*-GRADED CAPELLI POLYNOMIALS AND THEIR ASYMPTOTICS

F. S. BENANTI AND A. VALENTI

Abstract

Let $F\langle Y \cup Z, *\rangle$ be the free $*$-superalgebra over a field F of characteristic zero and let $\Gamma_{M^{ \pm}, L^{ \pm}}^{*}$ be the $T_{\mathbb{Z}_{2}}^{*}$-ideal generated by the set of the $*$-graded Capelli polynomials $C a p_{M^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \operatorname{Cap}_{M^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], \operatorname{Cap}_{L^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right], \operatorname{Cap}_{L^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$ alternating on M^{+}symmetric variables of homogeneous degree zero, on M^{-}skew variables of homogeneous degree zero, on L^{+}symmetric variables of homogeneous degree one and on L^{-}skew variables of homogeneous degree one, respectively. We study the asymptotic behavior of the sequence of $*$-graded codimensions of $\Gamma_{M^{ \pm}, L^{ \pm}}^{*}$. In particular we prove that the $*$-graded codimensions of the finite dimensional simple $*$-superalgebras are asymptotically equal to the $*$-graded codimensions of $\Gamma_{M^{ \pm}, L^{ \pm}}^{*}$, for some fixed natural numbers M^{+}, M^{-}, L^{+}and L^{-}.

1. Introduction

This paper is devoted to the study of the $*$-superalgebras, i.e. superalgebras endowed with a graded involution, and the asymptotic behavior of their $*$-graded codimensions. If A is an algebra over a field F of characteristic zero an effective way of measuring the polynomial identities satisfied by A is provided by its sequence of codimensions $\left\{c_{n}(A)\right\}_{n \geq 1}$ whose n-th therm is the dimension of the space of multilinear polynomials in n variables in the corresponding relatively free algebra of countable rank. Such sequence was introduced by Regev in 21 and, in characteristic zero, gives a quantitative measure of the identities satisfied by a given algebra. The most important result of the sequence of codimensions proved in 21 states that if A is a PI-algebra, i.e. it satisfies a non trivial polynomial identity, then $\left\{c_{n}(A)\right\}_{n \geq 1}$ is exponential bounded. Later, Giambruno and Zaicev ([14, [15]) answered in a positive way to a well known conjecture of Amitsur proving the existence and the integrality of

$$
\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

the exponent of A. These results, in the last years, have been extended to algebras with an additional structure as algebras with involution ([1], [12]), superalgebras (4) and more generally algebras graded by a group ([2] , [8, [11, [16]), algebras with a generalised H-action ([19]), superalgebras with graded involution ([22]) and superalgebras with superinvolution ([20]).

Let $A=A_{0}^{+} \oplus A_{0}^{-} \oplus A_{1}^{+} \oplus A_{1}^{-}$be a $*$-superalgebra and let $c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A), n=1,2, \ldots$, be its sequence of $*$-graded codimensions. If A is a PI-algebra it can be easily proved that the relation between codimensions and $*$-graded codimensions is given by $c_{n}(A) \leq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A) \leq 4^{n} c_{n}(A)$. Hence, as in the ordinary case, the sequence of $*$-graded codimensions is exponentially bounded. Moreover, since a *-superalgebra can be viewed as an algebra with a generalized FG-action where $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ acts on it by automorphism and antiautomorphism, in

[^0]the finite dimensional case, the existence of the $*$-graded exponent has been confirmed by Gordienko in 19 .

Let M^{+}, M^{-}, L^{+}and L^{-}be natural numbers and let's denote by $\Gamma_{M^{ \pm}, L^{ \pm}}^{*}$ the $T_{\mathbb{Z}_{2}}^{*}$-ideal generated by the set of the *-graded Capelli polynomials $C a p_{M^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], C_{a p}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right]$, $C a p_{L^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right], C a p_{L^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$ alternating on M^{+}symmetric variables of homogeneous degree zero, on M^{-}skew variables of homogeneous degree zero, on L^{+}symmetric variables of homogeneous degree one and on L^{-}skew variables of homogeneous degree one, respectively. In this paper we find a relation among the $*$-graded codimensions of the finite dimensional simple $*$-superalgebras and the $*$-graded codimensions of $\Gamma_{M^{ \pm}, L^{ \pm}}^{*}$ proving their asymptotic equality. Recall that two sequences $a_{n}, b_{n}, n=1,2, \ldots$, are asymptotically equal, $a_{n} \simeq b_{n}$, if $\lim _{n \rightarrow+\infty} \frac{a_{n}}{b_{n}}=1$. In the ordinary case (see [17]) it was proved the asymptotic equality between the codimensions of the Capelli polynomials $C a p_{k^{2}+1}$ and the codimensions of the matrix algebra $M_{k}(F)$. In [3] this result was extended to finite dimensional simple superalgebras and in [6] the authors found similar result in the case of algebras with involution (for a survey see [7]). The link between the asymptotic of the codimensions of the Amitsur's Capelli-type polynomials and the verbally prime algebras was studied in 5].

2. Preliminaries

Throughout this paper, F will be a field of characteristic zero and A an associative algebra over F. We say that A is a \mathbb{Z}_{2}-graded algebra or a superalgebra if it can be decomposed into a direct sum of subspaces $A=A_{0} \oplus A_{1}$ such that $A_{0} A_{0}+A_{1} A_{1} \subseteq A_{0}$ and $A_{0} A_{1}+A_{1} A_{0} \subseteq A_{1}$. The elements of A_{0} are called homogeneous of degree zero (even elements) and those of A_{1} homogeneous of degree one (odd elements).

Recall that an involution $*$ on an algebra A is just an antiautomorphism on A of order at most 2. We write $A^{+}=\left\{a \in A \mid a^{*}=a\right\}$ and $A^{-}=\left\{a \in A \mid a^{*}=-a\right\}$ for the set of symmetric and skew symmetric elements of A respectively.

Given a superalgebra $A=A_{0} \oplus A_{1}$ endowed with an involution $*$, we say that $*$ is a graded involution if it preserves the homogeneous components of A, i.e. if $A_{i}^{*} \subseteq A_{i}$, $i=0,1$. A superalgebra endowed with a graded involution is called $*$-superalgebra. It is clear that a superalgebra A is a $*$-superalgebra if and only if the subspaces A^{+}and A^{-}are graded subspaces, i.e. $A^{+}=A_{0}^{+} \oplus A_{1}^{+}$and $A^{-}=A_{0}^{-} \oplus A_{1}^{-}$. Thus, since char $F=0$, the *-superalgebra A can be written as

$$
A=A_{0}^{+} \oplus A_{0}^{-} \oplus A_{1}^{+} \oplus A_{1}^{-}
$$

where, for $i=0,1, A_{i}^{+}=\left\{a \in A_{i} \mid a^{*}=a\right\}$ and $A_{i}^{-}=\left\{a \in A_{i} \mid a^{*}=-a\right\}$ denote the sets of homogeneous symmetric and skew elements of A_{i}, respectively. We remark that an algebra with involution $*$ and trivial \mathbb{Z}_{2}-grading is a $*$-superalgebra.

Let A be a $*$-superalgebra and let I be an ideal of A, we say that I is a $*$-graded ideal of A if it is homogeneous in the \mathbb{Z}_{2}-grading and invariant under $*$. Moreover A is called simple *-superalgebra if $A^{2} \neq\{0\}$ and it has no non-zero $*$-graded ideals.

Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set of non commutative variables and $F\langle X\rangle$ the free associative algebra on X over F. We write $X=Y \cup Z$ as the disjoint union of two countable sets of variables $Y=\left\{y_{1}, y_{2}, \ldots\right\}$ and $Z=\left\{z_{1}, z_{2}, \ldots\right\}$, then $F\langle X\rangle=F\langle Y \cup Z\rangle=$ $\left\langle y_{1}, z_{1}, y_{2}, z_{2}, \ldots\right\rangle$ has a natural structure of free superalgebra if we require that the variables from Y have degree zero and the variables from Z have degree one. This algebra is said to be the free superalgebra over F. Moreover, if we write each set as the disjoint union of two other infinite sets of symmetric and skew elements, respectively, then we obtain the free *-superalgebra

$$
F\langle Y \cup Z, *\rangle=F\left\langle y_{1}^{+}, y_{1}^{-}, z_{1}^{+}, z_{1}^{-}, \ldots\right\rangle
$$

where $y_{i}^{+}=y_{i}+y_{i}^{*}$ denotes a symmetric variable of even degree, $y_{i}^{-}=y_{i}-y_{i}^{*}$ a skew variable of even degree, $z_{i}^{+}=z_{i}+z_{i}^{*}$ a symmetric variable of odd degree and $z_{i}^{-}=z_{i}-z_{i}^{*}$ a skew variable of odd degree.

An element $f=f\left(y_{1}^{+}, \ldots, y_{n}^{+}, y_{1}^{-}, \ldots, y_{m}^{-}, z_{1}^{+}, \ldots, z_{p}^{+}, z_{1}^{-}, \ldots, z_{q}^{-}\right)$of $F\langle Y \cup Z, *\rangle$ is a $*-$ graded polynomial identity for a $*$-superalgebra A if

$$
f\left(a_{1,0}^{+}, \ldots, a_{n, 0}^{+}, a_{1,0}^{-}, \ldots, a_{m, 0}^{-}, a_{1,1}^{+}, \ldots, a_{p, 1}^{+}, a_{1,1}^{-}, \ldots, a_{q, 1}^{-}\right)=0_{A}
$$

for every $a_{1,0}^{+}, \ldots, a_{n, 0}^{+} \in A_{0}^{+}, a_{1,0}^{-}, \ldots, a_{m, 0}^{-} \in A_{0}^{-}, a_{1,1}^{+}, \ldots, a_{p, 1}^{+} \in A_{1}^{+}, a_{1,1}^{-}, \ldots, a_{q, 1}^{-} \in A_{1}^{-}$ and we write $f \equiv 0$. The set of all $*$-graded polynomial identities satisfied by A

$$
I d_{\mathbb{Z}_{2}}^{*}(A)=\{f \in F\langle Y \cup Z, *\rangle \mid f \equiv 0 \text { on } A\}
$$

is an ideal of $F\langle Y \cup Z, *\rangle$ called the ideal of $*$-graded identities of A. It is easy to show that $I d_{\mathbb{Z}_{2}}^{*}(A)$ is a $T_{\mathbb{Z}_{2}}^{*}$-ideal of $F\langle Y \cup Z, *\rangle$, i.e. a two-sided ideal invariant under all endomorphisms of the free $*$-superalgebra that preserve the superstructure and commute with the graded involution $*$. Now, let

$$
P_{n}^{\left(\mathbb{Z}_{2}, *\right)}=\left\{w_{\sigma(1)}, \ldots, w_{\sigma(n)} \mid \sigma \in S_{n}, w_{i} \in\left\{y_{i}^{+}, y_{i}^{-}, z_{i}^{+}, z_{i}^{-}\right\}, i=1, \ldots, n\right\}
$$

be the space of multilinear polynomials of degree n in the variables $y_{1}^{+}, y_{1}^{-}, z_{1}^{+}, z_{1}^{-}, \ldots, y_{n}^{+}$, $y_{n}^{-}, z_{n}^{+}, z_{n}^{-}$, (i.e., $y_{i}^{+}, y_{i}^{-}, z_{i}^{+}$or z_{i}^{-}appears in each monomial at degree 1). Since char $F=$ 0 , it is well known that $I d_{\mathbb{Z}_{2}}^{*}(A)$ is completely determined by its multilinear polynomials, then the study of $I d_{\mathbb{Z}_{2}}^{*}(A)$ is equivalent to that of $I d_{\mathbb{Z}_{2}}^{*}(A) \cap P_{n}^{\left(\mathbb{Z}_{2}, *\right)}$ for all $n \geq 1$. As in the ordinary case (see [21]), one defines the n-th $*$-graded codimension $c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A)$ of the *-superalgebra A as

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A)=\operatorname{dim}_{F} \frac{P_{n}^{\left(\mathbb{Z}_{2}, *\right)}}{P_{n}^{\left(\mathbb{Z}_{2}, *\right)} \cap I d_{\mathbb{Z}_{2}}^{*}(A)} .
$$

If A is a PI-algebra, i.e. satisfies an ordinary polynomial identity, then the sequence $\left\{c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A)\right\}_{n \geq 1}$ is exponentially bounded (see [13, Lemma 3.1]). If A is a finite dimensional PI-algebra, Gordienko in [19 proved that

$$
\exp _{\mathbb{Z}_{2}}^{*}(A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A)}
$$

exists and is a non-negative integer which is called the $*$-graded exponent of the $*$-superalgebra A. It is often more useful to study $*$-superalgebras up to $*$-graded PI-equivalence, then it is convenient to use the language of varieties. Let I be a $T_{\mathbb{Z}_{2}}^{*}$-ideal of $F\langle Y \cup Z, *\rangle$ and $\mathcal{V}_{\mathbb{Z}_{2}}^{*}$ the variety of $*$-superalgebras associated to I, i.e. the class of all the $*$-superalgebras A such that I is contained in $I d_{\mathbb{Z}_{2}}^{*}(A)$. We put $I=I d_{\mathbb{Z}_{2}}^{*}\left(\mathcal{V}_{\mathbb{Z}_{2}}^{*}\right)$. When $I d_{\mathbb{Z}_{2}}^{*}\left(\mathcal{V}_{\mathbb{Z}_{2}}^{*}\right)=I d_{\mathbb{Z}_{2}}^{*}(A)$ we say that the variety $\mathcal{V}_{\mathbb{Z}_{2}}^{*}$ is generated by the $*$-superalgebra A and we write $\mathcal{V}_{\mathbb{Z}_{2}}^{*}=\operatorname{var}_{\mathbb{Z}_{2}}^{*}(A)$ and set $\exp _{\mathbb{Z}_{2}}^{*}\left(\mathcal{V}_{\mathbb{Z}_{2}}^{*}\right)=\exp _{\mathbb{Z}_{2}}^{*}(A)$ the $*$-graded exponent of the variety $\mathcal{V}_{\mathbb{Z}_{2}}^{*}$, if $\exp _{\mathbb{Z}_{2}}^{*}(A)$ exists.

Now, if $f \in F\langle Y \cup Z, *\rangle$ we denote by $\langle f\rangle_{\mathbb{Z}_{2}}^{*}$ the $T_{\mathbb{Z}_{2}}^{*}$-ideal generated by f. Also for a set of polynomials $V \subset F\langle Y \cup Z, *\rangle$ we write $\langle V\rangle_{\mathbb{Z}_{2}}^{*}$ to indicate the $T_{\mathbb{Z}_{2}}^{*}$-ideal generated by V.

In PI-theory a prominent role is played by the Capelli polynomial. Let us recall that, for any positive integer m, the m-th Capelli polynomial is the element of $F\langle X\rangle$ defined as

$$
\begin{aligned}
& \operatorname{Cap}_{m}[T, X]=\operatorname{Cap}_{m}\left(t_{1}, \ldots, t_{m} ; x_{1}, \ldots, x_{m-1}\right)= \\
& =\sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) t_{\sigma(1)} x_{1} t_{\sigma(2)} \cdots t_{\sigma(m-1)} x_{m-1} t_{\sigma(m)}
\end{aligned}
$$

where S_{m} is the symmetric group on $\{1, \ldots, m\}$. In particular we write

$$
C a p_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \quad \operatorname{Cap}_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], \quad \operatorname{Cap}_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right] \quad \text { and } \operatorname{Cap}_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]
$$

to indicate the m-th *-graded Capelli polynomial alternating in the symmetric variables of degree zero $y_{1}^{+}, \ldots, y_{m}^{+}$, in the skew variables of degree zero $y_{1}^{-}, \ldots, y_{m}^{-}$, in the symmetric variables of degree one $z_{1}^{+}, \ldots, z_{m}^{+}$and in the skew variables of degree one $z_{1}^{-}, \ldots, z_{m}^{-}$, respectively $\left(x_{1}, \ldots, x_{m-1}\right.$ are arbitrary variables). Let $\overline{C a p}_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$ denote the set of 2^{m-1} polynomials obtained from $C a p_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$ by deleting any subset of variables x_{i} (by evaluating the variables x_{i} to 1 in all possible way). In a similar way we define $\overline{C a p}{ }_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right]$, $\overline{C a p}{ }_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and $\overline{C a p}{ }_{m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$. If M^{+}, M^{-}, L^{+}and L^{-}are natural numbers, we denote by

$$
\Gamma_{M^{ \pm}, L^{ \pm}}^{*}=\left\langle\overline{C a p}_{M^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \overline{C a p}_{M^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], \overline{C a p}_{L^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right], \overline{C a p}_{L^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]\right\rangle_{\mathbb{Z}_{2}}^{*}
$$

the $T_{\mathbb{Z}_{2}}^{*}$-ideal generated by $\overline{C a p}_{M^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \overline{C a p}_{M^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], \overline{C a p}_{L^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and $\overline{C a p} L_{L^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$.

The purpose of this paper is to find a close relation among the asymptotic behavior of the $*$-graded codimensions of any finite dimensional simple $*$-superalgebra $A=A_{0}^{+} \oplus A_{0}^{-} \oplus$ $A_{1}^{+} \oplus A_{1}^{-}$and the asymptotic behavior of the $*$-graded codimensions of $\Gamma_{M^{ \pm}+1, L^{ \pm+1}}^{*}$, where $M^{+}=\operatorname{dim}_{F} A_{0}^{+}, M^{-}=\operatorname{dim}_{F} A_{0}^{-}, L^{+}=\operatorname{dim}_{F} A_{1}^{+}$and $L^{-}=\operatorname{dim}_{F} A_{1}^{-}$. More precisely, we characterize the $T_{\mathbb{Z}_{2}}^{*}$-ideal $I d_{\mathbb{Z}_{2}}^{*}(A)$ showing that

$$
\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}=I d_{\mathbb{Z}_{2}}^{*}(A \oplus D)
$$

where D is a finite dimensional $*$-superalgebra such that $\exp _{\mathbb{Z}_{2}}^{*}(D)<\exp _{\mathbb{Z}_{2}}^{*}(A)$. Moreover we obtain the asymptotic equality

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A)
$$

3. Basic Results

Let A be a finite dimensional $*$-superalgebra over a field F of characteristic zero. From now on we assume that F is algebraically closed. In fact, since F has characteristic zero, $I d_{\mathbb{Z}_{2}}^{*}(A)=I d_{\mathbb{Z}_{2}}^{*}\left(A \otimes_{F} L\right)$ for any extension field L of F then also the $*$-graded codimensions of A do not change upon extension of the base field. By the generalization of the WedderburnMalcev Theorem (see [13, Theorem 7.3]), we can write $A=A_{1} \oplus \cdots \oplus A_{s}+J$, where A_{1}, \ldots, A_{s} are simple $*$-superalgebras and $J=J(A)$ is the Jacobson radical of A which is a *-graded ideal.

We say that a subalgebra $A_{i_{1}} \oplus \cdots \oplus A_{i_{k}}$ of A, where $A_{i_{1}}, \ldots, A_{i_{k}}$ are distinct simple components, is admissible if for some permutation $\left(l_{1}, \ldots, l_{k}\right)$ of $\left(i_{1}, \ldots, i_{k}\right)$ we have that $A_{l_{1}} J \cdots J A_{l_{k}} \neq 0$. Moreover, if $A_{i_{1}} \oplus \cdots \oplus A_{i_{k}}$ is an admissible subalgebra of A then $A^{\prime}=A_{i_{1}} \oplus \cdots \oplus A_{i_{k}}+J$ is called a reduced algebra.

The notion of admissible $*$-superalgebra is closely linked to that of $*$-graded exponent in fact, in [19], Gordienko proved that $\exp _{\mathbb{Z}_{2}}^{*}(A)=d$ where d is the maximal dimension of an admissible subalgebra of A. It follows immediately that

Remark 1. If A is a simple $*$-superalgebra then $\exp _{\mathbb{Z}_{2}}^{*}(A)=\operatorname{dim}_{F} A$.

By [10, Theorem 5.3] the Gordienko's result on the existence of the *-graded exponent can be actually extended to any finitely generated PI-*-superalgebra since it satisfies the same $*$-graded polynomial identities of a finite-dimensional $*$-superalgebra.

In 17 it was showed that reduced superalgebras are building blocks of any proper variety. Here we obtain the analogous result for varieties of $*$-superalgebras.

Let's first start with the following
Lemma 1. Let A and B be *-superalgebras satisfying an ordinary polynomial identity. Then

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A), c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(B) \leq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A \oplus B) \leq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A)+c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(B)
$$

If A and B are finitely generated $*$-superalgebras, then

$$
\exp _{\mathbb{Z}_{2}}^{*}(A \oplus B)=\max \left\{\exp _{\mathbb{Z}_{2}}^{*}(A), \exp _{\mathbb{Z}_{2}}^{*}(B)\right\}
$$

Proof. The proof is the same of the proof of the Lemma 1 in 17 .
We have the following
Theorem 1. Let A be a finitely generated $*$-superalgebra satisfying an ordinary polynomial identity. Then there exists a finite number of reduced $*$-superalgebras B_{1}, \ldots, B_{t} and a finite dimensional $*$-superalgebra D such that

$$
\operatorname{var}_{\mathbb{Z}_{2}}^{*}(A)=\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right)
$$

with $\exp _{\mathbb{Z}_{2}}^{*}(A)=\exp _{\mathbb{Z}_{2}}^{*}\left(B_{1}\right)=\cdots=\exp _{\mathbb{Z}_{2}}^{*}\left(B_{t}\right)$ and $\exp _{\mathbb{Z}_{2}}^{*}(D)<\exp _{\mathbb{Z}_{2}}^{*}(A)$.
Proof. The proof follows closely the proof given in [3, Theorem 3]. Since A is a finitely generated $*$-superalgebra, by [10], there exists a finite dimensional $*$-superalgebra B such that $I d_{Z_{2}}^{*}(A)=I d_{Z_{2}}^{*}(B)$. Therefore we may assume that $A=A_{0}^{+} \oplus A_{0}^{-} \oplus A_{1}^{+} \oplus A_{1}^{-}$is a finite dimensional $*$-superalgebra over F satisfying an ordinary polynomial identity. Also, by [13, Theorem 7.3] we can write

$$
A=A_{1} \oplus \cdots \oplus A_{s}+J
$$

where $A_{1}, \ldots A_{s}$ are simple $*$-superalgebras and $J=J(A)$ is the Jacobson radical of A which is a $*$-graded ideal. Let $\exp _{\mathbb{Z}_{2}}^{*}(A)=d$. Then there exist distinct simple $*$-superalgebras $A_{j_{1}}, \ldots A_{j_{k}}$ such that

$$
A_{j_{1}} J \cdots J A_{j_{k}} \neq 0 \quad \text { and } \quad \operatorname{dim}_{F}\left(A_{j_{1}} \oplus \cdots \oplus A_{j_{k}}\right)=d
$$

Let $\Gamma_{1}, \ldots, \Gamma_{t}$ be all possible subset of $\{1, \ldots, s\}$ such that, if $\Gamma_{j}=\left\{j_{1}, \ldots, j_{k}\right\}$ then $\operatorname{dim}_{F}\left(A_{j_{1}} \oplus \cdots \oplus A_{j_{k}}\right)=d$ and $A_{\sigma\left(j_{1}\right)} J \cdots J A_{\sigma\left(j_{k}\right)} \neq 0$ for some permutation $\sigma \in S_{k}$. For any such $\Gamma_{j}, j=1, \ldots, t$, then we put $B_{j}=A_{j_{1}} \oplus \cdots \oplus A_{j_{k}}+J$. It follows, by the characterization of the $*$-graded exponent, that

$$
\exp _{\mathbb{Z}_{2}}^{*}\left(B_{1}\right)=\cdots=\exp _{\mathbb{Z}_{2}}^{*}\left(B_{t}\right)=d=\exp _{\mathbb{Z}_{2}}^{*}(A)
$$

Let $D=D_{1} \oplus \cdots \oplus D_{p}$, where D_{1}, \ldots, D_{p} are all $*$-graded subalgebras of A of the type $A_{i_{1}} \oplus \cdots \oplus A_{i_{r}}+J$, with $1 \leq i_{1}<\cdots<i_{r} \leq s$ and $\operatorname{dim}_{F}\left(A_{i_{1}} \oplus \cdots \oplus A_{i_{r}}\right)<d$. Then, by the previous lemma, we have that $\exp _{\mathbb{Z}_{2}}^{*}(D)<\exp _{\mathbb{Z}_{2}}^{*}(A)$. Now, we want to prove that $\exp _{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right)=\exp _{\mathbb{Z}_{2}}^{*}(A)$. The inclusion

$$
\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right) \subseteq \operatorname{var}_{\mathbb{Z}_{2}}^{*}(A)
$$

follows since $D, B_{i} \in \operatorname{var}_{\mathbb{Z}_{2}}^{*}(A), \forall i=1, \ldots, t$.
Let's consider a multilinear polynomial $f=f\left(y_{1}^{+}, \ldots, y_{n}^{+}, y_{1}^{-}, \ldots, y_{m}^{-}, z_{1}^{+}, \ldots, z_{p}^{+}, z_{1}^{-}, \ldots, z_{q}^{-}\right)$ such that $f \notin I d_{\mathbb{Z}_{2}}^{*}(A)$. We shall prove that $f \notin I d_{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right)$. Since $f \notin I d_{\mathbb{Z}_{2}}^{*}(A)$
there exist $a_{1,0}^{+}, \ldots, a_{n, 0}^{+} \in A_{0}^{+}, a_{1,0}^{-}, \ldots, a_{m, 0}^{-} \in A_{0}^{-}, a_{1,1}^{+}, \ldots, a_{p, 1}^{+} \in A_{1}^{+}$and $a_{1,1}^{-}, \ldots, a_{q, 1}^{-} \in$ A_{1}^{-}such that

$$
f\left(a_{1,0}^{+}, \ldots, a_{n, 0}^{+}, a_{1,0}^{-}, \ldots, a_{m, 0}^{-}, a_{1,1}^{+}, \ldots, a_{p, 1}^{+}, a_{1,1}^{-}, \ldots, a_{q, 1}^{-}\right) \neq 0
$$

From the linearity of f we can assume that $a_{i, 0}^{+}, a_{i, 0}^{-}, a_{i, 1}^{+}, a_{i, 1}^{-} \in A_{1} \cup \cdots \cup A_{s} \cup J$. Since $A_{i} A_{j}=0$ for $i \neq j$, from the property of the $*$-graded exponent we have

$$
a_{1,0}^{+}, \ldots, a_{n, 0}^{+}, a_{1,0}^{-}, \ldots, a_{m, 0}^{-}, a_{1,1}^{+}, \ldots, a_{p, 1}^{+}, a_{1,1}^{-}, \ldots, a_{q, 1}^{-} \in A_{j_{1}} \oplus \cdots \oplus A_{j_{k}}+J
$$

for some $A_{j_{1}}, \ldots, A_{j_{k}}$ such that $\operatorname{dim}_{F}\left(A_{j_{1}} \oplus \cdots \oplus A_{j_{k}}\right) \leq d$. Thus f is not an identity for one of the algebras B_{1}, \ldots, B_{t}, D. Hence $f \notin I d_{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right)$. In conclusion

$$
\operatorname{var}_{\mathbb{Z}_{2}}^{*}(A) \subseteq \operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right)
$$

and the proof is complete.
An application of Theorem 1 is given in terms of $*$-graded codimensions.

Corollary 1. Let A be a finitely generated PI-*-superalgebra. Then there exists a finite number of reduced $*$-superalgebras B_{1}, \ldots, B_{t} such that

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(B_{1} \oplus \cdots \oplus B_{t}\right)
$$

Proof. By Theorem 1 there is a finite number of reduced $*$-superalgebras B_{1}, \ldots, B_{t} and a finite dimensional $*$-superalgebra D such that

$$
\operatorname{var}_{\mathbb{Z}_{2}}^{*}(A)=\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right)
$$

with $\exp _{\mathbb{Z}_{2}}^{*}(A)=\exp _{\mathbb{Z}_{2}}^{*}\left(B_{1}\right)=\cdots=\exp _{\mathbb{Z}_{2}}^{*}\left(B_{t}\right)$ and $\exp _{\mathbb{Z}_{2}}^{*}(D)<\exp _{\mathbb{Z}_{2}}^{*}(A)$. By Lemma 1 ,

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(B_{1} \oplus \cdots \oplus B_{t}\right) \leq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right) \leq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(B_{1} \oplus \cdots \oplus B_{t}\right)+c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(D)
$$

Recalling that $\exp _{\mathbb{Z}_{2}}^{*}(D)<\exp _{\mathbb{Z}_{2}}^{*}\left(B_{1}\right)=\exp _{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t}\right)$ we have that

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}(A) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(B_{1} \oplus \cdots \oplus B_{t}\right)
$$

and the proof of the corollary is complete.
The following results give us a characterization of the varieties of $*$-superalgebras satisfying a Capelli identity. Let's start with the following lemma

Lemma 2. Let M^{+}, M^{-}, L^{+}and L^{-}be natural numbers. If A is $a *$-superalgebra satisfying the $*$-graded Capelli polynomials Cap ${M^{+}}_{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \operatorname{Cap}_{M^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], \operatorname{Cap}_{L^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and Cap $L^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$, then A satisfies the Capelli identity $\operatorname{Cap}_{k}\left(x_{1}, \ldots, x_{k} ; \bar{x}_{1}, \ldots, \bar{x}_{k-1}\right)$, where $k=M^{+}+M^{-}+L^{+}+L^{-}$.
Proof. Let $k=M^{+}+M^{-}+L^{+}+L^{-}$, then we obtain immediately the thesis if we observe that

$$
\begin{gathered}
\operatorname{Cap}_{k}\left(x_{1}, \ldots, x_{k} ; \bar{x}_{1}, \ldots, \bar{x}_{k-1}\right)= \\
\operatorname{Cap}_{k}\left(\frac{y_{1}^{+}+y_{1}^{-}}{2}+\frac{z_{1}^{+}+z_{1}^{-}}{2}, \ldots, \frac{y_{k}^{+}+y_{k}^{-}}{2}+\frac{z_{k}^{+}+z_{k}^{-}}{2} ; \bar{x}_{1}, \ldots, \bar{x}_{k-1}\right)
\end{gathered}
$$

is a linear combinations of $*$-graded Capelli polynomials alternating or in $m^{+} \geq M^{+}$symmetric variables of zero degree, or in $m^{-} \geq M^{-}$skew variables of zero degree, or in $l^{+} \geq L^{+}$ symmetric variables of one degree or in $l^{-} \geq L^{-}$skew variables of one degree.

Theorem 2. Let $\mathcal{V}_{\mathbb{Z}_{2}}^{*}$ be a variety of *-superalgebras. If $\mathcal{V}_{\mathbb{Z}_{2}}^{*}$ satisfies the Capelli identity of some rank, then $\mathcal{V}_{\mathbb{Z}_{2}}^{*}=\operatorname{var}_{\mathbb{Z}_{2}}^{*}(A)$, for some finitely generated $*$-superalgebra A.

Proof. The proof follows very closely the proof given in [18, Theorem 11.4.3] for superalgebras.

$$
\text { 4. THE } * \text {-SUPERALGEBRA } U T_{\mathbb{Z}_{2}}^{*}\left(A_{1}, \ldots, A_{m}\right)
$$

In this section we recall the construction of the $*$-superalgebra $U T_{\mathbb{Z}_{2}}^{*}\left(A_{1}, \ldots, A_{m}\right)$ given in section 3 of [9] and we investigate the link between the degrees of the $*$-graded Capelli polynomials and the $*$-graded identities of this $*$-superalgebra.

If F is an algebraically closed field of characteristic zero, then, up to graded isomorphisms, the only finite dimensional simple $*$-superalgebras are the following (see [13, Theorem 7.6])
(1) $\left(M_{h, l}, \diamond\right)$, with $h \geq l \geq 0, h \neq 0$;
(2) $\left(M_{h, l} \oplus M_{h, l}^{o p}, e x c\right)$, with $h \geq l \geq 0, h \neq 0$, and induced grading;
(3) $\left(M_{n}+c M_{n}, \star\right)$, with involution given by $(a+c b)^{\star}=a^{\diamond}-c b^{\diamond}$;
(4) $\left(M_{n}+c M_{n}, \dagger\right)$, with involution given by $(a+c b)^{\dagger}=a^{\diamond}+c b^{\diamond}$;
(5) $\left(\left(M_{n}+c M_{n}\right) \oplus\left(M_{n}+c M_{n}\right)^{o p}, e x c\right)$, with grading $\left(M_{n} \oplus M_{n}^{o p}, c\left(M_{n} \oplus M_{n}^{o p}\right)\right)$;
where $\diamond=t, s$ denotes the transpose or symplectic involution and exc is the exchange involution. Remember that the symplectic involution can occur only when $h=l$. Moreover $M_{h}=M_{h}(F)$ is the superalgebra of $h \times h$ matrices over F with trivial grading, $M_{h, l}=$ $M_{h+l}(F)$ is the superalgebra with grading $\left(\left(\begin{array}{cc}F_{11} & 0 \\ 0 & F_{22}\end{array}\right),\left(\begin{array}{cc}0 & F_{12} \\ F_{21} & 0\end{array}\right)\right)$, where F_{11}, F_{12}, F_{21}, F_{22} are $h \times h, h \times l, l \times h$ and $l \times l$ matrices respectively, $h \geq l \geq 0, h \neq 0$ and $M_{n}+c M_{n}=M_{n}(F \oplus c F)$ denotes the simple superalgebra with grading $\left(M_{n}(F), c M_{n}(F)\right)$, where $c^{2}=1$.

Let $\left(A_{1}, \ldots, A_{m}\right)$ be a m-tuple of finite dimensional simple $*$-superalgebras. For every $k=1, \ldots, m$, the size of A_{k} is given by

$$
s_{k}= \begin{cases}h_{k}+l_{k} & \text { if } A_{k}=M_{h_{k}, l_{k}} \text { or } A_{k}=M_{h_{k}, l_{k}} \oplus M_{h_{k}, l_{k}}^{o p} \\ 2 n_{k} & \text { if } A_{k}=M_{n_{k}}+c M_{n_{k}} \text { or } A_{k}=\left(M_{n_{k}}+c M_{n_{k}}\right) \oplus\left(M_{n_{k}}+c M_{n_{k}}\right)^{o p}\end{cases}
$$

and, set $\eta_{0}=0$, let $\eta_{k}=\sum_{i=1}^{k} s_{i}$ and $\mathrm{B} l_{k}=\left\{\eta_{k-1}+1, \ldots, \eta_{k}\right\}$. Moreover, we denote by γ_{m} the orthogonal involution defined on the matrix algebra M_{m} by sending each $a \in M_{m}$ into the element $a^{\gamma_{m}} \in M_{m}$ obtained reflecting a along its secondary diagonal. In particular for any matrix unit $e_{i, j}$ of $M_{m}, e_{i, j}^{\gamma_{m}}=e_{m-j+1, m-i+1}$.

Then, we have a monomorphism of $*$-algebra

$$
\Delta: \bigoplus_{k=1}^{m} A_{k} \rightarrow\left(M_{2 \eta_{m}}, \gamma_{2 \eta_{m}}\right)
$$

defined by

$$
\left(c_{1}, \ldots, c_{m}\right) \rightarrow\left(\begin{array}{cccccc}
\bar{a}_{1} & & & & & \\
& \ddots & & & & \\
& & \bar{a}_{m} & & & \\
& & & \bar{b}_{m} & & \\
& & & & \ddots & \\
& & & & & \bar{b}_{1}
\end{array}\right)
$$

where the elements \bar{a}_{i} and \bar{b}_{i} are defined as follows:

- if $c_{i} \in\left(M_{h, l} ; \diamond\right)$, then $\bar{a}_{i}=c_{i}$ and $\bar{b}_{i}=\left(c_{i}^{\diamond}\right)^{\gamma_{h+l}}$;
- if $c_{i}=\left(a_{i}, b_{i}\right) \in\left(M_{h, l} \oplus M_{h, l}^{o p}, e x c\right)$, then $\bar{a}_{i}=a_{i}$ and $\bar{b}_{i}=b_{i}^{\gamma h+l}$;
- if $c_{i}=a_{i}+c b_{i} \in\left(M_{n}+c M_{n}, \star\right)$, then $\bar{a}_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ b_{i} & a_{i}\end{array}\right)$ and $\bar{b}_{i}=\left(\bar{a}_{i}^{\perp}\right)^{\gamma_{2 n}}$ where $\left(\begin{array}{cc}x & y \\ y & x\end{array}\right)^{\perp}$ $=\left(\begin{array}{cc}x^{\diamond} & -y^{\diamond} \\ -y^{\diamond} & x^{\diamond}\end{array}\right)$;
- if $c_{i}=a_{i}+c b_{i} \in\left(M_{n}+c M_{n}, \dagger\right)$, then $\bar{a}_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ b_{i} & a_{i}\end{array}\right)$ and $\bar{b}_{i}=\left(\bar{a}_{i}^{\top}\right)^{\gamma_{2 n}}$ where $\left(\begin{array}{cc}x & y \\ y & x\end{array}\right)^{\top}$ $=\left(\begin{array}{ll}x^{\diamond} & y^{\diamond} \\ y^{\diamond} & x^{\diamond}\end{array}\right)$;
- if $c_{i}=\left(a_{i}+c b_{i}, u_{i}+c v_{i}\right) \in\left(\left(M_{n}+c M_{n}\right) \oplus\left(M_{n}+c M_{n}\right)^{o p}, e x c\right)$, then $\bar{a}_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ b_{i} & a_{i}\end{array}\right)$ and $\bar{b}_{i}=\left(\begin{array}{ll}u_{i} & v_{i} \\ v_{i} & u_{i}\end{array}\right)^{\gamma_{2 n}}$.

Let denote by $D \subseteq\left(M_{2 \eta_{m}}, \gamma_{2 \eta_{m}}\right)$ the $*$-algebra image of $\bigoplus_{i=1}^{m} A_{i}$ by Δ and set

$$
V=\left(\begin{array}{cccccccc}
0 & V_{12} & \cdots & V_{1 m} & & & & \\
& \ddots & \ddots & \vdots & & & & \\
& & 0 & V_{m-1 m} & & & & \\
& & & 0 & 0 & V_{m m-1} & \cdots & V_{m 1} \\
& & & & & \ddots & \ddots & \vdots \\
& & & & & & 0 & V_{21} \\
& & & & & & & 0
\end{array}\right) \subseteq M_{2 \eta_{m}}
$$

where, for $1 \leq i, j \leq m, i \neq j, V_{i j}=M_{s_{i} \times s_{j}}=M_{s_{i} \times s_{j}}(F)$ is the algebra of $s_{i} \times s_{j}$ matrices of F. Let define

$$
U T^{*}\left(A_{1}, \ldots, A_{m}\right)=D \oplus V \subseteq M_{2 \eta_{m}}
$$

It is easy to see that $U T^{*}\left(A_{1}, \ldots, A_{m}\right)$ is a subalgebra with involution of $\left(M_{2 \eta_{m}}(F), \gamma_{2 \eta_{m}}\right)$ whose Jacobson radical coincides with V.

Now, for any m-tuple $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{Z}_{2}^{m}$, we consider the map

$$
\alpha_{\tilde{g}}:\left\{1, \ldots, 2 \eta_{m}\right\} \rightarrow \mathbb{Z}_{2}, \quad i \rightarrow \begin{cases}\alpha_{k}\left(i-\eta_{k-1}\right)+g_{k} & 1 \leq i \leq \eta_{m} \\ \alpha_{k}\left(2 \eta_{m}-i+1-\eta_{k-1}\right)+g_{k} & \eta_{m}+1 \leq i \leq 2 \eta_{m}\end{cases}
$$

where $k \in\{1, \ldots, m\}$ is the (unique) integer such that $i \in \mathrm{~B} l_{k}$ and α_{k} 's are maps so defined: - if $A_{k} \simeq M_{h, l}$ or $A_{k} \simeq M_{h, l} \oplus M_{h, l}$, then

$$
\alpha_{k}:\{1, \ldots, h+l\} \rightarrow \mathbb{Z}_{2}, \quad \alpha_{k}(i)= \begin{cases}0 & 1 \leq i \leq h ; \\ 1 & h+1 \leq i \leq h+l .\end{cases}
$$

- if $A_{k} \simeq M_{n}+c M_{n}$ or $A_{k} \simeq\left(M_{n}+c M_{n}\right) \oplus\left(M_{n}+c M_{n}\right)$, then

$$
\alpha_{k}:\{1, \ldots, 2 n\} \rightarrow \mathbb{Z}_{2}, \quad \alpha_{k}(i)= \begin{cases}0 & 1 \leq i \leq n ; \\ 1 & n+1 \leq i \leq 2 n\end{cases}
$$

The map $\alpha_{\tilde{g}}$ induces an elementary grading on $U T^{*}\left(A_{1}, \ldots, A_{m}\right)$ with respect to which $\gamma_{2 \eta_{m}}$ is a graded involution. We shall use the symbol

$$
U T_{\mathbb{Z}_{2}, \tilde{g}}^{*}\left(A_{1}, \ldots, A_{m}\right)
$$

to indicate the $*$-superalgebra defined by the m-tuple \tilde{g}. We observe that the k-th simple component of the maximal semisimple $*$-graded subalgebra of this $*$-superalgebra is isomorphic to A_{k}. When convenient, any such $*$-superalgebra is simply denoted by

$$
U T_{\mathbb{Z}_{2}}^{*}\left(A_{1}, \ldots, A_{m}\right)
$$

In the next lemma we establish the link between the degrees of the $*$-graded Capelli polynomials and the $*$-graded polynomial identities of $U T_{\mathbb{Z}_{2}, \tilde{g}}^{*}\left(A_{1}, \ldots, A_{m}\right)$. For all $i=$ $1, \ldots, m$, we write

$$
A_{i}=A_{i, 0}^{+} \oplus A_{i, 0}^{-} \oplus A_{i, 1}^{+} \oplus A_{i, 1}^{-}
$$

Let $\left(d_{0}^{ \pm}\right)_{i}=\operatorname{dim}_{F} A_{i, 0}^{ \pm}$and $\left(d_{1}^{ \pm}\right)_{i}=\operatorname{dim}_{F} A_{i, 1}^{ \pm}$, if we set $d_{0}^{ \pm}:=\sum_{i=1}^{m}\left(d_{0}^{ \pm}\right)_{i}$ and $d_{1}^{ \pm}:=$ $\sum_{i=1}^{m}\left(d_{1}^{ \pm}\right)_{i}$, then we have the following

Lemma 3. Let $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right)$ be a fixed element of \mathbb{Z}_{2}^{m} and $A=U T_{\mathbb{Z}_{2}, \tilde{g}}^{*}\left(A_{1}, \ldots, A_{m}\right)$, with A_{i} finite dimensional simple *-superalgebra. Let $0<\bar{m} \leq m$ denote the number of the finite dimensional simple $*$-superalgebras with trivial grading.

1. If $\bar{m}=0, \operatorname{Cap}_{q^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \operatorname{Cap}_{q^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], \operatorname{Cap}_{k^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right] \operatorname{andCap}{k^{-}}_{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$ are in $I d_{\mathbb{Z}_{2}}^{*}(A)$ if and only if $q^{+} \geq d_{0}^{+}+m, q^{-} \geq d_{0}^{-}+m, k^{+} \geq d_{1}^{+}+m$ and $k^{-} \geq d_{1}^{-}+m ;$
2. If $0<\bar{m} \leq m$, let \tilde{m} be the number of blocks of consecutive $*$-superalgebras with trivial grading that appear in $\left(A_{1}, \ldots, A_{m}\right)$. Then $\operatorname{Cap}_{q^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \operatorname{Cap}_{q^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right]$, Cap $p_{k^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and $C a p_{k^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$ are in $I d_{\mathbb{Z}_{2}}^{*}(A)$ if and only if $q^{+}>d_{0}^{+}+(m-$ $\bar{m})+(\tilde{m}-1)+r_{0}, q^{-}>d_{0}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{0}, k^{+}>d_{1}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{1}$ and $k^{-}>d_{1}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{1}$, where r_{0}, r_{1} are two non negative integers depending on the grading \tilde{g}, with $r_{0}+r_{1}=\bar{m}-\tilde{m}$.
Proof. We will prove the statement only for $C a p_{q^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$ the $*$-graded Capelli polynomial alternating on q^{+}symmetric variables of degree zero since on the other cases the proofs are similar.
3. Let $\bar{m}=0$. To prove the necessary condition of the statement for the symmetric variables of degree zero it is sufficient to prove that $\operatorname{Cap}_{q^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$ is not in $I d_{\mathbb{Z}_{2}}^{*}(A)$ when $q^{+}=d_{0}^{+}+m-1$.

We start considering separately the components A_{i} of A. In each $*$-superalgebra A_{i} we can take $\left(d_{0}^{+}\right)_{i}$ symmetric elements of homogeneous degree zero

$$
S_{i}=\left\{s_{\alpha_{i-1}+i}, \ldots, s_{\alpha_{i}+i-1}\right\}
$$

for $i=1, \ldots, m$, where $\alpha_{0}=0$ and $\alpha_{i}=\sum_{j=0}^{i}\left(d_{0}^{+}\right)_{j}$ and a set of elements of A_{i}

$$
U_{i}=\left\{a_{\alpha_{i-1}+i}, \ldots, a_{\alpha_{i}+i-2}\right\}
$$

such that

$$
\begin{gathered}
\operatorname{Cap} p_{\left(d_{0}^{+}\right)_{i}}^{\left(\mathbb{Z}_{2}, *\right)}\left(s_{\alpha_{i-1}+i}, \ldots, s_{\alpha_{i}+i-1} ; a_{\alpha_{i-1}+i}, \ldots, a_{\alpha_{i}+i-2}\right)= \\
\begin{cases}e_{r_{i}, s_{i}} & \text { if }\left(M_{h_{i}, l_{i}}, \diamond\right) ; \\
\left(e_{r_{i}, s_{i}}, 0\right) & \text { if }\left(M_{h_{i}, l_{i}} \oplus M_{h_{i}, l_{i}}^{o p}, e x c\right) ; \\
e_{r_{i}, s_{i}} & \text { if }\left(M_{n_{i}}+c M_{n_{i}}, \star\right) \text { or }\left(M_{n_{i}}+c M_{n_{i}}, \dagger\right) \\
\left(\left(e_{r_{i}, s_{i}}, 0\right),(0,0)\right) & \text { if }\left(\left(M_{n_{i}}+c M_{n_{i}}\right) \oplus\left(M_{n_{i}}+c M_{n_{i}}\right)^{o p}, e x c\right),\end{cases}
\end{gathered}
$$

where $\diamond=t, s$ denotes the transpose or symplectic involution, exc is the exchange involution, $(a+c b)^{\star}=a^{\diamond}-c b^{\diamond}$ and $(a+c b)^{\dagger}=a^{\diamond}+c b^{\diamond}$.

For any $1 \leq i \leq m$, if ϕ_{i} is the $*$-embedding of A_{i} in A , then let

$$
\bar{S}_{i}=\left\{\bar{s}_{\alpha_{i-1}+i}, \ldots, \bar{s}_{\alpha_{i}+i-1}\right\}
$$

and

$$
\bar{U}_{i}=\left\{\bar{a}_{\alpha_{i-1}+i}, \ldots, \bar{a}_{\alpha_{i}+i-2}\right\}
$$

denote the images of S_{i} and U_{i} by ϕ_{i}, respectively.
Let observe that in A we can consider appropriate symmetric elements of homogeneous degree zero in J_{0}^{+}

$$
\bar{s}_{\alpha_{i}+i}=e_{h, k}+e_{h, k}^{*}
$$

and elementary matrices of A

$$
\bar{a}_{\alpha_{i}+i-1}=e_{s_{i}, h} \text { and } \bar{a}_{\alpha_{i}+i}=e_{k, r_{i+1}}
$$

such that

$$
\begin{aligned}
& \operatorname{Cap}{\underset{\left(d_{0}^{+}\right)_{i}}{\left(\mathbb{Z}_{2}, *\right)}\left(\bar{s}_{\alpha_{i-1}+i}, \ldots, \bar{s}_{\alpha_{i}+i-1} ; \bar{a}_{\alpha_{i-1}+i}, \ldots, \bar{a}_{\alpha_{i}+i-2}\right) \bar{a}_{\alpha_{i}+i-1} \bar{s}_{\alpha_{i}+i} \bar{a}_{\alpha_{i}+i}}^{\operatorname{Cap}}{\underset{\left(d_{0}^{+}\right)_{i+1}}{\left(\mathbb{Z}_{2}, *\right)}\left(\bar{s}_{\alpha_{i}+(i+1)}, \ldots, \bar{s}_{\alpha_{i+1}+i} ; \bar{a}_{\alpha_{i}+(i+1)}, \ldots, \bar{a}_{\alpha_{i+1}+(i-1)}\right) \neq 0 .} .
\end{aligned}
$$

From now on, we will put $\operatorname{Cap}{\underset{\left(d_{0}^{+}\right)_{i}}{\left(\mathbb{Z}_{2}, *\right)}=\operatorname{Cap}}_{\left(d_{0}^{+}\right)_{i}}^{\left(\mathbb{Z}_{2}, *\right)}\left(\bar{s}_{\alpha_{i-1}+i}, \ldots, \bar{s}_{\alpha_{i}+i-1} ; \bar{a}_{\alpha_{i-1}+i}, \ldots, \bar{a}_{\alpha_{i}+i-2}\right)$. It follows that

$$
\begin{aligned}
& C a p_{q^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left(\bar{s}_{1}, \ldots, \bar{s}_{\alpha_{m}+(m-1)} ; \bar{a}_{1}, \ldots, \bar{a}_{\alpha_{m}+(m-2)}\right)=
\end{aligned}
$$

Conversely, let $q^{+} \geq d_{0}^{+}+m$. We observe that any monomial of elements of A containing at least m elements of J_{0}^{+}must be zero. Then we claim that any multilinear polynomial $\tilde{f}=\tilde{f}\left(y_{1}, \ldots, y_{d_{0}^{+}+m} ; x_{1}, x_{2}, \ldots\right)$ alternating on $d_{0}^{+}+m$ symmetric variables of degree zero must vanish in A. In fact, by multilinearity, we can consider only substitutions $\varphi: y_{i}^{+} \rightarrow \bar{s}_{i}$, $x_{i} \rightarrow \bar{a}_{i}$ such that $\bar{s}_{i} \in D_{0}^{+} \cup J_{0}^{+}$for $1 \leq i \leq d_{0}^{+}+m$.

However, since $\operatorname{dim}_{F} D_{0}^{+}=d_{0}^{+}$, if we substitute at least $d_{0}^{+}+1$ variables in elements of D_{0}^{+} the polynomial vanishes. On the other hands, if we substitute at least m elements of J_{0}^{+}, we also get that \tilde{f} vanishes in A. The outcome of this is that A satisfies $C a p_{d_{0}^{+}+m}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$ and so $C a p_{q^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$, with $q^{+} \geq d_{0}^{+}+m$.
2. First let assume that $\bar{m}=m$. We recall that

$$
U T^{*}\left(A_{1}, \ldots, A_{m}\right)=D \oplus V \subseteq M_{2 \eta_{m}}
$$

where $D \subseteq\left(M_{2 \eta_{m}}, \gamma_{2 \eta_{m}}\right)$ the $*$-algebra image of $\bigoplus_{i=1}^{m} A_{i}$ by Δ and

$$
V=\left(\begin{array}{cccccccc}
0 & V_{12} & \cdots & V_{1 m} & & & & \\
& \ddots & \ddots & \vdots & & & & \\
& & 0 & V_{m-1 m} & & & & \\
& & & 0 & 0 & V_{m m-1} & \cdots & V_{m 1} \\
& & & & & \ddots & \ddots & \vdots \\
& & & & & & 0 & V_{21} \\
& & & & & & & 0
\end{array}\right) \subseteq M_{2 \eta_{m}}
$$

Notice that, for a fixed $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{Z}_{2}^{m}$, if $g_{i}=g_{j}, 1 \leq i, j \leq m$, then the elements of the blocks $V_{i, j}$ are homogeneous of degree zero, otherwise, if $g_{i} \neq g_{j}$, they are
homogeneous of degree one. Suppose that in $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right)$ there are $p \geq 1$ different string of zero and one, i.e.

$$
\tilde{g}=\left(g_{1}, \ldots, g_{t_{1}}, g_{t_{1}+1}, \ldots, g_{t_{1}+t_{2}}, \ldots, g_{t_{1}+\cdots+t_{p-1}+1}, \ldots, g_{t_{1}+\cdots+t_{p}}\right),
$$

where $t_{1}+\cdots+t_{p}=m$,

$$
\begin{gathered}
g_{1}=\cdots=g_{t_{1}} \\
g_{t_{1}+1}=\cdots=g_{t_{1}+t_{2}} \\
\cdots \cdots \\
g_{t_{1}+\cdots+t_{p-1}+1}=\cdots=g_{t_{1}+\cdots+t_{p}}
\end{gathered}
$$

and

$$
g_{t_{1}+\cdots+t_{i}} \neq g_{t_{1}+\cdots+t_{i}+1}
$$

$\forall i=1, \ldots, p-1$.
As in the previous case we can find in A symmetric elements of degree zero

$$
\bar{S}_{i}=\left\{\bar{s}_{\alpha_{i-1}+i}, \ldots, \bar{s}_{\alpha_{i}+i-1}, \bar{s}_{\alpha_{i}+i}\right\}
$$

and generic elements

$$
\bar{U}_{i}=\left\{\bar{a}_{\alpha_{i-1}+i}, \ldots, \bar{a}_{\alpha_{i}+i-2}, \bar{a}_{\alpha_{i}+i-1}, \bar{a}_{\alpha_{i}+i}\right\}
$$

such that, $\forall i=1, \ldots p$,

$$
\begin{aligned}
& C a p\left(q_{q_{i}}^{\left(\mathbb{Z}_{2}, *\right)}\left(\bar{s}_{\alpha_{\tilde{t}_{i-1}}+\left(\tilde{t}_{i-1}+1\right)}, \ldots, \bar{s}_{\alpha_{\tilde{t}_{i}}+\left(\tilde{t}_{i}-1\right)} ; \bar{a}_{\alpha_{\tilde{t}_{i-1}}+\left(\tilde{t}_{i-1}+1\right)}, \ldots, \bar{a}_{\alpha_{\tilde{t}_{i}}+\left(\tilde{t}_{i}-2\right)}\right)=\right. \\
& \operatorname{Cap} p_{\left(d_{0}^{+}\right)_{\tilde{t}_{i-1}+1}^{\left(\mathbb{Z}_{2}, *\right)}} \bar{a}_{\alpha_{\left(\tilde{t}_{i-1}+1\right)}+\tilde{t}_{i-1}} \bar{s}_{\alpha_{\left(\tilde{t}_{i-1}+1\right)}+\left(\tilde{t}_{i-1}+1\right)} \bar{a}_{\alpha_{\left(\tilde{t}_{i-1}+1\right)}+\left(\tilde{t}_{i-1}+1\right)} \operatorname{Cap} p_{\left(d_{0}^{+}\right)_{\tilde{t}_{i-1}+2}}^{\left(\mathbb{Z}_{2}, *\right)} \\
& \cdots \cdots \cdots \cdots \cdot C a p_{\left(d_{0}^{+}\right)_{\tilde{t}_{i}}}^{\left(\mathbb{Z}_{2}, *\right)}=b_{i} \neq 0,
\end{aligned}
$$

where $\tilde{t}_{0}=t_{0}=0, \tilde{t}_{i}=\sum_{j=0}^{i} t_{j}$ and $q_{i}=\left(d_{0}^{+}\right)_{\tilde{t}_{i-1}+1}+\cdots+\left(d_{0}^{+}\right)_{\tilde{t}_{i}}+\left(t_{i}-1\right)$.
Furthermore we can find in A elementary matrices E_{1}, \ldots, E_{p-1}, such that

$$
\begin{gathered}
C a p_{d_{0}^{+}+m-p}^{\left(\mathbb{Z}_{2}, *\right)}=\operatorname{Cap}_{q_{1}}^{\left(\mathbb{Z}_{2}, *\right)} E_{1} C a p_{q_{2}}^{\left(\mathbb{Z}_{2}, *\right)} E_{2} \cdots \operatorname{Cap}_{q_{p-1}}^{\left(\mathbb{Z}_{2}, *\right)} E_{p-1} \operatorname{Cap}_{q_{p}}^{\left(\mathbb{Z}_{2}, *\right)}= \\
b_{1} E_{1} b_{2} E_{2} \cdots b_{p-1} E_{p-1} b_{p} \neq 0 .
\end{gathered}
$$

This implies that, for $r_{0}=m-p$,

$$
\operatorname{Cap}_{d_{0}^{+}+r_{0}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right] \notin I d_{\mathbb{Z}_{2}}^{*}(A) .
$$

Moreover, let's observe that any monomial of elements of A containing at least $r_{0}+1=$ $(m-p)+1$ elements of J_{0} must be zero. Then, similarly to the previous case, we obtain that A satisfies $C a p p_{d_{0}^{+}+r_{0}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$.

If $0<\bar{m}<m$, let \tilde{m} be the number of blocks of consecutive $*$-superalgebras with trivial grading that appear in $\left(A_{1}, \ldots, A_{m}\right)$. By considering separately the blocks of consecutive $*-$ superalgebras with trivial and non-trivial grading and by using arguments similar to those of the proof of case 1, it easily follows that $C a p_{q^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], C a p_{q^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], C a p_{k^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and $C a p_{k-}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$ are in $I d_{\mathbb{Z}_{2}}^{*}(A)$ if and only if $q^{+}>d_{0}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{0}$, $q^{-}>d_{0}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{0}, k^{+}>d_{1}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{1}$ and $k^{-}>$ $d_{1}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{1}$, where r_{0}, r_{1} are two non negative integers depending on the grading \tilde{g}, with $r_{0}+r_{1}=\bar{m}-\tilde{m}$.

5. Asymptotics For *-GRaded Capelli identities

In this section we shall study $\mathcal{U}=\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(\Gamma_{M^{ \pm}+1, L^{ \pm+1}}^{*}\right)$ and we shall find a close relation among the asymptotics of $c_{n}^{*}\left(\Gamma_{M^{ \pm}+1, L^{ \pm+1}}^{*}\right)$ and $c_{n}^{*}(A)$, where A is a finite dimensional simple *-superalgebra. Let

$$
R=A \oplus J
$$

where A is a finite dimensional simple $*$-superalgebra and $J=J(R)$ is its Jacobson radical.
From now on we put $M^{ \pm}=\operatorname{dim}_{F} A_{0}{ }^{ \pm}$and $L^{ \pm}=\operatorname{dim}_{F} A_{1}{ }^{ \pm}$.
Let's begin with some technical lemmas that hold for any finite dimensional simple *superalgebra A.

Lemma 4. The Jacobson radical J can be decomposed into the direct sum of four A bimodules

$$
J=J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}
$$

where, for $p, q \in\{0,1\}, J_{p q}$ is a left faithful module or a 0 -left module according to $p=1$, or $p=0$, respectively. Similarly, $J_{p q}$ is a right faithful module or a 0-right module according to $q=1$ or $q=0$, respectively. Moreover, for $p, q, i, l \in\{0,1\}, J_{p q} J_{q l} \subseteq J_{p l}, J_{p q} J_{i l}=0$ for $q \neq i$ and there exists a finite dimensional nilpotent $*$-superalgebra N such that N commutes with A and $J_{11} \cong A \otimes_{F} N$ (isomorphism of A-bimodules and of $*$-superalgebras).
Proof. It follows from Lemma 2 in [17] and Lemmas 1,6 in [5].
Notice that J_{00} and J_{11} are stable under the involution whereas $J_{01}^{*}=J_{10}$.
Lemma 5. If $\Gamma_{M^{ \pm+1, L^{ \pm+1}}}^{*} \subseteq I d_{\mathbb{Z}_{2}}^{*}(R)$, then $J_{10}=J_{01}=(0)$.
Proof. By Lemma 3 we have that A does not satisfy $\operatorname{Cap}_{M^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right]$. Then there exist elements $a_{1}^{+}, \ldots, a_{M^{+}}^{+} \in A_{0}^{+}$and $b_{1}, \ldots, b_{M^{+}-1} \in A$ such that

$$
\begin{gathered}
C a p_{M^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left(a_{1}^{+}, \ldots, a_{M^{+}}^{+} ; b_{1}, \ldots, b_{M^{+}-1}\right)= \\
\begin{cases}e_{1, h+l} & \text { if } A=\left(M_{h, l}, \diamond\right), \diamond=t, s ; \\
\tilde{e}_{1, h+l} & \text { if } A=\left(M_{h, l} \oplus M_{h, l}^{o p}, \text { exc }\right) ; \\
e_{1, n} & \text { if } A=\left(M_{n}+c M_{n}, \star\right) \text { or } A=\left(M_{n}+c M_{n}, \dagger\right) ; \\
\tilde{e}_{1, n} & \text { if } A=\left(\left(M_{n}+c M_{n}\right) \oplus\left(M_{n}+c M_{n}\right)^{o p}, \text { exc }\right)\end{cases}
\end{gathered}
$$

where the $e_{i, j}$'s are the usual matrix units and $\tilde{e}_{i, j}=\left(e_{i, j}, e_{j, i}\right)$. We write $J_{10}=\left(J_{10}\right)_{0} \oplus$ $\left(J_{10}\right)_{1}$ and $J_{01}=\left(J_{01}\right)_{0} \oplus\left(J_{01}\right)_{1}$. Let $d_{0} \in\left(J_{01}\right)_{0}$, then $d_{0}^{*} \in\left(J_{10}\right)_{0}$ and $d_{0}+d_{0}^{*} \in\left(J_{01} \oplus J_{10}\right)_{0}^{+}$. Since $\Gamma_{M^{ \pm}+1, L^{ \pm+1}}^{*} \subseteq I d_{\mathbb{Z}_{2}}^{*}(R)$ it follows that there exists $b_{M^{+}} \in A$ such that

$$
\begin{gathered}
0=C a p_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left(a_{1}^{+}, \ldots, a_{M^{+}}^{+}, d_{0}+d_{0}^{*} ; b_{1}, \ldots, b_{M^{+}-1}, b_{M^{+}}\right)= \\
\begin{cases}e_{1, h+l} d_{0}^{*} \pm d_{0} e_{1, h+l} & \text { if } A=\left(M_{h, l}, \diamond\right), \diamond=t, s ; \\
\tilde{e}_{1, h+l} d_{0}^{*} \pm d_{0} \tilde{e}_{1, h+l} & \text { if } A=\left(M_{h, l} \oplus M_{h, l}^{o p}, e x c\right) ; \\
e_{1, n} d_{0}^{*} \pm d_{0} e_{1, n} & \text { if } A=\left(M_{n}+c M_{n}, \star\right) \text { or } A=\left(M_{n}+c M_{n}, \dagger\right) \\
\tilde{e}_{1, n} d_{0}^{*} \pm d_{0} \tilde{e}_{1, n} & \text { if } A=\left(\left(M_{n}+c M_{n}\right) \oplus\left(M_{n}+c M_{n}\right)^{o p}, e x c\right)\end{cases}
\end{gathered}
$$

If $A=\left(M_{h, l}, \diamond\right)$, then $e_{1, h+l} d_{0}^{*} \pm d_{0} e_{1, h+l}=0$ and, so, $e_{1, h+l} d_{0}^{*}=\mp d_{0} e_{1, h+l} \in\left(J_{01}\right)_{0} \cap$ $\left(J_{10}\right)_{0}=(0)$. Hence $d_{0}=0$, for all $d_{0} \in\left(J_{01}\right)_{0}$. Thus $\left(J_{01}\right)_{0}=(0)$ and $\left(J_{10}\right)_{0}=(0)$. Similarly for the other finite dimensional simple $*$-superalgebras we obtain that $\left(J_{01}\right)_{0}=$ $\left(J_{10}\right)_{0}=(0)$. Analogously it easy to show that $\left(J_{01}\right)_{1}=\left(J_{10}\right)_{1}=(0)$ and the lemma is proved.

Lemma 6. Let $J_{11} \cong A \otimes_{F} N$, as in Lemma 4 If $\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*} \subseteq I d_{\mathbb{Z}_{2}}^{*}(R)$, then N is commutative.

Proof. Let N be the finite dimensional nilpotent $*$-superalgebra of Lemma 4 Write $N=$ $N_{0}^{+} \oplus N_{0}^{-} \oplus N_{1}^{+} \oplus N_{1}^{-}$, where $N_{0}^{+}, N_{0}^{-}, N_{1}^{+}$and N_{1}^{-}denote the subspaces of symmetric and skew symmetric elements of N of homogeneous degree 0 and 1 respectively.

We shall prove that N is commutative when $A=\left(M_{h, l}, \diamond\right)$, with $\diamond=t$ or s. Similar calculations for the other finite dimensional simple $*$-superalgebras lead to the same conclusion.

Let's start by proving that $N_{0}^{ \pm}$commutes with $N_{i}^{ \pm}, i=0,1$. Let $e_{1}^{+}, \ldots, e_{M^{+}}^{+}$be a basis of $A_{0}{ }^{+}$with

$$
e_{1}^{+}= \begin{cases}e_{1,2}+e_{2,1} & \text { if } A=\left(M_{h, l}, t\right) ; \\ e_{1,2}+e_{h+2, h+1} & \text { if } A=\left(M_{h, h}, s\right)\end{cases}
$$

and let $a_{0}=a_{1}=e_{2,1}, a_{2}, \ldots, a_{M^{+-1}} \in A$ such that $a_{0} e_{1}^{+} a_{1} e_{2}^{+} \cdots a_{M^{+}-1} e_{M^{+}}^{+}=e_{2, h+l}$ and $a_{0} e_{\sigma(1)}^{+} a_{1} \cdots a_{M^{+}-1} e_{\sigma\left(M^{+}\right)}^{+}=0$ for any $\sigma \in S_{M^{+}}, \sigma \neq i d$. Let $d_{1} \in N_{0}^{ \pm}$and $e_{0}^{+}=$ $\left(e_{1,2} \pm e_{1,2}^{\diamond}\right) d_{1}$, with $\diamond=t$ or s. Since N commutes with A we obtain that $e_{0}^{+} \in R_{0}^{+}$. If we put $\bar{a}_{0}=a_{0} d_{2}=e_{2,1} d_{2}$, with $d_{2} \in N_{i}^{ \pm}, i=0,1$, then

$$
0=\operatorname{Cap} p_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left(e_{0}^{+}, e_{1}^{+}, \ldots, e_{M}^{+} ; \bar{a}_{0}, a_{1}, \ldots, a_{M^{+-1}}\right)=\left[d_{1}, d_{2}\right] e_{1, h+l}
$$

and so $\left[d_{1}, d_{2}\right]=0$ for all $d_{1} \in N_{0}^{ \pm}, d_{2} \in N_{i}^{ \pm}, i=0,1$.
Let's now prove that $N_{1}^{ \pm}$commutes with $N_{1}^{ \pm}$. Let $e_{1}^{+}, \ldots, e_{M^{+}}^{+}$be a basis of $A_{0}{ }^{+}$, with

$$
e_{1}^{+}= \begin{cases}e_{1,1} & \text { if } A=\left(M_{h, l}, t\right) ; \\ e_{1,1}+e_{h+1, h+1} & \text { if } A=\left(M_{h, h}, s\right)\end{cases}
$$

and let $a_{0}=e_{h+l, 1}, a_{1}, a_{2}, \ldots, a_{M^{+}-1} \in A$ such that $a_{0} e_{1}^{+} a_{1} \cdots a_{M^{+}-1} e_{M^{+}}^{+}=e_{h+l, 1}$ (if $\diamond=\mathrm{s}$ then $h=l$) and $a_{0} e_{\sigma(1)}^{+} a_{1} \cdots a_{M^{+}-1} e_{\sigma\left(M^{+}\right)}^{+}=0$ for any $\sigma \in S_{M^{+}}, \sigma \neq i d$.
Let $\left(e_{1, h+l} \pm e_{1, h+l}^{\diamond}\right) \in A_{1}^{ \pm}$and $d_{1}, d_{2} \in N_{1}^{ \pm}$such that, for $i=1,2, c_{i}^{+}=\left(e_{1, h+l} \pm e_{1, h+l}^{\diamond}\right) d_{i}$. Since N commutes with A then $c_{i}^{+} \in R_{0}^{+}, i=1,2$. If $a_{M}=e_{1,1}$ then

$$
0=\operatorname{Cap} p_{M^{+}+2}^{\left(\mathbb{Z}_{2}, *\right)}\left(c_{1}^{+}, e_{1}^{+}, \ldots, e_{M}^{+}, c_{2}^{+} ; \bar{a}_{0}, a_{1}, \ldots, a_{M^{+-1}}, a_{M}\right)=\left[d_{1}, d_{2}\right] e_{1, h+l}
$$

($h=l$ for $\diamond=s$) and so $\left[d_{1}, d_{2}\right]=0$, for all $d_{1}, d_{2} \in N_{1}^{ \pm}$and we are done.
Lemma 7. $\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U})=M^{+}+M^{-}+L^{+}+L^{-}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(A)$.
Proof. By the definition of minimal variety (see Definition 2.1 in [9) the $*$-graded exponent of \mathcal{U} is equal to the $*$-graded exponent of some minimal variety of $*$-superalgebras lying in \mathcal{U}. Moreover, by the classification of minimal varieties of PI-*-superalgebras of finite basic rank given in [9, Theorem 2.2], we have

$$
\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U})=\max \left\{\exp _{\mathbb{Z}_{2}}^{*}\left(U T_{\mathbb{Z}_{2}}^{*}\left(A_{1}, \ldots, A_{m}\right)\right) \mid U T_{\mathbb{Z}_{2}}^{*}\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{U}\right\} .
$$

Then, by Lemma 3 ,

$$
\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U}) \geq \exp _{\mathbb{Z}_{2}}^{*}\left(U T_{\mathbb{Z}_{2}}^{*}(A)\right)=M+L .
$$

On the other hand, since $\exp _{\mathbb{Z}_{2}}^{*}\left(U T_{\mathbb{Z}_{2}}^{*}\left(A_{1}, \ldots, A_{m}\right)\right)=d_{0}^{ \pm}+d_{1}^{ \pm}$, we have that

$$
\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U}) \leq M+L
$$

and the proof is completed.
Now we are able to prove the main result.

Theorem 3. For suitable natural numbers $M^{+}, M^{-}, L^{+}, L^{-}$there exists a finite dimensional simple $*$-superalgebra A such that

$$
\mathcal{U}=\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right)=\operatorname{var}_{\mathbb{Z}_{2}}^{*}(A \oplus D)
$$

where D is a finite dimensional $*$-superalgebra such that $\exp _{\mathbb{Z}_{2}}^{*}(D)<M+L$, with $M=$ $M^{+}+M^{-}$and $L=L^{+}+L^{-}$. In particular

1) If $M^{ \pm}=\frac{h(h \pm 1)}{2}+\frac{l(l \pm 1)}{2}$ and $L^{ \pm}=h l$, with $h \geq l>0$, then $A=\left(M_{h, l}, t\right)$;
2) If $M^{ \pm}=h^{2}$ and $L^{ \pm}=h(h \mp 1)$, with $h>0$, then $A=\left(M_{h, h}, s\right)$;
3) If $M^{ \pm}=h^{2}+l^{2}$ and $L^{ \pm}=2 h l$, with $h \geq l>0$, then $A=\left(M_{h, l} \oplus M_{h, l}^{o p}\right.$, exc $)$;
4) If $M^{+}=L^{ \pm}=\frac{n(n+1)}{2}, M^{-}=L^{\mp}=\frac{n(n-1)}{2}$, with $n>0$, then $A=\left(M_{n}+c M_{n}, *\right)$, where $(a+c b)^{*}=a^{t} \pm c b^{t}$;
5) If $M^{+}=L^{ \pm}=\frac{n(n-1)}{2}, M^{-}=L^{\mp}=\frac{n(n+1)}{2}$, with $n>0$, then $A=\left(M_{n}+c M_{n}, *\right)$, where $(a+c b)^{*}=a^{s} \pm c b^{s}$;
6) If $M^{ \pm}=L^{ \pm}=n^{2}$, with $n>0$, then $A=\left(\left(M_{n}+c M_{n}\right) \oplus\left(M_{n}+c M_{n}\right)^{o p}\right.$, exc $)$.

Proof. By Lemma 7 we have that $\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U})=M+L$. Let B be a generating $*$-superalgebra of \mathcal{U}. From Theorem 2 and by [10], since any finitely generated $*$-superalgebra satisfies the same *-graded polynomial identities of a finite-dimensional $*$-superalgebra, we can assume that B is finite dimensional. Thus, by Theorem [1, there exists a finite number of reduced *-superalgebras B_{1}, \ldots, B_{t} and a finite dimensional $*$-superalgebra D such that

$$
\begin{equation*}
\mathcal{U}=\operatorname{var}_{\mathbb{Z}_{2}}^{*}(B)=\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(B_{1} \oplus \cdots \oplus B_{t} \oplus D\right) \tag{1}
\end{equation*}
$$

Moreover

$$
\exp _{\mathbb{Z}_{2}}^{*}\left(B_{1}\right)=\cdots=\exp _{\mathbb{Z}_{2}}^{*}\left(B_{t}\right)=\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U})=M+L
$$

and

$$
\exp _{\mathbb{Z}_{2}}^{*}(D)<\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U})=M+L
$$

Let's now analyze the structure of a finite dimensional reduced $*$-superalgebra R such that $\exp _{\mathbb{Z}_{2}}^{*}(R)=M+L=\exp _{\mathbb{Z}_{2}}^{*}(\mathcal{U})$ and $\Gamma_{M^{ \pm+1, L^{ \pm}+1}}^{*} \subseteq I d_{\mathbb{Z}_{2}}^{*}(R)$. We have that

$$
\begin{equation*}
R=R_{1} \oplus \cdots \oplus R_{m}+J \tag{2}
\end{equation*}
$$

where R_{i} are simple $*$-graded subalgebras of $R, J=J(R)$ is the Jacobson radical of R and $R_{1} J \cdots J R_{m} \neq 0$. By [9, Theorem 4.3] there exists a $*$-superalgebra \bar{R} isomorphic to the $*-$ superalgebra $U T_{\mathbb{Z}_{2}, \tilde{g}}^{*}\left(R_{1}, \ldots, R_{m}\right)$, for some $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{Z}_{2}^{m}$, such that $\operatorname{Id}(R) \subseteq \operatorname{Id}(\bar{R})$ and

$$
\exp _{\mathbb{Z}_{2}}^{*}(R)=\exp _{\mathbb{Z}_{2}}^{*}(\bar{R})=\exp _{\mathbb{Z}_{2}}^{*}\left(U T_{\mathbb{Z}_{2}, \tilde{g}}^{*}\left(R_{1}, \ldots, R_{m}\right)\right)
$$

It follows that

$$
\begin{gathered}
M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=\exp _{\mathbb{Z}_{2}}^{*}(\bar{R})= \\
\exp _{\mathbb{Z}_{2}}^{*}\left(U T_{\mathbb{Z}_{2}, \tilde{g}}^{*}\left(R_{1}, \ldots, R_{m}\right)\right)=\operatorname{dim}_{F} R_{1}+\cdots+\operatorname{dim}_{F} R_{m}=d_{0}^{+}+d_{0}^{-}+d_{1}^{+}+d_{1}^{-}
\end{gathered}
$$

where $d_{i}^{ \pm}=\operatorname{dim}_{F}\left(R_{1} \oplus \cdots \oplus R_{m}\right)_{(i)}^{ \pm}$, for $i=0,1$.
Let $0 \leq \bar{m} \leq m$ denote the number of the $*$-superalgebras R_{i} with trivial grading appearing in (2). We want to prove that $\bar{m}=0$.

Let's suppose $\bar{m}>0$. By Lemma 3, \bar{R} does not satisfy the $*$-graded Capelli polynomials

$$
\begin{array}{ll}
\operatorname{Cap} \\
\operatorname{Cap}_{d_{0}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{0}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], & \operatorname{Cap}_{d_{1}^{+}+(m)}^{\left(\mathbb{Z}_{2}, *\right)} \\
\mathbb{Z}_{0}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{1}
\end{array}\left[Z^{+}, X\right], \quad \operatorname{Cap}_{d_{1}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{1}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right],
$$

where r_{0}, r_{1} are two non negative integers dependent on the grading \tilde{g} with $r_{0}+r_{1}=$ $\bar{m}-\tilde{m}$. However \bar{R} satisfies $\operatorname{Cap}_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], \operatorname{Cap}_{M^{-+1}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], \operatorname{Cap}_{L^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and $\operatorname{Cap}_{L^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$, then

$$
\begin{gathered}
d_{0}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{0}+d_{0}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{0}+ \\
d_{1}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{1}+d_{1}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{1} \leq M+L
\end{gathered}
$$

Since $d_{0}^{+}+d_{0}^{-}+d_{1}^{+}+d_{1}^{-}=M+L$ we obtain that $4(m-\bar{m})+4(\tilde{m}-1)+2\left(r_{0}+r_{1}\right)=0$ and so $2(m-1)+\tilde{m}-\bar{m}=0$ and this implies that $m \geq 2$. If $m=2$ then we easily obtain a contradiction. Thus $m=\bar{m}=\tilde{m}=1$.

Hence $R=R_{1} \oplus J$ where $R_{1} \simeq\left(M_{h_{1}}(F), t\right)$ or $R_{1} \simeq\left(M_{2 h_{1}}(F), s\right)$ or $R_{1} \simeq\left(M_{h_{1}}(F) \oplus\right.$ $\left.M_{h_{1}}(F)^{o p}, e x c\right)$ with $h_{1}>0$.

Now, let's analyze all possible cases as M and L vary.

1. Let $M^{ \pm}=\frac{h(h \pm 1)}{2}+\frac{l(l \pm 1)}{2}$ and $L^{ \pm}=h l$, with $h \geq l>0$.

If $R \simeq\left(M_{h_{1}}(F), t\right)+J$ then $\exp _{\mathbb{Z}_{2}}^{*}(R)=h_{1}^{2}$. Since $\exp _{\mathbb{Z}_{2}}^{*}(R)=M+L=(h+l)^{2}$ we obtain that $h_{1}=h+l$. By hypotesis, R satisfies $C a p_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+} ; X\right]$ but, since $I d_{\mathbb{Z}_{2}}^{*}(R) \subseteq$ $I d_{\mathbb{Z}_{2}}^{*}\left(U T_{\mathbb{Z}_{2}, \tilde{g}}^{*}\left(R_{1}, \ldots, R_{q}\right)\right), R$ does not satisfy $\operatorname{Cap}_{d_{0}^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+} ; X\right]$. Hence, for $h \geq l>0$, we have

$$
\begin{gathered}
M^{+}+1=\frac{h(h+1)}{2}+\frac{l(l+1)}{2}+1=\frac{h^{2}+l^{2}+(h+l)+2}{2} \leq \\
\frac{h^{2}+l^{2}+(h+l)+2 h l}{2}=\frac{(h+l)(h+l+1)}{2}=\frac{h_{1}\left(h_{1}+1\right)}{2}=d_{0}^{+}
\end{gathered}
$$

and this is impossible.
If $R \simeq\left(M_{2 h_{1}}(F), s\right)+J$ then $\exp _{\mathbb{Z}_{2}}^{*}(R)=4 h_{1}^{2}$. Since $\exp _{\mathbb{Z}_{2}}^{*}(R)=M+L=(h+l)^{2}$ we have that $2 h_{1}=h+l$. Moreover R satisfies $\operatorname{Cap}_{M-+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ but does not satisfy $C a p_{d_{0}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ and so we get a contradiction since

$$
\begin{gathered}
M^{-}+1=\frac{h(h-1)}{2}+\frac{l(l-1)}{2}+1=\frac{h^{2}+l^{2}-(h+l)+2}{2}< \\
\frac{h^{2}+l^{2}+(h+l)+2 h l}{2}=\frac{(h+l)^{2}+(h+l)}{2}=\frac{4 h_{1}^{2}+2 h_{1}}{2}=2 h_{1}^{2}+h_{1}=d_{0}^{-} .
\end{gathered}
$$

Finally, let $R \simeq\left(M_{h_{1}}(F) \oplus M_{h_{1}}(F)^{o p}, e x c\right)+J$, with $h_{1}>0$. Then $(h+l)^{2}=M+L=$ $\exp _{\mathbb{Z}_{2}}^{*}(R)=2 h_{1}^{2}$, a contradiction.
2. Let $M^{ \pm}=h^{2}$ and $L^{ \pm}=h(h \mp 1)$, with $h>0$.

If $R \simeq\left(M_{h_{1}}(F), t\right)+J$ then, as in the previous case, we obtain that $2 h=h_{1}$. By hypothesis R satisfies $C a p_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+} ; X\right]$ but it does not satisfy $C a p_{d_{0}^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+} ; X\right]$, thus we have

$$
M^{+}+1=h^{2}+1=\left(\frac{h_{1}}{2}\right)^{2}+1=\frac{h_{1}^{2}}{4}+1 \leq \frac{h_{1}^{2}}{2}+\frac{h_{1}}{2}=d_{0}^{+}
$$

a contradiction.
If $R \simeq\left(M_{2 h_{1}}(F), s\right)+J$ then $h=h_{1}$. Since R satisfies $C a p_{M^{-+1}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ but does not satisfy $C a p_{d_{0}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ we get the contradiction $M^{-}+1=h^{2}+1=h_{1}^{2}+1<2 h_{1}^{2}+h_{1}=d_{0}^{-}$.
Finally, if $R \simeq\left(M_{h_{1}}(F) \oplus M_{h_{1}}(F)^{o p}, e x c\right)+J$ with $h_{1}>0$, then we have $4 h^{2}=2 h_{1}^{2}$, a contradiction.
3. Let $M^{ \pm}=h^{2}+l^{2}$ and $L^{ \pm}=2 h l$, with $h \geq l>0$.

If $R \simeq\left(M_{h_{1}}(F), t\right)+J$ then we get the contradiction $2(h+l)^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=h_{1}^{2}$.
The same occurs if $R \simeq\left(M_{2 h_{1}}(F), s\right)+J$.

Now, let $R \simeq\left(M_{h_{1}}(F) \oplus M_{h_{1}}(F)^{o p}, e x c\right)+J$, with $h_{1}>0$. Then $2(h+l)^{2}=M+L=$ $\exp _{\mathbb{Z}_{2}}^{*}(R)=2 h_{1}^{2}$ and so $h_{1}=h+l$. Since $d_{0}^{+}=h_{1}^{2}$ we get that $M^{+}+1=h^{2}+l^{2}+1<$ $h^{2}+l^{2}+2 h l=(h+l)^{2}=h_{1}^{2}=d_{0}^{+}$and this is impossible.
4., 5. We consider the case $M^{+}=L^{+}=\frac{n(n+1)}{2}$ and $M^{-}=L^{-}=\frac{n(n-1)}{2}$. The proof of the other cases is very similar.
If $R \simeq\left(M_{h_{1}}(F), t\right)+J$ then $2 n^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=h_{1}^{2}$, and if $R \simeq\left(M_{2 h_{1}}(F), s\right)+J$ then $2 n^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=4 h_{1}^{2}$, a contradiction.
Let $R \simeq\left(M_{h_{1}}(F) \oplus M_{h_{1}}(F)^{o p}, e x c\right)+J$, with $h_{1}>0$. Then $2 n^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=2 h_{1}^{2}$ so $h_{1}=n$. Since R satisfies $\operatorname{Cap} M_{M^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ but it does not satisfy $C a p_{d_{0}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ we have again a contradiction indeed $M^{-}+1=\frac{n(n-1)}{2}+1 \leq n(n-1)+1 \leq n^{2}=h_{1}^{2}=d_{0}^{-}$.
6. Let $M^{ \pm}=L^{ \pm}=n^{2}$, with $n>0$.

If $R \simeq\left(M_{h_{1}}(F) \oplus M_{h_{1}}(F)^{o p}, e x c\right)+J$ then $4 n^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=2 h_{1}^{2}$ a contradiction. If $R \simeq\left(M_{h_{1}}(F), t\right)+J$ then $4 n^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=h_{1}^{2}$ and so $h_{1}=2 n$. R satisfies $C a p_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+} ; X\right]$ but does not satisfy $C a p_{d_{0}^{+}}^{*}\left[Y^{+} ; X\right]$ then we obtain a contradiction in fact $M^{+}+1=n^{2}+1=\frac{h_{1}^{2}}{4}+1 \leq \frac{h_{1}^{2}}{2}+\frac{h_{1}}{2}=\frac{h_{1}\left(h_{1}+1\right)}{2}=d_{0}^{+}$.
Finally, let $R \simeq\left(M_{2 h_{1}}(F), s\right)+J$. Hence $4 n^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=4 h_{1}^{2}$ and so $n=h_{1}$. Also in this case we get the contradiction $M^{-}+1=n^{2}+1<2 n^{2}+1<2 n^{2}+n=2 h_{1}^{2}+h_{1}=d_{0}^{-}$.

So we obtained that $\bar{m}=0$.
Let $R=R_{1} \oplus \cdots \oplus R_{m}+J$, where R_{i} are simple $*$-superalgebras with non trivial grading. Let's prove that $m=1$. By Lemma 3, \bar{R} does not satisfy the $*$-graded Capelli polynomials $C a p p_{d_{0}^{+}+m-1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], C a p d_{d_{0}^{-}+m-1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], C a p_{d_{1}^{+}+m-1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and $C a p_{d_{1}^{-}+m-1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$ but satisfies $C a p_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+}, X\right], C a p_{M^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-}, X\right], C a p_{L^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+}, X\right]$ and $C a p_{L^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-}, X\right]$ thus $d_{0}^{+}+m-1 \leq M^{+}, d_{0}^{-}+m-1 \leq M^{-}, d_{1}^{+}+m-1 \leq L^{+}$and $d_{1}^{-}+m-1 \leq L^{-}$. Hence we have that
$d_{0}^{+}+(m-1)+d_{0}^{-}+(m-1)+d_{1}^{+}+(m-1)+d_{1}^{-}+(m-1) \leq M^{+}+M^{-}+L^{+}+L^{-}=M+L$.
Since $d_{0}^{+}+d_{0}^{-}+d_{1}^{-}+d_{1}^{-}=M+L$ we obtain that $4(m-1)=0$ and so $m=1$.
It follows that $R=R_{1} \oplus J$ where R_{1} is a simple $*$-superalgebra with non trivial grading. Now let's analyze the cases corresponding to the different values of M and L.

1. Let $M^{ \pm}=\frac{h(h \pm 1)}{2}+\frac{l(l \pm 1)}{2}$ and $L^{ \pm}=h l$, with $h \geq l>0$.

If $R \simeq\left(M_{h_{1}, h_{1}}(F), s\right)+J^{2}$ then $(h+l)^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=4 h_{1}^{2}$ so we have $2 h_{1}=h+l$. By hypothesis R satisfies $C a p_{L^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-} ; X\right]$ but does not satisfy $C a p_{d_{1}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+} ; X\right]$, where $d_{1}^{-}=h_{1}\left(h_{1}+1\right)$. Since $h+l=2 h_{1}$ and $h \geq l>0$ we have that $h_{1}^{2} \geq h l$ and so

$$
L^{-}+1=h l+1 \leq h_{1}^{2}+1 \leq h_{1}\left(h_{1}+1\right)=d_{1}^{-}
$$

a contradiction.
If $R \simeq\left(M_{h_{1}, l_{1}}(F) \oplus M_{h_{1}, l_{1}}(F)^{o p}, e x c\right)+J$, with $h_{1} \geq l_{1}>0$, then $(h+l)^{2}=M+L=$ $\exp _{\mathbb{Z}_{2}}^{*}(R)=2\left(h_{1}+l_{1}\right)^{2}$ and so we have again a contradiction.
If $R \simeq\left(M_{n}(F+c F), *\right)+J$, where $(a+c b)^{*}=a^{\diamond} \pm c b^{\diamond}$ and $\diamond=t, s$, then we obtain the contradiction $(h+l)^{2}=2 n^{2}$.
If $R \simeq\left(M_{n}(F+c F) \oplus M_{n}(F+c F)^{o p}, e x c\right)+J$ with $n>0$, then $(h+l)^{2}=M+L=$ $\exp _{\mathbb{Z}_{2}}^{*}(R)=4 n^{2}$ and so $2 n=h+l$. As before we can easily obtain a contradiction. It follows that $R \simeq\left(M_{h, l}(F), t\right)+J$.
2. Let now $M^{ \pm}=h^{2}$ and $L^{ \pm}=h(h \mp 1)$, with $h>0$.

If $R \simeq\left(M_{h_{1}, l_{1}}(F), t\right)+J$, then, since $M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)$, we have $4 h^{2}=\left(h_{1}+l_{1}\right)^{2}$ and so $h_{1}+l_{1}=2 h^{2}$. By hypothesis R satisfies $\operatorname{Cap}_{M^{+}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+} ; X\right]$ but does not satisfy $C a p d_{d_{0}^{+}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{+} ; X\right]$ where $d_{0}^{+}=\frac{h_{1}\left(h_{1}+1\right)}{2}+\frac{l_{1}\left(l_{1}+1\right)}{2}$. Since $h_{1}+l_{1}=2 h$ and $h_{1} \geq l_{1}>0$ we have $h^{2} \geq h_{1} l_{1}$ and so it follows that

$$
\begin{gathered}
M^{+}+1=h^{2}+1<h(2 h+1)-h_{1} l_{1}=\frac{h_{1}+l_{1}}{2}\left(h_{1}+l_{1}+1\right)-h_{1} l_{1}= \\
\frac{h_{1}\left(h_{1}+1\right)}{2}+\frac{l_{1}\left(l_{1}+1\right)}{2}=d_{0}^{+}
\end{gathered}
$$

a contradiction.
If $R \simeq\left(M_{h_{1}, l_{1}}(F) \oplus M_{h_{1}, l_{1}}(F)^{o p}, e x c\right)+J$, with $h_{1} \geq l_{1}>0$, or $R \simeq\left(M_{n}(F+c F), *\right)+J$ where $(a+c b)^{*}=a^{\diamond} \pm c b^{\diamond}$ and $\diamond=t, s$ then easily we get a contradiction.
If $R \simeq\left(M_{n}(F+c F) \oplus M_{n}(F+c F)^{o p}, e x c\right)+J$ with $n>0$, then $4 h^{2}=M+L=\exp _{\mathbb{Z}_{2}}^{*}(R)=$ $4 n^{2}$ and so $n=h . ~ R$ satisfies $C a p_{L^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-} ; X\right]$ but R does not satisfy $C a p_{d_{1}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+} ; X\right]$, where $d_{1}^{-}=n^{2}$ and we obtain the following contradiction $L^{-}+1=h(h-1)=h^{2}-h-1 \leq$ $h^{2}=n^{2}=d_{1}^{-}$. So, in this case, $R \simeq\left(M_{h, h}(F), s\right)+J$.
3. Let $M^{ \pm}=h^{2}+l^{2}$ and $L^{ \pm}=2 h l$, with $h \geq l>0$.

If $R \simeq\left(M_{h_{1}, l_{1}}(F), t\right)+J, R \simeq\left(M_{h_{1}, h_{1}}(F), s\right)+J$ or $R \simeq\left(M_{n}(F+c F) \oplus M_{n}(F+c F)^{o p}, e x c\right)+$ J easily we get a contradiction.
If $R \simeq\left(M_{n}(F+c F), *\right)+J$ where $(a+c b)^{*}=a^{\diamond} \pm c b^{\diamond}$ and $\diamond=t, s$ then we have that $2(h+l)^{2}=2 n^{2}$ and so $h+l=n$. Let consider the case when $R \simeq\left(M_{n}(F+c F), *\right)+J$ with $(a+c b)^{*}=a^{t}-c b^{t}$, the other cases are very similar. Since R satisfies $C a p_{L^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-} ; X\right]$ but R does not satisfy $C a p_{d_{1}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{+} ; X\right]$ we obtain

$$
L^{-}+1=2 h l+1<\frac{(h+l+1)(h+l)}{2}=\frac{(n+1) n}{2}=d_{1}^{-}
$$

a contradiction. It follows that $R \simeq\left(M_{h, l}(F) \oplus M_{h_{1}, l_{1}}(F)^{o p}, e x c\right)+J$.
4., 5. Let consider the case $M^{+}=L^{+}=\frac{n(n+1)}{2}$ and $M^{-}=L^{-}=\frac{n(n-1)}{2}$. The proof of the other cases is very similar. As before let $R \simeq\left(M_{n}(F+c F) \oplus M_{n}(F+c F)^{o p}, e x c\right)+J$, then $2 n^{2}=2\left(h_{1}+l_{1}\right)^{2}$ and so $n=h_{1}+l_{1}$ with $h_{1} \geq l_{1}>0 . R$ satisfies $C a p_{M-+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ but does not satisfy $C a p_{d_{0}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Y^{-} ; X\right]$ then

$$
\frac{n(n-1)}{2}+1=\frac{n^{2}-n+2}{2} \leq \frac{n^{2}-1}{2}=\frac{\left(h_{1}+l_{1}\right)^{2}-1}{2}<h_{1}^{2}+l_{1}^{2}=d_{0}^{-}
$$

a contradiction. In all other cases we obtain a contradiction except when $R \simeq\left(M_{n}(F+\right.$ $c F), *)+J$ and $(a+c b)^{*}=a^{t}+c b^{t}$.
6. Let $M^{ \pm}=L^{ \pm}=n^{2}$, with $n>0$.

If $R \simeq\left(M_{h_{1}, l_{1}}(F) \oplus M_{h_{1}, l_{1}}(F)^{o p}, e x c\right)+J$ or $R \simeq\left(M_{n}(F+c F), *\right)+J$ with $(a+c b)^{*}=a^{\diamond} \pm c b^{\diamond}$ and $\diamond=t, s$, then easily we get a contradiction.
If $R \simeq\left(M_{h_{1}, l_{1}}(F), t\right)+J$, then $h_{1}+l_{1}=2 n$ and with analogous reasoning to that of case 2 we obtain a contradiction.
So let assume that $R \simeq\left(M_{h_{1}, h_{1}}(F), s\right)+J$, then $4 n^{2}=4 h_{1}^{2}$ and so $h_{1}=n$. Because R satisfies $C a p_{L^{-}+1}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-} ; X\right]$ but it does not satisfy $C a p_{d_{1}^{-}}^{\left(\mathbb{Z}_{2}, *\right)}\left[Z^{-} ; X\right]$ we obtain $L^{-}+1=$ $n^{2}+1 \leq n(n+1)=h_{1}\left(h_{1}+1\right)=d_{1}^{-}$and this is impossible. It follows that $R \simeq\left(M_{n}(F+\right.$ $\left.c F) \oplus M_{n}(F+c F)^{o p}, e x c\right)+J$.

Thus we have proved that $R \simeq A+J$ where A is a simple $*$-superalgebra with non trivial grading. Then, from Lemmas 4, 5, 6, we obtain that

$$
R \cong\left(A+J_{11}\right) \oplus J_{00} \cong\left(A \otimes N^{\sharp}\right) \oplus J_{00}
$$

where N^{\sharp} is the algebra obtained from N by adjoining a unit element. Since N^{\sharp} is commutative, it follows that $A+J_{11}$ and A satisfy the same $*$-graded identities. Thus var $\mathbb{Z}_{2}(R)=$ $\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(A \oplus J_{00}\right)$ with J_{00} finite dimensional nilpotent $*$-superalgebra. Hence, from the decomposition (1), we get

$$
\mathcal{U}=\operatorname{var}_{\mathbb{Z}_{2}}^{*}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right)=\operatorname{var}_{\mathbb{Z}_{2}}^{*}(A \oplus D)
$$

where D is a finite dimensional $*$-superalgebra with $\exp _{\mathbb{Z}_{2}}^{*}(D)<M+L$ and the theorem is proved.

From Corollary 1 we easily obtain the following

Corollary 2. 1) If $M^{ \pm}=\frac{h(h \pm 1)}{2}+\frac{l(l \pm 1)}{2}$ and $L^{ \pm}=h l$, with $h \geq l>0$, then

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\left(M_{h, l}(F), t\right)\right)
$$

2) If $M^{ \pm}=h^{2}$ and $L^{ \pm}=h(h \mp 1)$, with $h>0$, then

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\left(M_{h, h}(F), s\right)\right)
$$

3) If $M^{ \pm}=h^{2}+l^{2}$ and $L^{ \pm}=2 h l$, with $h \geq l>0$, then

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\left(M_{h, l}(F) \oplus M_{h, l}(F)^{o p}, e x c\right)\right)
$$

4) If $M^{+}=L^{ \pm}=\frac{n(n+1)}{2}, M^{-}=L^{\mp}=\frac{n(n-1)}{2}$, with $n>0$, then

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\left(M_{n}(F+c F), *\right)\right)
$$

where $(a+c b)^{*}=a^{t} \pm c b^{t}$;
5) If $M^{+}=L^{ \pm}=\frac{n(n-1)}{2}, M^{-}=L^{\mp}=\frac{n(n+1)}{2}$, with $n>0$, then

$$
c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\Gamma_{M^{ \pm}+1, L^{ \pm}+1}^{*}\right) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\left(M_{n}(F+c F), *\right)\right)
$$

where $(a+c b)^{*}=a^{s} \pm c b^{s}$;
6) If $M^{ \pm}=L^{ \pm}=n^{2}$, with $n>0$, then

$$
\left.c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(\Gamma_{M^{ \pm}+1, L^{ \pm+1}}^{*}\right) \simeq c_{n}^{\left(\mathbb{Z}_{2}, *\right)}\left(M_{n}(F+c F) \oplus M_{n}(F+c F)^{o p}, e x c\right)\right)
$$

References

1. E. Aljadeff and A. Giambruno, Multialternanting graded polynomials and growth of polynomial identities, Proc. Amer. Math. Soc. 141 (2013), 3055-3065.
2. E. Aljadeff, A. Giambruno and D. La Mattina, Graded polynomial identities and exponential growth, J. Reine Angew. Math. 650 (2011), 83-100.
3. F. Benanti, Asymptotics for Graded Capelli Polynomials, Algebra Repres. Theory 18 (2015), 221-233.
4. F. Benanti, A. Giambruno and M. Pipitone, Polynomial identities on superalgebras and exponential growth, J. Algebra 269 (2003), 422-438.
5. F. Benanti and I. Sviridova Asymptotics for Amitsur's Capelli-type polynomials and verbally prime PI-algebras, Israel J. Math. 156 (2006), 73-91.
6. F. Benanti and A. Valenti, Asymptotics for Capelli Polynomials with Involution, arXiv:1911.04193
7. F. Benanti and A. Valenti, On the asymptotics of Capelli Polynomials, In: O. M. Di Vincenzo, A. Giambruno (eds), Polynomial Identities in Algebras, Springer Indam Series, vol. 44, (2021), 37-56. Math.96(1996), 49-62.
8. O. M. Di Vincenzo and V. Nardozza, On the Existence of the Graded Exponent for Finite Dimensional \mathbb{Z}_{p}-graded Algebras, Canad. Math. Bull. 55 (2012), 271-284.
9. O. M. Di Vincenzo, V.R.T. da Silva and E. Spinelli, Minimal varieties of PI-superalgebras with graded involution, Israel J. Math. 241 (2021), 869-909.
10. A. Giambruno, A. Ioppolo and D. La Mattina, Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions, Algebr. Represent. Theory 22 (2019), 961-976.
11. A. Giambruno and D. La Mattina, Graded polynomial identities and codimensions: computing the exponential growth, Adv. Math. 259 No. 2 (2010), 859-881.
12. A. Giambruno, C. Polcino Milies and A. Valenti, Star-polynomial identities: Computing the exponential growth of the codimensions, J. Algebra 469 (2017), 302-322.
13. A. Giambruno, R.B. dos Santos and A.C. Vieira, Identities of $*$-superalgebras and almost polynomial growth, Linear Multilinear Algebra 64 (2016), 484-501.
14. A. Giambruno and M. Zaicev, On codimensions growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155.
15. A. Giambruno and M. Zaicev, Exponential codimension growth of P.I. algebras: an exact estimate, Adv. Math. 142 (1999), 221-243.
16. A. Giambruno and M. Zaicev, Involution codimensions of finite dimensional algebras and exponential growth, J. Algebra 222 (1999), 471-484.
17. A. Giambruno and M. Zaicev, Asymptotics for the Standard and the Capelli Identities, Israel J. Math. 135 (2003), 125-145.
18. A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotics Methods, Surveys, vol. 122, American Mathematical Society, Providence, RI, 2005.
19. A.S. Gordienko, Amitsur's conjecture for associative algebras with a generalized Hopf action, J. Pure Appl. Algebra 217 (2013), 1395-1411.
20. A. Ioppolo, The exponent for superalgebras with superinvolution, Linear Algebra Appl. 555 (2018), 1-20.
21. A. Regev, Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972), 131-152.
22. R.B. dos Santos, *-Superalgebras and exponential growth, J. Algebra 473 (2017), 283-306.

Dipartimento di Matematica e Informatica, Università di Palermo, via Archirafi, 34, 90123 Palermo,Italy

Email address: francescasaviella.benanti@unipa.it
Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
Email address: angela.valenti@unipa.it

[^0]: 2010 Mathematics Subject Classification. Primary 16R10, 16R50; Secondary 16W50, 16P90.
 Key words and phrases. Superalgebras, Graded Involutions, Capelli polynomials, Codimension, Growth.

