*-GRADED CAPELLI POLYNOMIALS AND THEIR ASYMPTOTICS

F. S. BENANTI AND A. VALENTI

ABSTRACT. Let $F\langle Y \cup Z, * \rangle$ be the free *-superalgebra over a field F of characteristic zero and let $\Gamma_{M^{\pm},L^{\pm}}^{*}$ be the $T_{\mathbb{Z}_{2}}^{*}$ -ideal generated by the set of the *-graded Capelli polynomials $Cap_{M^{+}}^{(\mathbb{Z}_{2},*)}[Y^{+},X]$, $Cap_{M^{-}}^{(\mathbb{Z}_{2},*)}[Y^{-},X]$, $Cap_{L^{+}}^{(\mathbb{Z}_{2},*)}[Z^{+},X]$, $Cap_{L^{-}}^{(\mathbb{Z}_{2},*)}[Z^{-},X]$ alternating on M^{+} symmetric variables of homogeneous degree zero, on M^{-} skew variables of homogeneous degree zero, on L^{+} symmetric variables of homogeneous degree one and on L^{-} skew variables of homogeneous degree one, respectively. We study the asymptotic behavior of the sequence of *-graded codimensions of $\Gamma_{M^{\pm},L^{\pm}}^{*}$. In particular we prove that the *-graded codimensions of the finite dimensional simple *-superalgebras are asymptotically equal to the *-graded codimensions of $\Gamma_{M^{\pm},L^{\pm}}^{*}$, for some fixed natural numbers M^{+}, M^{-}, L^{+} and L^{-} .

1. INTRODUCTION

This paper is devoted to the study of the *-superalgebras, i.e. superalgebras endowed with a graded involution, and the asymptotic behavior of their *-graded codimensions. If A is an algebra over a field F of characteristic zero an effective way of measuring the polynomial identities satisfied by A is provided by its sequence of codimensions $\{c_n(A)\}_{n\geq 1}$ whose n-th therm is the dimension of the space of multilinear polynomials in n variables in the corresponding relatively free algebra of countable rank. Such sequence was introduced by Regev in [21] and, in characteristic zero, gives a quantitative measure of the identities satisfied by a given algebra. The most important result of the sequence of codimensions proved in [21] states that if A is a PI-algebra, i.e. it satisfies a non trivial polynomial identity, then $\{c_n(A)\}_{n\geq 1}$ is exponential bounded. Later, Giambruno and Zaicev ([14], [15]) answered in a positive way to a well known conjecture of Amitsur proving the existence and the integrality of

$$\exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}$$

the exponent of A. These results, in the last years, have been extended to algebras with an additional structure as algebras with involution ([1], [12]), superalgebras ([4]) and more generally algebras graded by a group ([2], [8], [11], [16]), algebras with a generalised H-action ([19]), superalgebras with graded involution ([22]) and superalgebras with superinvolution ([20]).

Let $A = A_0^+ \oplus A_0^- \oplus A_1^+ \oplus A_1^-$ be a *-superalgebra and let $c_n^{(\mathbb{Z}_2,*)}(A)$, $n = 1, 2, \ldots$, be its sequence of *-graded codimensions. If A is a PI-algebra it can be easily proved that the relation between codimensions and *-graded codimensions is given by $c_n(A) \leq c_n^{(\mathbb{Z}_2,*)}(A) \leq 4^n c_n(A)$. Hence, as in the ordinary case, the sequence of *-graded codimensions is exponentially bounded. Moreover, since a *-superalgebra can be viewed as an algebra with a generalized FG-action where $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ acts on it by automorphism and antiautomorphism, in

²⁰¹⁰ Mathematics Subject Classification. Primary 16R10, 16R50; Secondary 16W50, 16P90.

Key words and phrases. Superalgebras, Graded Involutions, Capelli polynomials, Codimension, Growth.

the finite dimensional case, the existence of the *-graded exponent has been confirmed by Gordienko in [19].

Let M^+ , M^- , L^+ and L^- be natural numbers and let's denote by $\Gamma_{M^{\pm},L^{\pm}}^*$ the $T_{\mathbb{Z}_2}^*$ -ideal generated by the set of the *-graded Capelli polynomials $Cap_{M^+}^{(\mathbb{Z}_2,*)}[Y^+, X]$, $Cap_{M^-}^{(\mathbb{Z}_2,*)}[Y^-, X]$, $Cap_{L^+}^{(\mathbb{Z}_2,*)}[Z^+, X]$, $Cap_{L^-}^{(\mathbb{Z}_2,*)}[Z^-, X]$ alternating on M^+ symmetric variables of homogeneous degree zero, on M^- skew variables of homogeneous degree zero, on L^+ symmetric variables of homogeneous degree one and on L^- skew variables of homogeneous degree one, respectively. In this paper we find a relation among the *-graded codimensions of the finite dimensional simple *-superalgebras and the *-graded codimensions of $\Gamma_{M^{\pm},L^{\pm}}^*$ proving their asymptotic equality. Recall that two sequences $a_n, b_n, n = 1, 2, \ldots$, are asymptotically equal, $a_n \simeq b_n$, if $\lim_{n\to+\infty} \frac{a_n}{b_n} = 1$. In the ordinary case (see [17]) it was proved the asymptotic equality between the codimensions of the Capelli polynomials Cap_{k^2+1} and the codimensions of the matrix algebra $M_k(F)$. In [3] this result was extended to finite dimensional simple superalgebras and in [6] the authors found similar result in the case of algebras with involution (for a survey see [7]). The link between the asymptotic of the codimensions of the Amitsur's Capelli-type polynomials and the verbally prime algebras was studied in [5].

2. Preliminaries

Throughout this paper, F will be a field of characteristic zero and A an associative algebra over F. We say that A is a \mathbb{Z}_2 -graded algebra or a superalgebra if it can be decomposed into a direct sum of subspaces $A = A_0 \oplus A_1$ such that $A_0A_0 + A_1A_1 \subseteq A_0$ and $A_0A_1 + A_1A_0 \subseteq A_1$. The elements of A_0 are called homogeneous of degree zero (even elements) and those of A_1 homogeneous of degree one (odd elements).

Recall that an *involution* * on an algebra A is just an antiautomorphism on A of order at most 2. We write $A^+ = \{a \in A \mid a^* = a\}$ and $A^- = \{a \in A \mid a^* = -a\}$ for the set of symmetric and skew symmetric elements of A respectively.

Given a superalgebra $A = A_0 \oplus A_1$ endowed with an involution *, we say that * is a graded involution if it preserves the homogeneous components of A, i.e. if $A_i^* \subseteq A_i$, i = 0, 1. A superalgebra endowed with a graded involution is called *-superalgebra. It is clear that a superalgebra A is a *-superalgebra if and only if the subspaces A^+ and A^- are graded subspaces, i.e. $A^+ = A_0^+ \oplus A_1^+$ and $A^- = A_0^- \oplus A_1^-$. Thus, since char F = 0, the *-superalgebra A can be written as

$$A = A_0^+ \oplus A_0^- \oplus A_1^+ \oplus A_1^-$$

where, for $i = 0, 1, A_i^+ = \{a \in A_i \mid a^* = a\}$ and $A_i^- = \{a \in A_i \mid a^* = -a\}$ denote the sets of homogeneous symmetric and skew elements of A_i , respectively. We remark that an algebra with involution * and trivial \mathbb{Z}_2 -grading is a *-superalgebra.

Let A be a *-superalgebra and let I be an ideal of A, we say that I is a *-graded ideal of A if it is homogeneous in the \mathbb{Z}_2 -grading and invariant under *. Moreover A is called *simple* *-superalgebra if $A^2 \neq \{0\}$ and it has no non-zero *-graded ideals.

Let $X = \{x_1, x_2, \ldots\}$ be a countable set of non commutative variables and $F\langle X \rangle$ the free associative algebra on X over F. We write $X = Y \cup Z$ as the disjoint union of two countable sets of variables $Y = \{y_1, y_2, \ldots\}$ and $Z = \{z_1, z_2, \ldots\}$, then $F\langle X \rangle = F\langle Y \cup Z \rangle =$ $\langle y_1, z_1, y_2, z_2, \ldots \rangle$ has a natural structure of free superalgebra if we require that the variables from Y have degree zero and the variables from Z have degree one. This algebra is said to be the *free superalgebra* over F. Moreover, if we write each set as the disjoint union of two other infinite sets of symmetric and skew elements, respectively, then we obtain the *free* *-superalgebra

$$F\langle Y \cup Z, * \rangle = F\langle y_1^+, y_1^-, z_1^+, z_1^-, \ldots \rangle$$

where $y_i^+ = y_i + y_i^*$ denotes a symmetric variable of even degree, $y_i^- = y_i - y_i^*$ a skew variable of even degree, $z_i^+ = z_i + z_i^*$ a symmetric variable of odd degree and $z_i^- = z_i - z_i^*$ a skew variable of odd degree.

An element $f = f(y_1^+, \ldots, y_n^+, y_1^-, \ldots, y_m^-, z_1^+, \ldots, z_p^+, z_1^-, \ldots, z_q^-)$ of $F\langle Y \cup Z, * \rangle$ is a **-graded polynomial identity* for a ***-superalgebra A if

$$f(a_{1,0}^+,\ldots,a_{n,0}^+,a_{1,0}^-,\ldots,a_{m,0}^-,a_{1,1}^+,\ldots,a_{p,1}^+,a_{1,1}^-,\ldots,a_{q,1}^-)=0_A$$

for every $a_{1,0}^+, \ldots, a_{n,0}^+ \in A_0^+$, $a_{1,0}^-, \ldots, a_{m,0}^- \in A_0^-$, $a_{1,1}^+, \ldots, a_{p,1}^+ \in A_1^+$, $a_{1,1}^-, \ldots, a_{q,1}^- \in A_1^$ and we write $f \equiv 0$. The set of all *-graded polynomial identities satisfied by A

$$Id^*_{\mathbb{Z}_2}(A) = \{ f \in F \langle Y \cup Z, * \rangle \mid f \equiv 0 \text{ on } A \}$$

is an ideal of $F\langle Y \cup Z, * \rangle$ called the *ideal of *-graded identities of A*. It is easy to show that $Id^*_{\mathbb{Z}_2}(A)$ is a $T^*_{\mathbb{Z}_2}$ -*ideal* of $F\langle Y \cup Z, * \rangle$, i.e. a two-sided ideal invariant under all endomorphisms of the free *-superalgebra that preserve the superstructure and commute with the graded involution *. Now, let

$$P_n^{(\mathbb{Z}_2,*)} = \{ w_{\sigma(1)}, \dots, w_{\sigma(n)} \mid \sigma \in S_n, w_i \in \{ y_i^+, y_i^-, z_i^+, z_i^- \}, i = 1, \dots, n \}$$

be the space of multilinear polynomials of degree n in the variables $y_1^+, y_1^-, z_1^+, z_1^-, \ldots, y_n^+, y_n^-, z_n^+, z_n^-, (\text{i.e.}, y_i^+, y_i^-, z_i^+ \text{ or } z_i^- \text{ appears in each monomial at degree 1). Since char <math>F=0$, it is well known that $Id_{\mathbb{Z}_2}^*(A)$ is completely determined by its multilinear polynomials, then the study of $Id_{\mathbb{Z}_2}^*(A)$ is equivalent to that of $Id_{\mathbb{Z}_2}^*(A) \cap P_n^{(\mathbb{Z}_2,*)}$ for all $n \geq 1$. As in the ordinary case (see [21]), one defines the *n*-th *-graded codimension $c_n^{(\mathbb{Z}_2,*)}(A)$ of the *-superalgebra A as

$$c_n^{(\mathbb{Z}_2,*)}(A) = \dim_F \frac{P_n^{(\mathbb{Z}_2,*)}}{P_n^{(\mathbb{Z}_2,*)} \cap Id_{\mathbb{Z}_2}^*(A)}$$

If A is a PI-algebra, i.e. satisfies an ordinary polynomial identity, then the sequence $\{c_n^{(\mathbb{Z}_2,*)}(A)\}_{n\geq 1}$ is exponentially bounded (see [13, Lemma 3.1]). If A is a finite dimensional PI-algebra, Gordienko in [19] proved that

$$\exp_{\mathbb{Z}_2}^*(A) = \lim_{n \to \infty} \sqrt[n]{c_n^{(\mathbb{Z}_2, *)}(A)}$$

exists and is a non-negative integer which is called the *-graded exponent of the *-superalgebra A. It is often more useful to study *-superalgebras up to *-graded PI-equivalence, then it is convenient to use the language of varieties. Let I be a $T^*_{\mathbb{Z}_2}$ -ideal of $F\langle Y \cup Z, * \rangle$ and $\mathcal{V}^*_{\mathbb{Z}_2}$ the variety of *-superalgebras associated to I, i.e. the class of all the *-superalgebras A such that I is contained in $Id^*_{\mathbb{Z}_2}(A)$. We put $I = Id^*_{\mathbb{Z}_2}(\mathcal{V}^*_{\mathbb{Z}_2})$. When $Id^*_{\mathbb{Z}_2}(\mathcal{V}^*_{\mathbb{Z}_2}) = Id^*_{\mathbb{Z}_2}(A)$ we say that the variety $\mathcal{V}^*_{\mathbb{Z}_2}$ is generated by the *-superalgebra A and we write $\mathcal{V}^*_{\mathbb{Z}_2} = \operatorname{var}^*_{\mathbb{Z}_2}(A)$ and set $\exp^*_{\mathbb{Z}_2}(\mathcal{V}^*_{\mathbb{Z}_2}) = \exp^*_{\mathbb{Z}_2}(A)$ the *-graded exponent of the variety $\mathcal{V}^*_{\mathbb{Z}_2}$, if $\exp^*_{\mathbb{Z}_2}(A)$ exists.

set $\exp_{\mathbb{Z}_2}^*(\mathcal{V}_{\mathbb{Z}_2}^*) = \exp_{\mathbb{Z}_2}^*(A)$ the *-graded exponent of the variety $\mathcal{V}_{\mathbb{Z}_2}^*$, if $\exp_{\mathbb{Z}_2}^*(A)$ exists. Now, if $f \in F\langle Y \cup Z, * \rangle$ we denote by $\langle f \rangle_{\mathbb{Z}_2}^*$ the $T_{\mathbb{Z}_2}^*$ -ideal generated by f. Also for a set of polynomials $V \subset F\langle Y \cup Z, * \rangle$ we write $\langle V \rangle_{\mathbb{Z}_2}^*$ to indicate the $T_{\mathbb{Z}_2}^*$ -ideal generated by V.

In PI-theory a prominent role is played by the Capelli polynomial. Let us recall that, for any positive integer m, the m-th Capelli polynomial is the element of $F\langle X \rangle$ defined as

$$Cap_m[T, X] = Cap_m(t_1, \dots, t_m; x_1, \dots, x_{m-1}) =$$
$$= \sum_{\sigma \in S_m} (\operatorname{sgn}\sigma) t_{\sigma(1)} x_1 t_{\sigma(2)} \cdots t_{\sigma(m-1)} x_{m-1} t_{\sigma(m)}$$

where S_m is the symmetric group on $\{1, \ldots, m\}$. In particular we write

$$Cap_{m}^{(\mathbb{Z}_{2},*)}[Y^{+},X], \ Cap_{m}^{(\mathbb{Z}_{2},*)}[Y^{-},X], \ Cap_{m}^{(\mathbb{Z}_{2},*)}[Z^{+},X] \ \text{ and } \ Cap_{m}^{(\mathbb{Z}_{2},*)}[Z^{-},X]$$

to indicate the *m*-th *-graded Capelli polynomial alternating in the symmetric variables of degree zero y_1^+, \ldots, y_m^+ , in the skew variables of degree zero y_1^-, \ldots, y_m^- , in the symmetric variables of degree one z_1^+, \ldots, z_m^+ and in the skew variables of degree one z_1^-, \ldots, z_m^- , respectively (x_1, \ldots, x_{m-1}) are arbitrary variables). Let $\overline{Cap}_m^{(\mathbb{Z}_2,*)}[Y^+, X]$ denote the set of 2^{m-1} polynomials obtained from $Cap_m^{(\mathbb{Z}_2,*)}[Y^+, X]$ by deleting any subset of variables x_i (by evaluating the variables x_i to 1 in all possible way). In a similar way we define $\overline{Cap}_m^{(\mathbb{Z}_2,*)}[Y^-, X]$, $\overline{Cap}_m^{(\mathbb{Z}_2,*)}[Z^+, X]$ and $\overline{Cap}_m^{(\mathbb{Z}_2,*)}[Z^-, X]$. If M^+, M^-, L^+ and L^- are natural numbers, we denote by

$$\Gamma_{M^{\pm},L^{\pm}}^{*} = \langle \overline{Cap}_{M^{+}}^{(\mathbb{Z}_{2},*)}[Y^{+},X], \overline{Cap}_{M^{-}}^{(\mathbb{Z}_{2},*)}[Y^{-},X], \overline{Cap}_{L^{+}}^{(\mathbb{Z}_{2},*)}[Z^{+},X], \overline{Cap}_{L^{-}}^{(\mathbb{Z}_{2},*)}[Z^{-},X] \rangle_{\mathbb{Z}_{2}}^{*}$$

the $T^*_{\mathbb{Z}_2}$ -ideal generated by $\overline{Cap}_{M^+}^{(\mathbb{Z}_2,*)}[Y^+,X], \overline{Cap}_{M^-}^{(\mathbb{Z}_2,*)}[Y^-,X], \overline{Cap}_{L^+}^{(\mathbb{Z}_2,*)}[Z^+,X]$ and $\overline{Cap}_{L^-}^{(\mathbb{Z}_2,*)}[Z^-,X].$

The purpose of this paper is to find a close relation among the asymptotic behavior of the *-graded codimensions of any finite dimensional simple *-superalgebra $A = A_0^+ \oplus A_0^- \oplus A_1^+ \oplus A_1^-$ and the asymptotic behavior of the *-graded codimensions of $\Gamma^*_{M^{\pm}+1,L^{\pm}+1}$, where $M^+ = \dim_F A_0^+, M^- = \dim_F A_0^-, L^+ = \dim_F A_1^+$ and $L^- = \dim_F A_1^-$. More precisely, we characterize the $T^*_{\mathbb{Z}_2}$ -ideal $Id^*_{\mathbb{Z}_2}(A)$ showing that

$$\Gamma^*_{M^{\pm}+1,L^{\pm}+1} = Id^*_{\mathbb{Z}_2}(A \oplus D),$$

where D is a finite dimensional *-superalgebra such that $\exp_{\mathbb{Z}_2}^*(D) < \exp_{\mathbb{Z}_2}^*(A)$. Moreover we obtain the asymptotic equality

$$c_n^{(\mathbb{Z}_2,*)}(\Gamma^*_{M^{\pm}+1,L^{\pm}+1}) \simeq c_n^{(\mathbb{Z}_2,*)}(A).$$

3. Basic Results

Let A be a finite dimensional *-superalgebra over a field F of characteristic zero. From now on we assume that F is algebraically closed. In fact, since F has characteristic zero, $Id_{\mathbb{Z}_2}^*(A) = Id_{\mathbb{Z}_2}^*(A \otimes_F L)$ for any extension field L of F then also the *-graded codimensions of A do not change upon extension of the base field. By the generalization of the Wedderburn-Malcev Theorem (see [13, Theorem 7.3]), we can write $A = A_1 \oplus \cdots \oplus A_s + J$, where A_1, \ldots, A_s are simple *-superalgebras and J = J(A) is the Jacobson radical of A which is a *-graded ideal.

We say that a subalgebra $A_{i_1} \oplus \cdots \oplus A_{i_k}$ of A, where A_{i_1}, \ldots, A_{i_k} are distinct simple components, is *admissible* if for some permutation (l_1, \ldots, l_k) of (i_1, \ldots, i_k) we have that $A_{l_1}J \cdots JA_{l_k} \neq 0$. Moreover, if $A_{i_1} \oplus \cdots \oplus A_{i_k}$ is an admissible subalgebra of A then $A' = A_{i_1} \oplus \cdots \oplus A_{i_k} + J$ is called a *reduced* algebra.

The notion of admissible *-superalgebra is closely linked to that of *-graded exponent in fact, in [19], Gordienko proved that $\exp_{\mathbb{Z}_2}^*(A) = d$ where d is the maximal dimension of an admissible subalgebra of A. It follows immediately that

Remark 1. If A is a simple *-superalgebra then $\exp_{\mathbb{Z}_2}^*(A) = \dim_F A$.

By [10, Theorem 5.3] the Gordienko's result on the existence of the *-graded exponent can be actually extended to any finitely generated PI-*-superalgebra since it satisfies the same *-graded polynomial identities of a finite-dimensional *-superalgebra.

In [17] it was showed that reduced superalgebras are building blocks of any proper variety. Here we obtain the analogous result for varieties of *-superalgebras.

Let's first start with the following

$$c_n^{(\mathbb{Z}_2,*)}(A), c_n^{(\mathbb{Z}_2,*)}(B) \le c_n^{(\mathbb{Z}_2,*)}(A \oplus B) \le c_n^{(\mathbb{Z}_2,*)}(A) + c_n^{(\mathbb{Z}_2,*)}(B).$$

If A and B are finitely generated *-superalgebras, then

$$\exp_{\mathbb{Z}_2}^*(A \oplus B) = max\{\exp_{\mathbb{Z}_2}^*(A), \exp_{\mathbb{Z}_2}^*(B)\}.$$

Proof. The proof is the same of the proof of the Lemma 1 in [17].

We have the following

Theorem 1. Let A be a finitely generated *-superalgebra satisfying an ordinary polynomial identity. Then there exists a finite number of reduced *-superalgebras B_1, \ldots, B_t and a finite dimensional *-superalgebra D such that

$$\operatorname{var}_{\mathbb{Z}_2}^*(A) = \operatorname{var}_{\mathbb{Z}_2}^*(B_1 \oplus \cdots \oplus B_t \oplus D)$$

with $\operatorname{exp}_{\mathbb{Z}_2}^*(A) = \operatorname{exp}_{\mathbb{Z}_2}^*(B_1) = \cdots = \operatorname{exp}_{\mathbb{Z}_2}^*(B_t)$ and $\operatorname{exp}_{\mathbb{Z}_2}^*(D) < \operatorname{exp}_{\mathbb{Z}_2}^*(A).$

Proof. The proof follows closely the proof given in [3, Theorem 3]. Since A is a finitely generated *-superalgebra, by [10], there exists a finite dimensional *-superalgebra B such that $Id_{Z_2}^*(A) = Id_{Z_2}^*(B)$. Therefore we may assume that $A = A_0^+ \oplus A_0^- \oplus A_1^+ \oplus A_1^-$ is a finite dimensional *-superalgebra over F satisfying an ordinary polynomial identity. Also, by [13, Theorem 7.3] we can write

$$A = A_1 \oplus \dots \oplus A_s + J$$

where A_1, \ldots, A_s are simple *-superalgebras and J = J(A) is the Jacobson radical of A which is a *-graded ideal. Let $\exp_{\mathbb{Z}_2}^*(A) = d$. Then there exist distinct simple *-superalgebras A_{j_1}, \ldots, A_{j_k} such that

$$A_{j_1}J\cdots JA_{j_k}\neq 0$$
 and $\dim_F(A_{j_1}\oplus\cdots\oplus A_{j_k})=d.$

Let $\Gamma_1, \ldots, \Gamma_t$ be all possible subset of $\{1, \ldots, s\}$ such that, if $\Gamma_j = \{j_1, \ldots, j_k\}$ then $\dim_F(A_{j_1} \oplus \cdots \oplus A_{j_k}) = d$ and $A_{\sigma(j_1)}J \cdots JA_{\sigma(j_k)} \neq 0$ for some permutation $\sigma \in S_k$. For any such Γ_j , $j = 1, \ldots, t$, then we put $B_j = A_{j_1} \oplus \cdots \oplus A_{j_k} + J$. It follows, by the characterization of the *-graded exponent, that

$$\exp_{\mathbb{Z}_2}^*(B_1) = \dots = \exp_{\mathbb{Z}_2}^*(B_t) = d = \exp_{\mathbb{Z}_2}^*(A).$$

Let $D = D_1 \oplus \cdots \oplus D_p$, where D_1, \ldots, D_p are all *-graded subalgebras of A of the type $A_{i_1} \oplus \cdots \oplus A_{i_r} + J$, with $1 \leq i_1 < \cdots < i_r \leq s$ and $\dim_F(A_{i_1} \oplus \cdots \oplus A_{i_r}) < d$. Then, by the previous lemma, we have that $\exp_{\mathbb{Z}_2}^*(D) < \exp_{\mathbb{Z}_2}^*(A)$. Now, we want to prove that $\exp_{\mathbb{Z}_2}^*(B_1 \oplus \cdots \oplus B_t \oplus D) = \exp_{\mathbb{Z}_2}^*(A)$. The inclusion

$$\operatorname{var}_{\mathbb{Z}_2}^*(B_1 \oplus \cdots \oplus B_t \oplus D) \subseteq \operatorname{var}_{\mathbb{Z}_2}^*(A)$$

follows since $D, B_i \in \operatorname{var}_{\mathbb{Z}_2}^*(A), \forall i = 1, \dots, t$.

Let's consider a multilinear polynomial $f = f(y_1^+, \ldots, y_n^+, y_1^-, \ldots, y_m^-, z_1^+, \ldots, z_p^+, z_1^-, \ldots, z_q^-)$ such that $f \notin Id^*_{\mathbb{Z}_2}(A)$. We shall prove that $f \notin Id^*_{\mathbb{Z}_2}(B_1 \oplus \cdots \oplus B_t \oplus D)$. Since $f \notin Id^*_{\mathbb{Z}_2}(A)$

there exist $a_{1,0}^+, \ldots, a_{n,0}^+ \in A_0^+$, $a_{1,0}^-, \ldots, a_{m,0}^- \in A_0^-$, $a_{1,1}^+, \ldots, a_{p,1}^+ \in A_1^+$ and $a_{1,1}^-, \ldots, a_{q,1}^- \in A_1^-$ such that

$$f(a_{1,0}^+,\ldots,a_{n,0}^+,a_{1,0}^-,\ldots,a_{m,0}^-,a_{1,1}^+,\ldots,a_{p,1}^+,a_{1,1}^-,\ldots,a_{q,1}^-)\neq 0$$

From the linearity of f we can assume that $a_{i,0}^+, a_{i,0}^-, a_{i,1}^+, a_{i,1}^- \in A_1 \cup \cdots \cup A_s \cup J$. Since $A_iA_j = 0$ for $i \neq j$, from the property of the *-graded exponent we have

$$a_{1,0}^+, \dots, a_{n,0}^+, a_{1,0}^-, \dots, a_{m,0}^-, a_{1,1}^+, \dots, a_{p,1}^+, a_{1,1}^-, \dots, a_{q,1}^- \in A_{j_1} \oplus \dots \oplus A_{j_k} + J$$

for some A_{j_1}, \ldots, A_{j_k} such that $\dim_F(A_{j_1} \oplus \cdots \oplus A_{j_k}) \leq d$. Thus f is not an identity for one of the algebras B_1, \ldots, B_t, D . Hence $f \notin Id^*_{\mathbb{Z}_2}(B_1 \oplus \cdots \oplus B_t \oplus D)$. In conclusion

$$\operatorname{var}_{\mathbb{Z}_2}^*(A) \subseteq \operatorname{var}_{\mathbb{Z}_2}^*(B_1 \oplus \cdots \oplus B_t \oplus D)$$

and the proof is complete.

An application of Theorem 1 is given in terms of *-graded codimensions.

Corollary 1. Let A be a finitely generated PI-*-superalgebra. Then there exists a finite number of reduced *-superalgebras B_1, \ldots, B_t such that

$$c_n^{(\mathbb{Z}_2,*)}(A) \simeq c_n^{(\mathbb{Z}_2,*)}(B_1 \oplus \cdots \oplus B_t)$$

Proof. By Theorem 1 there is a finite number of reduced *-superalgebras B_1, \ldots, B_t and a finite dimensional *-superalgebra D such that

$$\operatorname{var}_{\mathbb{Z}_2}^*(A) = \operatorname{var}_{\mathbb{Z}_2}^*(B_1 \oplus \cdots \oplus B_t \oplus D)$$

with $\exp_{\mathbb{Z}_2}^*(A) = \exp_{\mathbb{Z}_2}^*(B_1) = \dots = \exp_{\mathbb{Z}_2}^*(B_t)$ and $\exp_{\mathbb{Z}_2}^*(D) < \exp_{\mathbb{Z}_2}^*(A)$. By Lemma 1,

 $c_n^{(\mathbb{Z}_2,*)}(B_1 \oplus \cdots \oplus B_t) \le c_n^{(\mathbb{Z}_2,*)}(B_1 \oplus \cdots \oplus B_t \oplus D) \le c_n^{(\mathbb{Z}_2,*)}(B_1 \oplus \cdots \oplus B_t) + c_n^{(\mathbb{Z}_2,*)}(D).$

Recalling that $\exp_{\mathbb{Z}_2}^*(D) < \exp_{\mathbb{Z}_2}^*(B_1) = \exp_{\mathbb{Z}_2}^*(B_1 \oplus \cdots \oplus B_t)$ we have that

$$(a_n^{(\mathbb{Z}_2,*)}(A) \simeq c_n^{(\mathbb{Z}_2,*)}(B_1 \oplus \cdots \oplus B_t)$$

and the proof of the corollary is complete.

The following results give us a characterization of the varieties of *-superalgebras satisfying a Capelli identity. Let's start with the following lemma

Lemma 2. Let M^+ , M^- , L^+ and L^- be natural numbers. If A is a *-superalgebra satisfying the *-graded Capelli polynomials $Cap_{M^+}^{(\mathbb{Z}_2,*)}[Y^+,X]$, $Cap_{M^-}^{(\mathbb{Z}_2,*)}[Y^-,X]$, $Cap_{L^+}^{(\mathbb{Z}_2,*)}[Z^+,X]$ and $Cap_{L^-}^{(\mathbb{Z}_2,*)}[Z^-,X]$, then A satisfies the Capelli identity $Cap_k(x_1,\ldots,x_k;\bar{x}_1,\ldots,\bar{x}_{k-1})$, where $k = M^+ + M^- + L^+ + L^-$.

Proof. Let $k = M^+ + M^- + L^+ + L^-$, then we obtain immediately the thesis if we observe that

$$Cap_{k}(x_{1},...,x_{k};x_{1},...,x_{k-1}) = Cap_{k}(\frac{y_{1}^{+}+y_{1}^{-}}{2}+\frac{z_{1}^{+}+z_{1}^{-}}{2},...,\frac{y_{k}^{+}+y_{k}^{-}}{2}+\frac{z_{k}^{+}+z_{k}^{-}}{2};\bar{x}_{1},...,\bar{x}_{k-1})$$

is a linear combinations of *-graded Capelli polynomials alternating or in $m^+ \ge M^+$ symmetric variables of zero degree, or in $m^- \ge M^-$ skew variables of zero degree, or in $l^+ \ge L^+$ symmetric variables of one degree or in $l^- \ge L^-$ skew variables of one degree.

Theorem 2. Let $\mathcal{V}_{\mathbb{Z}_2}^*$ be a variety of *-superalgebras. If $\mathcal{V}_{\mathbb{Z}_2}^*$ satisfies the Capelli identity of some rank, then $\mathcal{V}_{\mathbb{Z}_2}^* = \operatorname{var}_{\mathbb{Z}_2}^*(A)$, for some finitely generated *-superalgebra A.

Proof. The proof follows very closely the proof given in [18, Theorem 11.4.3] for superalgebras.

4. The *-superalgebra $UT^*_{\mathbb{Z}_2}(A_1,\ldots,A_m)$

In this section we recall the construction of the *-superalgebra $UT^*_{\mathbb{Z}_2}(A_1,\ldots,A_m)$ given in section 3 of [9] and we investigate the link between the degrees of the *-graded Capelli polynomials and the *-graded identities of this *-superalgebra.

If F is an algebraically closed field of characteristic zero, then, up to graded isomorphisms, the only finite dimensional simple *-superalgebras are the following (see [13, Theorem 7.6])

- (1) $(M_{h,l},\diamond)$, with $h \ge l \ge 0, h \ne 0$;
- (2) $(M_{h,l} \oplus M_{h,l}^{op}, exc)$, with $h \ge l \ge 0, h \ne 0$, and induced grading;
- (3) $(M_n + cM_n, \star)$, with involution given by $(a + cb)^{\star} = a^{\diamond} cb^{\diamond}$;
- (4) $(M_n + cM_n, \dagger)$, with involution given by $(a + cb)^{\dagger} = a^{\diamond} + cb^{\diamond}$;
- (5) $((M_n + cM_n) \oplus (M_n + cM_n)^{op}, exc)$, with grading $(M_n \oplus M_n^{op}, c(M_n \oplus M_n^{op}))$;

where $\diamond = t, s$ denotes the transpose or symplectic involution and exc is the exchange involution. Remember that the symplectic involution can occur only when h = l. Moreover $M_h = M_h(F)$ is the superalgebra of $h \times h$ matrices over F with trivial grading, $M_{h,l} = M_{h+l}(F)$ is the superalgebra with grading $\left(\begin{pmatrix} F_{11} & 0 \\ 0 & F_{22} \end{pmatrix}, \begin{pmatrix} 0 & F_{12} \\ F_{21} & 0 \end{pmatrix} \right)$, where F_{11} , F_{12} , F_{21} , F_{22} are $h \times h$, $h \times l$, $l \times h$ and $l \times l$ matrices respectively, $h \ge l \ge 0$, $h \ne 0$ and $M_n + cM_n = M_n(F \oplus cF)$ denotes the simple superalgebra with grading $(M_n(F), cM_n(F))$, where $c^2 = 1$.

Let (A_1, \ldots, A_m) be a *m*-tuple of finite dimensional simple *-superalgebras. For every $k = 1, \ldots, m$, the size of A_k is given by

$$s_{k} = \begin{cases} h_{k} + l_{k} & \text{if } A_{k} = M_{h_{k}, l_{k}} \text{ or } A_{k} = M_{h_{k}, l_{k}} \oplus M_{h_{k}, l_{k}}^{op}; \\ 2n_{k} & \text{if } A_{k} = M_{n_{k}} + cM_{n_{k}} \text{ or } A_{k} = (M_{n_{k}} + cM_{n_{k}}) \oplus (M_{n_{k}} + cM_{n_{k}})^{op} \end{cases}$$

and, set $\eta_0 = 0$, let $\eta_k = \sum_{i=1}^k s_i$ and $Bl_k = \{\eta_{k-1} + 1, \dots, \eta_k\}$. Moreover, we denote by γ_m the orthogonal involution defined on the matrix algebra M_m by sending each $a \in M_m$ into the element $a^{\gamma_m} \in M_m$ obtained reflecting a along its secondary diagonal. In particular for any matrix unit $e_{i,j}$ of M_m , $e_{i,j}^{\gamma_m} = e_{m-j+1,m-i+1}$.

Then, we have a monomorphism of *-algebra

$$\Delta: \bigoplus_{k=1}^m A_k \to (M_{2\eta_m}, \gamma_{2\eta_m})$$

defined by

$$(c_1, \dots, c_m) \to \begin{pmatrix} \bar{a}_1 & & & & \\ & \ddots & & & & \\ & & \bar{a}_m & & & \\ & & & \bar{b}_m & & \\ & & & & \ddots & \\ & & & & & \bar{b}_1 \end{pmatrix}$$

where the elements \bar{a}_i and \bar{b}_i are defined as follows:

• if $c_i \in (M_{h,l};\diamond)$, then $\bar{a}_i = c_i$ and $\bar{b}_i = (c_i^{\diamond})^{\gamma_{h+l}};$

• if
$$c_i = (a_i, b_i) \in (M_{h,l} \oplus M_{h,l}^{op}, exc)$$
, then $\bar{a}_i = a_i$ and $\bar{b}_i = b_i^{\gamma_{h+l}}$;
• if $c_i = a_i + cb_i \in (M_n + cM_n, \star)$, then $\bar{a}_i = \begin{pmatrix} a_i & b_i \\ b_i & a_i \end{pmatrix}$ and $\bar{b}_i = (\bar{a}_i^{\perp})^{\gamma_{2n}}$ where $\begin{pmatrix} x & y \\ y & x \end{pmatrix}^{\perp}$
= $\begin{pmatrix} x^{\diamond} & -y^{\diamond} \\ -y^{\diamond} & x^{\diamond} \end{pmatrix}$;
• if $c_i = a_i + cb_i \in (M_n + cM_n, \dagger)$, then $\bar{a}_i = \begin{pmatrix} a_i & b_i \\ b_i & a_i \end{pmatrix}$ and $\bar{b}_i = (\bar{a}_i^{\top})^{\gamma_{2n}}$ where $\begin{pmatrix} x & y \\ y & x \end{pmatrix}^{\top}$
= $\begin{pmatrix} x^{\diamond} & y^{\diamond} \\ y^{\diamond} & x^{\diamond} \end{pmatrix}$;
• if $c_i = (a_i + cb_i, u_i + cv_i) \in ((M_n + cM_n) \oplus (M_n + cM_n)^{op}, exc)$, then $\bar{a}_i = \begin{pmatrix} a_i & b_i \\ b_i & a_i \end{pmatrix}$
and $\bar{b}_i = \begin{pmatrix} u_i & v_i \\ v_i & u_i \end{pmatrix}^{\gamma_{2n}}$.

Let denote by $D \subseteq (M_{2\eta_m}, \gamma_{2\eta_m})$ the *-algebra image of $\bigoplus_{i=1}^m A_i$ by Δ and set

$$V = \begin{pmatrix} 0 & V_{12} & \cdots & V_{1m} & & & \\ & \ddots & \ddots & \vdots & & & \\ & 0 & V_{m-1m} & & & & \\ & & 0 & & & & \\ & & & 0 & V_{mm-1} & \cdots & V_{m1} \\ & & & & \ddots & \ddots & \vdots \\ & & & & & 0 & V_{21} \\ & & & & & & 0 \end{pmatrix} \subseteq M_{2\eta_m}$$

where, for $1 \leq i, j \leq m, i \neq j, V_{ij} = M_{s_i \times s_j} = M_{s_i \times s_j}(F)$ is the algebra of $s_i \times s_j$ matrices of F. Let define

$$UT^*(A_1,\ldots,A_m) = D \oplus V \subseteq M_{2\eta_m}.$$

It is easy to see that $UT^*(A_1, \ldots, A_m)$ is a subalgebra with involution of $(M_{2\eta_m}(F), \gamma_{2\eta_m})$ whose Jacobson radical coincides with V.

Now, for any *m*-tuple $\tilde{g} = (g_1, \ldots, g_m) \in \mathbb{Z}_2^m$, we consider the map

$$\alpha_{\tilde{g}}: \{1, \dots, 2\eta_m\} \to \mathbb{Z}_2, \ i \to \begin{cases} \alpha_k(i - \eta_{k-1}) + g_k & 1 \le i \le \eta_m; \\ \alpha_k(2\eta_m - i + 1 - \eta_{k-1}) + g_k & \eta_m + 1 \le i \le 2\eta_m. \end{cases}$$

where $k \in \{1, \ldots, m\}$ is the (unique) integer such that $i \in Bl_k$ and α_k 's are maps so defined: \cdot if $A_k \simeq M_{h,l}$ or $A_k \simeq M_{h,l} \oplus M_{h,l}$, then

$$\alpha_k : \{1, \dots, h+l\} \to \mathbb{Z}_2, \ \alpha_k(i) = \begin{cases} 0 & 1 \le i \le h; \\ 1 & h+1 \le i \le h+l \end{cases}$$

 \cdot if $A_k \simeq M_n + cM_n$ or $A_k \simeq (M_n + cM_n) \oplus (M_n + cM_n)$, then

$$\alpha_k : \{1, \dots, 2n\} \to \mathbb{Z}_2, \ \alpha_k(i) = \begin{cases} 0 & 1 \le i \le n; \\ 1 & n+1 \le i \le 2n. \end{cases}$$

The map $\alpha_{\tilde{g}}$ induces an elementary grading on $UT^*(A_1, \ldots, A_m)$ with respect to which $\gamma_{2\eta_m}$ is a graded involution. We shall use the symbol

$$UT^*_{\mathbb{Z}_2,\tilde{g}}(A_1,\ldots,A_m)$$

to indicate the *-superalgebra defined by the *m*-tuple \tilde{g} . We observe that the *k*-th simple component of the maximal semisimple *-graded subalgebra of this *-superalgebra is isomorphic to A_k . When convenient, any such *-superalgebra is simply denoted by

$$UT^*_{\mathbb{Z}_2}(A_1,\ldots,A_m).$$

In the next lemma we establish the link between the degrees of the *-graded Capelli polynomials and the *-graded polynomial identities of $UT^*_{\mathbb{Z}_2,\tilde{g}}(A_1,\ldots,A_m)$. For all $i = 1,\ldots,m$, we write

$$A_{i} = A_{i,0}^{+} \oplus A_{i,0}^{-} \oplus A_{i,1}^{+} \oplus A_{i,1}^{-}.$$

Let $(d_0^{\pm})_i = \dim_F A_{i,0}^{\pm}$ and $(d_1^{\pm})_i = \dim_F A_{i,1}^{\pm}$, if we set $d_0^{\pm} := \sum_{i=1}^m (d_0^{\pm})_i$ and $d_1^{\pm} := \sum_{i=1}^m (d_1^{\pm})_i$, then we have the following

Lemma 3. Let $\tilde{g} = (g_1, \ldots, g_m)$ be a fixed element of \mathbb{Z}_2^m and $A = UT^*_{\mathbb{Z}_2,\tilde{g}}(A_1, \ldots, A_m)$, with A_i finite dimensional simple *-superalgebra. Let $0 < \bar{m} \leq m$ denote the number of the finite dimensional simple *-superalgebras with trivial grading.

- 1. If $\bar{m} = 0$, $Cap_{q^+}^{(\mathbb{Z}_2,*)}[Y^+, X]$, $Cap_{q^-}^{(\mathbb{Z}_2,*)}[Y^-, X]$, $Cap_{k^+}^{(\mathbb{Z}_2,*)}[Z^+, X]$ and $Cap_{k^-}^{(\mathbb{Z}_2,*)}[Z^-, X]$ are in $Id^*_{\mathbb{Z}_2}(A)$ if and only if $q^+ \ge d^+_0 + m$, $q^- \ge d^-_0 + m$, $k^+ \ge d^+_1 + m$ and $k^- \ge d^-_1 + m$;
- 2. If $0 < \bar{m} \le m$, let \tilde{m} be the number of blocks of consecutive *-superalgebras with trivial grading that appear in (A_1, \ldots, A_m) . Then $Cap_{q^+}^{(\mathbb{Z}_2,*)}[Y^+, X], Cap_{q^-}^{(\mathbb{Z}_2,*)}[Y^-, X]$, $Cap_{k^+}^{(\mathbb{Z}_2,*)}[Z^+, X]$ and $Cap_{k^-}^{(\mathbb{Z}_2,*)}[Z^-, X]$ are in $Id_{\mathbb{Z}_2}^*(A)$ if and only if $q^+ > d_0^+ + (m-\bar{m}) + (\tilde{m}-1) + r_0$, $q^- > d_0^- + (m-\bar{m}) + (\tilde{m}-1) + r_0$, $k^+ > d_1^+ + (m-\bar{m}) + (\tilde{m}-1) + r_1$ and $k^- > d_1^- + (m-\bar{m}) + (\tilde{m}-1) + r_1$, where r_0 , r_1 are two non negative integers depending on the grading \tilde{g} , with $r_0 + r_1 = \bar{m} \tilde{m}$.

Proof. We will prove the statement only for $Cap_{q^+}^{(\mathbb{Z}_2,*)}[Y^+, X]$ the *-graded Capelli polynomial alternating on q^+ symmetric variables of degree zero since on the other cases the proofs are similar.

1. Let $\bar{m} = 0$. To prove the necessary condition of the statement for the symmetric variables of degree zero it is sufficient to prove that $Cap_{q^+}^{(\mathbb{Z}_2,*)}[Y^+,X]$ is not in $Id^*_{\mathbb{Z}_2}(A)$ when $q^+ = d^+_0 + m - 1$.

We start considering separately the components A_i of A. In each *-superalgebra A_i we can take $(d_0^+)_i$ symmetric elements of homogeneous degree zero

$$S_i = \{s_{\alpha_{i-1}+i}, \dots, s_{\alpha_i+i-1}\}$$

for i = 1, ..., m, where $\alpha_0 = 0$ and $\alpha_i = \sum_{j=0}^i (d_0^+)_j$ and a set of elements of A_i

$$U_i = \{a_{\alpha_{i-1}+i}, \dots, a_{\alpha_i+i-2}\}$$

such that

$$Cap_{(d_{0}^{+})_{i}}^{(\mathbb{Z}_{2},*)}(s_{\alpha_{i-1}+i},\ldots,s_{\alpha_{i}+i-1};a_{\alpha_{i-1}+i},\ldots,a_{\alpha_{i}+i-2}) = \begin{pmatrix} e_{r_{i},s_{i}} & \text{if } (M_{h_{i},l_{i}},\diamond); \\ (e_{r_{i},s_{i}},0) & \text{if } (M_{h_{i},l_{i}}\oplus M_{h_{i},l_{i}}^{op},exc); \\ e_{r_{i},s_{i}} & \text{if } (M_{n_{i}}+cM_{n_{i}},\star) \text{ or } (M_{n_{i}}+cM_{n_{i}},\dagger); \\ ((e_{r_{i},s_{i}},0),(0,0)) & \text{if } ((M_{n_{i}}+cM_{n_{i}})\oplus (M_{n_{i}}+cM_{n_{i}})^{op},exc), \end{pmatrix}$$

where $\diamond = t$, s denotes the transpose or symplectic involution, exc is the exchange involution, $(a + cb)^* = a^{\diamond} - cb^{\diamond}$ and $(a + cb)^{\dagger} = a^{\diamond} + cb^{\diamond}$.

For any $1 \leq i \leq m$, if ϕ_i is the *-embedding of A_i in A, then let

$$\bar{S}_i = \{\bar{s}_{\alpha_{i-1}+i}, \dots, \bar{s}_{\alpha_i+i-1}\}$$

and

$$U_i = \{\bar{a}_{\alpha_{i-1}+i}, \dots, \bar{a}_{\alpha_i+i-2}\}$$

denote the images of S_i and U_i by ϕ_i , respectively.

Let observe that in A we can consider appropriate symmetric elements of homogeneous degree zero in J_0^+

$$\bar{s}_{\alpha_i+i} = e_{h,k} + e_{h,k}^*$$

and elementary matrices of A

$$\bar{a}_{\alpha_i+i-1} = e_{s_i,h}$$
 and $\bar{a}_{\alpha_i+i} = e_{k,r_{i+1}}$

such that

$$Cap_{(d_{0}^{+})_{i}}^{(\mathbb{Z}_{2},*)}(\bar{s}_{\alpha_{i-1}+i},\ldots,\bar{s}_{\alpha_{i}+i-1};\bar{a}_{\alpha_{i-1}+i},\ldots,\bar{a}_{\alpha_{i}+i-2})\bar{a}_{\alpha_{i}+i-1}\bar{s}_{\alpha_{i}+i}\bar{a}_{\alpha_{i}+i})$$

$$Cap_{(d_{0}^{+})_{i+1}}^{(\mathbb{Z}_{2},*)}(\bar{s}_{\alpha_{i}+(i+1)},\ldots,\bar{s}_{\alpha_{i+1}+i};\bar{a}_{\alpha_{i}+(i+1)},\ldots,\bar{a}_{\alpha_{i+1}+(i-1)}) \neq 0.$$

From now on, we will put $Cap_{(d_0^+)_i}^{(\mathbb{Z}_2,*)} = Cap_{(d_0^+)_i}^{(\mathbb{Z}_2,*)}(\bar{s}_{\alpha_{i-1}+i},\ldots,\bar{s}_{\alpha_i+i-1};\bar{a}_{\alpha_{i-1}+i},\ldots,\bar{a}_{\alpha_i+i-2}).$ It follows that

$$Cap_{q^+}^{(\mathbb{Z}_2,*)}(\bar{s}_1,\ldots,\bar{s}_{\alpha_m+(m-1)};\bar{a}_1,\ldots,\bar{a}_{\alpha_m+(m-2)}) = (\mathbb{Z}_2,*)$$

$$Cap_{(d_0^+)_1}^{(\mathbb{Z}_2,*)}\bar{a}_{\alpha_1}\bar{s}_{\alpha_1+1}\bar{a}_{\alpha_1+1}Cap_{(d_0^+)_2}^{(\mathbb{Z}_2,*)}\cdots Cap_{(d_0^+)_{m-1}}^{(\mathbb{Z}_2,*)}\bar{a}_{\alpha_{m-1}+1}\bar{s}_{\alpha_{m-1}+1}\bar{a}_{\alpha_{m-1}+1}Cap_{(d_0^+)_m}^{(\mathbb{Z}_2,*)}\neq 0.$$

Conversely, let $q^+ \ge d_0^+ + m$. We observe that any monomial of elements of A containing at least m elements of J_0^+ must be zero. Then we claim that any multilinear polynomial $\tilde{f} = \tilde{f}(y_1, \ldots, y_{d_0^+ + m}; x_1, x_2, \ldots)$ alternating on $d_0^+ + m$ symmetric variables of degree zero must vanish in A. In fact, by multilinearity, we can consider only substitutions $\varphi : y_i^+ \to \bar{s}_i$, $x_i \to \bar{a}_i$ such that $\bar{s}_i \in D_0^+ \cup J_0^+$ for $1 \le i \le d_0^+ + m$.

However, since $\dim_F D_0^+ = d_0^+$, if we substitute at least $d_0^+ + 1$ variables in elements of D_0^+ the polynomial vanishes. On the other hands, if we substitute at least m elements of J_0^+ , we also get that \tilde{f} vanishes in A. The outcome of this is that A satisfies $Cap_{d_0^++m}^{(\mathbb{Z}_2,*)}[Y^+, X]$ and so $Cap_{q^+}^{(\mathbb{Z}_2,*)}[Y^+, X]$, with $q^+ \ge d_0^+ + m$.

2. First let assume that $\bar{m} = m$. We recall that

$$UT^*(A_1,\ldots,A_m)=D\oplus V\subseteq M_{2\eta_m},$$

where $D \subseteq (M_{2\eta_m}, \gamma_{2\eta_m})$ the *-algebra image of $\bigoplus_{i=1}^m A_i$ by Δ and

$$V = \begin{pmatrix} 0 & V_{12} & \cdots & V_{1m} & & & \\ & \ddots & \ddots & \vdots & & & \\ & 0 & V_{m-1m} & & & & \\ & & 0 & & & & \\ & & & 0 & V_{mm-1} & \cdots & V_{m1} \\ & & & & \ddots & \ddots & \vdots \\ & & & & & 0 & V_{21} \\ & & & & & & 0 \end{pmatrix} \subseteq M_{2\eta_m}$$

Notice that, for a fixed $\tilde{g} = (g_1, \ldots, g_m) \in \mathbb{Z}_2^m$, if $g_i = g_j$, $1 \leq i, j \leq m$, then the elements of the blocks $V_{i,j}$ are homogeneous of degree zero, otherwise, if $g_i \neq g_j$, they are

10

homogeneous of degree one. Suppose that in $\tilde{g} = (g_1, \ldots, g_m)$ there are $p \ge 1$ different string of zero and one, i.e.

$$\tilde{g} = (g_1, \dots, g_{t_1}, g_{t_1+1}, \dots, g_{t_1+t_2}, \dots, g_{t_1+\dots+t_{p-1}+1}, \dots, g_{t_1+\dots+t_p}),$$

where $t_1 + \cdots + t_p = m$,

$$g_1 = \dots = g_{t_1},$$

 $g_{t_1+1} = \dots = g_{t_1+t_2},$
 \dots
 $g_{t_1+\dots+t_{p-1}+1} = \dots = g_{t_1+\dots+t_p}$

and

 $g_{t_1+\dots+t_i} \neq g_{t_1+\dots+t_i+1},$

 $\forall i = 1, \dots, p-1.$

As in the previous case we can find in A symmetric elements of degree zero

$$\bar{S}_i = \{\bar{s}_{\alpha_{i-1}+i}, \dots, \bar{s}_{\alpha_i+i-1}, \bar{s}_{\alpha_i+i}\}$$

and generic elements

$$\bar{U}_i = \{\bar{a}_{\alpha_{i-1}+i}, \dots, \bar{a}_{\alpha_i+i-2}, \bar{a}_{\alpha_i+i-1}, \bar{a}_{\alpha_i+i}\}$$

such that, $\forall i = 1, \dots p$,

where $\tilde{t}_0 = t_0 = 0$, $\tilde{t}_i = \sum_{j=0}^i t_j$ and $q_i = (d_0^+)_{\tilde{t}_{i-1}+1} + \dots + (d_0^+)_{\tilde{t}_i} + (t_i - 1)$.

Furthermore we can find in A elementary matrices E_1, \ldots, E_{p-1} , such that

$$Cap_{d_0^++m-p}^{(\mathbb{Z}_2,*)} = Cap_{q_1}^{(\mathbb{Z}_2,*)} E_1 Cap_{q_2}^{(\mathbb{Z}_2,*)} E_2 \cdots Cap_{q_{p-1}}^{(\mathbb{Z}_2,*)} E_{p-1} Cap_{q_p}^{(\mathbb{Z}_2,*)} = b_1 E_1 b_2 E_2 \cdots b_{p-1} E_{p-1} b_p \neq 0.$$

This implies that, for $r_0 = m - p$,

$$Cap_{d_0^++r_0}^{(\mathbb{Z}_2,*)}[Y^+,X] \notin Id_{\mathbb{Z}_2}^*(A).$$

Moreover, let's observe that any monomial of elements of A containing at least $r_0 + 1 = (m - p) + 1$ elements of J_0 must be zero. Then, similarly to the previous case, we obtain that A satisfies $Cap_{d_0^++r_0+1}^{(\mathbb{Z}_2,*)}[Y^+, X]$.

If $0 < \bar{m} < m$, let \tilde{m} be the number of blocks of consecutive *-superalgebras with trivial grading that appear in (A_1, \ldots, A_m) . By considering separately the blocks of consecutive *-superalgebras with trivial and non-trivial grading and by using arguments similar to those of the proof of case 1, it easily follows that $Cap_{q^+}^{(\mathbb{Z}_2,*)}[Y^+, X]$, $Cap_{q^-}^{(\mathbb{Z}_2,*)}[Y^-, X]$, $Cap_{k^+}^{(\mathbb{Z}_2,*)}[Z^+, X]$ and $Cap_{k^-}^{(\mathbb{Z}_2,*)}[Z^-, X]$ are in $Id_{\mathbb{Z}_2}^*(A)$ if and only if $q^+ > d_0^+ + (m - \bar{m}) + (\tilde{m} - 1) + r_0$, $q^- > d_0^- + (m - \bar{m}) + (\tilde{m} - 1) + r_0$, $k^+ > d_1^+ + (m - \bar{m}) + (\tilde{m} - 1) + r_1$ and $k^- > d_1^- + (m - \bar{m}) + (\tilde{m} - 1) + r_1$, where r_0, r_1 are two non negative integers depending on the grading \tilde{g} , with $r_0 + r_1 = \bar{m} - \tilde{m}$.

5. Asymptotics for *-graded Capelli identities

In this section we shall study $\mathcal{U} = \operatorname{var}_{\mathbb{Z}_2}^*(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*)$ and we shall find a close relation among the asymptotics of $c_n^*(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*)$ and $c_n^*(A)$, where A is a finite dimensional simple *-superalgebra. Let

$$R = A \oplus J$$

where A is a finite dimensional simple *-superalgebra and J = J(R) is its Jacobson radical. From now on we put $M^{\pm} = \dim_F A_0^{\pm}$ and $L^{\pm} = \dim_F A_1^{\pm}$.

Let's begin with some technical lemmas that hold for any finite dimensional simple \ast -superalgebra A.

Lemma 4. The Jacobson radical J can be decomposed into the direct sum of four Abimodules

$$J = J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$$

where, for $p, q \in \{0, 1\}$, J_{pq} is a left faithful module or a 0-left module according to p = 1, or p = 0, respectively. Similarly, J_{pq} is a right faithful module or a 0-right module according to q = 1 or q = 0, respectively. Moreover, for $p, q, i, l \in \{0, 1\}$, $J_{pq}J_{ql} \subseteq J_{pl}$, $J_{pq}J_{il} = 0$ for $q \neq i$ and there exists a finite dimensional nilpotent *-superalgebra N such that N commutes with A and $J_{11} \cong A \otimes_F N$ (isomorphism of A-bimodules and of *-superalgebras).

Proof. It follows from Lemma 2 in [17] and Lemmas 1,6 in [5].

Notice that J_{00} and J_{11} are stable under the involution whereas $J_{01}^* = J_{10}$.

Lemma 5. If $\Gamma_{M^{\pm}+1,L^{\pm}+1}^* \subseteq Id_{\mathbb{Z}_2}^*(R)$, then $J_{10} = J_{01} = (0)$.

Proof. By Lemma 3 we have that A does not satisfy $Cap_{M^+}^{(\mathbb{Z}_2,*)}[Y^+,X]$. Then there exist elements $a_1^+, \ldots, a_{M^+}^+ \in A_0^+$ and $b_1, \ldots, b_{M^+-1} \in A$ such that

$$Cap_{M^+}^{(\mathbb{Z}_2,*)}(a_1^+,\ldots,a_{M^+}^+;b_1,\ldots,b_{M^+-1}) =$$

$$\begin{pmatrix} e_{1,h+l} & \text{if } A = (M_{h,l},\diamond), \diamond = t,s; \\ \tilde{e}_{1,h+l} & \text{if } A = (M_{h,l} \oplus M_{h,l}^{op}, exc); \\ e_{1,n} & \text{if } A = (M_n + cM_n, \star) \text{ or } A = (M_n + cM_n, \dagger); \\ \tilde{e}_{1,n} & \text{if } A = ((M_n + cM_n) \oplus (M_n + cM_n)^{op}, exc) \end{pmatrix}$$

where the $e_{i,j}$'s are the usual matrix units and $\tilde{e}_{i,j} = (e_{i,j}, e_{j,i})$. We write $J_{10} = (J_{10})_0 \oplus (J_{10})_1$ and $J_{01} = (J_{01})_0 \oplus (J_{01})_1$. Let $d_0 \in (J_{01})_0$, then $d_0^* \in (J_{10})_0$ and $d_0 + d_0^* \in (J_{01} \oplus J_{10})_0^+$. Since $\Gamma_{M^{\pm}+1,L^{\pm}+1}^* \subseteq Id_{\mathbb{Z}_2}^*(R)$ it follows that there exists $b_{M^+} \in A$ such that

$$0 = Cap_{M^{+}+1}^{(\mathbb{Z}_{2},*)}(a_{1}^{+},\ldots,a_{M^{+}}^{+},d_{0}+d_{0}^{*};b_{1},\ldots,b_{M^{+}-1},b_{M^{+}}) =$$

$$\begin{pmatrix} e_{1,h+l}d_{0}^{*} \pm d_{0}e_{1,h+l} & \text{if } A = (M_{h,l},\diamond), \diamond = t,s; \\ \tilde{e}_{1,h+l}d_{0}^{*} \pm d_{0}\tilde{e}_{1,h+l} & \text{if } A = (M_{h,l} \oplus M_{h,l}^{op},exc); \\ e_{1,n}d_{0}^{*} \pm d_{0}e_{1,n} & \text{if } A = (M_{n}+cM_{n},\star) \text{ or } A = (M_{n}+cM_{n},\dagger); \\ \tilde{e}_{1,n}d_{0}^{*} \pm d_{0}\tilde{e}_{1,n} & \text{if } A = ((M_{n}+cM_{n}) \oplus (M_{n}+cM_{n})^{op},exc). \end{pmatrix}$$

If $A = (M_{h,l},\diamond)$, then $e_{1,h+l}d_0^* \pm d_0e_{1,h+l} = 0$ and, so, $e_{1,h+l}d_0^* = \mp d_0e_{1,h+l} \in (J_{01})_0 \cap (J_{10})_0 = (0)$. Hence $d_0 = 0$, for all $d_0 \in (J_{01})_0$. Thus $(J_{01})_0 = (0)$ and $(J_{10})_0 = (0)$. Similarly for the other finite dimensional simple *-superalgebras we obtain that $(J_{01})_0 = (J_{10})_0 = (J_{10})_0 = (0)$. Analogously it easy to show that $(J_{01})_1 = (J_{10})_1 = (0)$ and the lemma is proved. **Lemma 6.** Let $J_{11} \cong A \otimes_F N$, as in Lemma 4. If $\Gamma^*_{M^{\pm}+1} L^{\pm}_{L^{\pm}+1} \subseteq Id^*_{\mathbb{Z}_2}(R)$, then N is commutative.

Proof. Let N be the finite dimensional nilpotent *-superalgebra of Lemma 4. Write N = $N_0^+ \oplus N_0^- \oplus N_1^+ \oplus N_1^-$, where N_0^+, N_0^-, N_1^+ and N_1^- denote the subspaces of symmetric and skew symmetric elements of N of homogeneous degree 0 and 1 respectively.

We shall prove that N is commutative when $A = (M_{h,l}, \diamond)$, with $\diamond = t$ or s. Similar calculations for the other finite dimensional simple *-superalgebras lead to the same conclusion. Let's start by proving that N_0^{\pm} commutes with N_i^{\pm} , i = 0, 1. Let $e_1^+, \ldots, e_{M^+}^+$ be a basis of A_0^+ with

$$e_1^+ = \begin{cases} e_{1,2} + e_{2,1} & \text{if } A = (M_{h,l}, t); \\ e_{1,2} + e_{h+2,h+1} & \text{if } A = (M_{h,h}, s) \end{cases}$$

and let $a_0 = a_1 = e_{2,1}, a_2, \dots, a_{M^+-1} \in A$ such that $a_0 e_1^+ a_1 e_2^+ \cdots a_{M^+-1} e_{M^+}^+ = e_{2,h+l}$ and $a_0 e_{\sigma(1)}^+ a_1 \cdots a_{M^+-1} e_{\sigma(M^+)}^+ = 0$ for any $\sigma \in S_{M^+}, \sigma \neq id$. Let $d_1 \in N_0^{\pm}$ and $e_0^+ = e_{M^+}$ $(e_{1,2} \pm e_{1,2}^{\diamond})d_1$, with $\diamond = t$ or s. Since N commutes with A we obtain that $e_0^+ \in R_0^+$. If we put $\bar{a}_0 = a_0 d_2 = e_{2,1} d_2$, with $d_2 \in N_i^{\pm}$, i = 0, 1, then

$$0 = Cap_{M^++1}^{(\mathbb{Z}_2,*)}(e_0^+, e_1^+, \dots, e_M^+; \bar{a}_0, a_1, \dots, a_{M^+-1}) = [d_1, d_2]e_{1,h+l}$$

and so $[d_1, d_2] = 0$ for all $d_1 \in N_0^{\pm}, d_2 \in N_i^{\pm}, i = 0, 1$. Let's now prove that N_1^{\pm} commutes with N_1^{\pm} . Let $e_1^+, \ldots, e_{M^+}^+$ be a basis of A_0^+ , with

$$e_1^+ = \begin{cases} e_{1,1} & \text{if } A = (M_{h,l}, t);\\ e_{1,1} + e_{h+1,h+1} & \text{if } A = (M_{h,h}, s) \end{cases}$$

and let $a_0 = e_{h+l,1}, a_1, a_2, \dots, a_{M^+-1} \in A$ such that $a_0 e_1^+ a_1 \cdots a_{M^+-1} e_{M^+}^+ = e_{h+l,1}$ (if $\diamond =$ s then h = l) and $a_0 e_{\sigma(1)}^+ a_1 \cdots a_{M^+-1} e_{\sigma(M^+)}^+ = 0$ for any $\sigma \in S_{M^+}, \sigma \neq id$. Let $(e_{1,h+l} \pm e_{1,h+l}^{\diamond}) \in A_1^{\pm}$ and $d_1, d_2 \in N_1^{\pm}$ such that, for $i = 1, 2, c_i^+ = (e_{1,h+l} \pm e_{1,h+l}^{\diamond}) d_i$. Since N commutes with A then $c_i^+ \in R_0^+$, i = 1, 2. If $a_M = e_{1,1}$ then

$$0 = Cap_{M^++2}^{(\mathbb{Z}_2,*)}(c_1^+, e_1^+, \dots, e_M^+, c_2^+; \bar{a}_0, a_1, \dots, a_{M^+-1}, a_M) = [d_1, d_2]e_{1,h+l}$$

 $(h = l \text{ for } \diamond = s)$ and so $[d_1, d_2] = 0$, for all $d_1, d_2 \in N_1^{\pm}$ and we are done.

Lemma 7. $\exp_{\mathbb{Z}_{0}}^{*}(\mathcal{U}) = M^{+} + M^{-} + L^{+} + L^{-} = M + L = \exp_{\mathbb{Z}_{0}}^{*}(A).$

Proof. By the definition of minimal variety (see Definition 2.1 in [9]) the *-graded exponent of \mathcal{U} is equal to the *-graded exponent of some minimal variety of *-superalgebras lying in \mathcal{U} . Moreover, by the classification of minimal varieties of PI-*-superalgebras of finite basic rank given in [9, Theorem 2.2], we have

$$\exp_{\mathbb{Z}_2}^*(\mathcal{U}) = \max\{\exp_{\mathbb{Z}_2}^*(UT_{\mathbb{Z}_2}^*(A_1,\ldots,A_m)) \mid UT_{\mathbb{Z}_2}^*(A_1,\ldots,A_m) \in \mathcal{U}\}.$$

Then, by Lemma 3,

$$\exp_{\mathbb{Z}_2}^*(\mathcal{U}) \ge \exp_{\mathbb{Z}_2}^*(UT_{\mathbb{Z}_2}^*(A)) = M + L$$

On the other hand, since $\exp_{\mathbb{Z}_2}^*(UT^*_{\mathbb{Z}_2}(A_1,\ldots,A_m)) = d_0^{\pm} + d_1^{\pm}$, we have that

$$\exp_{\mathbb{Z}_2}^*(\mathcal{U}) \le M + L$$

and the proof is completed.

Now we are able to prove the main result.

Theorem 3. For suitable natural numbers M^+ , M^- , L^+ , L^- there exists a finite dimensional simple *-superalgebra A such that

$$\mathcal{U} = \operatorname{var}_{\mathbb{Z}_2}^*(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) = \operatorname{var}_{\mathbb{Z}_2}^*(A \oplus D),$$

where D is a finite dimensional *-superalgebra such that $\exp_{\mathbb{Z}_2}^*(D) < M + L$, with M = $M^+ + M^-$ and $L = L^+ + L^-$. In particular

- 1) If $M^{\pm} = \frac{h(h\pm 1)}{2} + \frac{l(l\pm 1)}{2}$ and $L^{\pm} = hl$, with $h \ge l > 0$, then $A = (M_{h,l}, t)$; 2) If $M^{\pm} = h^2$ and $L^{\pm} = h(h \mp 1)$, with h > 0, then $A = (M_{h,h}, s)$; 3) If $M^{\pm} = h^2 + l^2$ and $L^{\pm} = 2hl$, with $h \ge l > 0$, then $A = (M_{h,l} \oplus M_{h,l}^{op}, exc)$;
- $\begin{array}{l} \text{(1)} If \ M^{+} = L^{\pm} = \frac{n(n+1)}{2}, \ M^{-} = L^{\mp} = \frac{n(n-1)}{2}, \ \text{with } n > 0, \ \text{then } A = (M_{n} + cM_{n}, *), \\ \text{where } (a + cb)^{*} = a^{t} \pm cb^{t}; \\ \text{(2)} If \ M^{+} = L^{\pm} = \frac{n(n-1)}{2}, \ M^{-} = L^{\mp} = \frac{n(n+1)}{2}, \ \text{with } n > 0, \ \text{then } A = (M_{n} + cM_{n}, *), \\ \text{where } (a + cb)^{*} = a^{s} \pm cb^{s}; \\ \text{(3)} If \ M^{\pm} = L^{\pm} = n^{2}, \ \text{with } n > 0, \ \text{then } A = ((M_{n} + cM_{n}) \oplus (M_{n} + cM_{n})^{op}, exc). \end{array}$

Proof. By Lemma 7 we have that $\exp_{\mathbb{Z}_2}^*(\mathcal{U}) = M + L$. Let B be a generating *-superalgebra of \mathcal{U} . From Theorem 2 and by [10], since any finitely generated *-superalgebra satisfies the same *-graded polynomial identities of a finite-dimensional *-superalgebra, we can assume that B is finite dimensional. Thus, by Theorem 1, there exists a finite number of reduced *-superalgebras B_1, \ldots, B_t and a finite dimensional *-superalgebra D such that

$$\mathcal{U} = \operatorname{var}_{\mathbb{Z}_2}^*(B) = \operatorname{var}_{\mathbb{Z}_2}^*(B_1 \oplus \cdots \oplus B_t \oplus D).$$
(1)

Moreover

$$\exp_{\mathbb{Z}_2}^*(B_1) = \cdots = \exp_{\mathbb{Z}_2}^*(B_t) = \exp_{\mathbb{Z}_2}^*(\mathcal{U}) = M + L$$

and

$$\exp_{\mathbb{Z}_2}^*(D) < \exp_{\mathbb{Z}_2}^*(\mathcal{U}) = M + L.$$

Let's now analyze the structure of a finite dimensional reduced *-superalgebra R such that $\exp_{\mathbb{Z}_2}^*(R) = M + L = \exp_{\mathbb{Z}_2}^*(\mathcal{U})$ and $\Gamma_{M^{\pm}+1,L^{\pm}+1}^* \subseteq Id_{\mathbb{Z}_2}^*(R)$. We have that

$$R = R_1 \oplus \dots \oplus R_m + J, \tag{2}$$

where R_i are simple *-graded subalgebras of R, J = J(R) is the Jacobson radical of R and $R_1 J \cdots J R_m \neq 0$. By [9, Theorem 4.3] there exists a *-superalgebra \overline{R} isomorphic to the *superalgebra $UT^*_{\mathbb{Z}_2, \tilde{g}}(R_1, \ldots, R_m)$, for some $\tilde{g} = (g_1, \ldots, g_m) \in \mathbb{Z}_2^m$, such that $Id(R) \subseteq Id(\overline{R})$ and

$$\exp_{\mathbb{Z}_2}^*(R) = \exp_{\mathbb{Z}_2}^*(\overline{R}) = \exp_{\mathbb{Z}_2}^*(UT_{\mathbb{Z}_2,\tilde{g}}^*(R_1,\ldots,R_m)).$$

It follows that

$$M + L = \exp_{\mathbb{Z}_2}^*(R) = \exp_{\mathbb{Z}_2}^*(\overline{R}) =$$

 $\exp_{\mathbb{Z}_2}^*(UT_{\mathbb{Z}_2,\tilde{g}}^*(R_1,\ldots,R_m)) = \dim_F R_1 + \cdots + \dim_F R_m = d_0^+ + d_0^- + d_1^+ + d_1^$ where $d_i^{\pm} = \dim_F (R_1 \oplus \cdots \oplus R_m)_{(i)}^{\pm}$, for i = 0, 1.

Let $0 \leq \overline{m} \leq m$ denote the number of the *-superalgebras R_i with trivial grading appearing in (2). We want to prove that $\bar{m} = 0$.

Let's suppose $\overline{m} > 0$. By Lemma 3, \overline{R} does not satisfy the *-graded Capelli polynomials

$$Cap_{d_{0}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{0}}^{(\mathbb{Z}_{2},*)}[Y^{+},X], \quad Cap_{d_{0}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{0}}^{(\mathbb{Z}_{2},*)}[Y^{-},X],$$

$$Cap_{d_{1}^{+}+(m-\bar{m})+(\tilde{m}-1)+r_{1}}^{(\mathbb{Z}_{2},*)}[Z^{+},X], \quad Cap_{d_{1}^{-}+(m-\bar{m})+(\tilde{m}-1)+r_{1}}^{(\mathbb{Z}_{2},*)}[Z^{-},X],$$

where r_0 , r_1 are two non negative integers dependent on the grading \tilde{g} with $r_0 + r_1 = \bar{m} - \tilde{m}$. However \overline{R} satisfies $Cap_{M^++1}^{(\mathbb{Z}_2,*)}[Y^+, X]$, $Cap_{M^-+1}^{(\mathbb{Z}_2,*)}[Y^-, X]$, $Cap_{L^++1}^{(\mathbb{Z}_2,*)}[Z^+, X]$ and $Cap_{L^{-}+1}^{(\mathbb{Z}_{2},*)}[Z^{-},X]$, then

$$d_0^+ + (m - \bar{m}) + (\tilde{m} - 1) + r_0 + d_0^- + (m - \bar{m}) + (\tilde{m} - 1) + r_0 + d_1^+ + (m - \bar{m}) + (\tilde{m} - 1) + r_1 + d_1^- + (m - \bar{m}) + (\tilde{m} - 1) + r_1 \le M + L.$$

Since $d_0^+ + d_0^- + d_1^+ + d_1^- = M + L$ we obtain that $4(m - \bar{m}) + 4(\tilde{m} - 1) + 2(r_0 + r_1) = 0$ and so $2(m-1) + \tilde{m} - \bar{m} = 0$ and this implies that $m \ge 2$. If m = 2 then we easily obtain a contradiction. Thus $m = \bar{m} = \tilde{m} = 1$.

Hence $R = R_1 \oplus J$ where $R_1 \simeq (M_{h_1}(F), t)$ or $R_1 \simeq (M_{2h_1}(F), s)$ or $R_1 \simeq (M_{h_1}(F) \oplus I)$ $M_{h_1}(F)^{op}, exc$ with $h_1 > 0$.

Now, let's analyze all possible cases as M and L vary.

1. Let $M^{\pm} = \frac{h(h\pm 1)}{2} + \frac{l(l\pm 1)}{2}$ and $L^{\pm} = hl$, with $h \ge l > 0$. If $R \simeq (M_{h_1}(F), t) + J$ then $\exp_{\mathbb{Z}_2}^*(R) = h_1^2$. Since $\exp_{\mathbb{Z}_2}^*(R) = M + L = (h+l)^2$ we obtain that $h_1 = h + l$. By hypotesis, R satisfies $Cap_{M^++1}^{(\mathbb{Z}_2,*)}[Y^+;X]$ but, since $Id_{\mathbb{Z}_2}^*(R) \subseteq$ $Id^*_{\mathbb{Z}_2}(UT^*_{\mathbb{Z}_2,\tilde{g}}(R_1,\ldots,R_q)), R \text{ does not satisfy } Cap^{(\mathbb{Z}_2,*)}_{d^+_{+}}[Y^+;X].$ Hence, for $h \geq l > 0$, we have

$$M^{+} + 1 = \frac{h(h+1)}{2} + \frac{l(l+1)}{2} + 1 = \frac{h^{2} + l^{2} + (h+l) + 2}{2} \le \frac{h^{2} + l^{2} + (h+l) + 2hl}{2} = \frac{(h+l)(h+l+1)}{2} = \frac{h_{1}(h_{1}+1)}{2} = d_{0}^{+}$$

and this is impossible.

If $R \simeq (M_{2h_1}(F), s) + J$ then $\exp_{\mathbb{Z}_2}^*(R) = 4h_1^2$. Since $\exp_{\mathbb{Z}_2}^*(R) = M + L = (h+l)^2$ we have that $2h_1 = h + l$. Moreover R satisfies $Cap_{M^-+1}^{(\mathbb{Z}_2,*)}[Y^-;X]$ but does not satisfy $Cap_{d^{-}}^{(\mathbb{Z}_{2},*)}[Y^{-};X]$ and so we get a contradiction since

$$M^{-} + 1 = \frac{h(h-1)}{2} + \frac{l(l-1)}{2} + 1 = \frac{h^{2} + l^{2} - (h+l) + 2}{2} < \frac{h^{2} + l^{2} + (h+l) + 2hl}{2} = \frac{(h+l)^{2} + (h+l)}{2} = \frac{4h_{1}^{2} + 2h_{1}}{2} = 2h_{1}^{2} + h_{1} = d_{0}^{-1}$$

Finally, let $R \simeq (M_{h_1}(F) \oplus M_{h_1}(F)^{op}, exc) + J$, with $h_1 > 0$. Then $(h+l)^2 = M + L =$ $\exp_{\mathbb{Z}_2}^*(R) = 2h_1^2$, a contradiction.

2. Let $M^{\pm} = h^2$ and $L^{\pm} = h(h \mp 1)$, with h > 0.

If $R \simeq (M_{h_1}(F), t) + J$ then, as in the previous case, we obtain that $2h = h_1$. By hypothesis R satisfies $Cap_{M^++1}^{(\mathbb{Z}_2,*)}[Y^+;X]$ but it does not satisfy $Cap_{d_0^+}^{(\mathbb{Z}_2,*)}[Y^+;X]$, thus we have

$$M^{+} + 1 = h^{2} + 1 = \left(\frac{h_{1}}{2}\right)^{2} + 1 = \frac{h_{1}^{2}}{4} + 1 \le \frac{h_{1}^{2}}{2} + \frac{h_{1}}{2} = d_{0}^{+}$$

a contradiction.

If $R \simeq (M_{2h_1}(F), s) + J$ then $h = h_1$. Since R satisfies $Cap_{M^-+1}^{(\mathbb{Z}_2, *)}[Y^-; X]$ but does not satisfy $Cap_{d^-}^{(\mathbb{Z}_2,*)}[Y^-;X]$ we get the contradiction $M^- + 1 = h^2 + 1 = h_1^2 + 1 < 2h_1^2 + h_1 = d_0^-$. Finally, if $R \simeq (M_{h_1}(F) \oplus M_{h_1}(F)^{op}, exc) + J$ with $h_1 > 0$, then we have $4h^2 = 2h_1^2$, a contradiction.

3. Let $M^{\pm} = h^2 + l^2$ and $L^{\pm} = 2hl$, with $h \ge l > 0$.

If $R \simeq (M_{h_1}(F), t) + J$ then we get the contradiction $2(h+l)^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = h_1^2$. The same occurs if $R \simeq (M_{2h_1}(F), s) + J$.

Now, let $R \simeq (M_{h_1}(F) \oplus M_{h_1}(F)^{op}, exc) + J$, with $h_1 > 0$. Then $2(h+l)^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 2h_1^2$ and so $h_1 = h + l$. Since $d_0^+ = h_1^2$ we get that $M^+ + 1 = h^2 + l^2 + 1 < h^2 + l^2 + 2hl = (h+l)^2 = h_1^2 = d_0^+$ and this is impossible.

4., **5.** We consider the case $M^+ = L^+ = \frac{n(n+1)}{2}$ and $M^- = L^- = \frac{n(n-1)}{2}$. The proof of the other cases is very similar.

If $R \simeq (M_{h_1}(F), t) + J$ then $2n^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = h_1^2$, and if $R \simeq (M_{2h_1}(F), s) + J$ then $2n^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 4h_1^2$, a contradiction.

Let $R \simeq (M_{h_1}(F) \oplus M_{h_1}(F)^{op}, exc) + J$, with $h_1 > 0$. Then $2n^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 2h_1^2$ so $h_1 = n$. Since R satisfies $Cap_{M^-+1}^{(\mathbb{Z}_2,*)}[Y^-;X]$ but it does not satisfy $Cap_{d_0^-}^{(\mathbb{Z}_2,*)}[Y^-;X]$ we have again a contradiction indeed $M^- + 1 = \frac{n(n-1)}{2} + 1 \le n(n-1) + 1 \le n^2 = h_1^2 = d_0^-$. **6.** Let $M^{\pm} = L^{\pm} = n^2$, with n > 0.

If $R \simeq (M_{h_1}(F) \oplus M_{h_1}(F)^{op}, exc) + J$ then $4n^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 2h_1^2$ a contradiction. If $R \simeq (M_{h_1}(F), t) + J$ then $4n^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = h_1^2$ and so $h_1 = 2n$. R satisfies $Cap_{M^++1}^{(\mathbb{Z}_2,*)}[Y^+;X]$ but does not satisfy $Cap_{d_0^+}^*[Y^+;X]$ then we obtain a contradiction in fact $M^+ + 1 = n^2 + 1 = \frac{h_1^2}{4} + 1 \le \frac{h_1^2}{2} + \frac{h_1}{2} = \frac{h_1(h_1+1)}{2} = d_0^+$. Finally, let $R \simeq (M_{2h_1}(F), s) + J$. Hence $4n^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 4h_1^2$ and so $n = h_1$. Also

Finally, let $R \simeq (M_{2h_1}(F), s) + J$. Hence $4n^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 4h_1^2$ and so $n = h_1$. Also in this case we get the contradiction $M^- + 1 = n^2 + 1 < 2n^2 + 1 < 2n^2 + n = 2h_1^2 + h_1 = d_0^-$.

So we obtained that $\bar{m} = 0$.

Let $R = R_1 \oplus \cdots \oplus R_m + J$, where R_i are simple *-superalgebras with non trivial grading. Let's prove that m = 1. By Lemma 3, \overline{R} does not satisfy the *-graded Capelli polynomials $Cap_{d_0^++m-1}^{(\mathbb{Z}_2,*)}[Y^+, X]$, $Cap_{d_0^-+m-1}^{(\mathbb{Z}_2,*)}[Y^-, X]$, $Cap_{d_1^++m-1}^{(\mathbb{Z}_2,*)}[Z^+, X]$ and $Cap_{d_1^-+m-1}^{(\mathbb{Z}_2,*)}[Z^-, X]$ but satisfies $Cap_{M^++1}^{(\mathbb{Z}_2,*)}[Y^+, X]$, $Cap_{M^-+1}^{(\mathbb{Z}_2,*)}[Y^-, X]$, $Cap_{L^++1}^{(\mathbb{Z}_2,*)}[Z^+, X]$ and $Cap_{L^-+1}^{(\mathbb{Z}_2,*)}[Z^-, X]$ thus $d_0^+ + m - 1 \leq M^+$, $d_0^- + m - 1 \leq M^-$, $d_1^+ + m - 1 \leq L^+$ and $d_1^- + m - 1 \leq L^-$. Hence we have that

$$d_0^+ + (m-1) + d_0^- + (m-1) + d_1^+ + (m-1) + d_1^- + (m-1) \le M^+ + M^- + L^+ + L^- = M + L.$$

Since $d_0^+ + d_0^- + d_1^- + d_1^- = M + L$ we obtain that 4(m-1) = 0 and so m = 1.

It follows that $R = R_1 \oplus J$ where R_1 is a simple *-superalgebra with non trivial grading. Now let's analyze the cases corresponding to the different values of M and L.

1. Let $M^{\pm} = \frac{h(h\pm 1)}{2} + \frac{l(l\pm 1)}{2}$ and $L^{\pm} = hl$, with $h \ge l > 0$. If $R \simeq (M_{h_1,h_1}(F), s) + J$ then $(h+l)^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 4h_1^2$ so we have $2h_1 = h + l$. By hypothesis R satisfies $Cap_{L^-+1}^{(\mathbb{Z}_2,*)}[Z^-;X]$ but does not satisfy $Cap_{d_1}^{(\mathbb{Z}_2,*)}[Z^+;X]$, where $d_1^- = h_1(h_1 + 1)$. Since $h + l = 2h_1$ and $h \ge l > 0$ we have that $h_1^2 \ge hl$ and so

$$L^{-} + 1 = hl + 1 \le h_1^2 + 1 \le h_1(h_1 + 1) = d_1^{-}$$

a contradiction.

If $R \simeq (M_{h_1,l_1}(F) \oplus M_{h_1,l_1}(F)^{op}, exc) + J$, with $h_1 \ge l_1 > 0$, then $(h+l)^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 2(h_1 + l_1)^2$ and so we have again a contradiction.

If $R \simeq (M_n(F+cF), *) + J$, where $(a+cb)^* = a^{\diamond} \pm cb^{\diamond}$ and $\diamond = t, s$, then we obtain the contradiction $(h+l)^2 = 2n^2$.

If $R \simeq (M_n(F+cF) \oplus M_n(F+cF)^{op}, exc) + J$ with n > 0, then $(h+l)^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 4n^2$ and so 2n = h+l. As before we can easily obtain a contradiction. It follows that $R \simeq (M_{h,l}(F), t) + J$.

2. Let now $M^{\pm} = h^2$ and $L^{\pm} = h(h \mp 1)$, with h > 0.

If $R \simeq (M_{h_1,l_1}(F),t) + J$, then, since $M + L = \exp_{\mathbb{Z}_2}^*(R)$, we have $4h^2 = (h_1 + l_1)^2$ and so $h_1 + l_1 = 2h^2$. By hypothesis R satisfies $Cap_{M^++1}^{(\mathbb{Z}_2,*)}[Y^+;X]$ but does not satisfy $Cap_{d_0^+}^{(\mathbb{Z}_2,*)}[Y^+;X]$ where $d_0^+ = \frac{h_1(h_1+1)}{2} + \frac{l_1(l_1+1)}{2}$. Since $h_1 + l_1 = 2h$ and $h_1 \ge l_1 > 0$ we have $h^2 \ge h_1 l_1$ and so it follows that

$$M^{+} + 1 = h^{2} + 1 < h(2h+1) - h_{1}l_{1} = \frac{h_{1} + l_{1}}{2}(h_{1} + l_{1} + 1) - h_{1}l_{1} = \frac{h_{1}(h_{1} + 1)}{2} + \frac{l_{1}(l_{1} + 1)}{2} = d_{0}^{+}$$

a contradiction.

If $R \simeq (M_{h_1,l_1}(F) \oplus M_{h_1,l_1}(F)^{op}, exc) + J$, with $h_1 \ge l_1 > 0$, or $R \simeq (M_n(F + cF), *) + J$ where $(a + cb)^* = a^{\diamond} \pm cb^{\diamond}$ and $\diamond = t$, s then easily we get a contradiction. If $R \simeq (M_n(F + cF) \oplus M_n(F + cF)^{op}, exc) + J$ with n > 0, then $4h^2 = M + L = \exp_{\mathbb{Z}_2}^*(R) = 4n^2$ and so n = h. R satisfies $Cap_{L^-+1}^{(\mathbb{Z}_2,*)}[Z^-;X]$ but R does not satisfy $Cap_{d_1^-}^{(\mathbb{Z}_2,*)}[Z^+;X]$, where $d_1^- = n^2$ and we obtain the following contradiction $L^- + 1 = h(h-1) = h^2 - h - 1 \le h^2 = n^2 = d_1^-$. So, in this case, $R \simeq (M_{h,h}(F), s) + J$.

3. Let $M^{\pm} = h^2 + l^2$ and $L^{\pm} = 2hl$, with $h \ge l > 0$.

If $R \simeq (M_{h_1,l_1}(F),t) + J$, $R \simeq (M_{h_1,h_1}(F),s) + J$ or $R \simeq (M_n(F+cF) \oplus M_n(F+cF)^{op},exc) + J$ easily we get a contradiction.

If $R \simeq (M_n(F+cF), *) + J$ where $(a+cb)^* = a^{\diamond} \pm cb^{\diamond}$ and $\diamond = t, s$ then we have that $2(h+l)^2 = 2n^2$ and so h+l = n. Let consider the case when $R \simeq (M_n(F+cF), *) + J$ with $(a+cb)^* = a^t - cb^t$, the other cases are very similar. Since R satisfies $Cap_{L^-+1}^{(\mathbb{Z}_2,*)}[Z^-;X]$ but R does not satisfy $Cap_{d_{T^-}}^{(\mathbb{Z}_2,*)}[Z^+;X]$ we obtain

$$L^{-} + 1 = 2hl + 1 < \frac{(h+l+1)(h+l)}{2} = \frac{(n+1)n}{2} = d_{1}^{-}$$

a contradiction. It follows that $R \simeq (M_{h,l}(F) \oplus M_{h_1,l_1}(F)^{op}, exc) + J$.

4., **5.** Let consider the case $M^+ = L^+ = \frac{n(n+1)}{2}$ and $M^- = L^- = \frac{n(n-1)}{2}$. The proof of the other cases is very similar. As before let $R \simeq (M_n(F+cF) \oplus M_n(F+cF)^{op}, exc) + J$, then $2n^2 = 2(h_1 + l_1)^2$ and so $n = h_1 + l_1$ with $h_1 \ge l_1 > 0$. R satisfies $Cap_{M^-+1}^{(\mathbb{Z}_2,*)}[Y^-;X]$ but does not satisfy $Cap_{d_n}^{(\mathbb{Z}_2,*)}[Y^-;X]$ then

$$\frac{n(n-1)}{2} + 1 = \frac{n^2 - n + 2}{2} \le \frac{n^2 - 1}{2} = \frac{(h_1 + l_1)^2 - 1}{2} < h_1^2 + l_1^2 = d_0^-$$

a contradiction. In all other cases we obtain a contradiction except when $R \simeq (M_n(F + cF), *) + J$ and $(a + cb)^* = a^t + cb^t$.

6. Let $M^{\pm} = L^{\pm} = n^2$, with n > 0.

If $R \simeq (M_{h_1,l_1}(F) \oplus M_{h_1,l_1}(F)^{op}, exc) + J$ or $R \simeq (M_n(F+cF), *) + J$ with $(a+cb)^* = a^{\diamond} \pm cb^{\diamond}$ and $\diamond = t, s$, then easily we get a contradiction.

If $R \simeq (M_{h_1,l_1}(F), t) + J$, then $h_1 + l_1 = 2n$ and with analogous reasoning to that of case 2 we obtain a contradiction.

So let assume that $R \simeq (M_{h_1,h_1}(F),s) + J$, then $4n^2 = 4h_1^2$ and so $h_1 = n$. Because R satisfies $Cap_{L^-+1}^{(\mathbb{Z}_2,*)}[Z^-;X]$ but it does not satisfy $Cap_{d_1}^{(\mathbb{Z}_2,*)}[Z^-;X]$ we obtain $L^- + 1 = n^2 + 1 \le n(n+1) = h_1(h_1+1) = d_1^-$ and this is impossible. It follows that $R \simeq (M_n(F + cF) \oplus M_n(F + cF)^{op}, exc) + J$.

Thus we have proved that $R \simeq A + J$ where A is a simple *-superalgebra with non trivial grading. Then, from Lemmas 4, 5, 6 we obtain that

$$R \cong (A + J_{11}) \oplus J_{00} \cong (A \otimes N^{\sharp}) \oplus J_{00}$$

where N^{\sharp} is the algebra obtained from N by adjoining a unit element. Since N^{\sharp} is commutative, it follows that $A + J_{11}$ and A satisfy the same *-graded identities. Thus $\operatorname{var}_{\mathbb{Z}_2}^*(R) = \operatorname{var}_{\mathbb{Z}_2}^*(A \oplus J_{00})$ with J_{00} finite dimensional nilpotent *-superalgebra. Hence, from the decomposition (1), we get

$$\mathcal{U} = \operatorname{var}_{\mathbb{Z}_2}^*(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) = \operatorname{var}_{\mathbb{Z}_2}^*(A \oplus D),$$

where D is a finite dimensional *-superalgebra with $\exp_{\mathbb{Z}_2}^*(D) < M + L$ and the theorem is proved.

From Corollary 1 we easily obtain the following

Corollary 2. 1) If
$$M^{\pm} = \frac{h(h\pm 1)}{2} + \frac{l(l\pm 1)}{2}$$
 and $L^{\pm} = hl$, with $h \ge l > 0$, then
 $c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) \simeq c_n^{(\mathbb{Z}_2,*)}((M_{h,l}(F),t));$
2) If $M^{\pm} = h^2$ and $L^{\pm} = h(h \mp 1)$, with $h > 0$, then
 $c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) \simeq c_n^{(\mathbb{Z}_2,*)}((M_{h,h}(F),s));$
3) If $M^{\pm} = h^2 + l^2$ and $L^{\pm} = 2hl$, with $h \ge l > 0$, then
 $c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) \simeq c_n^{(\mathbb{Z}_2,*)}((M_{h,l}(F) \oplus M_{h,l}(F)^{op}, exc));$
4) If $M^+ = L^{\pm} = \frac{n(n+1)}{2}$, $M^- = L^{\mp} = \frac{n(n-1)}{2}$, with $n > 0$, then
 $c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) \simeq c_n^{(\mathbb{Z}_2,*)}((M_n(F+cF),*))$
where $(a + cb)^* = a^t \pm cb^t;$
5) If $M^+ = L^{\pm} = \frac{n(n-1)}{2}$, $M^- = L^{\mp} = \frac{n(n+1)}{2}$, with $n > 0$, then
 $c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) \simeq c_n^{(\mathbb{Z}_2,*)}((M_n(F+cF),*)),$
where $(a + cb)^* = a^s \pm cb^s;$
6) If $M^{\pm} = L^{\pm} = n^2$ with $n > 0$ then

5) If
$$M^{\pm} = L^{\pm} = n^2$$
, with $n > 0$, then
 $c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M^{\pm}+1,L^{\pm}+1}^*) \simeq c_n^{(\mathbb{Z}_2,*)}(M_n(F+cF) \oplus M_n(F+cF)^{op},exc)).$

References

- E. Aljadeff and A. Giambruno, Multialternanting graded polynomials and growth of polynomial identities, Proc. Amer. Math. Soc. 141 (2013), 3055–3065.
- E. Aljadeff, A. Giambruno and D. La Mattina, Graded polynomial identities and exponential growth, J. Reine Angew. Math. 650 (2011), 83–100.
- 3. F. Benanti, Asymptotics for Graded Capelli Polynomials, Algebra Repres. Theory 18 (2015), 221–233.
- F. Benanti, A. Giambruno and M. Pipitone, Polynomial identities on superalgebras and exponential growth, J. Algebra 269 (2003), 422–438.
- F. Benanti and I. Sviridova Asymptotics for Amitsur's Capelli-type polynomials and verbally prime PI-algebras, Israel J. Math. 156 (2006), 73–91.
- 6. F. Benanti and A. Valenti, Asymptotics for Capelli Polynomials with Involution, arXiv:1911.04193.
- F. Benanti and A. Valenti, On the asymptotics of Capelli Polynomials, In: O. M. Di Vincenzo, A. Giambruno (eds), Polynomial Identities in Algebras, Springer Indam Series, vol. 44, (2021), 37–56. Math.96(1996), 49–62.

- O. M. Di Vincenzo and V. Nardozza, On the Existence of the Graded Exponent for Finite Dimensional Z_p-graded Algebras, Canad. Math. Bull. 55 (2012), 271–284.
- O. M. Di Vincenzo, V.R.T. da Silva and E. Spinelli, Minimal varieties of PI-superalgebras with graded involution, Israel J. Math. 241 (2021), 869–909.
- 10. A. Giambruno, A. Ioppolo and D. La Mattina, Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions, Algebr. Represent. Theory **22** (2019), 961–976.
- 11. A. Giambruno and D. La Mattina, Graded polynomial identities and codimensions: computing the exponential growth, Adv. Math. 259 No. 2 (2010), 859–881.
- A. Giambruno, C. Polcino Milies and A. Valenti, Star-polynomial identities: Computing the exponential growth of the codimensions, J. Algebra 469 (2017), 302–322.
- A. Giambruno, R.B. dos Santos and A.C. Vieira, Identities of *-superalgebras and almost polynomial growth, Linear Multilinear Algebra 64 (2016), 484–501.
- A. Giambruno and M. Zaicev, On codimensions growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145–155.
- A. Giambruno and M. Zaicev, Exponential codimension growth of P.I. algebras: an exact estimate, Adv. Math. 142 (1999), 221–243.
- A. Giambruno and M. Zaicev, Involution codimensions of finite dimensional algebras and exponential growth, J. Algebra 222 (1999), 471–484.
- A. Giambruno and M. Zaicev, Asymptotics for the Standard and the Capelli Identities, Israel J. Math. 135 (2003), 125–145.
- A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotics Methods, Surveys, vol. 122, American Mathematical Society, Providence, RI, 2005.
- A.S. Gordienko, Amitsur's conjecture for associative algebras with a generalized Hopf action, J. Pure Appl. Algebra 217 (2013), 1395–1411.
- 20. A. Ioppolo, The exponent for superalgebras with superinvolution, Linear Algebra Appl. 555 (2018), 1–20.
- 21. A. Regev, Existence of identities in $A \otimes B$, Israel J. Math. **11** (1972), 131–152.
- 22. R.B. dos Santos, *-Superalgebras and exponential growth, J. Algebra 473 (2017), 283–306.

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DI PALERMO, VIA ARCHIRAFI, 34, 90123 PALERMO, ITALY

 $Email \ address: \ {\tt francescasaviella.benanti@unipa.it}$

DIPARTIMENTO DI INGEGNERIA, UNIVERSITÀ DI PALERMO, VIALE DELLE SCIENZE, 90128 PALERMO, ITALY *Email address*: angela.valenti@unipa.it