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*-GRADED CAPELLI POLYNOMIALS AND THEIR ASYMPTOTICS

F. S. BENANTI AND A. VALENTI

Abstract. Let F 〈Y ∪ Z, ∗〉 be the free ∗-superalgebra over a field F of characteris-
tic zero and let Γ∗

M±,L± be the T ∗

Z2
-ideal generated by the set of the ∗-graded Capelli

polynomials Cap
(Z2,∗)

M+ [Y +,X], Cap
(Z2,∗)

M− [Y −, X], Cap
(Z2,∗)

L+ [Z+,X], Cap
(Z2,∗)

L− [Z−, X]

alternating on M+ symmetric variables of homogeneous degree zero, on M− skew vari-
ables of homogeneous degree zero, on L+ symmetric variables of homogeneous degree
one and on L− skew variables of homogeneous degree one, respectively. We study the
asymptotic behavior of the sequence of ∗-graded codimensions of Γ∗

M±,L± . In particular

we prove that the ∗-graded codimensions of the finite dimensional simple ∗-superalgebras
are asymptotically equal to the ∗-graded codimensions of Γ∗

M±,L± , for some fixed natural

numbers M+,M−, L+ and L−.

1. Introduction

This paper is devoted to the study of the ∗-superalgebras, i.e. superalgebras endowed
with a graded involution, and the asymptotic behavior of their ∗-graded codimensions. If
A is an algebra over a field F of characteristic zero an effective way of measuring the
polynomial identities satisfied by A is provided by its sequence of codimensions {cn(A)}n≥1

whose n-th therm is the dimension of the space of multilinear polynomials in n variables in
the corresponding relatively free algebra of countable rank. Such sequence was introduced
by Regev in [21] and, in characteristic zero, gives a quantitative measure of the identities
satisfied by a given algebra. The most important result of the sequence of codimensions
proved in [21] states that if A is a PI-algebra, i.e. it satisfies a non trivial polynomial
identity, then {cn(A)}n≥1 is exponential bounded. Later, Giambruno and Zaicev ([14], [15])
answered in a positive way to a well known conjecture of Amitsur proving the existence and
the integrality of

exp(A) = lim
n→∞

n
√

cn(A)

the exponent of A. These results, in the last years, have been extended to algebras with an
additional structure as algebras with involution ([1], [12]), superalgebras ([4]) and more gen-
erally algebras graded by a group ( [2], [8], [11], [16] ), algebras with a generalised H-action
([19]), superalgebras with graded involution ([22]) and superalgebras with superinvolution
([20]).

Let A = A+
0 ⊕A−

0 ⊕A+
1 ⊕A−

1 be a ∗-superalgebra and let c
(Z2,∗)
n (A), n = 1, 2, . . ., be its se-

quence of ∗-graded codimensions. If A is a PI-algebra it can be easily proved that the relation

between codimensions and ∗-graded codimensions is given by cn(A) ≤ c
(Z2,∗)
n (A) ≤ 4ncn(A).

Hence, as in the ordinary case, the sequence of ∗-graded codimensions is exponentially
bounded. Moreover, since a ∗-superalgebra can be viewed as an algebra with a general-
ized FG-action where G = Z2 × Z2 acts on it by automorphism and antiautomorphism, in

2010 Mathematics Subject Classification. Primary 16R10, 16R50; Secondary 16W50, 16P90.
Key words and phrases. Superalgebras, Graded Involutions, Capelli polynomials, Codimension, Growth.

1

http://arxiv.org/abs/2111.04366v1


2 BENANTI AND VALENTI

the finite dimensional case, the existence of the ∗-graded exponent has been confirmed by
Gordienko in [19].

Let M+, M−, L+ and L− be natural numbers and let’s denote by Γ∗
M±,L± the T ∗

Z2
-ideal

generated by the set of the ∗-graded Capelli polynomials Cap
(Z2,∗)
M+ [Y +, X ], Cap

(Z2,∗)
M− [Y −, X ],

Cap
(Z2,∗)
L+ [Z+, X ], Cap

(Z2,∗)
L− [Z−, X ] alternating on M+ symmetric variables of homogeneous

degree zero, onM− skew variables of homogeneous degree zero, on L+ symmetric variables of
homogeneous degree one and on L− skew variables of homogeneous degree one, respectively.
In this paper we find a relation among the ∗-graded codimensions of the finite dimensional
simple ∗-superalgebras and the ∗-graded codimensions of Γ∗

M±,L± proving their asymptotic

equality. Recall that two sequences an, bn, n = 1, 2, . . ., are asymptotically equal, an ≃ bn,
if limn→+∞

an

bn
= 1. In the ordinary case (see [17]) it was proved the asymptotic equality

between the codimensions of the Capelli polynomials Capk2+1 and the codimensions of the
matrix algebra Mk(F ). In [3] this result was extended to finite dimensional simple super-
algebras and in [6] the authors found similar result in the case of algebras with involution
(for a survey see [7]). The link between the asymptotic of the codimensions of the Amitsur’s
Capelli-type polynomials and the verbally prime algebras was studied in [5].

2. Preliminaries

Throughout this paper, F will be a field of characteristic zero and A an associative algebra
over F . We say that A is a Z2-graded algebra or a superalgebra if it can be decomposed into a
direct sum of subspaces A = A0⊕A1 such that A0A0+A1A1 ⊆ A0 and A0A1+A1A0 ⊆ A1.
The elements of A0 are called homogeneous of degree zero (even elements) and those of A1

homogeneous of degree one (odd elements).
Recall that an involution ∗ on an algebra A is just an antiautomorphism on A of order

at most 2. We write A+ = {a ∈ A | a∗ = a} and A− = {a ∈ A | a∗ = −a} for the set of
symmetric and skew symmetric elements of A respectively.

Given a superalgebra A = A0 ⊕ A1 endowed with an involution ∗, we say that ∗ is
a graded involution if it preserves the homogeneous components of A, i.e. if A∗

i ⊆ Ai,
i = 0, 1. A superalgebra endowed with a graded involution is called ∗-superalgebra. It is
clear that a superalgebra A is a ∗-superalgebra if and only if the subspaces A+ and A− are
graded subspaces, i.e. A+ = A+

0 ⊕ A+
1 and A− = A−

0 ⊕ A−
1 . Thus, since char F= 0, the

∗-superalgebra A can be written as

A = A+
0 ⊕A−

0 ⊕A+
1 ⊕A−

1

where, for i = 0, 1, A+
i = {a ∈ Ai | a

∗ = a} and A−
i = {a ∈ Ai | a

∗ = −a} denote the sets of
homogeneous symmetric and skew elements of Ai, respectively. We remark that an algebra
with involution ∗ and trivial Z2-grading is a ∗-superalgebra.

Let A be a ∗-superalgebra and let I be an ideal of A, we say that I is a ∗-graded ideal of
A if it is homogeneous in the Z2-grading and invariant under ∗. Moreover A is called simple
∗-superalgebra if A2 6= {0} and it has no non-zero ∗-graded ideals.

Let X = {x1, x2, . . .} be a countable set of non commutative variables and F 〈X〉 the
free associative algebra on X over F . We write X = Y ∪ Z as the disjoint union of two
countable sets of variables Y = {y1, y2, . . .} and Z = {z1, z2, . . .}, then F 〈X〉 = F 〈Y ∪Z〉 =
〈y1, z1, y2, z2, . . .〉 has a natural structure of free superalgebra if we require that the variables
from Y have degree zero and the variables from Z have degree one. This algebra is said
to be the free superalgebra over F . Moreover, if we write each set as the disjoint union of
two other infinite sets of symmetric and skew elements, respectively, then we obtain the free
∗-superalgebra

F 〈Y ∪ Z, ∗〉 = F 〈y+1 , y
−
1 , z

+
1 , z

−
1 , . . .〉
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where y+i = yi+y∗i denotes a symmetric variable of even degree, y−i = yi−y∗i a skew variable
of even degree, z+i = zi + z∗i a symmetric variable of odd degree and z−i = zi − z∗i a skew
variable of odd degree.

An element f = f(y+1 , . . . , y
+
n , y

−
1 , . . . , y

−
m, z+1 , . . . , z

+
p , z

−
1 , . . . , z

−
q ) of F 〈Y ∪ Z, ∗〉 is a ∗-

graded polynomial identity for a ∗-superalgebra A if

f(a+1,0, . . . , a
+
n,0, a

−
1,0, . . . , a

−
m,0, a

+
1,1, . . . , a

+
p,1, a

−
1,1, . . . , a

−
q,1) = 0A

for every a+1,0, . . . , a
+
n,0 ∈ A+

0 , a
−
1,0, . . . , a

−
m,0 ∈ A−

0 , a
+
1,1, . . . , a

+
p,1 ∈ A+

1 , a
−
1,1, . . . , a

−
q,1 ∈ A−

1

and we write f ≡ 0. The set of all ∗-graded polynomial identities satisfied by A

Id∗
Z2
(A) = {f ∈ F 〈Y ∪ Z, ∗〉 | f ≡ 0 onA}

is an ideal of F 〈Y ∪Z, ∗〉 called the ideal of ∗-graded identities of A. It is easy to show that
Id∗

Z2
(A) is a T ∗

Z2
-ideal of F 〈Y ∪Z, ∗〉, i.e. a two-sided ideal invariant under all endomorphisms

of the free ∗-superalgebra that preserve the superstructure and commute with the graded
involution ∗. Now, let

P (Z2,∗)
n = {wσ(1), . . . , wσ(n) | σ ∈ Sn, wi ∈ {y+i , y

−
i , z

+
i , z

−
i }, i = 1, . . . , n}

be the space of multilinear polynomials of degree n in the variables y+1 , y
−
1 , z

+
1 , z

−
1 ,. . . , y

+
n ,

y−n , z
+
n , z

−
n , (i.e., y+i , y

−
i , z

+
i or z−i appears in each monomial at degree 1). Since char F=

0, it is well known that Id∗
Z2
(A) is completely determined by its multilinear polynomials,

then the study of Id∗
Z2
(A) is equivalent to that of Id∗

Z2
(A) ∩ P

(Z2,∗)
n for all n ≥ 1. As in

the ordinary case (see [21]), one defines the n-th ∗-graded codimension c
(Z2,∗)
n (A) of the

∗-superalgebra A as

c(Z2,∗)
n (A) = dimF

P
(Z2,∗)
n

P
(Z2,∗)
n ∩ Id∗

Z2
(A)

.

If A is a PI-algebra, i.e. satisfies an ordinary polynomial identity, then the sequence

{c
(Z2,∗)
n (A)}n≥1 is exponentially bounded (see [13, Lemma 3.1]). If A is a finite dimensional

PI-algebra, Gordienko in [19] proved that

exp∗
Z2
(A) = lim

n→∞

n

√

c
(Z2,∗)
n (A)

exists and is a non-negative integer which is called the ∗-graded exponent of the ∗-superalgebra
A. It is often more useful to study ∗-superalgebras up to ∗-graded PI-equivalence, then it
is convenient to use the language of varieties. Let I be a T ∗

Z2
-ideal of F 〈Y ∪ Z, ∗〉 and V∗

Z2

the variety of ∗-superalgebras associated to I, i.e. the class of all the ∗-superalgebras A such
that I is contained in Id∗

Z2
(A). We put I = Id∗

Z2
(V∗

Z2
). When Id∗

Z2
(V∗

Z2
) = Id∗

Z2
(A) we say

that the variety V∗
Z2

is generated by the ∗-superalgebra A and we write V∗
Z2

= var∗
Z2
(A) and

set exp∗
Z2
(V∗

Z2
) = exp∗

Z2
(A) the ∗-graded exponent of the variety V∗

Z2
, if exp∗

Z2
(A) exists.

Now, if f ∈ F 〈Y ∪ Z, ∗〉 we denote by 〈f〉∗
Z2

the T ∗
Z2
-ideal generated by f . Also for a set

of polynomials V ⊂ F 〈Y ∪ Z, ∗〉 we write 〈V 〉∗
Z2

to indicate the T ∗
Z2
-ideal generated by V .

In PI-theory a prominent role is played by the Capelli polynomial. Let us recall that, for
any positive integer m, the m-th Capelli polynomial is the element of F 〈X〉 defined as

Capm[T,X ] = Capm(t1, . . . , tm;x1, . . . , xm−1) =

=
∑

σ∈Sm

(sgnσ)tσ(1)x1tσ(2) · · · tσ(m−1)xm−1tσ(m)

where Sm is the symmetric group on {1, . . . ,m}. In particular we write
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Cap(Z2,∗)
m [Y +, X ], Cap(Z2,∗)

m [Y −, X ], Cap(Z2,∗)
m [Z+, X ] and Cap(Z2,∗)

m [Z−, X ]

to indicate the m-th ∗-graded Capelli polynomial alternating in the symmetric variables of
degree zero y+1 , . . . , y

+
m, in the skew variables of degree zero y−1 , . . . , y

−
m, in the symmetric

variables of degree one z+1 , . . . , z
+
m and in the skew variables of degree one z−1 , . . . , z

−
m, respec-

tively (x1, . . . , xm−1 are arbitrary variables). Let Cap
(Z2,∗)

m [Y +, X ] denote the set of 2m−1

polynomials obtained from Cap
(Z2,∗)
m [Y +, X ] by deleting any subset of variables xi (by eval-

uating the variables xi to 1 in all possible way). In a similar way we define Cap
(Z2,∗)

m [Y −, X ],

Cap
(Z2,∗)

m [Z+, X ] and Cap
(Z2,∗)

m [Z−, X ]. If M+, M−, L+ and L− are natural numbers, we
denote by

Γ∗
M±,L± = 〈Cap

(Z2,∗)

M+ [Y +, X ], Cap
(Z2,∗)

M− [Y −, X ], Cap
(Z2,∗)

L+ [Z+, X ], Cap
(Z2,∗)

L− [Z−, X ]〉∗
Z2

the T ∗
Z2
-ideal generated by Cap

(Z2,∗)

M+ [Y +, X ], Cap
(Z2,∗)

M− [Y −, X ], Cap
(Z2,∗)

L+ [Z+, X ] and

Cap
(Z2,∗)

L− [Z−, X ].
The purpose of this paper is to find a close relation among the asymptotic behavior of

the ∗-graded codimensions of any finite dimensional simple ∗-superalgebra A = A+
0 ⊕A−

0 ⊕
A+

1 ⊕A−
1 and the asymptotic behavior of the ∗-graded codimensions of Γ∗

M±+1,L±+1, where

M+ = dimFA
+
0 , M

− = dimFA
−
0 , L

+ = dimFA
+
1 and L− = dimFA

−
1 . More precisely, we

characterize the T ∗
Z2
-ideal Id∗

Z2
(A) showing that

Γ∗
M±+1,L±+1 = Id∗

Z2
(A⊕D),

where D is a finite dimensional ∗-superalgebra such that exp∗
Z2
(D) < exp∗

Z2
(A). Moreover

we obtain the asymptotic equality

c(Z2,∗)
n (Γ∗

M±+1,L±+1) ≃ c(Z2,∗)
n (A).

3. Basic Results

Let A be a finite dimensional ∗-superalgebra over a field F of characteristic zero. From
now on we assume that F is algebraically closed. In fact, since F has characteristic zero,
Id∗

Z2
(A) = Id∗

Z2
(A⊗FL) for any extension field L of F then also the ∗-graded codimensions of

A do not change upon extension of the base field. By the generalization of the Wedderburn-
Malcev Theorem (see [13, Theorem 7.3]), we can write A = A1 ⊕ · · · ⊕ As + J , where
A1, . . . , As are simple ∗-superalgebras and J = J(A) is the Jacobson radical of A which is a
∗-graded ideal.

We say that a subalgebra Ai1 ⊕ · · · ⊕ Aik of A, where Ai1 , . . . , Aik are distinct simple
components, is admissible if for some permutation (l1, . . . , lk) of (i1, . . . , ik) we have that
Al1J · · ·JAlk 6= 0. Moreover, if Ai1 ⊕ · · · ⊕ Aik is an admissible subalgebra of A then
A′ = Ai1 ⊕ · · · ⊕Aik + J is called a reduced algebra.

The notion of admissible ∗-superalgebra is closely linked to that of ∗-graded exponent in
fact, in [19], Gordienko proved that exp∗

Z2
(A) = d where d is the maximal dimension of an

admissible subalgebra of A. It follows immediately that

Remark 1. If A is a simple ∗-superalgebra then exp∗
Z2
(A) = dimFA.
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By [10, Theorem 5.3] the Gordienko’s result on the existence of the ∗-graded exponent
can be actually extended to any finitely generated PI-∗-superalgebra since it satisfies the
same ∗-graded polynomial identities of a finite-dimensional ∗-superalgebra.

In [17] it was showed that reduced superalgebras are building blocks of any proper variety.
Here we obtain the analogous result for varieties of ∗-superalgebras.

Let’s first start with the following

Lemma 1. Let A and B be ∗-superalgebras satisfying an ordinary polynomial identity. Then

c(Z2,∗)
n (A), c(Z2,∗)

n (B) ≤ c(Z2,∗)
n (A⊕B) ≤ c(Z2,∗)

n (A) + c(Z2,∗)
n (B).

If A and B are finitely generated ∗-superalgebras, then

exp∗
Z2
(A⊕B) = max{exp∗

Z2
(A), exp∗

Z2
(B)}.

Proof. The proof is the same of the proof of the Lemma 1 in [17].

We have the following

Theorem 1. Let A be a finitely generated ∗-superalgebra satisfying an ordinary polynomial
identity. Then there exists a finite number of reduced ∗-superalgebras B1, . . . , Bt and a finite
dimensional ∗-superalgebra D such that

var∗
Z2
(A) = var∗

Z2
(B1 ⊕ · · · ⊕Bt ⊕D)

with exp∗
Z2
(A) = exp∗

Z2
(B1) = · · · = exp∗

Z2
(Bt) and exp∗

Z2
(D) < exp∗

Z2
(A).

Proof. The proof follows closely the proof given in [3, Theorem 3]. Since A is a finitely
generated ∗-superalgebra, by [10], there exists a finite dimensional ∗-superalgebra B such
that Id∗Z2

(A) = Id∗Z2
(B). Therefore we may assume that A = A+

0 ⊕ A−
0 ⊕ A+

1 ⊕ A−
1 is a

finite dimensional ∗-superalgebra over F satisfying an ordinary polynomial identity. Also,
by [13, Theorem 7.3] we can write

A = A1 ⊕ · · · ⊕As + J

where A1, . . . As are simple ∗-superalgebras and J = J(A) is the Jacobson radical of A which
is a ∗-graded ideal. Let exp∗

Z2
(A) = d. Then there exist distinct simple ∗-superalgebras

Aj1 , . . . Ajk such that

Aj1J · · · JAjk 6= 0 and dimF (Aj1 ⊕ · · · ⊕Ajk ) = d.

Let Γ1, . . . ,Γt be all possible subset of {1, . . . , s} such that, if Γj = {j1, . . . , jk} then
dimF (Aj1 ⊕ · · · ⊕ Ajk ) = d and Aσ(j1)J · · · JAσ(jk) 6= 0 for some permutation σ ∈ Sk.
For any such Γj , j = 1, . . . , t, then we put Bj = Aj1 ⊕ · · · ⊕ Ajk + J . It follows, by the
characterization of the ∗-graded exponent, that

exp∗
Z2
(B1) = · · · = exp∗

Z2
(Bt) = d = exp∗

Z2
(A).

Let D = D1 ⊕ · · · ⊕ Dp, where D1, . . . , Dp are all ∗-graded subalgebras of A of the type
Ai1 ⊕ · · · ⊕ Air + J , with 1 ≤ i1 < · · · < ir ≤ s and dimF (Ai1 ⊕ · · · ⊕ Air ) < d. Then,
by the previous lemma, we have that exp∗

Z2
(D) < exp∗

Z2
(A). Now, we want to prove that

exp∗
Z2
(B1 ⊕ · · · ⊕Bt ⊕D) = exp∗

Z2
(A). The inclusion

var∗
Z2
(B1 ⊕ · · · ⊕Bt ⊕D) ⊆ var∗

Z2
(A)

follows since D,Bi ∈ var∗
Z2
(A), ∀i = 1, . . . , t.

Let’s consider a multilinear polynomial f = f(y+1 , . . . , y
+
n , y

−
1 , . . . , y

−
m, z+1 , . . . , z

+
p , z

−
1 , . . . , z

−
q )

such that f 6∈ Id∗
Z2
(A). We shall prove that f 6∈ Id∗

Z2
(B1⊕ · · ·⊕Bt⊕D). Since f 6∈ Id∗

Z2
(A)
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there exist a+1,0, . . . , a
+
n,0 ∈ A+

0 , a
−
1,0, . . . , a

−
m,0 ∈ A−

0 , a
+
1,1, . . . , a

+
p,1 ∈ A+

1 and a−1,1, . . . , a
−
q,1 ∈

A−
1 such that

f(a+1,0, . . . , a
+
n,0, a

−
1,0, . . . , a

−
m,0, a

+
1,1, . . . , a

+
p,1, a

−
1,1, . . . , a

−
q,1) 6= 0.

From the linearity of f we can assume that a+i,0, a
−
i,0, a

+
i,1, a

−
i,1 ∈ A1 ∪ · · · ∪ As ∪ J . Since

AiAj = 0 for i 6= j, from the property of the ∗-graded exponent we have

a+1,0, . . . , a
+
n,0, a

−
1,0, . . . , a

−
m,0, a

+
1,1, . . . , a

+
p,1, a

−
1,1, . . . , a

−
q,1 ∈ Aj1 ⊕ · · · ⊕Ajk + J

for some Aj1 , . . . , Ajk such that dimF (Aj1 ⊕ · · · ⊕ Ajk) ≤ d . Thus f is not an identity for
one of the algebras B1, . . . , Bt, D. Hence f 6∈ Id∗

Z2
(B1 ⊕ · · · ⊕Bt ⊕D). In conclusion

var∗
Z2
(A) ⊆ var∗

Z2
(B1 ⊕ · · · ⊕Bt ⊕D)

and the proof is complete.

An application of Theorem 1 is given in terms of ∗-graded codimensions.

Corollary 1. Let A be a finitely generated PI-∗-superalgebra. Then there exists a finite
number of reduced ∗-superalgebras B1, . . . , Bt such that

c(Z2,∗)
n (A) ≃ c(Z2,∗)

n (B1 ⊕ · · · ⊕Bt)

Proof. By Theorem 1 there is a finite number of reduced ∗-superalgebras B1, . . . , Bt and a
finite dimensional ∗-superalgebra D such that

var∗
Z2
(A) = var∗

Z2
(B1 ⊕ · · · ⊕Bt ⊕D)

with exp∗
Z2
(A) = exp∗

Z2
(B1) = · · · = exp∗

Z2
(Bt) and exp∗

Z2
(D) < exp∗

Z2
(A). By Lemma 1,

c(Z2,∗)
n (B1 ⊕ · · · ⊕Bt) ≤ c(Z2,∗)

n (B1 ⊕ · · · ⊕Bt ⊕D) ≤ c(Z2,∗)
n (B1 ⊕ · · · ⊕Bt) + c(Z2,∗)

n (D).

Recalling that exp∗
Z2
(D) < exp∗

Z2
(B1) = exp∗

Z2
(B1 ⊕ · · · ⊕Bt) we have that

c(Z2,∗)
n (A) ≃ c(Z2,∗)

n (B1 ⊕ · · · ⊕Bt)

and the proof of the corollary is complete.

The following results give us a characterization of the varieties of ∗-superalgebras satis-
fying a Capelli identity. Let’s start with the following lemma

Lemma 2. Let M+, M−, L+ and L− be natural numbers. If A is a ∗-superalgebra satisfying

the ∗-graded Capelli polynomials Cap
(Z2,∗)
M+ [Y +, X ], Cap

(Z2,∗)
M− [Y −, X ], Cap

(Z2,∗)
L+ [Z+, X ] and

Cap
(Z2,∗)
L− [Z−, X ], then A satisfies the Capelli identity Capk(x1, . . . , xk; x̄1, . . . , x̄k−1), where

k = M+ +M− + L+ + L−.

Proof. Let k = M+ +M− +L+ +L−, then we obtain immediately the thesis if we observe
that

Capk(x1, . . . , xk; x̄1, . . . , x̄k−1) =

Capk(
y+1 + y−1

2
+

z+1 + z−1
2

, . . . ,
y+k + y−k

2
+

z+k + z−k
2

; x̄1, . . . , x̄k−1)

is a linear combinations of ∗-graded Capelli polynomials alternating or in m+ ≥ M+ sym-
metric variables of zero degree, or in m− ≥ M− skew variables of zero degree, or in l+ ≥ L+

symmetric variables of one degree or in l− ≥ L− skew variables of one degree.

Theorem 2. Let V∗
Z2

be a variety of ∗-superalgebras. If V∗
Z2

satisfies the Capelli identity of
some rank, then V∗

Z2
= var∗

Z2
(A), for some finitely generated ∗-superalgebra A.
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Proof. The proof follows very closely the proof given in [18, Theorem 11.4.3] for superal-
gebras.

4. The ∗-superalgebra UT ∗
Z2
(A1, . . . , Am)

In this section we recall the construction of the ∗-superalgebra UT ∗
Z2
(A1, . . . , Am) given

in section 3 of [9] and we investigate the link between the degrees of the ∗-graded Capelli
polynomials and the ∗-graded identities of this ∗-superalgebra.

If F is an algebraically closed field of characteristic zero, then, up to graded isomorphisms,
the only finite dimensional simple ∗-superalgebras are the following (see [13, Theorem 7.6])

(1) (Mh,l, ⋄), with h ≥ l ≥ 0, h 6= 0;
(2) (Mh,l ⊕Mop

h,l, exc), with h ≥ l ≥ 0, h 6= 0, and induced grading;

(3) (Mn + cMn, ⋆), with involution given by (a+ cb)⋆ = a⋄ − cb⋄;
(4) (Mn + cMn, †), with involution given by (a+ cb)† = a⋄ + cb⋄;
(5) ((Mn + cMn)⊕ (Mn + cMn)

op, exc), with grading (Mn ⊕Mop
n , c(Mn ⊕Mop

n ));

where ⋄ = t, s denotes the transpose or symplectic involution and exc is the exchange
involution. Remember that the symplectic involution can occur only when h = l. Moreover
Mh = Mh(F ) is the superalgebra of h × h matrices over F with trivial grading, Mh,l =

Mh+l(F ) is the superalgebra with grading

((

F11 0
0 F22

)

,

(

0 F12

F21 0

))

, where F11,

F12, F21, F22 are h × h, h × l, l × h and l × l matrices respectively, h ≥ l ≥ 0, h 6= 0 and
Mn + cMn = Mn(F ⊕ cF ) denotes the simple superalgebra with grading (Mn(F ), cMn(F )),
where c2 = 1.

Let (A1, . . . , Am) be a m-tuple of finite dimensional simple ∗-superalgebras. For every
k = 1, . . . ,m, the size of Ak is given by

sk =

{

hk + lk if Ak = Mhk,lk or Ak = Mhk,lk ⊕Mop
hk,lk

;

2nk if Ak = Mnk
+ cMnk

or Ak = (Mnk
+ cMnk

)⊕ (Mnk
+ cMnk

)op

and, set η0 = 0, let ηk = Σk
i=1si and Blk = {ηk−1 + 1, . . . , ηk}. Moreover, we denote by γm

the orthogonal involution defined on the matrix algebra Mm by sending each a ∈ Mm into
the element aγm ∈ Mm obtained reflecting a along its secondary diagonal. In particular for
any matrix unit ei,j of Mm, eγm

i,j = em−j+1,m−i+1.
Then, we have a monomorphism of ∗-algebra

∆ :
m
⊕

k=1

Ak → (M2ηm
, γ2ηm

)

defined by

(c1, . . . , cm) →





















ā1
. . .

ām
b̄m

. . .

b̄1





















where the elements āi and b̄i are defined as follows:

• if ci ∈ (Mh,l; ⋄), then āi = ci and b̄i = (c⋄i )
γh+l ;
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• if ci = (ai, bi) ∈ (Mh,l ⊕Mop
h,l, exc), then āi = ai and b̄i = b

γh+l

i ;

• if ci = ai+cbi ∈ (Mn+cMn, ⋆), then āi =

(

ai bi
bi ai

)

and b̄i = (ā⊥i )
γ2n where

(

x y
y x

)⊥

=

(

x⋄ −y⋄

−y⋄ x⋄

)

;

• if ci = ai+cbi ∈ (Mn+cMn, †), then āi =

(

ai bi
bi ai

)

and b̄i = (ā⊤i )
γ2n where

(

x y
y x

)⊤

=

(

x⋄ y⋄

y⋄ x⋄

)

;

• if ci = (ai + cbi, ui + cvi) ∈ ((Mn + cMn) ⊕ (Mn + cMn)
op, exc), then āi =

(

ai bi
bi ai

)

and b̄i =

(

ui vi
vi ui

)γ2n

.

Let denote by D ⊆ (M2ηm
, γ2ηm

) the ∗-algebra image of
⊕m

i=1 Ai by ∆ and set

V =





























0 V12 · · · V1m

. . .
. . .

...
0 Vm−1m

0
0 Vmm−1 · · · Vm1

. . .
. . .

...
0 V21

0





























⊆ M2ηm

where, for 1 ≤ i, j ≤ m, i 6= j, Vij = Msi×sj = Msi×sj (F ) is the algebra of si × sj matrices
of F . Let define

UT ∗(A1, . . . , Am) = D ⊕ V ⊆ M2ηm
.

It is easy to see that UT ∗(A1, . . . , Am) is a subalgebra with involution of (M2ηm
(F ), γ2ηm

)
whose Jacobson radical coincides with V .

Now, for any m-tuple g̃ = (g1, . . . , gm) ∈ Z
m
2 , we consider the map

αg̃ : {1, . . . , 2ηm} → Z2, i →

{

αk(i− ηk−1) + gk 1 ≤ i ≤ ηm;
αk(2ηm − i+ 1− ηk−1) + gk ηm + 1 ≤ i ≤ 2ηm.

where k ∈ {1, . . . ,m} is the (unique) integer such that i ∈ Blk and αk’s are maps so defined:
· if Ak ≃ Mh,l or Ak ≃ Mh,l ⊕Mh,l, then

αk : {1, . . . , h+ l} → Z2, αk(i) =

{

0 1 ≤ i ≤ h;
1 h+ 1 ≤ i ≤ h+ l.

· if Ak ≃ Mn + cMn or Ak ≃ (Mn + cMn)⊕ (Mn + cMn), then

αk : {1, . . . , 2n} → Z2, αk(i) =

{

0 1 ≤ i ≤ n;
1 n+ 1 ≤ i ≤ 2n.

The map αg̃ induces an elementary grading on UT ∗(A1, . . . , Am) with respect to which
γ2ηm

is a graded involution. We shall use the symbol

UT ∗
Z2,g̃

(A1, . . . , Am)
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to indicate the ∗-superalgebra defined by the m-tuple g̃. We observe that the k-th simple
component of the maximal semisimple ∗-graded subalgebra of this ∗-superalgebra is isomor-
phic to Ak. When convenient, any such ∗-superalgebra is simply denoted by

UT ∗
Z2
(A1, . . . , Am).

In the next lemma we establish the link between the degrees of the ∗-graded Capelli
polynomials and the ∗-graded polynomial identities of UT ∗

Z2,g̃
(A1, . . . , Am). For all i =

1, . . . ,m, we write
Ai = A+

i,0 ⊕A−
i,0 ⊕A+

i,1 ⊕A−
i,1.

Let (d±0 )i = dimFA
±
i,0 and (d±1 )i = dimFA

±
i,1, if we set d±0 :=

∑m
i=1(d

±
0 )i and d±1 :=

∑m
i=1(d

±
1 )i, then we have the following

Lemma 3. Let g̃ = (g1, . . . , gm) be a fixed element of Zm
2 and A = UT ∗

Z2,g̃
(A1, . . . , Am),

with Ai finite dimensional simple ∗-superalgebra. Let 0 < m̄ ≤ m denote the number of the
finite dimensional simple ∗-superalgebras with trivial grading.

1. If m̄ = 0, Cap
(Z2,∗)
q+

[Y +, X ], Cap
(Z2,∗)
q−

[Y −, X ], Cap
(Z2,∗)
k+ [Z+, X ] andCap

(Z2,∗)
k− [Z−, X ]

are in Id∗
Z2
(A) if and only if q+ ≥ d+0 + m, q− ≥ d−0 + m, k+ ≥ d+1 + m and

k− ≥ d−1 +m;
2. If 0 < m̄ ≤ m, let m̃ be the number of blocks of consecutive ∗-superalgebras with triv-

ial grading that appear in (A1, . . . , Am). Then Cap
(Z2,∗)
q+

[Y +, X ], Cap
(Z2,∗)
q−

[Y −, X ],

Cap
(Z2,∗)
k+ [Z+, X ] and Cap

(Z2,∗)
k− [Z−, X ] are in Id∗

Z2
(A) if and only if q+ > d+0 +(m−

m̄)+(m̃−1)+r0, q
− > d−0 +(m−m̄)+(m̃−1)+r0, k

+ > d+1 +(m−m̄)+(m̃−1)+r1
and k− > d−1 + (m− m̄) + (m̃− 1) + r1, where r0, r1 are two non negative integers
depending on the grading g̃, with r0 + r1 = m̄− m̃.

Proof. We will prove the statement only for Cap
(Z2,∗)
q+

[Y +, X ] the ∗-graded Capelli poly-

nomial alternating on q+ symmetric variables of degree zero since on the other cases the
proofs are similar.

1. Let m̄ = 0. To prove the necessary condition of the statement for the symmetric

variables of degree zero it is sufficient to prove that Cap
(Z2,∗)
q+

[Y +, X ] is not in Id∗
Z2
(A) when

q+ = d+0 +m− 1.
We start considering separately the components Ai of A. In each ∗-superalgebra Ai we

can take (d+0 )i symmetric elements of homogeneous degree zero

Si = {sαi−1+i, . . . , sαi+i−1}

for i = 1, . . . ,m, where α0 = 0 and αi =
∑i

j=0(d
+
0 )j and a set of elements of Ai

Ui = {aαi−1+i, . . . , aαi+i−2}

such that
Cap

(Z2,∗)

(d+
0 )i

(sαi−1+i, . . . , sαi+i−1; aαi−1+i, . . . , aαi+i−2) =














eri,si if (Mhi,li , ⋄);
(eri,si , 0) if (Mhi,li ⊕Mop

hi,li
, exc);

eri,si if (Mni
+ cMni

, ⋆) or (Mni
+ cMni

, †);
((eri,si , 0), (0, 0)) if ((Mni

+ cMni
)⊕ (Mni

+ cMni
)op, exc),

where ⋄ = t, s denotes the transpose or symplectic involution, exc is the exchange involution,
(a+ cb)⋆ = a⋄ − cb⋄ and (a+ cb)† = a⋄ + cb⋄.
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For any 1 ≤ i ≤ m, if φi is the ∗-embedding of Ai in A, then let

S̄i = {s̄αi−1+i, . . . , s̄αi+i−1}

and

Ūi = {āαi−1+i, . . . , āαi+i−2}

denote the images of Si and Ui by φi, respectively.
Let observe that in A we can consider appropriate symmetric elements of homogeneous

degree zero in J+
0

s̄αi+i = eh,k + e∗h,k
and elementary matrices of A

āαi+i−1 = esi,h and āαi+i = ek,ri+1

such that

Cap
(Z2,∗)

(d+
0 )i

(s̄αi−1+i, . . . , s̄αi+i−1; āαi−1+i, . . . , āαi+i−2)āαi+i−1s̄αi+iāαi+i

Cap
(Z2,∗)

(d+
0 )i+1

(s̄αi+(i+1), . . . , s̄αi+1+i; āαi+(i+1), . . . , āαi+1+(i−1)) 6= 0.

From now on, we will put Cap
(Z2,∗)

(d+
0 )i

= Cap
(Z2,∗)

(d+
0 )i

(s̄αi−1+i, . . . , s̄αi+i−1; āαi−1+i, . . . , āαi+i−2).

It follows that
Cap

(Z2,∗)
q+

(s̄1, . . . , s̄αm+(m−1); ā1, . . . , āαm+(m−2)) =

Cap
(Z2,∗)

(d+
0 )1

āα1 s̄α1+1āα1+1Cap
(Z2,∗)

(d+
0 )2

· · · · · ·Cap
(Z2,∗)

(d+
0 )m−1

āαm−1 s̄αm−1+1āαm−1+1Cap
(Z2,∗)

(d+
0 )m

6= 0.

Conversely, let q+ ≥ d+0 +m. We observe that any monomial of elements of A containing
at least m elements of J+

0 must be zero. Then we claim that any multilinear polynomial

f̃ = f̃(y1, . . . , yd+
0 +m;x1, x2, . . .) alternating on d+0 +m symmetric variables of degree zero

must vanish in A. In fact, by multilinearity, we can consider only substitutions ϕ : y+i → s̄i,
xi → āi such that s̄i ∈ D+

0 ∪ J+
0 for 1 ≤ i ≤ d+0 +m.

However, since dimFD
+
0 = d+0 , if we substitute at least d

+
0 +1 variables in elements of D+

0

the polynomial vanishes. On the other hands, if we substitute at least m elements of J+
0 ,

we also get that f̃ vanishes in A. The outcome of this is that A satisfies Cap
(Z2,∗)

d+
0 +m

[Y +, X ]

and so Cap
(Z2,∗)
q+

[Y +, X ], with q+ ≥ d+0 +m.

2. First let assume that m̄ = m. We recall that

UT ∗(A1, . . . , Am) = D ⊕ V ⊆ M2ηm
,

where D ⊆ (M2ηm
, γ2ηm

) the ∗-algebra image of
⊕m

i=1 Ai by ∆ and

V =





























0 V12 · · · V1m

. . .
. . .

...
0 Vm−1m

0
0 Vmm−1 · · · Vm1

. . .
. . .

...
0 V21

0





























⊆ M2ηm

Notice that, for a fixed g̃ = (g1, . . . , gm) ∈ Z
m
2 , if gi = gj, 1 ≤ i, j ≤ m, then the

elements of the blocks Vi,j are homogeneous of degree zero, otherwise, if gi 6= gj , they are
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homogeneous of degree one. Suppose that in g̃ = (g1, . . . , gm) there are p ≥ 1 different string
of zero and one, i.e.

g̃ = (g1, . . . , gt1 , gt1+1, . . . , gt1+t2 , . . . , gt1+···+tp−1+1, . . . , gt1+···+tp),

where t1 + · · ·+ tp = m,

g1 = · · · = gt1 ,

gt1+1 = · · · = gt1+t2 ,

. . . . . .

gt1+···+tp−1+1 = · · · = gt1+···+tp

and

gt1+···+ti 6= gt1+···+ti+1,

∀ i = 1, . . . , p− 1.
As in the previous case we can find in A symmetric elements of degree zero

S̄i = {s̄αi−1+i, . . . , s̄αi+i−1, s̄αi+i}

and generic elements

Ūi = {āαi−1+i, . . . , āαi+i−2, āαi+i−1, āαi+i}

such that, ∀ i = 1, . . . p,

Cap(Z2,∗)
qi

(s̄αt̃i−1
+(t̃i−1+1), . . . , s̄αt̃i

+(t̃i−1); āαt̃i−1
+(t̃i−1+1), . . . , āαt̃i

+(t̃i−2)) =

Cap
(Z2,∗)

(d+
0 )t̃i−1+1

āα(t̃i−1+1)+t̃i−1
s̄α(t̃i−1+1)+(t̃i−1+1)āα(t̃i−1+1)+(t̃i−1+1)Cap

(Z2,∗)

(d+
0 )t̃i−1+2

· · · · · · · · · · · ·Cap
(Z2,∗)

(d+
0 )t̃i

= bi 6= 0,

where t̃0 = t0 = 0, t̃i =
∑i

j=0 tj and qi = (d+0 )t̃i−1+1 + · · ·+ (d+0 )t̃i + (ti − 1).

Furthermore we can find in A elementary matrices E1, . . . , Ep−1, such that

Cap
(Z2,∗)

d+
0 +m−p

= Cap(Z2,∗)
q1

E1Cap(Z2,∗)
q2

E2 · · ·Cap(Z2,∗)
qp−1

Ep−1Cap(Z2,∗)
qp

=

b1E1b2E2 · · · bp−1Ep−1bp 6= 0.

This implies that, for r0 = m− p,

Cap
(Z2,∗)

d+
0 +r0

[Y +, X ] /∈ Id∗
Z2
(A).

Moreover, let’s observe that any monomial of elements of A containing at least r0 + 1 =
(m − p) + 1 elements of J0 must be zero. Then, similarly to the previous case, we obtain

that A satisfies Cap
(Z2,∗)

d+
0 +r0+1

[Y +, X ].

If 0 < m̄ < m, let m̃ be the number of blocks of consecutive ∗-superalgebras with trivial
grading that appear in (A1, . . . , Am). By considering separately the blocks of consecutive ∗-
superalgebras with trivial and non-trivial grading and by using arguments similar to those of

the proof of case 1, it easily follows that Cap
(Z2,∗)
q+

[Y +, X ], Cap
(Z2,∗)
q−

[Y −, X ], Cap
(Z2,∗)
k+ [Z+, X ]

and Cap
(Z2,∗)
k− [Z−, X ] are in Id∗

Z2
(A) if and only if q+ > d+0 + (m − m̄) + (m̃ − 1) + r0,

q− > d−0 + (m − m̄) + (m̃ − 1) + r0, k+ > d+1 + (m − m̄) + (m̃ − 1) + r1 and k− >
d−1 + (m− m̄) + (m̃− 1) + r1, where r0, r1 are two non negative integers depending on the
grading g̃, with r0 + r1 = m̄− m̃.
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5. Asymptotics for ∗-graded Capelli identities

In this section we shall study U = var∗
Z2
(Γ∗

M±+1,L±+1) and we shall find a close relation

among the asymptotics of c∗n(Γ
∗
M±+1,L±+1) and c∗n(A), where A is a finite dimensional simple

∗-superalgebra. Let
R = A⊕ J

where A is a finite dimensional simple ∗-superalgebra and J = J(R) is its Jacobson radical.
From now on we put M± = dimFA0

± and L± = dimFA1
±.

Let’s begin with some technical lemmas that hold for any finite dimensional simple ∗-
superalgebra A.

Lemma 4. The Jacobson radical J can be decomposed into the direct sum of four A-
bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

where, for p, q ∈ {0, 1}, Jpq is a left faithful module or a 0-left module according to p = 1,
or p = 0, respectively. Similarly, Jpq is a right faithful module or a 0-right module according
to q = 1 or q = 0, respectively. Moreover, for p, q, i, l ∈ {0, 1}, JpqJql ⊆ Jpl, JpqJil = 0 for
q 6= i and there exists a finite dimensional nilpotent ∗-superalgebra N such that N commutes
with A and J11 ∼= A⊗F N (isomorphism of A-bimodules and of ∗-superalgebras).

Proof. It follows from Lemma 2 in [17] and Lemmas 1,6 in [5].

Notice that J00 and J11 are stable under the involution whereas J∗
01 = J10.

Lemma 5. If Γ∗
M±+1,L±+1 ⊆ Id∗

Z2
(R), then J10 = J01 = (0).

Proof. By Lemma 3 we have that A does not satisfy Cap
(Z2,∗)
M+ [Y +, X ]. Then there exist

elements a+1 , . . . , a
+
M+ ∈ A0

+ and b1, . . . , bM+−1 ∈ A such that

Cap
(Z2,∗)
M+ (a+1 , . . . , a

+
M+ ; b1, . . . , bM+−1) =















e1,h+l ifA = (Mh,l, ⋄), ⋄ = t, s;
ẽ1,h+l ifA = (Mh,l ⊕Mop

h,l, exc);

e1,n ifA = (Mn + cMn, ⋆) orA = (Mn + cMn, †);
ẽ1,n ifA = ((Mn + cMn)⊕ (Mn + cMn)

op, exc)

where the ei,j ’s are the usual matrix units and ẽi,j = (ei,j , ej,i). We write J10 = (J10)0 ⊕

(J10)1 and J01 = (J01)0⊕(J01)1. Let d0 ∈ (J01)0, then d∗0 ∈ (J10)0 and d0+d∗0 ∈ (J01⊕J10)
+
0 .

Since Γ∗
M±+1,L±+1 ⊆ Id∗

Z2
(R) it follows that there exists bM+ ∈ A such that

0 = Cap
(Z2,∗)

M++1(a
+
1 , . . . , a

+
M+ , d0 + d∗0; b1, . . . , bM+−1, bM+) =















e1,h+ld
∗
0 ± d0e1,h+l ifA = (Mh,l, ⋄), ⋄ = t, s;

ẽ1,h+ld
∗
0 ± d0ẽ1,h+l ifA = (Mh,l ⊕Mop

h,l, exc);

e1,nd
∗
0 ± d0e1,n ifA = (Mn + cMn, ⋆) orA = (Mn + cMn, †);

ẽ1,nd
∗
0 ± d0ẽ1,n ifA = ((Mn + cMn)⊕ (Mn + cMn)

op, exc).

If A = (Mh,l, ⋄), then e1,h+ld
∗
0 ± d0e1,h+l = 0 and, so, e1,h+ld

∗
0 = ∓d0e1,h+l ∈ (J01)0 ∩

(J10)0 = (0). Hence d0 = 0, for all d0 ∈ (J01)0. Thus (J01)0 = (0) and (J10)0 = (0).
Similarly for the other finite dimensional simple ∗-superalgebras we obtain that (J01)0 =
(J10)0 = (0). Analogously it easy to show that (J01)1 = (J10)1 = (0) and the lemma is
proved.
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Lemma 6. Let J11 ∼= A ⊗F N , as in Lemma 4. If Γ∗
M±+1,L±+1 ⊆ Id∗

Z2
(R), then N is

commutative.

Proof. Let N be the finite dimensional nilpotent ∗-superalgebra of Lemma 4. Write N =
N+

0 ⊕N−
0 ⊕N+

1 ⊕N−
1 , where N+

0 , N−
0 , N+

1 and N−
1 denote the subspaces of symmetric and

skew symmetric elements of N of homogeneous degree 0 and 1 respectively.
We shall prove that N is commutative when A = (Mh,l, ⋄), with ⋄ = t or s. Similar calcu-

lations for the other finite dimensional simple ∗-superalgebras lead to the same conclusion.
Let’s start by proving that N±

0 commutes with N±
i , i = 0, 1. Let e+1 , . . . , e

+
M+ be a basis

of A0
+ with

e+1 =

{

e1,2 + e2,1 ifA = (Mh,l, t) ;
e1,2 + eh+2,h+1 ifA = (Mh,h, s)

and let a0 = a1 = e2,1, a2, . . . , aM+−1 ∈ A such that a0e
+
1 a1e

+
2 · · · aM+−1e

+
M+ = e2,h+l

and a0e
+
σ(1)a1 · · ·aM+−1e

+
σ(M+) = 0 for any σ ∈ SM+ , σ 6= id. Let d1 ∈ N±

0 and e+0 =

(e1,2 ± e⋄1,2)d1, with ⋄ = t or s. Since N commutes with A we obtain that e+0 ∈ R+
0 . If we

put ā0 = a0d2 = e2,1d2, with d2 ∈ N±
i , i = 0, 1, then

0 = Cap
(Z2,∗)
M++1(e

+
0 , e

+
1 , . . . , e

+
M ; ā0, a1, . . . , aM+−1) = [d1, d2]e1,h+l

and so [d1, d2] = 0 for all d1 ∈ N±
0 , d2 ∈ N±

i , i = 0, 1.

Let’s now prove that N±
1 commutes with N±

1 . Let e+1 , . . . , e
+
M+ be a basis of A0

+, with

e+1 =

{

e1,1 ifA = (Mh,l, t) ;
e1,1 + eh+1,h+1 ifA = (Mh,h, s)

and let a0 = eh+l,1, a1, a2, . . . , aM+−1 ∈ A such that a0e
+
1 a1 · · · aM+−1e

+
M+ = eh+l,1 (if ⋄ =s

then h = l) and a0e
+
σ(1)a1 · · · aM+−1e

+
σ(M+) = 0 for any σ ∈ SM+ , σ 6= id.

Let (e1,h+l ± e⋄1,h+l) ∈ A±
1 and d1, d2 ∈ N±

1 such that, for i = 1, 2, c+i = (e1,h+l ± e⋄1,h+l)di.

Since N commutes with A then c+i ∈ R+
0 , i = 1, 2. If aM = e1,1 then

0 = Cap
(Z2,∗)
M++2(c

+
1 , e

+
1 , . . . , e

+
M , c+2 ; ā0, a1, . . . , aM+−1, aM ) = [d1, d2]e1,h+l

(h = l for ⋄ = s) and so [d1, d2] = 0, for all d1, d2 ∈ N±
1 and we are done.

Lemma 7. exp∗
Z2
(U) = M+ +M− + L+ + L− = M + L = exp∗

Z2
(A).

Proof. By the definition of minimal variety (see Definition 2.1 in [9]) the ∗-graded exponent
of U is equal to the ∗-graded exponent of some minimal variety of ∗-superalgebras lying in
U . Moreover, by the classification of minimal varieties of PI-∗-superalgebras of finite basic
rank given in [9, Theorem 2.2], we have

exp∗
Z2
(U) = max{exp∗

Z2
(UT ∗

Z2
(A1, . . . , Am)) |UT ∗

Z2
(A1, . . . , Am) ∈ U}.

Then, by Lemma 3,

exp∗
Z2
(U) ≥ exp∗

Z2
(UT ∗

Z2
(A)) = M + L.

On the other hand, since exp∗
Z2
(UT ∗

Z2
(A1, . . . , Am)) = d±0 + d±1 , we have that

exp∗
Z2
(U) ≤ M + L

and the proof is completed.

Now we are able to prove the main result.
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Theorem 3. For suitable natural numbers M+, M−, L+, L− there exists a finite dimen-
sional simple ∗-superalgebra A such that

U = var∗
Z2
(Γ∗

M±+1,L±+1) = var∗
Z2
(A⊕D),

where D is a finite dimensional ∗-superalgebra such that exp∗
Z2
(D) < M + L, with M =

M+ +M− and L = L+ + L−. In particular

1) If M± = h(h±1)
2 + l(l±1)

2 and L± = hl, with h ≥ l > 0, then A = (Mh,l, t);

2) If M± = h2 and L± = h(h∓ 1), with h > 0, then A = (Mh,h, s);
3) If M± = h2 + l2 and L± = 2hl, with h ≥ l > 0, then A = (Mh,l ⊕Mop

h,l, exc);

4) If M+ = L± = n(n+1)
2 , M− = L∓ = n(n−1)

2 , with n > 0, then A = (Mn + cMn, ∗),
where (a+ cb)∗ = at ± cbt;

5) If M+ = L± = n(n−1)
2 , M− = L∓ = n(n+1)

2 , with n > 0, then A = (Mn + cMn, ∗),
where (a+ cb)∗ = as ± cbs;

6) If M± = L± = n2, with n > 0, then A = ((Mn + cMn)⊕ (Mn + cMn)
op, exc).

Proof. By Lemma 7 we have that exp∗
Z2
(U) = M+L. Let B be a generating ∗-superalgebra

of U . From Theorem 2 and by [10], since any finitely generated ∗-superalgebra satisfies the
same ∗-graded polynomial identities of a finite-dimensional ∗-superalgebra, we can assume
that B is finite dimensional. Thus, by Theorem 1, there exists a finite number of reduced
∗-superalgebras B1, . . . , Bt and a finite dimensional ∗-superalgebra D such that

U = var∗
Z2
(B) = var∗

Z2
(B1 ⊕ · · · ⊕Bt ⊕D). (1)

Moreover
exp∗

Z2
(B1) = · · · = exp∗

Z2
(Bt) = exp∗

Z2
(U) = M + L

and
exp∗

Z2
(D) < exp∗

Z2
(U) = M + L.

Let’s now analyze the structure of a finite dimensional reduced ∗-superalgebra R such
that exp∗

Z2
(R) = M + L = exp∗

Z2
(U) and Γ∗

M±+1,L±+1 ⊆ Id∗
Z2
(R). We have that

R = R1 ⊕ · · · ⊕Rm + J, (2)

where Ri are simple ∗-graded subalgebras of R, J = J(R) is the Jacobson radical of R and
R1J · · · JRm 6= 0. By [9, Theorem 4.3] there exists a ∗-superalgebra R isomorphic to the ∗-
superalgebra UT ∗

Z2,g̃
(R1, . . . , Rm), for some g̃ = (g1, . . . , gm) ∈ Z

m
2 , such that Id(R) ⊆ Id(R)

and

exp∗
Z2
(R) = exp∗

Z2
(R) = exp∗

Z2
(UT ∗

Z2,g̃
(R1, . . . , Rm)).

It follows that
M + L = exp∗

Z2
(R) = exp∗

Z2
(R) =

exp∗
Z2
(UT ∗

Z2,g̃
(R1, . . . , Rm)) = dimFR1 + · · ·+ dimFRm = d+0 + d−0 + d+1 + d−1

where d±i = dimF (R1 ⊕ · · · ⊕Rm)±(i), for i = 0, 1.

Let 0 ≤ m̄ ≤ m denote the number of the ∗-superalgebras Ri with trivial grading appear-
ing in (2). We want to prove that m̄ = 0.

Let’s suppose m̄ > 0. By Lemma 3, R does not satisfy the ∗-graded Capelli polynomials

Cap
(Z2,∗)

d+
0 +(m−m̄)+(m̃−1)+r0

[Y +, X ], Cap
(Z2,∗)

d−

0 +(m−m̄)+(m̃−1)+r0
[Y −, X ],

Cap
(Z2,∗)

d+
1 +(m−m̄)+(m̃−1)+r1

[Z+, X ], Cap
(Z2,∗)

d−

1 +(m−m̄)+(m̃−1)+r1
[Z−, X ],
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where r0, r1 are two non negative integers dependent on the grading g̃ with r0 + r1 =

m̄ − m̃. However R satisfies Cap
(Z2,∗)
M++1[Y

+, X ], Cap
(Z2,∗)
M−+1[Y

−, X ], Cap
(Z2,∗)
L++1[Z

+, X ] and

Cap
(Z2,∗)
L−+1[Z

−, X ], then

d+0 + (m− m̄) + (m̃− 1) + r0 + d−0 + (m− m̄) + (m̃− 1) + r0+

d+1 + (m− m̄) + (m̃− 1) + r1 + d−1 + (m− m̄) + (m̃− 1) + r1 ≤ M + L.

Since d+0 + d−0 + d+1 + d−1 = M +L we obtain that 4(m− m̄) + 4(m̃− 1) + 2(r0 + r1) = 0
and so 2(m− 1) + m̃− m̄ = 0 and this implies that m ≥ 2. If m = 2 then we easily obtain
a contradiction. Thus m = m̄ = m̃ = 1.

Hence R = R1 ⊕ J where R1 ≃ (Mh1(F ), t) or R1 ≃ (M2h1(F ), s) or R1 ≃ (Mh1(F ) ⊕
Mh1(F )op, exc) with h1 > 0.

Now, let’s analyze all possible cases as M and L vary.

1. Let M± = h(h±1)
2 + l(l±1)

2 and L± = hl, with h ≥ l > 0.

If R ≃ (Mh1(F ), t) + J then exp∗
Z2
(R) = h2

1. Since exp∗
Z2
(R) = M + L = (h + l)2 we

obtain that h1 = h + l. By hypotesis, R satisfies Cap
(Z2,∗)
M++1[Y

+;X ] but, since Id∗
Z2
(R) ⊆

Id∗
Z2
(UT ∗

Z2,g̃
(R1, . . . , Rq)), R does not satisfy Cap

(Z2,∗)

d+
0

[Y +;X ]. Hence, for h ≥ l > 0, we

have

M+ + 1 =
h(h+ 1)

2
+

l(l + 1)

2
+ 1 =

h2 + l2 + (h+ l) + 2

2
≤

h2 + l2 + (h+ l) + 2hl

2
=

(h+ l)(h+ l + 1)

2
=

h1(h1 + 1)

2
= d+0

and this is impossible.
If R ≃ (M2h1(F ), s) + J then exp∗

Z2
(R) = 4h2

1. Since exp∗
Z2
(R) = M + L = (h + l)2

we have that 2h1 = h + l. Moreover R satisfies Cap
(Z2,∗)
M−+1[Y

−;X ] but does not satisfy

Cap
(Z2,∗)

d−

0

[Y −;X ] and so we get a contradiction since

M− + 1 =
h(h− 1)

2
+

l(l − 1)

2
+ 1 =

h2 + l2 − (h+ l) + 2

2
<

h2 + l2 + (h+ l) + 2hl

2
=

(h+ l)2 + (h+ l)

2
=

4h2
1 + 2h1

2
= 2h2

1 + h1 = d−0 .

Finally, let R ≃ (Mh1(F ) ⊕ Mh1(F )op, exc) + J , with h1 > 0. Then (h + l)2 = M + L =
exp∗

Z2
(R) = 2h2

1, a contradiction.

2. Let M± = h2 and L± = h(h∓ 1), with h > 0.
If R ≃ (Mh1(F ), t)+J then, as in the previous case, we obtain that 2h = h1. By hypothesis

R satisfies Cap
(Z2,∗)
M++1[Y

+;X ] but it does not satisfy Cap
(Z2,∗)

d+
0

[Y +;X ], thus we have

M+ + 1 = h2 + 1 = (
h1

2
)2 + 1 =

h2
1

4
+ 1 ≤

h2
1

2
+

h1

2
= d+0

a contradiction.
If R ≃ (M2h1(F ), s)+J then h = h1. Since R satisfies Cap

(Z2,∗)
M−+1[Y

−;X ] but does not satisfy

Cap
(Z2,∗)

d−

0

[Y −;X ] we get the contradiction M− + 1 = h2 + 1 = h2
1 + 1 < 2h2

1 + h1 = d−0 .

Finally, if R ≃ (Mh1(F ) ⊕ Mh1(F )op, exc) + J with h1 > 0, then we have 4h2 = 2h2
1, a

contradiction.
3. Let M± = h2 + l2 and L± = 2hl, with h ≥ l > 0.
If R ≃ (Mh1(F ), t) + J then we get the contradiction 2(h+ l)2 = M + L = exp∗

Z2
(R) = h2

1.
The same occurs if R ≃ (M2h1(F ), s) + J.
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Now, let R ≃ (Mh1(F ) ⊕ Mh1(F )op, exc) + J , with h1 > 0. Then 2(h + l)2 = M + L =
exp∗

Z2
(R) = 2h2

1 and so h1 = h + l. Since d+0 = h2
1 we get that M+ + 1 = h2 + l2 + 1 <

h2 + l2 + 2hl = (h+ l)2 = h2
1 = d+0 and this is impossible.

4.,5. We consider the case M+ = L+ = n(n+1)
2 and M− = L− = n(n−1)

2 . The proof of the
other cases is very similar.
If R ≃ (Mh1(F ), t) + J then 2n2 = M + L = exp∗

Z2
(R) = h2

1, and if R ≃ (M2h1(F ), s) + J

then 2n2 = M + L = exp∗
Z2
(R) = 4h2

1, a contradiction.

Let R ≃ (Mh1(F )⊕Mh1(F )op, exc)+J , with h1 > 0. Then 2n2 = M +L = exp∗
Z2
(R) = 2h2

1

so h1 = n. Since R satisfies Cap
(Z2,∗)
M−+1[Y

−;X ] but it does not satisfy Cap
(Z2,∗)

d−

0

[Y −;X ] we

have again a contradiction indeed M− + 1 = n(n−1)
2 + 1 ≤ n(n− 1) + 1 ≤ n2 = h2

1 = d−0 .

6. Let M± = L± = n2, with n > 0.
If R ≃ (Mh1(F )⊕Mh1(F )op, exc)+J then 4n2 = M +L = exp∗

Z2
(R) = 2h2

1 a contradiction.

If R ≃ (Mh1(F ), t) + J then 4n2 = M + L = exp∗
Z2
(R) = h2

1 and so h1 = 2n. R satisfies

Cap
(Z2,∗)
M++1[Y

+;X ] but does not satisfy Cap∗
d+
0

[Y +;X ] then we obtain a contradiction in fact

M+ + 1 = n2 + 1 =
h2
1

4 + 1 ≤
h2
1

2 + h1

2 = h1(h1+1)
2 = d+0 .

Finally, letR ≃ (M2h1(F ), s)+J . Hence 4n2 = M+L = exp∗
Z2
(R) = 4h2

1 and so n = h1. Also

in this case we get the contradiction M−+1 = n2+1 < 2n2+1 < 2n2+n = 2h2
1+h1 = d−0 .

So we obtained that m̄ = 0.

Let R = R1⊕· · ·⊕Rm+J, where Ri are simple ∗-superalgebras with non trivial grading.
Let’s prove that m = 1. By Lemma 3, R does not satisfy the ∗-graded Capelli polynomials

Cap
(Z2,∗)

d+
0 +m−1

[Y +, X ], Cap
(Z2,∗)

d−

0 +m−1
[Y −, X ], Cap

(Z2,∗)

d+
1 +m−1

[Z+, X ] and Cap
(Z2,∗)

d−

1 +m−1
[Z−, X ] but

satisfies Cap
(Z2,∗)
M++1[Y

+, X ], Cap
(Z2,∗)
M−+1[Y

−, X ], Cap
(Z2,∗)
L++1[Z

+, X ] and Cap
(Z2,∗)
L−+1[Z

−, X ] thus

d+0 +m− 1 ≤ M+, d−0 +m− 1 ≤ M−, d+1 +m− 1 ≤ L+ and d−1 +m− 1 ≤ L−. Hence we
have that

d+0 +(m−1)+d−0 +(m−1)+d+1 +(m−1)+d−1 +(m−1) ≤ M++M−+L++L− = M +L.

Since d+0 + d−0 + d−1 + d−1 = M + L we obtain that 4(m− 1) = 0 and so m = 1.

It follows that R = R1 ⊕ J where R1 is a simple ∗-superalgebra with non trivial grading.
Now let’s analyze the cases corresponding to the different values of M and L.

1. Let M± = h(h±1)
2 + l(l±1)

2 and L± = hl, with h ≥ l > 0.

If R ≃ (Mh1,h1(F ), s) + J then (h+ l)2 = M +L = exp∗
Z2
(R) = 4h2

1 so we have 2h1 = h+ l.

By hypothesis R satisfies Cap
(Z2,∗)
L−+1[Z

−;X ] but does not satisfy Cap
(Z2,∗)

d−

1

[Z+;X ], where

d−1 = h1(h1 + 1). Since h+ l = 2h1 and h ≥ l > 0 we have that h2
1 ≥ hl and so

L− + 1 = hl+ 1 ≤ h2
1 + 1 ≤ h1(h1 + 1) = d−1

a contradiction.
If R ≃ (Mh1,l1(F ) ⊕ Mh1,l1(F )op, exc) + J , with h1 ≥ l1 > 0, then (h + l)2 = M + L =
exp∗

Z2
(R) = 2(h1 + l1)

2 and so we have again a contradiction.
If R ≃ (Mn(F + cF ), ∗) + J , where (a + cb)∗ = a⋄ ± cb⋄ and ⋄ = t, s, then we obtain the
contradiction (h+ l)2 = 2n2.
If R ≃ (Mn(F + cF ) ⊕ Mn(F + cF )op, exc) + J with n > 0, then (h + l)2 = M + L =
exp∗

Z2
(R) = 4n2 and so 2n = h+ l. As before we can easily obtain a contradiction. It follows

that R ≃ (Mh,l(F ), t) + J .

2. Let now M± = h2 and L± = h(h∓ 1), with h > 0.
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If R ≃ (Mh1,l1(F ), t) + J , then, since M + L = exp∗
Z2
(R), we have 4h2 = (h1 + l1)

2

and so h1 + l1 = 2h2. By hypothesis R satisfies Cap
(Z2,∗)
M++1[Y

+;X ] but does not satisfy

Cap
(Z2,∗)

d+
0

[Y +;X ] where d+0 = h1(h1+1)
2 + l1(l1+1)

2 . Since h1 + l1 = 2h and h1 ≥ l1 > 0 we

have h2 ≥ h1l1 and so it follows that

M+ + 1 = h2 + 1 < h(2h+ 1)− h1l1 =
h1 + l1

2
(h1 + l1 + 1)− h1l1 =

h1(h1 + 1)

2
+

l1(l1 + 1)

2
= d+0

a contradiction.
If R ≃ (Mh1,l1(F ) ⊕Mh1,l1(F )op, exc) + J , with h1 ≥ l1 > 0, or R ≃ (Mn(F + cF ), ∗) + J
where (a+ cb)∗ = a⋄ ± cb⋄ and ⋄ = t, s then easily we get a contradiction.
If R ≃ (Mn(F + cF )⊕Mn(F + cF )op, exc)+J with n > 0, then 4h2 = M +L = exp∗

Z2
(R) =

4n2 and so n = h. R satisfies Cap
(Z2,∗)
L−+1[Z

−;X ] but R does not satisfy Cap
(Z2,∗)

d−

1

[Z+;X ],

where d−1 = n2 and we obtain the following contradiction L− +1 = h(h− 1) = h2 − h− 1 ≤
h2 = n2 = d−1 . So, in this case, R ≃ (Mh,h(F ), s) + J .

3. Let M± = h2 + l2 and L± = 2hl, with h ≥ l > 0.
If R ≃ (Mh1,l1(F ), t)+J , R ≃ (Mh1,h1(F ), s)+J or R ≃ (Mn(F+cF )⊕Mn(F+cF )op, exc)+
J easily we get a contradiction.
If R ≃ (Mn(F + cF ), ∗) + J where (a + cb)∗ = a⋄ ± cb⋄ and ⋄ = t, s then we have that
2(h+ l)2 = 2n2 and so h+ l = n. Let consider the case when R ≃ (Mn(F + cF ), ∗)+J with

(a+ cb)∗ = at − cbt, the other cases are very similar. Since R satisfies Cap
(Z2,∗)
L−+1[Z

−;X ] but

R does not satisfy Cap
(Z2,∗)

d−

1

[Z+;X ] we obtain

L− + 1 = 2hl+ 1 <
(h+ l+ 1)(h+ l)

2
=

(n+ 1)n

2
= d−1

a contradiction. It follows that R ≃ (Mh,l(F )⊕Mh1,l1(F )op, exc) + J .

4.,5. Let consider the case M+ = L+ = n(n+1)
2 and M− = L− = n(n−1)

2 . The proof of the
other cases is very similar. As before let R ≃ (Mn(F + cF )⊕Mn(F + cF )op, exc) + J , then

2n2 = 2(h1 + l1)
2 and so n = h1 + l1 with h1 ≥ l1 > 0. R satisfies Cap

(Z2,∗)
M−+1[Y

−;X ] but

does not satisfy Cap
(Z2,∗)

d−

0

[Y −;X ] then

n(n− 1)

2
+ 1 =

n2 − n+ 2

2
≤

n2 − 1

2
=

(h1 + l1)
2 − 1

2
< h2

1 + l21 = d−0

a contradiction. In all other cases we obtain a contradiction except when R ≃ (Mn(F +
cF ), ∗) + J and (a+ cb)∗ = at + cbt.

6. Let M± = L± = n2, with n > 0.
If R ≃ (Mh1,l1(F )⊕Mh1,l1(F )op, exc)+J or R ≃ (Mn(F+cF ), ∗)+J with (a+cb)∗ = a⋄±cb⋄

and ⋄ = t, s, then easily we get a contradiction.
If R ≃ (Mh1,l1(F ), t) + J , then h1 + l1 = 2n and with analogous reasoning to that of case 2
we obtain a contradiction.
So let assume that R ≃ (Mh1,h1(F ), s) + J , then 4n2 = 4h2

1 and so h1 = n. Because

R satisfies Cap
(Z2,∗)

L−+1[Z
−;X ] but it does not satisfy Cap

(Z2,∗)

d−

1

[Z−;X ] we obtain L− + 1 =

n2 + 1 ≤ n(n+ 1) = h1(h1 + 1) = d−1 and this is impossible. It follows that R ≃ (Mn(F +
cF )⊕Mn(F + cF )op, exc) + J .
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Thus we have proved that R ≃ A+J where A is a simple ∗-superalgebra with non trivial
grading. Then, from Lemmas 4, 5, 6 we obtain that

R ∼= (A+ J11)⊕ J00 ∼= (A⊗N ♯)⊕ J00

where N ♯ is the algebra obtained from N by adjoining a unit element. Since N ♯ is commu-
tative, it follows that A+ J11 and A satisfy the same ∗-graded identities. Thus var∗

Z2
(R) =

var∗
Z2
(A ⊕ J00) with J00 finite dimensional nilpotent ∗-superalgebra. Hence, from the de-

composition (1), we get

U = var∗
Z2
(Γ∗

M±+1,L±+1) = var∗
Z2
(A⊕D),

where D is a finite dimensional ∗-superalgebra with exp∗
Z2
(D) < M + L and the theorem is

proved.

From Corollary 1 we easily obtain the following

Corollary 2. 1) If M± = h(h±1)
2 + l(l±1)

2 and L± = hl, with h ≥ l > 0, then

c(Z2,∗)
n (Γ∗

M±+1,L±+1) ≃ c(Z2,∗)
n ((Mh,l(F ), t));

2) If M± = h2 and L± = h(h∓ 1), with h > 0, then

c(Z2,∗)
n (Γ∗

M±+1,L±+1) ≃ c(Z2,∗)
n ((Mh,h(F ), s));

3) If M± = h2 + l2 and L± = 2hl, with h ≥ l > 0, then

c(Z2,∗)
n (Γ∗

M±+1,L±+1) ≃ c(Z2,∗)
n ((Mh,l(F )⊕Mh,l(F )op, exc));

4) If M+ = L± = n(n+1)
2 , M− = L∓ = n(n−1)

2 , with n > 0, then

c(Z2,∗)
n (Γ∗

M±+1,L±+1) ≃ c(Z2,∗)
n ((Mn(F + cF ), ∗))

where (a+ cb)∗ = at ± cbt;

5) If M+ = L± = n(n−1)
2 , M− = L∓ = n(n+1)

2 , with n > 0, then

c(Z2,∗)
n (Γ∗

M±+1,L±+1) ≃ c(Z2,∗)
n ((Mn(F + cF ), ∗)),

where (a+ cb)∗ = as ± cbs;
6) If M± = L± = n2, with n > 0, then

c(Z2,∗)
n (Γ∗

M±+1,L±+1) ≃ c(Z2,∗)
n (Mn(F + cF )⊕Mn(F + cF )op, exc)).
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