions [47], calculated via Eq. (30). We note in par-
ticular how even the worst-case variance does not increase
with the state dimension. This is compatible with the
general expression for the variance that we will obtain
for 3-designs, although MUBs do not correspond to a 3-
design, indicating that these favorable scaling results might
hold even more generally.
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FIG. 3. The average, minimum, and maximum variance for
mutually unbiased basis (MUB) POVMs. We plot the values of
λmin(A), ‖A‖op, and tr(A)/d, as a function of the state dimen-
sion d, for the case of canonical estimators, with a random target
observable for each d. The data are shown for prime d because
these are the values corresponding to which explicit construc-
tions for MUBs are known [47]. These results give the range
of possible values of 〈A, ρ〉 varying over the input states ρ, for
the case of MUB measurements. These values are then tightly
connected with the estimation variance via Eq. (28). The data
shown correspond to a random target observable with tr(O) = 0
and tr(O2) = 1.

VI. RELATION WITH CONSTRUCTION OF
REF. [13]

We now specialize our discussion in Sec. II to the for-
malism presented in Ref. [14]. The goal is to show that
the latter can be viewed and studied from the general per-
spective of measurement frames and corresponds to the
special case where the employed IC POVM is a covariant
measurement [23,31,50,51].

A. Description of the formalism

The procedure to build the classical shadows introduced
in Ref. [14] involves the following steps:

(1) Perform a random unitary rotation ρ �→ UρU† on
the state and then measure the evolved state in the
computational basis |b〉.

(2) Define the operator

M(ρ) ≡ E

[
U†|b̂〉〈b̂|U

]

≡ EU∼U
∑

b

〈
UρU†

∣∣b
〉

U† |b〉〈b| U, (38)

where |b̂〉 is a random variable associating, with
each outcome b, the corresponding state |b〉. The
expectation value is taken with respect to some dis-
tribution U in the group of unitary matrices and with
respect to the possible outcomes b for each choice of
unitary.

(3) Compute and store the operators ρ̂ ≡ M−1(U†|b̂〉
〈b̂|U). These are referred to as the “classical shad-
ows” of the state.

To estimate the expectation values of an observable O,
one then uses the estimator ô ≡ 〈O, ρ̂〉 built from the
classical shadows. We will focus here on the task of
estimating expectation values, although in Ref. [14] the
estimation of other kinds of quantities is also discussed.
Another important aspect discussed in Ref. [14] is the effi-
ciency of computing and storing the classical shadows for
large many-qubit Hilbert spaces, which can be solved by
leveraging Clifford circuits and the formalism of stabi-
lizer states. We will not focus on these aspects here but,
rather, on the general structure of the shadow-tomography
protocol.

B. Equivalence: Step 1

The equivalence between the formalism thus outlined
and our approach is seen by observing that a measurement
in the computational basis {|b〉} after evolving the state
through a random unitary rotation U amounts to a direct
measurement, with the POVM having elements

μU,b ≡ U† |b〉〈b| U. (39)

As such a measurement has (uncountably) infinitely many
outcomes, its normalization reads

∫

U(d)
dU

∑

b

μU,b = I , (40)

where the integral is performed with respect to the Haar
measure over the unitary group of suitable dimension and
thus

∫
U(d) dU = 1.

C. Equivalence: Step 2

The introduced map M is precisely the frame operator
corresponding to the measurement frame {μU,b}U,b. This
becomes more evident upon rewriting Eq. (38) in the form:

M(ρ) =
∫

U(d)
dU

∑

b

〈μU,b, ρ〉μU,b, (41)

which matches the structure of the frame superoperator
defined in Eq. (3).

D. Equivalence: Step 3

From the above considerations, it is now clear that
the classical shadows, which read in terms of the POVM
(μU,b) as ρ̂ = M−1(μU,b), are the elements of the canoni-
cal dual frame of the measurement frame. This shows that
the formalism to compute classical shadows with random
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unitary rotations and projective measurement follows as
a special case of the general procedure for measurement
frames outlined in Sec. II.

E. Equivalence of the formalisms

At first glance, this procedure might still appear different
from the one discussed in Sec. II, as we did not explic-
itly use rescaled measurement frames in this section (as
opposed to the discussion in Sec. II). This is due to the
covariant measurements being such that tr(μU,b) = 1 for
all U, b, making the rescaling factors used in the definition
F̃I/d unnecessary in these cases. It follows that M and
F̃I/d only differ by the proportionality constant d. These
observations show that the formalism of shadow tomogra-
phy via random unitary rotations can be seen as a direct
application of the general formalism that we present to
rank-1 POVMs of the form μψ = pψPψ for some distri-
bution over the states |ψ〉. A direct numerical comparison
between the results of applying our formalism to estimate
observables from MUB measurements and the approach
with uniformly random unitaries is presented in Fig. 4.
As clearly shown in the figures, while the distribution of
the estimators differs considerably in the two cases, the
induced sample means have similar distributions and both
converge to the same Gaussian in the limit of infinite
statistics.

F. Variance and shadow norm

In Ref. [14], the variance of the estimators for observ-
ables is bounded in terms of their so-called “shadow
norm,” which is defined there as

‖O‖sh ≡ max
σ

(
EU∼U

∑

b

〈b|UσU†|b〉〈b|U

× M−1(O)U†|b〉2
)1/2

, (42)

where the maximization is performed with respect to all
possible states σ . This expression is equivalent to

‖O‖2
sh = max

σ

∑

b

〈μb, σ 〉〈O, μ̃can
b 〉2, (43)

in the special case of µ being the covariant measurement,
i.e., mapping b → (U, b) and μb → μU,b ≡ U†PbU, and
with μ̃can

b being the canonical estimator associated with this
measurement, as given in Eq. (15), which in this case reads
μ̃can

U,b = dF−1
I/d(μU,b). Note that the explicit expression for

FI/d for this POVM is

FI/d = d
∫

U(d)
dU

∑

b

P(μU,b), (44)
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FIG. 4. The distributions of the estimators and their sam-
ple mean, corresponding to MUBs and Haar-random unitary
POVMs. (a) Histograms of the probability distributions for the
estimator 〈O, μ̃〉 for a random (fixed) observable O with tr(O) =
0, tr(O2) = 1, and fixed qutrit state ρ = P0. The reported results
correspond to MUBs, µMUB (red), and random measurements
µHaar, which have elements μU,b = UPbU† with Haar-random
unitaries U (blue). For µMUB, there is a finite number of out-
comes and we plot the probability associated with each outcome
directly. For µHaar, owing to the infinitely many outcomes, we
uniformly draw a number of random unitaries U and plot a his-
togram of the observed estimator values 〈µ̃Haar,O〉. We show two
different scales on the vertical axis: in the presence of a contin-
uum of possible outcomes, as we have for 〈O, µ̃Haar〉, we plot the
probability density function (PDF); while for finitely many out-
comes, we show the probability mass function. (b) The histogram
of possible outcomes of the sample mean oN ≡ 1

N

∑N
k=1 ô(bk)

of ô(b) ≡ 〈O, μ̃b〉, estimated with statistics of N = 103 samples.
The histogram is drawn sampling 104 realizations of this sample
mean, in the same condition as the other histogram. The black
solid line is a Gaussian with the same mean and variance as both
estimators, µ̃MUB and µ̃Haar—which have the same variance, both
being tight measurement frames. Both histograms approach this
Gaussian for N → ∞, due to the central-limit theorem.

where we have used tr(μU,b) = 1 for all U, b.
Therefore, in terms of the operator M defined in Eq. (38),
we have FI/d = dM and μ̃can

U,b = M−1(μU,b). We finally
recover Eq. (42), observing that M or, equivalently, FI/d,
is Hermitian as a superoperator and thus

〈b|UM−1(O)U†|b〉 = tr(μU,bM−1(O)) = tr(Oμ̃can
U,b).

(45)
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Rewriting the shadow norm as in Eq. (43) clearly shows
that it corresponds to the nontrivial part of the variance,
maximized over the input states, and that the definition
of shadow norm is thus applicable for any choice of
measurement and estimator. In fact, we have the general
result ‖O‖2

sh = ‖A‖op, where A is the operator defined in
Eq. (29), and thus the scaling results derived for random
(Haar or Clifford) unitaries can be viewed as a partic-
ular instance of the more general results presented in
Sec. IV.

VII. CONCLUSIONS AND OUTLOOK

We have demonstrated how the general theory of
measurement frames embodies a natural framework for
shadow tomography. In doing so, we have assessed thor-
oughly the interplay between general measurements and
associated optimal estimators to recover expectation val-
ues of target observables. Our results push the current
knowledge in this context, recovering previously reported
seminal results (cf. Ref. [14]) as special cases of our gen-
eral framework, providing a natural understanding of the
notion of shadow norm often used in the topical literature,
and allowing estimation of finite sets of rank-1 bounded
observables with a number of samples that does not grow
with the dimension of the underlying space. We have
provided analytical bounds for the estimation variance in
several cases of interest, including the variance averaged

over input states and the variance averaged over both input
states and target observables. Among other things, we have
provided explicit results for the averaged variance in the
case of tight measurement frames and general bounds tying
the average variance to how close a POVM is to being
a tight measurement frame and we have also found an
explicit expression for the nonaveraged variance for rank-
1 POVMs that form 3-designs. In Table I, we provide
a useful summary of some of the main expressions for
frame operators and variances discussed throughout the
paper. To further ease the understanding of the different
notions introduced in this paper, we have also included
in Appendix H several toy examples in which we explic-
itly work out frame superoperators and other relevant
quantities.

Besides improving our understanding of general
shadow-tomography protocols, our results help the anal-
ysis and assessment of estimation errors in general mea-
surement protocols, providing a unifying framework to
understand both linear state tomography and shadow
tomography. Our work thus contributes to the design
of optimal strategies for single-setting quantum state
tomography, which has recently attracted significant atten-
tion [26,27,52,53], as well as more general experimental
protocols relying on learning properties of input states
from measurement outcomes [44,54–57]. Another con-
text where our results will prove useful is the analysis
of quantum reservoir-computing architectures, which have

TABLE I. A summary of the introduced quantities. A schematic review of the expressions provided in the text for frame operator
(F ), state estimator (μ̃), and associated variances. The first two rows summarize some of the quantities associated with the tomographic
estimation of input states. Similarly, the next three rows refer to the case of recovering the expectation value of some target observable
O. The first and third rows summarize the quantities associated with the estimators that have minimum variance when the true input
state is ρ. The second and fourth rows summarize the quantities associated with estimators that have minimum variance on average
over the possible input states—or, equivalently, that have minimum variance when the true input state is I/d. The fifth row contains
quantities associated with the estimator with minimum variance on average over both input states and target observables. Finally, the
last row gives the explicit expressions for the canonical frame operator, the canonical estimator, the MSE matrix, and the averaged
variance, in the special case of tight rank-1 measurement frames.

Frame operator Estimator Variance of estimator

State estimation
(with prior ρ) Fρ ≡ ∑

b
P(μb)

〈μb, ρ〉 μ̃
(ρ)

b ≡ F−1
ρ (μb)

〈μb, ρ〉 Eρ = tr(F−1
ρ )− tr(ρ2)

(average over ρ) FI/d ≡ d
∑

b
P(μb)

tr(μb)
μ̃can

b ≡ dF−1
I/d(μb)

tr(μb)
EP = tr(F−1

I/d)− P

Observable
estimation

(with prior ρ) Fρ 〈O, μ̃b〉 = 〈O, μ̃(ρ)b 〉 Var[ô|ρ] = 〈O, Cρ(O)〉
(average over ρ) FI/d 〈O, μ̃b〉 = 〈O, μ̃can

b 〉 Var[ô|P] = 〈O, Cρ(O)〉
(average over ρ, O) FI/d μ̃can Var[ô|P] = Vd

d2 − 1

[
tr(F−1

I/d)− P
]

Tight rank-1 POVM μb = wbP(ψb) FI/d = d
P(I)+ Id

d + 1
μ̃can

b = (d + 1)P(ψb)− I EP = d2 + d − 1 − P

Var[ô|P] = Vd
(
d2 + d − 1 − P

)

d2 − 1

040328-12



SHADOW TOMOGRAPHY... PRX QUANTUM 4, 040328 (2023)

been recently shown to be representable via generalized
measurements summarizing the properties of the reser-
voir and to be applicable for quantum state-estimation
tasks [58]. More generally, our formalism can be applied
to any scenario where the goal is to extract proper-
ties of states from measurement outcomes, especially
(although not exclusively) when the goal is to efficiently
extract few properties from high-dimensional states. Other
potential avenues for research in this context include
a more thorough exploration of the performance guar-
antees for 2-designs that are not also 3-designs, which
would significantly expand the class of experimental situa-
tions where efficient dimension-independent estimation is
possible.

By demonstrating the connection between the compu-
tation of classical shadows and the associated unbiased
linear estimators, our approach establishes useful connec-
tions with metrology and estimation theory. In particular,
estimating only certain properties of an unknown quan-
tum state is formally a quantum semiparametric estima-
tion problem [59]—also known in the finite-dimensional
case as estimation with nuisance parameters [60]. While
quantum estimation is most commonly studied in a local
and/or asymptotic scenario, we hope that our approach
will lead to further connections between shadow tomog-
raphy and semiparametric estimation in the nonasymptotic
regime. Another intriguing area where an approach based
on infinite-dimensional measurement frames could provide
useful insights is continuous-variable shadow tomogra-
phy, which has only very recently been proposed [61,62].
Finally, the agility of the framework that we put forward
holds the promise to inform experimental efforts aimed
at demonstrating a resource-inexpensive route to quan-
tum state and property reconstruction. The code used to
generate the figures in the paper can be found at Ref. [63].
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APPENDIX A: PROPERTIES OF FRAME
SUPEROPERATORS

In this appendix, we briefly review some important
properties of the frame superoperators used in the paper.

1. Definition

The frame superoperator that provides the minimum-
variance state estimator when the true input is some
reference state ρ is

Fρ =
∑

b

P(μb)

〈μb, ρ〉 , (A1)

where we denote by P(μb) the quantum map sending oper-
ators X to μb〈μb, X 〉. If ρ ∈ D(Cd) is a d-dimensional
state, then μb ∈ Pos(Cd), Fρ : Lin(Cd) → Lin(Cd), and
Fρ ∈ Lin(Lin(Cd)). Being a linear function defined on lin-
ear operators, Fρ is a quantum map. To connect to the
more general theory of frames in linear algebra, this map
is the frame operator corresponding to the rescaled frame
of operators with elements {μb/

√〈μb, ρ〉}b.

2. General properties

Thinking of Fρ as a linear operator, we define its trace
in the standard way, i.e.,

tr(Fρ) =
∑

α

〈σα ,Fρ(σα)〉, (A2)

for an arbitrary orthonormal basis of Hermitian operators
{σα}d2

α=1. In particular, tr(P(μb)) = 〈μb,μb〉 = tr(μ2
b), and

thus

tr(Fρ) =
∑

b

tr(μ2
b)

〈μb, ρ〉 . (A3)

We can furthermore verify by direct substitution that

Fρ(ρ) = I , F−1
ρ (I) = ρ. (A4)
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3. Properties of the inverse

As discussed in the main text and derived in
Appendix B, the minimum-variance unbiased estimator
provided by Fρ is f̂ (b) ≡ μ̃

(ρ)

b , with

μ̃
(ρ)

b ≡ 1
〈μb, ρ〉F

−1
ρ (μb). (A5)

In particular, this means that the canonical dual frame
corresponding to this frame operator has elements
{√〈μb, ρ〉μ̃(ρ)b }b and

F−1
ρ =

∑

b

P(
√

〈μb, ρ〉μ̃(ρ)b ) =
∑

b

〈μb, ρ〉P(μ̃(ρ)b ). (A6)

Taking the trace, we obtain

tr(F−1
ρ ) =

∑

b

〈μb, ρ〉tr((μ̃(ρ)b )2). (A7)

This expression is particularly useful in that it directly
enters the corresponding MSE matrix.

4. Canonical estimator

The minimum-variance unbiased estimator when no
prior knowledge about the true input state is assumed is
obtained by setting ρ = I/d in the frame superoperator.
We show in Appendix D that the unbiased state estima-
tor that minimizes the L2 error averaged over unitarily
equivalent states is f̂ (b) ≡ μ̃can

b , with

μ̃can
b = dF−1

I/d(μb)

tr(μb)
. (A8)

The map FI/d has some further properties compared with
its general counterpart. In particular, we have FI/d(I) =
dI , which means that I is an eigenvector of FI/d. This
observation can be exploited to write the general decom-
position

FI/d = dP(I/
√

d)+ F̃I/d, (A9)

where F̃I/d is defined as the projection of FI/d on the
subspace of traceless operators, i.e.,

F̃I/d = �H0FI/d�H0 = �H0F̃I/d�H0 , (A10)

where �H0 ≡ Id −P(I/
√

d) is the (superoperator) projec-
tor onto the subspace of traceless operators. We employ
the rescaled identity operator I/

√
d in these expres-

sions to ensure the normalization of the correspond-
ing operator with respect to the Hilbert-Schmidt inner

product: ‖I/
√

d‖2 ≡ tr((I/
√

d)2) = 1. This decomposi-
tion also translates into corresponding simplified expres-
sions for the inverse and trace:

F−1
I/d = 1

d
P(I/

√
d)+ F̃−1

I/d,

tr(F−1
I/d) = 1

d
+ tr(F̃−1

I/d).
(A11)

As discussed in more detail in Appendix D, these expres-
sions simplify even further in the special case of tight
rank-1 measurement frames.

5. MSE matrix

Following Ref. [23], we define the MSE matrix corre-
sponding to a state ρ, measurement μ, and estimator μ̃,
as

Cρ =
∑

b

〈μb, ρ〉P(μ̃b)− P(ρ). (A12)

Using the minimum-variance dual estimator given in
Eq. (A5), the MSE matrix takes the simplified form

Copt
ρ = F−1

ρ − P(ρ). (A13)

For an arbitrary choice of possibly suboptimal estimator,
we have the inequality Cρ ≥ Copt

ρ . A remarkable property
of the MSE matrix is that its trace equals the average L2
state-estimation error, as will be further discussed in the
following appendixes. The optimal MSE matrix can also
be regarded as the (classical) Fisher information matrix,
when the states are considered parametrized via their
coefficients in some orthonormal basis.

APPENDIX B: MINIMUM-VARIANCE STATE
ESTIMATORS

Let us consider a generic unbiased estimator—or, equiv-
alently, as discussed before, a generic dual measurement
frame—and ask what is the associated average estimation
error. Measuring the error in the Hilbert-Schmidt distance,
we find that

E[‖f̂ − ρ‖2
2] ≡

∑

b

〈μb, ρ〉‖f̂ (b)− ρ‖2
2

= E tr(f̂ 2)− tr(ρ2),

E tr(f̂ 2) ≡ �2(ρ,μ, μ̃) ≡
∑

b

〈μb, ρ〉tr(μ̃2
b),

(B1)

where we have introduced the notation �2 ≡ �2(ρ,μ, μ̃)
to denote the component of the average error that depends
on the choice of measurement μ and dual μ̃. The depen-
dence of this quantity on these choices will not the explic-
itly shown in the following in order to ease the notation.
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1. Minimum-variance dual frame

As previously mentioned, different dual frames gener-
ally exist and from Eq. (B1) we can see that the choice
of dual frame μ̃ can affect the associated average estima-
tion error. It is then natural to ask what is the choice of
dual frame that minimizes the estimation variance? This
issue is addressed in Refs. [19–21,30–32]. We include here
a different approach to deriving the minimum-variance
unbiased estimators from the rescaled frame superopera-
tor, using the method of Lagrange multipliers to directly
perform the optimization with respect to all possible linear
unbiased estimators.

2. Problem definition in vectorized notation

To find the minimum-variance estimator µ̃, we observe
that the task involves optimizing a quadratic function
under linear constraints. To see this more clearly, we
temporarily neglect the fact that the various objects in
Eq. (B1) are operators and simply think of them as vectors,
upon some choice of orthonormal basis for the underlying
Hilbert space. The error term �2, which is what we need
to minimize, can be written in vectorized notation as
∑

b

〈μb, ρ〉tr(μ̃2
b) =

∑

b

〈μb, ρ〉‖μ̃b‖2 =
∑

b,i,j

μbiρiμ̃
2
bj ,

(B2)

and the minimization must be performed with respect
to the real parameters μ̃bj . More explicitly, this notation
amounts to decomposing the operators as

μ̃bj ≡ 〈σj , μ̃b〉, μbj ≡ 〈σj ,μb〉, ρi ≡ 〈σi, ρ〉, (B3)

for some fixed choice of orthonormal operatorial basis {σi}.
We need to take into consideration that not all sets of

parameters μ̃bj correspond to a valid dual frame of μ.
The definition of a dual frame can be written in vectorized
notation as

∑

b,i

μbiρiμ̃bj = ρj (B4)

and this must hold for all possible choices of ρ. Although
there are, in principle, an infinite amount of constraints,
they can be thought of as equivalent to the finite set of
constraints corresponding to using as ρ the elements of the
considered operatorial basis {σi}. These constraints read

∑

b

μbiμ̃bj = δij , ∀i, j . (B5)

Let us denote this set of constraints by φij ≡ φij (μ, μ̃) =
0, having defined

φij ≡
∑

b

μbiμ̃bj − δij . (B6)

3. Lagrange multipliers to find stationary points

To find the minimum of Eq. (B3) under the constraints
in Eq. (B5), we can use the general method of Lagrange
multipliers. For there to be a stationary point for the cost
function under the given constraints, the gradient of the
cost must be in the linear span of the gradients of the con-
straints. More explicitly, this means that there must be a set
of coefficients λij such that, for all b and k, we have

∂�2

∂μ̃bk
=
∑

ij

λij
∂φij

∂μ̃bk
. (B7)

Computing the derivatives explicitly, we find that

∂�2

∂μ̃bk
= 2

∑

i

μbiρiμ̃bk,

∂φij

∂μ̃bk
= μbiδjk,

(B8)

and thus Eq. (B7) becomes

2
∑

i

μbiρiμ̃bk =
∑

i

λikμbi. (B9)

Thinking of λ,μ, and μ̃ as matrices and defining the diago-
nal matrix�with components�ab ≡ δab〈μb, ρ〉, Eqs. (B9)
and (B5) can be written concisely as

2�μ̃ = μλ, μTμ̃ = I . (B10)

Putting these together, and assuming � to be invert-
ible—which amounts to using ρ such that 〈μb, ρ〉 > 0
for all b—we obtain 2I = 2μTμ̃ = μT�−1μλ. We thus
conclude that the set of coefficients λij must have the form

λ = 2(μT�−1μ)−1. (B11)

In writing this, we are interpreting λ as a matrix, i.e., as
a linear operator in the underlying Hilbert space of Her-
mitian operators. In other words, we can in this context
interpret the set of Lagrange multipliers as a quantum map
satisfying the given relations. We can safely talk about
the inverse of μT�−1μ because the corresponding map is
invertible provided that μ is an IC POVM. This is because
μT�−1μ, going back to the original formalism in terms of
operators, corresponds to the map

Fρ ≡
∑

b

P(μb)

〈μb, ρ〉 (B12)

and if {μb} is an IC POVM, then its elements span the
space and the quantum map thus defined is invertible.
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With this solution for λ, we can now find the minimum-
variance dual frame μ̃ using Eq. (B10) as

μ̃ = �−1μ(μT�−1μ)−1. (B13)

Note that μ is not in general an invertible, nor a
squared, matrix and thus we cannot simplify the inverse
(μT�−1μ)−1 using the inverse of its elements.

Going back to the notation with operators, the
minimum-variance dual frame that we have just found
corresponds to the operators

μ̃b = 1
〈μb, ρ〉F

−1
ρ (μb), (B14)

where we have denoted by Fρ the map corresponding
to the Lagrange multipliers, which can also be seen as
the frame operator of the rescaled frame with elements
μb/

√〈μb, ρ〉. An explicit expression of F−1
ρ in terms of

μ̃ can be obtained using Eq. (B10) again: we get that
λ = 2μ̃T�μ̃ and therefore

F−1
ρ ≡

∑

b

〈μb, ρ〉P(μ̃b), (B15)

to be compared with Fρ of Eq. (B12).
It is worth stressing the precise kind of “optimality”

that we have just derived. While the above optimal dual
frame μ̃b is an unbiased estimator with respect to all states,
meaning that

∑
b〈μb, ρ〉μ̃b = ρ for all ρ, the associated

estimation error and its optimality depend upon the spe-
cific state ρ that is being examined. Different choices of
ρ will correspond to different minimum-variance estima-
tors, although all of these estimators are unbiased with
respect to all states. To find the estimator that has mini-
mum variance on average with respect to all possible input
states—sampled uniformly from the Haar measure—we
just need to set ρ = I/d, obtaining

μ̃b = d
tr(μb)

F−1
I/d(μb), (B16)

where

FI/d ≡ d
∑

b

P(μb)

tr(μb)
, F−1

I/d ≡ 1
d

∑

b

tr(μb)P(μ̃b).

(B17)

This can be deduced from the linearity of �2 in Eq. (B1)
with respect to ρ. Therefore, integrating it over Haar-
distributed states is equivalent to evaluating it at the
maximally mixed state ρ = I/d.

APPENDIX C: MINIMUM-VARIANCE
OBSERVABLE ESTIMATORS

In Appendix B, we have derived the form of the unbi-
ased state estimator that minimizes the averaged L2 esti-
mation error. The focus of shadow-tomography protocols
is, however, the estimation of observables, not retrieving
tomographically complete descriptions of the state itself. It
would stand to reason that if the goal was to estimate some
target observable O, this might be possible with a differ-
ent strategy that does not pass through state estimators and
gives even lower variance. In this appendix, we will show
that this is in fact not the case: any unbiased estimator ô for
an observable O, assuming that it is unbiased for all possi-
ble input states, is bound to have the form ô(b) = 〈O, μ̃b〉
for some dual measurement frame µ̃.

1. All observable estimators pass through dual frames

Let ô be an unbiased estimator for a target observable
O. By definition, this means that we have the relation

∑

b

ô(b)〈μb, ρ〉 = 〈O, ρ〉 (C1)

for all states ρ. But by linearity of the inner product, this
implies

∑
b ô(b)μb = O, which tells us that ô(b) ∈ R can

be interpreted as the coefficients appearing in the expan-
sion of O as a linear combination of the frame elements
(μb)b. From the general theory of frames, we then con-
clude that there must be some dual frame (μ̃b)b such that
ô(b) = 〈μ̃b,O〉. The opposite direction is immediate: if μ̃b
is a dual frame and thus gives an unbiased state estimator,
it is clear that 〈O, μ̃b〉 is an unbiased estimator for O. We
conclude that unbiased observable estimators always pass
through some state estimator µ̃.

2. Minimum-variance observable estimators

The above considerations tell us that we can restrict our
attention to estimators of the form ô(b) = 〈μ̃b,O〉. The
question remains as to what choice of estimator is best—in
the sense of having minimum variance—to recover O
specifically. To answer this question, we follow a reason-
ing similar to that in Appendix B. If μ̃b is a generic dual
frame, with corresponding estimator ô(b) ≡ μ̃b, and ρ is
the true state, the variance reads

Var[ô|O] =
∑

b

〈μb, ρ〉〈O, μ̃b〉2 − 〈O, ρ〉2. (C2)

We focus on minimizing the first term with respect to μ̃, as
the second term only depends on ρ and O. In vectorized
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notation, the first term can be rewritten as
∑

b

〈μb, ρ〉〈O, μ̃b〉2 = OTμ̃T�μ̃O. (C3)

In this notation, μ̃ and μ are matrices, � is a diagonal
matrix, and O is a vector. The constraints on the estimators
remain μ̃Tμ = μTμ̃ = I , which amounts to the set of con-
straints φij = ∑

b μbiμ̃bj − δij . Taking the derivative with
respect to μ̃bk on the cost function given in Eq. (C3), and
using the constraints on μ̃, we conclude that there must be
coefficients λij such that

2
∑

j

�bbOkμ̃bjOj =
∑

ij

λijμbiδjk. (C4)

In more compact matrix notation, denoting by λ the matrix
with components λij , we obtain the condition

2�μ̃OOT = μλ. (C5)

Multiplying both sides from the left first by �−1 and then
by μT, and observing that μT�−1μ is the matrix represen-
tation of Fρ , which is invertible for IC POVMs, we find
that

λ = 2(μT�−1μ)−1OOT. (C6)

We thus conclude that the minimum-variance estimators
are given by

μ̃OOT = �−1μ(μT�−1μ)−1OOT. (C7)

More explicitly, this amounts to
∑

k

μ̃bkOk =
∑

ik

�−1
bb μbi(F−1

ρ )ikOk. (C8)

In operator notation, this reads

〈O, μ̃b〉 = 〈O,F−1
ρ (μb)〉

〈μb, ρ〉 . (C9)

We conclude that the estimator μ̃b that minimizes
Var[ô|O] when the input state is ρ always has the form:

〈O, μ̃b〉 = 〈O, μ̃(ρ)b 〉, (C10)

in other words, the estimators equal to the minimum-
variance state estimator μ̃(ρ)b on the span of O. The
associated variance can be written in terms of the MSE
matrix as

〈P(O), Cρ〉 ≡ 〈O, Cρ(O)〉=
∑

b

〈μb, ρ〉〈O, μ̃b〉2 −〈O, ρ〉2,

(C11)

where P(O) denotes the map X �→ 〈O, X 〉O for all X ∈
Lin(Cd). We thus conclude that finding the state estimator

giving an observable estimator with the smallest variance
amounts to finding an estimator that acts like the overall
minimum-variance state estimator on the support of the
observable. In other words, the minimum-variance state
estimator also provides the minimum-variance observable
estimator for any observable (under the same assumptions
on the input state). As in Appendix B, all these results also
hold in the averaged scenario: the estimators minimizing
the variance on average over input states are obtained with
the choice ρ = I/d, i.e., using µ̃can.

APPENDIX D: TIGHT MEASUREMENTS AND
WEIGHTED 2-DESIGNS

In this appendix, we prove the equivalence between
weighted complex projective 2-designs and tight measure-
ment frames, discuss the general property of tight measure-
ment frames, and prove the known lower bounds on L2
average estimation error corresponding to canonical state
estimators. Although using a slightly different formalism,
the idea behind the proof reported here is analogous to that
reported in Ref. [43].

1. Weighted 2-designs and tight measurement frames

Consider a rank-1 measurement with elements μb =
wbP(ψb), b = 1, . . . , m, for some set of weights wb ∈ R

such that
∑

b wb = d and some set of vectors |ψb〉 ∈ Cd.
The corresponding canonical frame superoperator is, by
definition, equal to

FI/d = d
∑

b

P(μb)

tr(μb)
= d

∑

b

wbP(P(ψb)), (D1)

where we have used tr(μb) = wb and we have denoted
by P(P(ψb)) the projector onto the projector P(ψb). Here,
ψb ∈ Cd is a vector, P(ψb) ≡ |ψb〉 〈ψb| ∈ Herm(Cd) is a
linear operator projecting onto |ψb〉, and thus P(P(ψb))

is a linear operator acting in the space of linear opera-
tors, which projects onto the linear operator P(ψb). This
object is a quantum map, which acts on any X ∈ Lin(Cd)

as follows:

P(P(ψb))(X ) = P(ψb)〈P(ψb), X 〉 ≡ P(ψb)〈ψb, Xψb〉.
(D2)

Being this a quantum map, we can consider its Choi
representation. Given any map � : Lin(HA) → Lin(HB),
we define its Choi representation as the operator J (�) ∈
Lin(HB ⊗ HA) such that

J (�) =
∑

ij

�(|i〉〈j |)⊗ |i〉〈j | . (D3)
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For an arbitrary map of the form �(X ) = 〈A, X 〉B, the
Choi is J (�) = B ⊗ Ā. It follows that

J (P(P(ψb))) = P(ψb)⊗ P(ψb)
T, (D4)

and thus, for the frame superoperator,

J (FI/d) = d

[
∑

b

wbP(ψb)
⊗2

]TB

, (D5)

where TB denotes the partial transpose of the second space.
This expression is useful because it provides a direct con-
nection with the defining property of weighted 2-designs.
The vectors |ψb〉 form a complex projective 2-design with
weights wb if and only if we have

∑

b

wbP(ψb)
⊗2 = d

�sym(d+1
2

) . (D6)

The d normalization factor on the right-hand side of this
equation comes from

∑
b wb = d, whereas in the stan-

dard definition of weighted 2-designs the weights are
normalized to 1. Using this relation, we obtain

J (FI/d)
TB = d2�sym(d+1

2

) = d
I ⊗ I + W

d + 1
, (D7)

where we have expressed the projector in terms of the
SWAP operator W via �sym = (I + W)/2. Observing that
WTB = ∑

ij |ii〉〈jj |, J (P(I)) = I ⊗ I , and J (Id) = WTB ,
together with the fact that the Choi is a linear isomorphism
between maps and operators, we conclude that

FI/d = d
P(I)+ Id

d + 1
. (D8)

This derivation shows that, for any rank-1 IC POVM with
elements μb = wbP(ψb), the frame superoperator FI/d has
this form if and only if the vectors |ψb〉 and weights wb
form a weighted 2-design. Equation (D8) differs by a factor
of d from the expressions for tight frames found in, e.g.,
Ref. [19] but that is simply due to the definitions of the
frame superoperator differing by a factor of d and will not
affect our results.

2. Properties of tight-frame superoperators

Now suppose that μ is a tight rank-1 IC POVM and
thus the frame superoperator satisfies Eq. (D8). In light of
the decomposition of Eq. (A9), we can rewrite the frame
operator as

FI/d = dP(I/
√

d)+ d
d + 1

(
Id −P(I/

√
d)
)

. (D9)

This expression is useful because it splits the action
of FI/d into two invariant orthogonal subspaces. The

superoperators P(I)/d and Id −P(I)/d project onto the
one-dimensional subspace spanned by I and the (d2 −
1)-dimensional subspace of traceless Hermitian matrices,
respectively. It follows that the inverse has the form

F−1
I/d = 1

d
P(I/

√
d)+ d + 1

d

(
Id −P(I/

√
d)
)

= (d + 1) Id −P(I)
d

. (D10)

Using F̃I/d, defined as in Eq. (A9), we then also obtain, for
tight measurement frames, the expression

tr(F̃I/d) = d(d2 − 1)
d + 1

= d(d − 1). (D11)

3. Estimators for tight measurement frames

With knowledge of the general structure of the optimal
frame corresponding to a tight measurement with elements
μb = wbP(ψb), we can compute explicitly the structure of
the corresponding estimator f̂ (b) ≡ μ̃can

b , which gives

μ̃can
b = d

tr(μb)
F−1

I/d(μb) = (d + 1)P(ψb)− I . (D12)

4. Lower error bounds for tight measurement frames

We will show here that the L2 estimation error averaged
over unitarily invariant input states, when using any unbi-
ased estimator, is lower bounded by d2 + d − 1 − tr(ρ2),
with the inequality saturated for rank-1 tight measure-
ments. This has first been proven in Refs. [19,30]. To
estimate the average state-estimation errors, we use the
MSE matrix Cρ discussed in Eq. (A12). If we assume that
the estimators μ̃b do not depend on the input state—as is
the case for the canonical estimator but not for the opti-
mal ones—then taking the uniform average with respect to
states unitarily equivalent to ρ, we obtain

Cρ =
∑

b

〈μb, I/d〉P(μ̃b)−
∫

U(d)
dU P(UρU†)

= F−1
I/d −

∫

U(d)
dU P(UρU†), (D13)

where the integral is taken with respect to the uniform Haar
measure in the group of unitary matrices. Taking the trace,
we obtain the average error as

Eρ = tr(Cρ) = tr(F−1
I/d)− tr(ρ2). (D14)

For tight rank-1 measurement frames we know from
Eq. (D10) that

tr(F−1
I/d) = d2 + d − 1. (D15)

Let us now show that this is also the lower bound for an
arbitrary measurement. From Eq. (A3), we see that for
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any µ,

tr(FI/d) = d
∑

b

tr(μ2
b)

tr(μb)
≤ d

∑

b

tr(μb) = d2, (D16)

where we have used the inequality tr(X 2) ≤ tr(X )2 for
X ≥ 0, which is saturated if and only if rank(X ) = 1.
Thus tr(FI/d) ≤ d2 and tr(F̃I/d) = tr(FI/d)− d ≤ d(d −
1), with equality for rank-1 measurements. But also, being
F̃I/d Hermitian and nonsingular as a linear (super)operator,
we have

tr(F̃I/d) =
d2−1∑

k=1

λk, tr(F̃−1
I/d) =

d2−1∑

k=1

1
λk

, (D17)

where the λk are the eigenvalues of F̃I/d and there are d2 −
1 terms in the sum because rank(F̃I/d) = d2 − 1. A direct
application of Lagrange’s multipliers then allows us to find
the minimum value of tr(F̃−1

I/d) under the constraint of λk ≥
0 and tr(F̃I/d) = d(d − 1), which reads

tr(F̃−1
I/d) ≥ (d2 − 1)(d + 1)

d
, (D18)

with equality holding if and only if all the eigenvalues have
the same value, i.e., if and only if F̃I/d is a multiple of
the identity (when acting on the (d2 − 1)-dimensional sub-
space of traceless Hermitian matrices). We conclude that
for any measurement, we have the lower bound

tr(F−1
I/d) = 1

d
+ tr(F̃−1

I/d) ≥ d2 + d − 1, (D19)

with the inequality saturated for tight rank-1 measure-
ments. We have therefore just proved that for any mea-
surement, the average L2 estimation error when using the
canonical estimator is lower bounded as

Eρ ≥ d2 + d − 1 − tr(ρ2). (D20)

It is also possible to study the errors corresponding to more
general—not necessarily rank-1—tight IC POVMs. This
analysis can be found in Ref. [32] and the smallest possi-
ble average L2 estimation error, when the POVM elements
have average purity ℘, works out to be

Eρ = (d2 − 1)2

d2℘ − d
−
[

tr(ρ2)− 1
d

]
, (D21)

where

℘ ≡ 1
d

∑

b

tr(μ2
b)

tr(μb)
= tr(FI/d)

d2 ∈ [1/d, 1]. (D22)

APPENDIX E: ERRORS TO ESTIMATE SINGLE
OBSERVABLES

As discussed in Appendix D, to study the estimation
errors associated with a given state estimator, it is useful to
introduce the MSE matrix Cρ . Now suppose that we want
to estimate the expectation value of some observable O on
a state ρ, using the unbiased estimator ô(b) ≡ 〈O, f̂ (b)〉 =
〈O, μ̃b〉. The associated variance is

Var[ô|ρ,O, µ, µ̃] =
∑

b

〈μb, ρ〉〈O, μ̃b〉2 − 〈O, ρ〉2. (E1)

As in the main text, the functional dependence on O, µ,
and µ̃ will be left implicit for notational conciseness. This
variance can be expressed via the MSE matrix as

Var[ô|ρ] = 〈P(O), Cρ〉 ≡ 〈O, Cρ(O)〉. (E2)

1. Expression for averaged variance

Let us focus on the behavior of the variance when using
the canonical state-independent estimator μ̃can

b . With this
choice, taking the average over input states with purity P ≡
tr(ρ2), we have

Var[ô|P] ≡
∫

U(d)
dU Var[ô|UρU†,O]

=
∑

b

〈μb, I/d〉〈O, μ̃can
b 〉2 −

∫

U(d)
dU〈O, UρU†〉2

= 〈O,F−1
I/d(O)〉 − β, (E3)

where β is the expectation value of 〈O, ρ〉2 over states
with purity P. This quantity is computed using the known
formulas to integrate polynomials in the components of
unitary matrices over the uniform Haar measure [45] and
equals

β = tr(O)2
d2 + dP − 1

d2 − 1
V, (E4)

where V ≡ 〈O2〉 − 〈O〉2 is the variance of the observ-
able computed on the maximally mixed state, with 〈O〉 ≡
tr(O)/d and 〈O2〉 ≡ tr(O2)/d. Note that the averaged vari-
ance depends on P but not on the specific choice of ρ. Let
us now focus on the term 〈O,F−1

I/d(O)〉, which is the one
that depends on the POVM. Using the decomposition in
Eq. (A9), for FI/d, we have

〈O,F−1
I/d(O)〉 = tr(O)2

d2 + 〈O, F̃−1
I/d(O)〉. (E5)

Putting together Eqs. (E3)–(E5), we obtain the general
expression for the averaged variance corresponding to the

040328-19



L. INNOCENTI et al. PRX QUANTUM 4, 040328 (2023)

canonical estimator:

Var[ô|P] = 〈O, F̃−1
I/d(O)〉 − dP − 1

d2 − 1
V. (E6)

2. Bounds for the averaged variance

The first term can be bounded in terms of the eigenval-
ues of F̃−1

I/d, as

Vd

λmax(F̃I/d)
≤ 〈O, F̃−1

I/d(O)〉 ≤ Vd

λmin(F̃I/d)
, (E7)

where λmin(F̃I/d), λmax(F̃I/d) are the smallest and largest
eigenvalues of F̃I/d (which is positive definite as an opera-
tor whenever µ is IC). This bound is obtained by observing
that F̃I/d, and therefore also F̃−1

I/d, is a (Hermitian) lin-
ear operator acting on the space of Herm(Cd) spanned by
traceless Hermitian operators. In general, if H ∈ Lin(V) is
a Hermitian operator acting on some vector space V, with
support W ≡ supp(H) ⊆ V, then for any v ∈ W, we have

λmin(H)‖vW‖2 ≤ 〈v, Hv〉 ≤ λmax(H)‖vW‖2, (E8)

where vW is the projection of v on W and λmin(H), λmax(H)
are the smallest and largest nonzero eigenvalues of H .
Applying this with H = F̃−1

I/d and v = O, we obtain
Eq. (E7), because the orthogonal projection of O on the
subspace of traceless Hermitian operators is O − tr(O)I/d
and ‖O − tr(O)I/d‖2 = Vd.

3. General bounds for worst-case variance

From Eq. (E7), we obtain a general upper bound for the
variance in the form

Var[ô|P] ≤ Vd

[
1

λmin(F̃I/d)
− P − 1/d

d2 − 1

]

. (E9)

This upper bound still depends on O via V but this depen-
dence is intrinsic to the observable—it is the average
variance that one would obtain estimating 〈O〉 from pro-
jective measurements in its eigenbasis and it is thus the
absolute lower bound achievable for Var[ô|P]. We can thus
interpret Eq. (E9) as the average variance corresponding to
the hardest-to-estimate observable. We will now attempt to
provide more precise bounds for this quantity in terms of
general symmetry properties of the POVM. In particular,
remembering that a POVM is tight if and only if its frame
superoperator satisfies (d2 − 1)tr(F̃2

I/d) = tr(F̃I/d)
2, a nat-

ural choice is to explore the set of IC POVMs under the
constraints tr(F̃I/d) = a and tr(F̃2

I/d) = b for some given
a, b > 0.

We then analyze what is the smallest possible value of
the average variance for the hardest-to-estimate observ-
able, as a function of a and b. More formally, we there-
fore consider the following question: What is the POVM
that gives the smallest 1/λmin(F̃I/d), under the above
constraints? This is equivalent to asking for the largest
possible λmin(F̃I/d) under the same constraints. In turn,
focusing on the eigenvalues, this question is equivalent
to: Within the set of tuples λ1, . . . , λd2−1 > 0 such that∑

k λk = a and
∑

k λ
2
k = b, what is the largest possible

value of min(λk)? For consistency, the coefficients a and
b need to satisfy 0 < b ≤ a2 ≤ b(d2 − 1), which follows
directly from the AM–GM inequality.

Solving this optimization problem is made somewhat
more difficult by the cost function min(λ1, . . . , λd2−1)

being nondifferentiable. We can nonetheless convert it into
a differentiable cost by introducing additional slack vari-
ables. For notational conciseness, let us define m ≡ d2 − 1.
Our problem can be restated as that of maximizing λ1,
with respect to the 2m − 1 variables λ1, . . . , λm, s2, . . . , sm,
subject to the constraints

λk ≥ 0,
m∑

k=1

λk = a,
∑

k

λ2
k = b,

λ1 + s2
k = λk, ∀k = 2, . . . , m.

(E10)

The constraints λ1 + s2
k = λk are introduced to enforce

λ1 ≤ λk, and thus ensure that the solution to this prob-
lem corresponds to the solution of the original one.
Using the method of Lagrange multipliers [64], define the
Lagrangian function

L = λ1 + α

(
m∑

k=1

λk − a

)

+ β

(
m∑

k=1

λ2
k − b

)

+
m∑

k=2

γk(λk − λ1 − s2
k). (E11)

Imposing ∇L = 0 gives the conditions

1 + α + 2βλ1 −
m∑

k=2

γk = 0,

α + 2βλk + γk = 0,

∀k ≥ 2, γksk = 0, ∀k ≥ 2. (E12)

We can explore the different sets of solutions compatible
with these constraints by taking into account the number
of coefficients sk that equal 0:

(1) Suppose that s2, . . . , sm �= 0. This implies that γ2 =
· · · = γm = 0, which in turns implies that λ1 < λ2
and λ2 = · · · = λm. The constraints in terms of a
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and b simplify to λ1 + (m − 1)λ2 = a and λ2
1 +

(m − 1)λ2
2 = b. These two equations give two solu-

tions for λ1, one of which is unfeasible because it
corresponds to λ1 > λ2. The other one is feasible
and is a possible solution:

λ1 = a
m

−
√
(m − 1)(bm − a2)

m
. (E13)

(2) More generally, suppose that s2 = · · · = s� = 0 and
s�+1, . . . , sm �= 0 for some 2 ≤ � ≤ m. This implies
that γ�+1 = · · · = γm = 0, which in turn implies that
λ�+1 = · · · = λm. Furthermore, s2 = · · · = s� = 0
means that λ1 = · · · = λ�. We therefore reduce
again to a situation with only two distinct values for
the coefficients λk and the constraints again simplify
to �λ1 + (m − �)λm = a and �λ2

1 + (m − �)λ2
m = b.

Solving this and keeping the solution consistent with
the constraints gives

λ1 = a
m

−
√
�(m − �)(bm − a2)

m�
. (E14)

The above covers all possible scenarios, up to a permuta-
tion of the vanishing coefficients sk (any such permutation
does not affect the resulting solution for λ1 due to the prob-
lem symmetry). The final solution is thus the maximum of
Eq. (E14) for � = 1, . . . , m. Observing that

√
�(m − �)/�

decreases monotonically with � = 1, . . . , m, we conclude
that the largest λ1 is obtained when � = m. This case, how-
ever, corresponds to having λ1 = · · · = λm = a/m, which
is only compatible with the constraints if bm = a2. The
more general scenario is obtained for � = m − 1, corre-
sponding to having λ1 = · · · = λm−1 < λm, and is possible
for all a, b > 0 with a2 ≤ bm.

To summarize, we have concluded that the largest
min(λ1, . . . , λm), m ≡ d2 − 1 compatible with given val-
ues of a = tr(F̃I/d) and b = tr(F̃2

I/d) is

λ∗
1 ≡ a

m
−
√
(m − 1)(bm − a2)

m(m − 1)
, (E15)

which, in the special case where bm = a2, corresponding
to F̃I/d being a multiple of the identity and thus µ being
a tight measurement frame, reduces to λ∗

1 = a/m. Refor-
mulating this in terms of the variance, we have concluded
that, if µ is such that tr(F̃) = a and tr(F̃2) = b, then

max
O

Var[ô|P,O]
Vd

≥ 1
λ∗

1
− P − 1/d

d2 − 1
, (E16)

with the inequality saturated by some POVM the canon-
ical estimator of which gives equal average variance for
all observables (in some orthonormal basis of Hermitian

operators) but one. Furthermore, for tight measurements,
F̃I/d is a multiple of the identity, tr(F̃I/d) = d(d − 1) as
per Eq. (D11), λ∗

1 = tr(F̃I/d)/(d2 − 1), and thus

Var[ô|P,O] = Vd
(

d2 + d − 1 − P
d2 − 1

)
, (E17)

where we have made the dependence of O explicit to point
out that all observables give the same expression for the
variance. We recognize in particular the term d2 + d − 1 −
P, which is the optimal state-estimation L2 error discussed
in Appendix D. From Eq. (E17), we see that for tight rank-
1 measurements, the asymptotic growth of the variance
with the state dimension can be canceled out by the choice
of observable, since it only depends on the factor Vd. For
example, for any observable that is a projection onto a pure
state, O = Pψ for some |ψ〉, we have tr(O2) = tr(O) = 1,
Vd = (d − 1)/d, and therefore

Var[ô|P, Pψ ] = d2 + d − 1 − P
d(d + 1)

, (E18)

where we have now included the explicit dependence
of the variance on the observable O = Pψ . This gives
Var[ô|P, Pψ ] → 1 for large d, regardless of |ψ〉, mean-
ing that the estimation errors to estimate such observables
do not increase with the dimension of the space. Simi-
larly, for normalized observables ON with tr(ON ) = 0 and
tr(O2

N ) = 1, we have Vd = 1 and thus

Var[ô|P,ON ] = d2 + d − 1 − P
d2 − 1

. (E19)

As a counterexample, if one studies the variance associated
with estimating On = σi1 ⊗ · · · ⊗ σin defined as a product
of n Pauli matrices, then tr(On) = 0, tr(O2

n) = 2n, Vd =
d = 2n, and

Var[ô|P,On] = d
d2 + d − 1 − P

d2 − 1
= O(d), d → ∞

(E20)

meaning that the average variance increases linearly
with d.

APPENDIX F: AVERAGED ERROR FOR THE
ESTIMATION OF OBSERVABLES

We focus in this appendix on the variance averaged
over both the input states at fixed purity and over unitarily
equivalent random target observables.

We have already derived in Eq. (E3) the expression
for the variance averaged over unitarily equivalent input
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states, for any given fixed observable O. Also perform-
ing an average over unitarily equivalent observables, we
obtain

Var[ô] ≡
∫

U(d)
dU Var[ô|UOU†] ≡ α′ − β, (F1)

where

α′ = 1
d(d2 − 1)

∑

b

trμb

{

(trO)2
[
(trμ̃b)

2 − trμ̃2
b

d

]

+ trO2

[

trμ̃2
b − (trμ̃b)

2

d

]}

= tr(F−1
I/d)

(
dtrO2 − (TrO)2)+ (

d(trO)2 − trO2
)

d(d2 − 1)

= V
dtr(F−1

I/d)− 1

d2 − 1
+ (trO)2

d2 (F2)

and where β, given in Eq. (E4), does not change in per-
forming this second average since it only depends on O
via tr(O) and tr(O2). These expressions further simplify
to

Var[ô|O] = Vd
d2 − 1

(
tr(F−1

I/d)− P
)

= Vd
d2 − 1

(
tr(F̃−1

I/d)− P + 1
d

)
, (F3)

using the expression for β given in Eq. (E4). It is
instructive to compare this equation with the results of
Appendix E and with, e.g., the upper bound of Eq. (E9).
Using the lower bound on the trace given by Eq. (D18),
we obtain

Var[ô|O] ≥ Vd
(
d2 + d − 1 − P

)

d2 − 1
, (F4)

with equality if and only if µ is a tight rank-1 measure-
ment.

To provide some examples, let us consider observables
of the form O = Pψ for some |ψ〉, for which we have
Vd = (d − 1)/d and thus, from Eq. (F3),

Var[ô|Pψ ] = 1
d(d + 1)

[
tr
(
F̃−1

I/d

)
− P + 1

d

]
. (F5)

Equation (F4) now reads

2
3

≤ min
µ

{
Var[ô|Pψ ]

}
= 1 − 1 + P

d(d + 1)
≤ 1, (F6)

which is an increasing function of d but is bounded from
above, as expected for this type of observable.

Similarly, for Pauli observables of the form On = σi1 ⊗
· · · ⊗ σin , acting on n qubits (d = 2n), we have Vd = d and
therefore Eq. (F3) becomes

Var[ô|On] = d
d2 − 1

[
tr
(
F̃−1

I/d

)
− P + 1

d

]
. (F7)

As before, this quantity is bounded from below by

Var[ô|On] ≥ min
µ

{
Var[ô|On]

}
= d + 1 − dP − 1

d2 − 1
,

(F8)

with equality for tight rank-1 IC POVMs.
In contrast to projectorlike observables, this lower

bound is not bounded from above by a constant that is
independent on the dimension d and, indeed, one has that,
∀ρ,

min
µ

{
Var[ô|On]

}
∼ O(d), d → ∞. (F9)

Comparing the average variances of Eqs. (F5) and (F7), we
can also write, for general measurement frames µ,

Var[ô|On] = d2

d − 1
Var[ô|Pψ ]. (F10)

APPENDIX G: OPTIMAL DUAL FRAME AND
RESCALED FRAMES

As discussed in Sec. II, the nonrescaled canonical dual
frame F = ∑

b P(μb) is not, in general, the optimal choice
of unbiased estimator. Nonetheless, it can be interesting to
note that we can see the optimal dual frame as correspond-
ing to the canonical dual frame computed with respect to
a rescaled frame. More precisely, the estimator μ̃(ρ), intro-
duced in Sec. III, can be derived considering the rescaled
frame with elements

μN
b ≡ μb√〈μb, ρ〉 . (G1)

The set of operators {μN
b }b is a frame if and only if {μb}b

is also a frame and the nonrescaled frame operator corre-
sponding to {μN

b }b is precisely the rescaled frame operator
corresponding to {μb}b.

1. Frame operators for arbitrary rescalings

We briefly show in this section the consequences of con-
sidering frames of operators defined in terms of rescaled
POVM elements, for arbitrary rescalings. In particular, we
provide the explicit expansion of a generic state obtained
using this formalism, and the associated unbiased esti-
mators corresponding to each choice of rescaling. These
observations are not pivotal to the main results of the paper
but are presented here for the sake of completeness.
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2. Definition of general rescaled measurement frames

Consider a rescaled measurement frames with elements
μb/

√
αb for some set of positive real coefficients αb. The

associated nonrescaled frame operator is

Fα ≡
∑

b

P(μb)

αb
. (G2)

If μ(α)�b = F−1
α (μb/

√
αb) denotes the corresponding (non-

rescaled) canonical dual frame, the associated decomposi-
tion of a state ρ reads

ρ =
∑

b

〈μb, ρ〉√
αb

μ
(α)�

b =
∑

b

〈μb, ρ〉
αb

F−1
α (μb). (G3)

Recognizing that 〈μb, ρ〉 is a probability, we then define an
unbiased estimator for the state as

f̂ (b) ≡ 1√
αb
μ
(α)�

b , (G4)

which thus satisfies E[f̂ ] = ρ. Note that, in general,
μ
(α)�

b �= √
αbμ

�
b and thus different frame scalings provide

nontrivially different canonical estimators, albeit Eq. (G3)
means that each set of operators {(1/√αb)μ

(α)�

b }b is a gen-
erally noncanonical valid dual frame of the nonrescaled
measurement frame {μb}b.

3. Average error with rescaled frames

The main usefulness of considering rescaled measure-
ment frames is that the associated average L2 error now
reads

E‖f̂ − ρ‖2
2 = E tr(f̂ 2)− tr(ρ2), (G5)

where

E tr(f̂ 2) ≡
∑

b

〈μb, ρ〉
αb

tr((μ(α)�b )2). (G6)

Therefore, if we rescale the operators via αb = 〈μb, ρ〉, we
can write

E tr(f̂ 2) =
∑

b

tr((μ(α)�b )2) = tr(F−1
α ). (G7)

This simplifies the problem to searching for the mea-
surement µ that minimizes tr(F−1

α ) using a given set of
coefficients {αb}b.

APPENDIX H: TOY EXAMPLES

In this appendix, we present a number of toy examples
to better illustrate how the techniques set forth in the main
text would be used in practice.

1. Projective measurement

Consider a simple single-qubit projective measurement:
μ0 ≡ P0 and μ ≡ P1. The corresponding canonical frame
superoperator, as per Eq. (15), is

FI/2 = 2[P(P0)+ P(P1)] = 2

⎛

⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎠ , (H1)

where we have represented the superoperator in the stan-
dard vectorized notation. This FI/2 is clearly singular,
which corresponds to the POVM not being informationally
complete. The associated estimator is not well defined, cor-
respondingly to the POVM not being a frame. Nonetheless,
the general property FI/2(I/2) = I , as per Eq. (A4), still
holds, as directly verified by observing that upon vectoriza-
tion, the identity operator I becomes vec(I) = (1, 0, 0, 1)T.
Similarly, the decomposition given in Eq. (A9) applies: we
can write

FI/2 = 2P(I/
√

2)+ F̃I/2, F̃I/2 =

⎛

⎜
⎝

1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎞

⎟
⎠

(H2)

and we can directly verify that P(I/
√

2) and F̃I/2 act
on orthogonal spaces and that F̃I/2 acts on the space of
traceless operators, as F̃I/2(Z) = 2Z, where Z ≡ P0 − P1.

2. Simple non-IC POVM

Consider the following single-qubit POVM:

μ1 = 1
2
P0, μ2 = 1

2
P1, μ3 = 1

2
P+, μ4 = 1

2
P−.

(H3)

Note that in vectorized notation we haveμ1 = 1
2 (1, 0, 0, 0),

μ3 = 1
4 (1, 1, 1, 1)T, etc. The corresponding canonical

frame superoperator is then

FI/2 = 1
2

⎛

⎜
⎝

3 0 0 1
0 1 1 0
0 1 1 0
1 0 0 3

⎞

⎟
⎠ . (H4)

This has eigenvalues {2, 1, 1, 0} and is therefore again sin-
gular, consistently with the POVM again not being infor-
mationally complete. Note how the number of nonzero
eigenvalues reflects the dimension of the span of the
POVM, which is in this case larger than for the sim-
ple projective case. The eigenvectors corresponding to
the nonzero eigenvalues are (1, 0, 0, 1)T, (1, 0, 0, −1)T, and
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(0, 1, 1, 0)T, respectively—which, upon devectorizing, cor-
respond to the Pauli operators I , Z, and X . This is again
consistent with the general statement that FI/2(I/2) = I .
Note that in this example, by defining the frame super-
operator directly via Eq. (3) and thus not introducing the
rescaling factors used in Eq. (15), the frame operator would
have been FI/2/4 instead.

3. Example of IC POVM

As an example of a single-qubit IC POVM, consider

μ1 = 1
3
P0, μ2 = 1

3
P+, μ3 ≡ 1

3
PR,

μ4 = I − μ1 − μ2 − μ3, (H5)

with PR = |R〉〈R| and |R〉 = (|0〉 + i |1〉)/√2.

4. Frame operators and canonical estimator

This POVM is informationally complete and its corre-
sponding frame operator is

FI/2 = 1
18

⎛

⎜
⎝

22 1 + i 1 − i 14
1 − i 8 −2i −1 + i
1 + i 2i 8 −1 − i

14 −1 − i −1 + i 22

⎞

⎟
⎠ , (H6)

the eigenvalues of which are 2, 2/3, 1/3, and 1/3. The
actual matrix representation of the frame operator depends
on the choice of operator basis. The above representa-
tion corresponds to a standard choice of operatorial basis
with elements {|i〉〈j |}i,j . Another possibility is to repre-
sent the operator in a basis of Hermitian operators, such as
{I/√2, X /

√
2, Y/

√
2, Z/

√
2}. With this choice, we obtain

instead

FI/2 =

⎛

⎜
⎝

2 0 0 0
0 4/9 1/9 1/9
0 1/9 4/9 1/9
0 1/9 1/9 4/9

⎞

⎟
⎠ , (H7)

which makes some of the underlying structure more trans-
parent. As always, the first eigenvalue corresponds to the
I eigenvector, i.e., the general property FI/2(I) = 2I . The
remaining eigenvalues are eigenvalues of F̃I/2. In partic-
ular, the eigenvectors corresponding to the eigenvalues
2/3, 1/3, and 1/3, and thus also the eigenvectors of F̃I/2,
are the operators X + Y + Z, X − Z, and X + Z − 2Y,
respectively. We can now compute the canonical-estimator

elements μ̃can
b , which work out to be

μ̃can
1 = 1

2
(I − X − Y + 5Z), μ̃can

2 = 1
2
(I + 5X − Y − Z),

μ̃can
3 = 1

2
(I − X + 5Y − Z), μ̃can

4 = 1
2
(I − X − Y − Z).

(H8)

These then provide unbiased estimators to estimate arbi-
trary observables. For example, if the target observable
is the Pauli matrix, O = Z, then the observable estima-
tor would be ô such that ô(b) = 〈O, μ̃can

b 〉, the values of
which are

ô(1) = 5, ô(2) = ô(3) = ô(4) = −1. (H9)

Because the POVM is minimal — which means that the
number of outcomes equals d2 — the POVM elements are
also linearly independent. This implies that there is a single
possible choice of dual frame and therefore a single choice
of estimator. In other words, performing similar calcula-
tions using the nonrescaled frame operators will produce
the same exact estimators in this case.

5. Assessment of estimator variances

We can then use Eq. (21) to compute the variances in
different scenarios. For example, if ρ = P0 and O = Z,
then

Var[ô|P0, Z] = 〈O, CP0(O)〉

=
[

52 1
3

+ (−1)2
(

1 − 1
3

)]
− 1 = 8,

(H10)

where CP0 is the MSE matrix, as defined in Eq. (10), com-
puted using the canonical estimator μ̃can

b . If, on the other
hand, we have ρ = P1, then

Var[ô|P1, X ] = Var[ô|P1, Y] = 5 (H11)

but Var[ô|P1, Z] = 0, consistently with the first outcome
being the only one that gives ô(1) = 5 and this outcome
having zero probability due to 〈μ1, P1〉 = 0. We can also
gain a more general understanding of how the variance has
changed with the input state using the A operator defined
in Eq. (29). For example, if O = X , this equals

A =
∑

b

〈X , μ̃can
b 〉μb =

(
5 4
4 5

)
. (H12)

This operator has eigenvalues 9 and 1, which immediately
tells us that 1 ≤ E[ô2] ≤ 9 and thus 0 ≤ Var[ô|ρ, X ] ≤ 9.
In particular, the eigenvector of A corresponding to the
eigenvalue +1 is (1, −1)T, which tells us that the state ρ =
P− is such that 〈A, P−〉 = 1 and because 〈X , P−〉2 = 1, we
conclude that Var[ô|P−, X ] = 0.
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6. Bounds on the average variance

To work with the averaged variance, we can use
Eqs. (22), (25), and (E6), which immediately tell us that
the possible values of the averaged variance depend on
the eigenvalues of F̃I/2. As shown above, in the case we
are studying, these eigenvalues are 3, 3, and 3/2. Stick-
ing to pure states for simplicity, we thus obtain the general
bounds for the averaged variance in this example, as

2.67 � 8
3

≤ Var[ô|O]
V

≤ 17
3

� 5.67. (H13)

7. Consistency with general bounds on average
variance

Finally, we can also attempt to directly verify the consis-
tency of the general bounds provided in Eq. (26). Working
out explicitly the various terms for our canonical frame
operator, we find a = 10/3, b = 14/3, and

λ∗
1 = 10 − √

13
9

� 0.71, (H14)

and thus the bound reads, considering pure states for
simplicity,

max
O

Var[ô|O]
V

≥ 2
λ∗

1
− 1

3
� 2.48. (H15)

This is consistent with Eq. (H13), because 2.48 < 17/3.
This tells us that there are better choices of measurement,
which produce frame superoperators compatible with the
given values of a and b, that give a much better worst-case
average variance.

[1] M. Paris and J. Řeháček, eds., Quantum State Estima-
tion, Lecture Notes in Physics, Vol. 649 (Springer-Verlag,
Berlin, 2004).

[2] Y. S. Teo, Introduction to Quantum-State Estimation
(World Scientific, Singapore, 2015).

[3] G. M. D’Ariano, M. G. Paris, and M. F. Sacchi, Quantum
tomography, Adv. Imaging Electron Phys. 128, 206 (2003).

[4] D. F. James, P. G. Kwiat, W. J. Munro, and A. G. White,
Measurement of qubits, Phys. Rev. A 64, 052312 (2001).

[5] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I.
Cirac, Matrix product state representations, Quantum Inf.
Comput. 7, 401 (2007).

[6] A. Lowe and A. Nayak, Lower bounds for learn-
ing quantum states with single-copy measurements,
ArXiv:2207.14438 (2022).
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