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Abstract. LRPH (Limited Resistance Rigid Perfectly Plastic Hinge) device is a special steel 

device mainly usable to join beam elements of plane or spatial steel frames covered by patent 

n. 102017000088597 at the Italian Ministry of Economic Development and identified in the 

International Patent System with the number PCT/IB2018/055766. In the framework of mo-

ment (rigid) connection, the main fundamental innovation of LRPH consists in the mutual in-

dependence of its own resistance and stiffness features. The device is constituted by a se-

quence of three steel elements of limited length bounded by two parallel steel plates joined up 

with the connected structure elements. The cross-sections of the three steel elements are clas-

sical I sections with appropriate wing and web thicknesses obtained by the solution of suita-

ble optimal design problem. Therefore, the overall device shows piecewise discrete geometric 

and mechanical features. In order to implement this device in a frame-oriented code for the 

design of both 2D and 3D frame structures, it is necessary to adopt a suitable model based on 

a non-uniform cross section beam element. The latter element should be able to reproduce the 

elastic and plastic behavior of the device. Recently, in the literature it has been proposed a 

new inelastic beam element, belonging to the displacement based approach and formulated 

for uniform beams, based on variable displacement shape functions, whose analytic expres-

sions are prone to updating (smart) in accordance to the plastic deformation evolution in the 

beam element. Aim of the paper is to utilize the relevant smart displacement beam element 

approach and extend it to the case of non-uniform beams to evaluate the nonlinear behavior 

of the LRPH device. The obtained results confirm the efficacy and the feasibility of the smart 

displacement beam element opening the way of implementing LRPH device in a FEM code. 
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1 INTRODUCTION 

The devastating effects of 1994 Northridge and 1995 Kobe earthquakes evidenced many 

structural problems [1-2] in several steel moment resisting frames. Following these problems, 

the researchers started to develop new strategies for improving the seismic performance of 

steel connections. Mainly, two different strategies for implementing structures able to control 

the behavior of column-beam joints can be found in technical and scientific literature. The 

first strategy (see, e.g., [3-10]) is characterized by the implementation of a connection with 

welded or bolted steel plates of two end tracts of beams made of steel in proximity of the 

beam-column joint. Aim of this strategy is to create suitable zones able to dissipate as much 

energy as possible. The second strategy is characterized by a reduction of the end sections of 

the frame beams, implementing the so-called “dog-bone” profiles, by means of cutting por-

tions of the flanges of an I-beam profile. Such procedure substantially aims at guaranteeing to 

meet the required capacity design achieving, near the joint, a beam with lower resistance fea-

tures than those of the column. The literature on this topic is very large (see, e.g., [11-18]), the 

frames equipped with this strategy are referred to as Reduced Beam Section (RBS) frames 

and many efforts have been performed mainly in evaluating the seismic response of RBS 

frames also fulfilling the so-called capacity design requirement, nowadays present in all the 

international standards [19-20]. Recently a new development called “double reduced beam 

section” has been proposed in [21] with the aim of furtherly improving the ductility behavior. 

In some recent papers [22-26], some of the authors proposed an innovative device devoted 

to realize a new moment connection for steel elements that, from a general point of view, can 

be placed into the research area of reducing the beam flanges but possesses further special 

features as it will be described in the following. The proposed connection is a steel device, it 

is identified as Limited Resistance Rigid Perfectly Plastic Hinge (LRPH) and it is covered by 

patent n. 102017000088597 at the Italian Ministry of Economic Development and identified 

in the International Patent System with the number PCT/IB2018/055766. Two main ideas 

constitute the backbone of LRPH. The first one is that of creating a preset zone of the beam in 

which plastic deformations develop leaving the remaining part of the beam in the elastic 

range; the second one is to design the geometrical and mechanical features of the hinge in 

such a way that its stiffness and resistance result independent of each other and suitably se-

lected by the designer. Further, a very important task has been that of designing a device able 

to minimize the cost of the post-earthquake repair. In the papers cited above LRPH is com-

posed by three different parts: one inner and two outer. The inner one is mainly characterized 

by flange thickness lower than the corresponding one of the outer parts symmetrically ar-

ranged with respect to it. The mechanical model so far adopted for LRPH has been based on a 

rigid-perfectly plastic hinge. A more detailed model for the behavior of the device able to de-

scribe the real distribution of plastic deformations in the inner part of the LRPH device, is de-

sirable and it will be faced in the developing of the research. A fundamental step to be per-

formed in order to point out the applicability of LRPH in practical engineering and design re-

gards a suitable modeling in a FEM code. To this aim the element adopted in the FEM model 

has to be able to correctly reproduce the main characteristics of LRPH (i.e. the geometric dis-

continuities and the elastic and plastic features). 

The development of plastic deformations along beam elements is studied in the current 

practice by means of two different strategies proposed in literature: a concentrated/lumped 

plasticity approach and a distributed plasticity model. A comprehensive analysis and critical 

discussion of the two approaches is reported in [27] together with an extensive literature 

therein contained.  



Salvatore Benfratello, Salvatore Caddemi et al. 

Recently in the literature [27-29] some of the authors have been involved in the formula-

tion of elastic beam elements in presence of discontinuities by means of the use of generalised 

functions. The latter beam elements are able to embed different types of discontinuities along 

the beam span without the introduction of any additional degree of freedom. 

On the basis of the latter studies, two innovative inelastic beam elements have been recent-

ly formulated in the literature [30, 31]. Both include the developments of plastic deformations 

by embedding generalised functions along the element span. Precisely, in [30] the onset of 

plastic deformations is modeled by means of Dirac’s delta distributions in accordance to a 

concentrated plasticity approach. While in [31], within the distributed plasticity approach, the 

plastic deformation evolution is modeled by means of the Heaviside distribution. The latter 

approach, based on variable displacement shape functions, has been proposed for uniform 

beams. The displacement shape functions, differently from standard approaches, are prone to 

updating (smart) in accordance to the plastic deformation evolution. For the latter reason the 

beam element formulated in [31] has been addressed to as Smart Displacement Based (SDB) 

beam element. 

In this paper, to model the presence of LRPH at the ends of beams belonging to frame sys-

tems, the attention is focused on the use of the distributed plasticity model. In particular, the 

Smart Displacement Based (SDB) beam element proposed in [31] is adopted and extended in 

order to account for the non-uniform discontinuous layout of frames when LRPH devices are 

employed. The extension of the SDB beam element presented in this work is adopted to eval-

uate the behavior of the LRPH device. A full nonlinear analysis of a frame in presence of var-

ious LRPH devices suitably placed along the frame is presented. The obtained results confirm 

the efficacy and the feasibility of the SDB beam element opening the way towards the imple-

mentation of LRPH device in FEM codes. 

2 GEOMETRICAL AND MECHANICAL CHARACTERISTICS OF LRPH 

Let us consider a typical beam element to be connected to the LRPH device, and let its 

cross section be inscribed into a rectangle of dimension 𝑏 × ℎ (Fig. 1(a)). Starting from this 

remark, the geometry of the relevant device is assumed to be inscribed in a parallelepiped of 

dimensions ℓ × 𝑏 × ℎ (Fig. 1(b)). The connection with the beam elements can be generally 

thought as a bolted plate and back-plate system assumed as a perfect rigid joint. In Fig. 1(b) 

bolts are not showed and the thickness of the connection plate is indicated as ℓ𝑝. The core of 

LRPH, as sketched in Figs. 1(b)-(c), is constituted by a steel element whose cross-section is 

characterized by a piecewise geometry, with three different portions all showing an I-shape 

with constant thickness. The following geometrical requirements characterize the device: a) 

the flanges thickness of the two outer portions is equal each other and greater than the corre-

sponding of the inner one; b) the flanges of all the portions possess an unique common medi-

um plane; c) the webs of the three different portions have same thickness and an unique 

common medium plane. By making reference to Figs. 1(a)-(c) the following geometrical 

characteristics are defined: 

ℓ total length of the composed section; 𝑡𝑤 web thickness; 

ℓ𝑜 common length of the outer portions; 𝑡𝑓,𝑜 flange thickness of the outer portions; 

ℓ𝑖 length of the inner portion; 𝑡𝑓,𝑖 flange thickness of the inner portion; 

ℎ𝑜 common total height of the outer portions; 𝑟 welding radius between web and flanges. 

ℎ𝑖 total height of the inner portion;  
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a) b) c) d) 

Figure 1: Sketch of LRPH device: a) Typical I-shaped steel beam element; b) 3D view; c) typical cross-section; 

d) lateral view. 

Among the geometrical characteristics of the device reported above the welding radius r 

has been introduced since, from a technological point of view, the LRPH device is thought as 

obtained by welding of steel plates with suitable thicknesses. 

For the developments of the paper, it is necessary to define the cross-section area, the mo-

ment of inertia, the elastic resistance modulus and the plastic resistance modulus, respective-

ly, for each portion of the device. Referring to the outer portions of the LRPH these geomet-

rical characteristics are defined by: 

 𝐴𝑜 = 2𝑏𝑡𝑓,𝑜 + 𝑡𝑤(ℎ𝑜 − 2𝑡𝑓,𝑜) + 𝜋𝑟2 (1) 

 𝐼𝑜 =
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 𝑊𝑒𝑙,𝑜 = 2𝐼𝑜 ℎ𝑜⁄  (3) 

 𝑊𝑝𝑙,𝑜 = 𝑏 𝑡𝑓,𝑜(ℎ𝑜 − 𝑡𝑓,𝑜) + 𝑡𝑤 (
ℎ𝑜

2
− 𝑡𝑓,𝑜)

2

+
𝜋𝑟2

2
(ℎ𝑜 − 2𝑡𝑓,𝑜 −

8𝑟

3𝜋
) (4) 

The same quantities referred to the inner portion are obtained from Eqs. (1)-(4) simply 

substituting the geometrical characteristics with subscript “o” with the corresponding ones of 

the inner portion (subscript “i”). Since in this paper attention is paid only to the bending be-

havior of LRPH and due to assumption (see Figs. 1) that 𝑡𝑓,𝑖 < 𝑡𝑓,𝑜 (which implies 𝑊𝑝𝑙,𝑖 <

𝑊𝑝𝑙,𝑜 and 𝑀𝑝𝑙,𝑖 < 𝑀𝑝𝑙,𝑜), the resistance limit of the device is given as follows 

 𝑀𝑝𝑙,𝑖 = 𝛼𝑀𝑝𝑙 = 𝛼𝑊𝑝𝑙𝜎0 (5) 

being 𝛼 a suitably chosen scalar, 𝑊𝑝𝑙 the plastic modulus of the cross section of the connect-

ing beam (characterized also by the flanges thickness 𝑡𝑝 and by the moment of inertia 𝐼𝑝) and 

𝜎0 the yield stress of the considered elastic-perfectly plastic material. 

The main idea behind LRPH is to obtain a device substituting a portion of a beam to de-

termine a local reduction of the limit resistance without any variation in the stiffness features. 

To this aim the device geometry must fulfill the following requirements: a) it becomes a per-

fect plastic hinge when the acting bending moment reaches a selected suitable value 𝑀𝑝𝑙,𝑖 (i.e. 

selecting a suitable value for 𝛼 < 1); b) for acting bending moment lower than 𝑀𝑝𝑙,𝑖 the over-

all elastic behavior of the device coincides to a great extent with that of the part of the beam 

replaced by the device; c) the overall length of the device should be the smallest as possible. 

The geometric parameters influencing the described requirements are mainly ℓ𝑜, ℓ𝑖, 𝑡𝑓,𝑜, 𝑡𝑓,𝑖. 

From one side, a high value of ℓ𝑖 is desirable in order to guarantee the onset of the plastic 

hinge in the inner portion. From other side, in order to fulfill requirements b) it is necessary 

that also ℓ𝑜 and 𝑡𝑓,𝑜 possess adequate values. Finally, both ℓ𝑜 and ℓ𝑖 determine the overall 

length of the device (requirements c)). Other important remarks are that the onset of the plas-
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tic hinge is strongly influenced by 𝑡𝑓,𝑖 and that the lower this value the lower is that of the 

bending moment activating the onset. Finally, the web thickness 𝑡𝑤 does not influence signif-

icantly the bending behavior of the device and in the numerical applications it will be as-

sumed equal to that of the profile characterizing the connecting beam. An important remark is 

that, as reported in [25, 26], LRPH resistance and stiffness remain independent of each other. 

The above reported remarks clearly emphasize the role of ℓ𝑖 on the correct operation of the 

device which has been deeply discussed in [26]. In the referenced paper it has been assumed 

ℓ𝑖 = �̂� 𝐻 (being �̂� ≤ 1 a shape ratio and 𝐻 the greatest transverse dimension of the beam to be 

connected) and the effects of different values of �̂� on the overall behavior of the LRPH have 

been deeply investigated, verifying that for �̂� ≥ 0.5 the onset of the plastic hinge is ensured. As 

an example of the stress distribution inside the LRPH, the von Mises stress map, obtained by 

a suitable 3D FEM model in ABAQUS environment, in the case of an IPE 270 shape is 

sketched in Fig. 2. This result is obtained for an S235 steel grade, for an 𝛼 = 0.8 and �̂� = 0.5. 

An examination of this figure confirms the presence of boundary effects due to sudden change 

of cross section, but these effects do not influence the overall prescribed behavior of the de-

vice. Many other 3D FEM model have been analyzed considering different shapes for the 

cross section (for complete details on the model as well as on the results see [26]) but, for 

brevity’s sake, they are not reported in this paper. 

   

Figure 2: Von Mises stress map for IPE 270 profile, an 𝛼 = 0.8 and �̂� = 0.5. 

3 THE SMART DISPLACEMENT BASED (SDB) BEAM ELEMENT FOR DIS-

CONTINUOUS BEAMS 

3.1 A model for discontinuous Euler-Bernoulli beams 

The LRPH device, discussed in the previous section is composed of three different parts, 

one inner and two outers, and, for the mentioned purposes it is inserted along the axis of beam 

elements. The inner core is specifically designed to undergo plastic deformations. An appro-

priate nonlinear analysis of the latter assemblage should hence deal with beam elements char-

acterised by cross section discontinuities and also by stiffness decay of the LRPH inner core 

due to the onset of plastic deformations. Along axis discontinuity of beams are usually dealt 

with by formulating the governing differential equations over portions of the beam and en-

forcing the relevant continuity conditions between adjacent segments. Alternatively, within 

the context of the FEM, a single FE is adopted to model each beam portion between two dis-

continuities. Furthermore, when a nonlinear displacement based FE approach is adopted, the 

adopted displacement shape functions do not account for the stiffness variations of the beam 

elements and are invariant with the analysis. To overcome the latter problems a preliminary 

mesh refinement is required or, alternatively, an a-posteriori sub-discretisation during the 

nonlinear analysis must be introduced. In order to provide an improvement against the men-

tioned beam discretisation, by avoiding any continuity condition and a sub-discretisation of 

discontinuous elements, some of the authors devoted attention to the study of beams with 
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stepped variations of the bending stiffness [32]. On the basis of the latter study the formula-

tion of linear two node finite elements embedding different types of singularities also by 

adopting the classical Timoshenko theory to account for the shear deformations [31]-[32] has 

been also provided. However, the attention in the latter two papers was devoted to the explicit 

evaluation of the influence of possible discontinuities on the solution of the linear elastic 

problem. A full treatment of the nonlinear elastic problem of discontinuous beams is still sub-

ject under development. The evolution of the latter discontinuous two node finite elements for 

the nonlinear plastic analysis under the restricted hypothesis of Euler-Bernoulli beam model 

(by neglecting the shear deformation) has been presented in [31] where the displacement 

shape functions update during the analysis in accordance to the plastic deformation evolution. 

The latter approach is further developed in this section to embed the discontinuities due to 

LRPH devise along beam elements. The development herein presented, although affected by 

the limitation of neglected shear deformation, can be considered an intermediate step before 

the formulation of the model of discontinuous beam including the shear-flexural coupling 

nonlinear behavior. The nonlinear behavior of shear deformable beams has been modeled in  

literature in [33-36] where the problem related to the interaction of shear and axial stress has 

been studied with regard to reinforced concrete beams however in absence of discontinuities 

The beam model, with along axis variable axial 𝐸(𝑥)𝐴(𝑥) and flexural 𝐸(𝑥)𝐼(𝑥) stiffness, 

capable of capturing the effect of stepped cross sections by means of the use of generalised 

functions (distributions), is adopted in this work. 𝐸(𝑥), 𝐴(𝑥), 𝐼(𝑥) represent the Young 

modulus, the area and the moment of inertia of the cross section at abscissa 𝑥 spanning from 0 

to the length 𝐿 of the beam, respectively. The beam model under consideration is 

characterised by 𝑛 segments with abrupt stiffness changes and can be formulated by making 

use of the well know Heaviside (unit step) generalised function 𝑈(𝑥 − 𝑥𝑗), as follows: 

 𝐸(𝑥)𝐴(𝑥) = 𝐸0𝐴0[1 − ∑ (𝛽𝑥,𝑗 − 𝛽𝑥,𝑗−1)𝑈(𝑥 − 𝑥𝑗)𝑛
𝑗=1 ] (6a) 

 𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0[1 − ∑ (𝛽𝑧,𝑗 − 𝛽𝑧,𝑗−1)𝑈(𝑥 − 𝑥𝑗)𝑛
𝑗=1 ] (6b) 

In Eqs. (6), 𝑥𝑗 indicates the abscissa along the beam axis where the j-th cross section change 

occurs, 𝛽𝑥,𝑗 − 𝛽𝑥,𝑗−1 and 𝛽𝑧,𝑗 − 𝛽𝑧,𝑗−1 denote the relevant axial and bending stiffness abrupt 

variations with respect to the reference values 𝐸0𝐴0 and 𝐸0𝐼0, respectively, where 𝐸0, 𝐴0, 𝐼0 

represent the reference values of the Young modulus, the area and the moment of inertia of 

the cross section, respectively. The stepped beam model introduced in Eqs. (6) implies that 

the beam is composed of 𝑛 segments with axial stiffness 𝐸𝑗𝐴𝑗 , 𝑗 = 1, … , 𝑛, assuming 𝛽𝑥,𝑗 =

(𝐸0𝐴0 − 𝐸𝑗𝐴𝑗) 𝐸0𝐴0⁄  and flexural stiffness 𝐸𝑗𝐼𝑗, 𝑗 = 1, … , 𝑛, where 𝛽𝑧,𝑗 =

(𝐸0𝐼0 − 𝐸𝑗𝐼𝑗) 𝐸0𝐼0⁄ . 

The static governing equations of the Euler-Bernoulli beam with stepped variations of the 

cross section depicted in Fig. 3a subjected to axial 𝑝𝑥(𝑥) and transversal 𝑝𝑧(𝑥) load distribu-

tions, in view of Eqs. (6), can be formulated as follows: 

 𝐸0𝐴0{[1 − ∑ (𝛽𝑥,𝑗 − 𝛽𝑥,𝑗−1)𝑈(𝑥 − 𝑥𝑗)𝑛
𝑗=1 ]𝑢𝑥

′ (𝑥)}
′

= −𝑝𝑥(𝑥) (7a) 

 𝐸0𝐼0{[1 − ∑ (𝛽𝑧,𝑗 − 𝛽𝑧,𝑗−1)𝑈(𝑥 − 𝑥𝑗)𝑛
𝑗=1 ]𝑢𝑧

′′(𝑥)}
′′

= 𝑝𝑧(𝑥) (7b) 

where the apex indicates the differentiation with respect to 𝑥 and 𝑢𝑥 (𝑥), 𝑢𝑧 (𝑥) are the axial 

displacement and the transversal deflection functions. 

Eqs. (7) can be integrated by accounting for the properties of the Heaviside generalised 

function and the following expressions for 𝑢𝑥 (𝑥) and 𝑢𝑧 (𝑥) are obtained: 
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 𝑢𝑥(𝑥) = 𝑎1 + 𝑎2𝑔2(𝑥; 𝛽𝑥,𝑗) + 𝑔3(𝑥; 𝛽𝑥,𝑗) (8a) 

 𝑢𝑧 (𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑓3(𝑥; 𝛽𝑧,𝑗) + 𝑐4𝑓4(𝑥; 𝛽𝑧,𝑗) + 𝑓5(𝑥; 𝛽𝑧,𝑗) (8b) 

where the functions 𝑔2(𝑥; 𝛽𝑥,𝑗), 𝑔3(𝑥; 𝛽𝑥,𝑗), 𝑓3(𝑥; 𝛽𝑧,𝑗), 𝑓4(𝑥; 𝛽𝑧,𝑗), 𝑓5(𝑥; 𝛽𝑧,𝑗) are dependent 

on the parameters 𝛽𝑥,𝑗 and 𝛽𝑧,𝑗 and are reported in the Appendix for convenience. 

Eqs. (8) represent the explicit solution of the axial and transversal displacement in terms of 

cross section stiffness discontinuities that do not require any along axis discretisation. The lat-

ter explicit solution can hence be easily adopted for the definition of a linear finite beam ele-

ment embedding the cross-section discontinuities. 

However, when portions of the beam undergo plastic deformations a further variation of 

the axial and flexural stiffness must be accounted for during a nonlinear analysis. The same 

model introduced in Eqs. (6), together with the solution in Eqs. (8), may serve the latter pur-

pose to conduct a nonlinear step-by-step analysis. In fact, the spatial evolution of the stiffness 

at pre-established Gauss integration points can be studied with the stepped beam model by 

adding further discontinuities. Furthermore, a variation of the parameters 𝛽𝑥,𝑗 and 𝛽𝑧,𝑗, in ac-

cordance to the tangent stiffness provided by the adopted plastic constitutive law, must be in-

troduced. The stepped beam model, for the case of presence of LRPH at both ends of the 

beam, including discontinuities due to cross section variations and to stiffness decay originat-

ed by onset of plastic deformations at Gauss integration points, is depicted in Fig. 3b. 

 

(a)                                                                             (b) 

Figure 3: (a) Stepped axial-flexural beam; (b) Beam element with LRPH and Gauss-control integration points. 

In the next sub-section, the formulation of a nonlinear SDB beam element capable of ac-

count for plastic deformations due to both axial and transversal displacements will be present-

ed. 

3.2 The nonlinear Smart Displacement Based (SDB) beam element 

A beam element, connecting joints 𝑖 and 𝑗, is defined in the  𝑥, 𝑧 plane as shown in Fig. 3. 

The nodal displacements 𝑞𝑘, 𝑘 = 1, … ,6  as in Fig. 4a, and the nodal forces 𝑄𝑘, 𝑘 = 1, … ,6, 

as in Fig. 4b, are collected in the vectors 𝐪𝑒, 𝐐𝑒 respectively. 

                               

Figure 4: Nodal degrees of freedom (a) and dual forces (b) of the element. 

The definition of the proposed discontinuous beam element, in accordance to the dis-

placement based approach, is obtained by formulating the so called displacement shape func-

tions 𝑁𝑘(𝑥), 𝑘 = 1, … ,6 , providing the contributions of unit boundary displacements to the 
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axial 𝑢𝑥 (𝑥) and transversal 𝑢𝑧 (𝑥) displacements as follows: 

 𝑢𝑧 (𝑥) = ∑ 𝑁𝑗(𝑥; 𝛽𝑧,𝑗)𝑞𝑗
4
𝑗=1  (9a) 

 𝑢𝑥 (𝑥) = ∑ 𝑁𝑗(𝑥; 𝛽𝑥,𝑗)𝑞𝑗
6
𝑖=5  (9b) 

where the shape functions 𝑁𝑘(𝑥), 𝑘 = 1, … ,6 have been derived by the solution in Eqs. (8) by 

imposing unit boundary displacements to evaluate the integration constants and are given by: 

 𝑁1(𝑥; 𝛽𝑧,𝑗) = 1 −
𝑓4

′(𝐿;𝛽𝑧,𝑗)

𝜅
𝑓3(𝑥; 𝛽𝑧,𝑗) +

𝑓3
′(𝐿;𝛽𝑧,𝑗)

𝜅
𝑓4(𝑥; 𝛽𝑧,𝑗) (10a) 

𝑁2(𝑥; 𝛽𝑧,𝑗) = 𝑥 +
−𝐿𝑓4

′(𝐿;𝛽𝑧,𝑗)+𝑓4 (𝐿;𝛽𝑧,𝑗)

𝜅
𝑓3(𝑥; 𝛽𝑧,𝑗) +

−𝑓3 (𝐿;𝛽𝑧,𝑗)+𝐿𝑓3
′(𝐿;𝛽𝑧,𝑗)

𝜅
𝑓4(𝑥; 𝛽𝑧,𝑗) (10b) 

 𝑁3(𝑥; 𝛽𝑧,𝑗) =
𝑓4

′(𝐿;𝛽𝑧,𝑗)

𝜅
𝑓3(𝑥; 𝛽𝑧,𝑗) −

𝑓3
′(𝐿;𝛽𝑧,𝑗)

𝜅
𝑓4(𝑥; 𝛽𝑧,𝑗) (10c) 

 𝑁4(𝑥; 𝛽𝑧,𝑗) = −
𝑓4 (𝐿;𝛽𝑧,𝑗)

𝜅
𝑓3(𝑥; 𝛽𝑧,𝑗) +

𝑓3 (𝐿;𝛽𝑧,𝑗)

𝜅
𝑓4(𝑥; 𝛽𝑧,𝑗) (10d) 

 𝑁5(𝑥; 𝛽𝑥,𝑗) = 1 −
1

𝑔2(𝐿;𝛽𝑥,𝑗)
𝑔2(𝑥; 𝛽𝑥,𝑗) (10e) 

 𝑁6(𝑥; 𝛽𝑥,𝑗) =
1

𝑔2(𝐿;𝛽𝑥,𝑗)
𝑔2(𝑥; 𝛽𝑥,𝑗) (10f) 

where the external load has been neglected and the following position has been made: 

 𝜅 = 𝑓3 (𝐿; 𝛽𝑧,𝑗)𝑓4
′(𝐿; 𝛽𝑧,𝑗) − 𝑓4 (𝐿; 𝛽𝑧,𝑗)𝑓3

′(𝐿; 𝛽𝑧,𝑗) (11) 

Eqs. (9-11) show the dependency of the displacement shape functions on the discontinuity 

parameters 𝛽𝑥,𝑗 and 𝛽𝑧,𝑗 in view of the definition of the functions 𝑔2(𝑥; 𝛽𝑥,𝑗), 

𝑔3(𝑥; 𝛽𝑥,𝑗), 𝑓3(𝑥; 𝛽𝑧,𝑗), 𝑓4(𝑥; 𝛽𝑧,𝑗), 𝑓5(𝑥; 𝛽𝑧,𝑗) as reported the Appendix. 

Based on the formulation of the displacement shape function in Eqs. (10), the vector of 

generalised deformation components 𝐝(𝑥) = [𝜀0(𝑥) 𝜒𝑦(𝑥)]𝑇, collecting the axial defor-

mation 𝜀0(𝑥) of the beam geometrical axis and the curvature 𝜒𝑦(𝑥) of the proposed plane 

beam element, can be expressed in terms of nodal displacements, by accounting for the stand-

ard Euler-Bernoulli model relationships, as follows: 

 𝐝(x) = 𝐁(x; 𝛃) 𝐪e (12) 

where the matrix 𝐁(𝑥; 𝛃), also dependent on the discontinuity parameters 𝛽𝑥,𝑗 and 𝛽𝑧,𝑗 col-

lected in the vector 𝛃 for conciseness, is defined in terms of derivatives of the displacement 

shape functions as follows: 

 𝐁(𝑥; 𝛃) = [
0 0 0 0 𝑁5

′(𝑥; 𝛃) 𝑁6
′(𝑥; 𝛃)

−𝑁1
′′(𝑥; 𝛃) −𝑁2

′′(𝑥; 𝛃) −𝑁3
′′(𝑥; 𝛃) −𝑁4

′′(𝑥; 𝛃) 0 0
] (13) 

During the inelastic analysis the beam element is subjected to a nonlinear state determina-

tion at suitably chosen Gauss points located at 𝑥𝑗
𝐺 , 𝑗 = 1, … , 𝑛, where the plastic constitutive 

laws are integrated according to an incremental approach. The weights 𝑤𝑗, 𝑗 = 1, … , 𝑛, asso-

ciated by the integration procedure to each Gauss point, are representative of the lengths of 

the beam segments with decayed stiffness due to the plastic deformations. 

A crucial step in the formulation of the proposed element consists in the evaluation of the 

stiffness variation and the consequent updating of the parameters 𝛽𝑥,𝑗, 𝛽𝑧,𝑗, 𝑗 = 1, … , 𝑛, at 

each step. The displacement shape function defined in Eqs. (10) are hence subject to updating 
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together with the parameters 𝛽𝑥,𝑗, 𝛽𝑧,𝑗, 𝑗 = 1, … , 𝑛, and, for this reason, they are addressed to 

as Smart Displacement Shape Functions (SDSF). 

3.3 The element stiffness matrix by means of a fibre approach 

According to a fibre approach, each Gauss cross section is discretised into 𝑛𝑓 strips (denot-

ed as fibres), as in Fig. 5, characterised by an area 𝐴𝑓, 𝑓 = 1, … , 𝑛𝑓 and a non linear uniaxial 

stress- strain constitutive behaviour. 

By assuming the principle of planar section conservation, and in view of Eq. (12), provid-

ing the generalised deformation component expressed in terms of nodal displacements 𝐪𝐞, the 

axial strain 𝜀𝑥(𝑥) of each fibre is written as: 

 𝜀𝑥(𝑥; 𝑧𝑓) = 𝛂(𝑧𝑓) 𝐁(𝑥; 𝛽𝑥, 𝛽𝑧) 𝐪𝑒 (14) 

where the row vector 𝛂(𝑧𝑓) = [1 𝑧𝑓] , dependent on the distance 𝑧𝑓 of the f-th fibre from 

the beam axis, has been introduced. 

 

Figure 5: Fibre discretization of cross section according to a 2D formulation. 

By standard application of the principle of virtual displacements, and successive adoption 

of the Gauss integration scheme, the element stiffness matrix 𝐊𝑒(𝛃) is obtained as follows: 

 𝐊𝑒(𝛃) ≈ 𝐿 ∑ 𝐁T(𝑥𝑟
𝐺; 𝛃)𝐤(𝑥𝑟

𝐺)𝐁(𝑥𝑟
𝐺; 𝛃)𝑛

𝑟=1 𝑤𝑟 (15) 

As result of the adopted SDSF, the element stiffness matrix 𝐊e(𝛃), differently from the clas-

sical displacement-based approach commonly adopted in the literature, depends on the varia-

tion of the shape functions which are updated according to the discontinuity parameter vector 

𝛃. The inner matrix 𝐤(𝑥) appearing in Eq. (15), evaluated at the Gauss cross sections, repre-

sents the cross-section stiffness matrix and is given, due to the adopted fibre discretisation, as 

follows: 

𝐤(𝑥) = ∑ 𝛂T(𝑧𝑓) 𝐸𝑇(𝑥; 𝑧𝑓) 𝐴𝑓 𝛂(zf)
nf
f=1 = [

∑ 𝐸𝑇(𝑥; 𝑧𝑓)𝐴𝑓
𝑛𝑓

𝑓=1
∑ 𝐸𝑇(𝑥; 𝑧𝑓)𝐴𝑓𝑧𝑓

𝑛𝑓

𝑓=1

∑ 𝐸𝑇(𝑥; 𝑧𝑓)𝐴𝑓𝑧𝑓
𝑛𝑓

𝑓=1
∑ 𝐸𝑇(𝑥; 𝑧𝑓)𝐴𝑓𝑧𝑓

2𝑛𝑓

𝑓=1

] (16) 

The cross section stiffness matrix 𝐤(𝑥) at each Gauss cross section is evaluated by per-

forming a parallel integration of the uniaxial nonlinear constitutive laws at each fibre in the 

step-by-step analysis that delivers the current tangent stiffness modulus 𝐸𝑇(𝑥; 𝑧𝑓) appearing 

in Eq. (16). Finally, once integration of the nonlinear constitutive laws has been performed at 

fibre level, the updating of the discontinuity parameters  𝛽𝑥,𝑗, 𝛽𝑧,𝑗, 𝑗 = 1, … , 𝑛, collected in 
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the vector 𝛃, is obtained straightforwardly in terms of the components of the cross section 

stiffness matrix 𝐤(𝑥) as follows: 

 𝛽𝑥,𝑗 = 1 −
1

𝐸0𝐴0
[∑ 𝐸𝑇(𝑥𝑗

𝐺; 𝑧𝑓)𝐴𝑓
𝑛𝑓

𝑓=1
+ ∑ 𝐸𝑇(𝑥𝑗

𝐺 ; 𝑧𝑓)𝐴𝑓 𝑧𝑓
d𝜒𝑦

d𝜀0

𝑛𝑓

𝑓=1
] (17a) 

 𝛽𝑧,𝑖 = 1 −
1

𝐸0𝐼0
[∑ 𝐸𝑇(𝑥𝑗

𝐺; 𝑧𝑓)𝐴𝑓 𝑧𝑓
d𝜀0

d𝜒𝑦

𝑛𝑓

𝑓=1
+ ∑ 𝐸𝑇(𝑥𝑖

𝐺; 𝑧𝑓)𝐴𝑓 𝑧𝑓
2𝑛𝑓

𝑓=1
] (17b) 

The step-by-step evaluation of the discontinuity parameter vector 𝛃, in accordance to Eqs. 

(17), allows the updating of the SDSF in Eq. (10), the deformation matrix 𝐁(𝑥; 𝛃) in Eq. (13) 

and the element stiffness matrix 𝐊𝑒(𝛃) in Eq. (15). The smart character of these matrices al-

lows the adoption of a single SDB element for each beam endowed with LRPH able to cap-

ture the diffusion of plasticity along the inner portion avoiding any cumbersome sub-

discretisation. 

4 APPLICATION 

An important case, often faced in practical engineering, concerns the replacement of ma-

sonry panels (or portions of them) steel frames endowed with suitable stiffness. This case is 

focused on in this section by following the approach described in the foregoing ones. The se-

lected case is sketched in Fig. 6 where the corresponding geometric and mechanical character-

istics are also reported. 

 

Figure 6: Masonry panel considered in the application. 

The first performed step has been the evaluation of the push-over curve of the masonry 

panel reported in Fig. 6. An examination of this figure reveals that the panel shows an elastic 

behavior until a base shear equal to 1132 kN, while the ultimate base shear is equal to 1183 

kN. From this curve it has been deduced the elastic stiffness of the masonry panel (equal to 

188.60 kN/m), necessary to suitably design the equivalent steel frame. The results of this de-

sign led to IPE 750x196 and IPE 750x173 profiles for the columns and beam, respectively. 

An important remark is that the limit elastic base shear and the ultimate one are very close 

to each other with a very flat post-elastic behavior of the push-over curve. As a consequence, 

it has been decided to design four LRPH devices (located at the basis of the columns and at 

the ends of the beam) in such a way that the four plastic hinges arise simultaneously. To this 

aim, the bending moments acting at the selected sections where the LRPHs are to be intro-

duced, have been evaluated, resulting equal to 1260.00 kNm and 782.66 kNm for the column 

basis and the end sections of the beam, respectively. The design of LRPHs has been per-

formed by following the optimal procedure described in [26], taking into account three differ-

ent values of �̂� = 0.3, 0.4, 0.5, assuming 𝑟 = 0.7 𝑡𝑤 and are reported in Table 1. 

An examination of the results reported in Table 1 immediately reveals that in all the cases 

the overall length ℓ of each LRPH ranges between the 15% and 25% of the length of the ele-
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ment in which the device has to be positioned. This remark shows many drawbacks of the ac-

tual results of the LRPH design, the main of which is that 𝑀𝑝𝑙,𝑖 is selected as the bending 

moment acting at the selected end of the structural element while, due to the geometric di-

mensions of LRPH, the inner part of the device is not close to this end. In order to avoid this 

drawback and taking into account that the overall stiffness of LRPH does not change if the in-

ner part is moved at one end of the device (i.e. the LRPH shows a non-symmetric geometric 

outline), it has been decided to perform the analysis with SDB model in the case of non-

symmetric LRPH. 
 

 �̂� = 0.3 �̂� = 0.4 �̂� = 0.5 

Characteristic Column Beam Column Beam Column Beam 

ℎ𝑜 770.00 762.00 770.00 762.00 770.00 762.00 

ℎ𝑖 730.05 716.21 730.05 716.21 730.05 716.21 

𝑡𝑓,𝑜 57.04 53.47 57.04 53.47 57.04 53.47 

𝑡𝑓,𝑖 17.52 7.67 17.52 7.67 17.52 7.67 

ℓ𝑜 113.81 269.15 151.74 358.87 189.68 448.59 

ℓ𝑖 231.00 228.60 308.00 304.80 385.00 381.00 

ℓ 458.62 766.91 611.49 1022.54 764.36 1278.18 

Table 1: LRPH geometric characteristics (mm). 

Once the frame equipped with LRPH has been fully characterized, it has been modeled by 

means of the SDB beam elements proposed in section 3 capable of embedding the geometric 

cross section discontinuities as well as the stiffness changes due to the nonlinear plastic be-

havior. The push-over curves of the frame without LRPH devices and that of the frame 

equipped with non-symmetric LRPH devices have been evaluated and compared with that of 

the masonry panel as sketched in Fig. 7. An examination of this figure allows the following 

remarks: a) the curves for different �̂� coincide; b) the overall behavior of the frame equipped 

with non-symmetric LRPH is satisfactorily close to that of the masonry panel. 

 

Figure 7: Comparison of the obtained results. 
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5 CONCLUSIONS  

The present paper has been devoted to check the applicability of the distributed plasticity 

approach to model the presence of LRPH in frame structures. In particular, the Smart Dis-

placement Based (SDB) beam element has been adopted and extended in order to account for 

the non-uniform discontinuous layout of frames when LRPH devices are employed. The pro-

posed approach has been applied to the case of the design of a steel frame, equipped with 

LRPH, replacing a masonry panel with the same elastic and limit resistance of the panel. The 

obtained results confirm the great capacity of the LRPH device to design structures with pre-

scribed mechanical characteristics as well as the efficacy and the feasibility of the numerical 

modeling by means of SDB beam elements. 
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APPENDIX  

In this Appendix the expressions of the functions 𝑔2(𝑥; 𝛽𝑥,𝑖), 𝑔3(𝑥; 𝛽𝑥,𝑖), and 

𝑓3(𝑥; 𝛽𝑧,𝑖), 𝑓4(𝑥; 𝛽𝑧,𝑖), 𝑓5(𝑥; 𝛽𝑧,𝑖), dependent on the parameters  𝛽𝑥,𝑖 and 𝛽𝑧,𝑖  and appearing in 

Equations (7a), (7b) of the main text, are reported: 

𝑔2(𝑥) = −𝑥 − ∑ (
𝛽𝑥,𝑖

1 − 𝛽𝑥,𝑖
−

𝛽𝑥,𝑖−1

1 − 𝛽𝑥,𝑖−1
) (𝑥 − 𝑥𝑖)𝑈(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

𝑔3(𝑥) = −
𝑝𝑥

[2](𝑥)

𝐸0𝐴0
− ∑

1

𝐸0𝐴0
(

𝛽𝑥,𝑖

1 − 𝛽𝑥,𝑖
−

𝛽𝑥,𝑖−1

1 − 𝛽𝑥,𝑖−1
) [𝑝𝑥

[2](𝑥) − 𝑝𝑥
[2](𝑥𝑖)] 𝑈(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

𝑓3(𝑥) = 𝑥2 + ∑ (
𝛽𝑧,𝑖

1 − 𝛽𝑧,𝑖
−

𝛽𝑧,𝑖−1

1 − 𝛽𝑧,𝑖−1
) (𝑥 − 𝑥𝑖)

2𝑈(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

𝑓4(𝑥) = 𝑥3 + ∑ (
𝛽𝑧,𝑖

1 − 𝛽𝑧,𝑖
−

𝛽𝑧,𝑖−1

1 − 𝛽𝑧,𝑖−1
) [𝑥3 − 3𝑥𝑖

2𝑥 + 2𝑥𝑖
3]𝑈(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

𝑓5(𝑥) =
𝑝𝑧

[4](𝑥)

𝐸0𝐽0
+ ∑

1

𝐸0𝐽0
(

𝛽𝑧,𝑖

1 − 𝛽𝑧,𝑖
−

𝛽𝑧,𝑖−1

1 − 𝛽𝑧,𝑖−1
) [𝑝𝑧

[4](𝑥) − 𝑝𝑧
[4](𝑥𝑖)] 𝑈(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

− ∑ (
𝛽𝑧,𝑖

1 − 𝛽𝑧,𝑖
−

𝛽𝑧,𝑖−1

1 − 𝛽𝑧,𝑖−1
) 𝑝𝑧

[3](𝑥𝑖)(𝑥 − 𝑥𝑖)𝑈(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

where 𝑝𝑥
[𝑘](𝑥), 𝑝𝑧

[𝑘](𝑥) indicate the k-th primitive functions of the relevant external load dis-

tributions 𝑝𝑥(𝑥), 𝑝𝑧(𝑥), respectively. 
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