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Spin-Chain-Star Systems: Entangling Multiple Chains of
Spin Qubits

Roberto Grimaudo,* Antonio Sergio Magalhães de Castro, Antonino Messina,
and Davide Valenti

We consider spin-chain-star systems characterized by N-wise many-body
interactions between the spins in each chain and the central one. We show
that such systems can be exactly mapped into standard spin-star systems
through unitary transformations. Such an approach allows the solution of the
dynamic problem of an XX spin-chain-star model and transparently shows the
emergence of quantum correlations in the system, based on the idea of
entanglement between chains.

1. Introduction

Superposition and entanglement are at the basis of the re-
markable advantages of using quantum mechanics over clas-
sical physics in quantum information science.[1–3] Such quan-
tum resources are exploited in several technological ap-
plications ranging from quantum simulation,[4,5] quantum
metrology[10,6–9] and quantum cryptography[11,12] to quantum
computing algorithms.[13,14] Besides entanglement, other quan-
tities have been discovered and proposed as quantum re-
sources over the last years, such as, for example, discord,[15,16]

coherence,[17] steering,[18] and contextuality.[19]

Generating entanglement and superposition states of large
systems is a target which has kindled a growing interest in phys-
ical scenarios characterized by small quantum systems through
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which it is possible to control and
coherently manipulate mesoscopic
environments.[20–22] In this sense, in
recent decades, a great attention has
been payed in studying spin systems
which have been successfully applied
in quantum information.[23–25] The sim-
plest imaginable setting consists in a
single spin-qubit (either just a qubit, or
a spin-1/2 or, more generally, a two-level
system) that controls other N spin-1/2’s

homogeneously distributed in a circle centred on it. This system
is commonly known as central spin system[26] and the Hamilto-
nian models used to describe it are called spin-star models. In
such a star-shaped system the N ‘environmental’ spins do not
interact with each other directly, but only with the central one
which, hence, plays the role of a bridge through which quantum
correlations between the spins surrounding it can arise.
The interest towards central spin models has remarkably

grown thanks to: I) their suitability in describing the hyperfine
interaction in quantum dots[27] and the interactions between
nuclear spins and nitrogen-vacancy centers in diamond[28,29];
II) their broad applicability in different fields like quantum
information,[30] quantum metrology and sensing,[31,32] quantum
thermodynamics[33] and fundamental aspects.[34] Further, a lots
of works have been developed to investigate the quantum corre-
lation and thermal entanglement arising among spins in the star
framework,[35–39] as well as theMarkovian and non-Markovian dy-
namics induced by a surrounding bath interacting with the spin-
star system.[40–42]

Recently, the idea of spin-chain-star system has been
proposed[43,44] where the control spin occupies the center of a star
of M rays (chains), arranged at angular distance 2𝜋∕M, each of
which hosts the same sequence ofN spins, generally equidistant.
There is no interaction between different chains and the spins in
a given radius may not even be the same.[45] The spin-spin inter-
actions within each chain and with the control spin are described
by Hamiltonian terms strictly related to the physical scenario to
be studied. In [46], for example, the same system has been anal-
ysed to study the effects related to the quantum darwinism in
such a structured environment.
In this work we consider particular spin-chain-star systems

characterized by the peculiarity that the spins in each chain are
all the same and interact through N-wise interactions among
them and with the central spin, Figure 1a. Such a kind of in-
teractions can be implemented via quantum simulation appara-
tus based on either trapped ions[47,48] or superconducting circuits
made of transmon qubits.[49] Moreover, these exotic couplings
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(a) (b)

Figure 1. a) A spin-chain-star system composed by eight five-spin chains.
The central white circle represents the ancilla, while the ellipses embracing
the spins of each chain and the ancilla represent the N-wise interactions.
The overlap of the eight ellipses is byproduct of the cartoon and has no
physical meaning. b) The standard spin-star system unitarily equivalent to
the system shown in panel (a).

have been demonstrated to be exploitable to generate superpo-
sition states and then quantum correlations in large spin-chains
under the experimental control of magnetic fields applied on the
spin-system.[50,51]

We analytically demonstrate that our spin-chain-star systems,
under appropriate conditions, can be unitarily reduced to stan-
dard spin-1/2-star systems, Figure 1b. This result implies the
possibility of applying to such a large system some of the re-
sults already achieved for the standard spin-star systems, as, for
example, the eigenspectrum, the eigenvalues and the quantum
dynamics.[52] We show, indeed, that, by appropriately ‘translat-
ing’ these results in the spin-chain-star language, it is possible to
bring to light how to generate entangled states of the different
chains. Further, we show as well how to produce different classes
of entangled states depending on the specific topological config-
uration chosen for the spin-chain-star system.
The paper is organized as follows. In Section 2 different types

of N-wise spin-chain star models together with their unitarily
equivalent standard spin-star models are introduced and their
possible integrability is analysed. The quantumdynamics and the
possibility of generating different classes of entangled states (de-
pending on the configuration) for an XX spin-chain-star model
are discussed in detail in Section 3. Finally, concluding remarks
are given in Section 4.

2. Spin-Chain-Star Systems

In this section we propose a new class of spin-chain star sys-
tems characterized by the presence of only many-body interac-
tions ofmaximumorder.We show that, by considering themany-
bodyN-wise interactions for each chain, such systems are unitar-
ily equivalent to standard spin-chain star systems, which are re-
markably considered and studied for their applications in several
fields.[30–34,53]

2.1. The X Model

Consider the following model:

H = H1 +H2 (1)

with

H1 =
ℏ𝜔a

2
�̂�za + 𝛾1�̂�

x
a ⊗

[
M1⨂
i

�̂�x1i

]
(2a)

H2 =
ℏ𝜔a

2
�̂�za + 𝛾2�̂�

x
a ⊗

[
M2⨂
j

�̂�x2j

]
(2b)

The physical system described by this Hamiltonianmodel can be
thought of as a central spin-1/2, to which we refer as ancilla, cou-
pled to two spin-1/2 chains (the subscripts of the two terms in the
Hamiltonian (1) refer to the two different chains). The coupling
which characterizes the two spin-chains (including the ancilla)
consists in N-wise interaction terms, that is, a type of interaction
involving all the spins at one time.
It has been demonstrated[50] that the M-wise spin operator⨂M
i=1 �̂�

x
k can be unitarily reduced as (see Appendix A)

M⨂
i=1

�̂�xi → �̂�x1 (3)

where �̂�x1 is intended to be a 2M-dimensional operator. From a
physical and mathematical point of view, it means that the M-
spin chain effectively behaves as a single two-level system and
then can be formally treated as a single qubit. The origin of such
a lucky circumstance can be traced back to the existence of a set
of constants of motion which generate an equally numbered set
of dynamically invariant two-dimensional Hilbert subspaces.[50]

This implies that, within each of these subspaces, theM-spin dy-
namics can bemapped into that of a single two-level system.[50] A
particularly interesting subdynamics is that characterized by the
Hilbert space spanned by the two states |↓⟩⊗M and |↑⟩⊗M (with
�̂�z|↓⟩ = −|↓⟩ and �̂�z|↑⟩ = +|↑⟩).
Therefore, the twoMk-spin operators

⨂M1

i �̂�x1i and
⨂M2

j �̂�x2j in
H1 andH2 can be unitarily transformed into �̂�x11 and �̂�

x
21, respec-

tively. In this way, themodel in Equation (1), after the appropriate
unitary transformations, can be written as

H̃ = ℏ𝜔a�̂�
z
a + 𝛾1�̂�

x
a ⊗ �̂�x1 + 𝛾2�̂�

x
a ⊗ �̂�x2 (4)

where the second index of the spin operator in the last two terms,
indicating the first spin of each chain, has been omitted.
Let us consider now a more general spin-chain system as the

following one

Hx = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾k�̂�
x
a ⊗

[
Mk⨂
j

�̂�xkj

]
(5)

We can call such a physical system a spin-chain-star system since
we can imagine the different N chains to be disposed in a star-
shaped configuration, each coupled to the same central spin. It is
easy to convince oneself that also this model, analogously to the
two-chain case, can be transformed through unitary transforma-
tions into the following simpler spin model:

H̃x = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾k�̂�
x
a ⊗ �̂�xk (6)
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This result shows that a star-shaped spin-chain system can be for-
mally described and mathematically treated as a standard spin-
star system, that is, a system consisting ofNmutually uncoupled
spin-1/2’s, each interacting with a unique central spin-1/2. This
possibility stems from the fact that each N-wise-interacting spin-
chain can be effectively reduced to a single two-level system.

2.2. The XY Model

It is interesting to point out that also the N-wise spin-operator⨂M
j=1 �̂�

y
j can be unitarily reduced to [50] (see Appendix A)

M⨂
j=1

�̂�
y
j →

[
(−1)

M−1
2 𝛾y

(M−1)∕2∏
j=1

𝜎z2j+1

]
�̂�
y
1 (7)

provided that the numberM of spins is odd,[50] as shown in Ap-
pendix A. The operator realizing such a transformation is the
same accomplishing that in Equation (3). In the above expres-
sions 𝜎z2j+1 are constants of motion and their possible values can
be +1 and -1. The specific values assigned to these integrals of
motion identify a precise dynamically invariant subspace.[50] The
Hilbert subspace spanned by |↓⟩⊗M and |↑⟩⊗M, for example, is
characterized by all the constants of motion equal to 1, namely
𝜎z2j+1 = 1, ∀ j. Therefore, the following XY spin-chain-star system

Hxy = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾xk �̂�
x
a ⊗

[
Mk⨂
j

�̂�xkj

]
+

N∑
k

𝛾
y
k �̂�

y
a ⊗

[
Mk⨂
j

�̂�
y
kj

]

(8)

can be mapped into the standard XY spin-star system, which
reads

H̃xy = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾xk �̂�
x
a ⊗ �̂�xk +

N∑
k

𝛾
y
k �̂�

y
a ⊗ �̂�

y
k (9)

if the numberMk of spins in the k-th chain is chosen so that (Mk −
1)∕2 is even, and if all the chains coupled to the central ancilla
are initially prepared in either |↓⟩⊗Mk or |↑⟩⊗Mk or any arbitrary
superposition of these two states (such as a GHZ-like state).

2.3. The XYZ Model

It is possible to demonstrate that the same set of unitary operators
realizing the transformations in Eqs. (3) and (7) realizes also the
following transformation[50] (see Appendix A)

M⨂
l=1

�̂�zl →

[
𝛾z

(M−1)∕2∏
l=1

𝜎z2l+1

]
�̂�z1 (10)

whereM is odd.

Also in this case, if the involved two-level subdynamics of each
chain is that characterized by the two states |↓⟩⊗Mk and |↑⟩⊗Mk ,
then the XYZ spin-chain-star system

Hxyz = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾xk �̂�
x
a ⊗

[
Mk⨂
j

�̂�xkj

]

+
N∑
k

𝛾
y
k �̂�

y
a ⊗

[
Mk⨂
j

�̂�
y
kj

]
+

N∑
k

𝛾zk �̂�
z
a ⊗

[
Mk⨂
j

�̂�zkj

] (11)

is unitarily equivalent to the standard XYZ spin-star model

H̃xyz = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾xk �̂�
x
a ⊗ �̂�xk

+
N∑
k

𝛾
y
k �̂�

y
a ⊗ �̂�

y
k +

N∑
k

𝛾zk �̂�
z
a ⊗ �̂�zk

(12)

A qualitative representation of a star-shaped system composed by
eight five-spin chains is shown in Figure 1a. Its unitarily equiva-
lent standard spin-star system is shown in Figure 1b.
Finally, it is worth pointing out that the effective mathematical

description, basing on the unitary transformation procedure, is
not affected by a possible time-dependence of the Hamiltonian
parameters. This property stems from the fact that the unitary
operators, which transform the Hamiltonians, does not depend
on the Hamiltonian parameters and, more in general, on time.

2.4. In Presence of Fields

In this subsectionwe see that our analysis and then the unitary re-
duction of a spin-chain-star model to a standard spin-star model
keep their validity also when fields applied to the entire chains
are considered. Let us suppose each entire chain in the system to
be subject to a uniform magnetic field. The models in Eqs. (5),
(8) and (11) are then enriched of the term

N∑
k

ℏ𝜔k
0

Mk∑
j

�̂�zkj (13)

It is possible to convince oneself[50] that the unitary transfor-
mations acting as expressed in Eqs. (3), (7) and (10) convert the
operators in Equation (13) into (see Appendix A)

N∑
k

[
1 +

Mk∑
j=2

j∏
i=2

𝜎zkj

]
ℏ𝜔k

0�̂�
z
k1 (14)

where 𝜎zkj are constants ofmotions as before.Within the subspace
(for each chain) we are interested in, that is the one spanned by
the two states |↓⟩⊗Mk and |↑⟩⊗Mk , the integrals of motions are all
equal to 1. We can then write the following effective two-level op-
erators

N∑
k

Mk ℏ𝜔
k
0 �̂�

z
k (15)
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each of which accounts for the magnetic field applied on a chain,
whose dynamics is equivalent to that of a single spin-qubit sys-
tem.
Therefore, in this physical scenario, the unitarily transformed

effective models in Eqs. (6), (9) and (12) are modified by sim-
ply introducing such terms in the Hamiltonians. It is important
to underline that the introduction of the fields uniformly acting
upon each chain does not alter the symmetry properties of the
original Hamiltonians. In this way, the possibility to perform the
same unitary operations on the Hamiltonian interaction terms
results to be not affected.
As a final remark, we wish to emphasize the importance of the

symmetry properties possessed by the Hamiltonian(s). For the
case analysed in this paper, the study of the Hamiltonian symme-
tries is fundamental for the exact solution of the dynamical prob-
lem. More in general, the symmetries, besides allowing to ana-
lytically treat somemodels, have profound physical implications.
Indeed, the disclosure of symmetry-protected (sub-)dynamics in
different physical systems[54,55] can lead to discover physical ef-
fects which turn out to be useful and applicable to different fields
such as quantum metrology.[56–59]

2.5. Integrability

It is worth pointing out that the fully isotropic XXX spin-star
model is integrable; precisely, it belongs to the class of XXX
Richardson-Gaudin integrable models.[52,60] The condition of in-
tegrability stems from the existence of an appropriate set of in-
tegrals of motion, allowing to obtain all eigenstates and related
eigenvalues through the use of Bethe ansatz techniques.[52] This
circumstance, joined with the fact that the XXX spin-star model
well describes systems with spherical symmetry (such as quan-
tum dots in semiconductors with s-type conduction bands[61]),
has spurred several studies focused on the equilibrium and dy-
namical properties of such a model.[62,63]

Very recently, it has been demonstrated that also the XX model
is integrable.[52] This model naturally emerges in resonant dipo-
lar spin systems in rotating frames[64,65] and its eigenstates are
divided into two classes: dark and bright states. The former are
product states of the ancilla and of all the other environmental
spins, so that the central spin is thus disentangled from the spin-
bath. The latter can be written as a combination of dark states
and then exhibit entanglement between the ancilla and the other
spins.[52]

On this basis we therefore claim that, when an XX spin-
chain star model can be unitarily reduced to a standard spin-
star one, we can derive the exact expressions of the eigenval-
ues and eigenvectors of the spin-chain-star system. It is impor-
tant to stress that, in this case, fully integrability cannot be in-
voked since the spin-chain-star model is exactly solvable only
within the specific subspaces where themapping to an integrable
spin-star model is possible. As previously said, one of these sub-
spaces is that spanned by the pair of states {|↑⟩⊗M, |↓⟩⊗M}.Within
other subspaces, instead, although the reduction to standard
spin-star models is always possible, the effective unitarily equiv-
alent models present inhomogeneities (XYZ) which affect the
integrability.

3. Exact Solution for XX Spin-Chain-Star Systems

3.1.W-Like and GHZ-Like States of Spin-Chains

In this section we specialize the XX spin-chain-star system con-
sidered so far by setting 𝛾xk = 𝛾

y
k , ∀ k in Equation (8), namely

Hxx = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾k

{
�̂�xa ⊗

[
M⨂
j

�̂�xkj

]
+ �̂�ya ⊗

[
M⨂
j

�̂�
y
kj

]}

(16)

Moreover, we suppose a number N of spin-1/2-chains, each con-
sisting of M spin-qubits and satisfying the constraint that (M −
1)∕2 is an even number. Through the appropriate unitary trans-
formations previously discussed, we get thus an effective stan-
dard XX spin-star system (Equation (9) with 𝛾xk = 𝛾

y
k , ∀ k)

H̃xx = ℏ𝜔a�̂�
z
a +

N∑
k

𝛾k
[
�̂�xa ⊗ �̂�xk + �̂�

y
a ⊗ �̂�

y
k

]
(17)

We consider all the N spin-chains initialized in the M-spin
state |↓⟩⊗M. As said in the previous section, the symmetries of
the Hamiltonian lead to a two-dimensional dynamically invari-
ant subspace spanned by |↓⟩⊗M and |↑⟩⊗M. It means that the k-th
chain (k = 1…N) can be effectively represented in terms of dy-
namical variables 𝜎xk , 𝜎

y
k , 𝜎

z
k of a fictitious qubit. The following

mapping (valid for each chain)

|↓⟩⊗M ⇐⇒ |−⟩, |↑⟩⊗M ⇐⇒ |+⟩ (18)

(with �̂�z|±⟩ = ±|±⟩) enables to fix unambiguously the initial state
of the fictitious standard spin-star system.We suppose the ancilla
and the effective standard spin-star system initially prepared in
the following state

|𝜓(0)⟩ = |↑a⟩|−⟩⊗N (19)

which in terms of spin-chain states is written as

|𝜓(0)⟩ = |↑a⟩|↓1⟩⊗M … |↓k⟩⊗M … |↓N⟩⊗M (20)

It is known that the exact time evolution of the initial condition
taken into account for the XX spin-star system is [66, 67]

|𝜓(t)⟩ = 𝛼(t)|↑a⟩|−⟩⊗N + |↓a⟩ N∑
k

𝛽k(t)|−1⋯ +k ⋯−N⟩ (21)

with

𝛼(t) = cos(𝜔 t) + i
𝜔a

𝜔
sin(𝜔 t) (22a)

𝛽k(t) = −i
𝛾k∕ℏ
𝜔

sin(𝜔 t) (22b)

where

𝜔 =
√∑

k

(𝛾k∕ℏ)2 + 𝜔2
a (23)
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Figure 2. a) Time dependencies of |𝛼(𝜔t)|2 (blue dashed line) and|𝛽k(𝜔t)|2 = |𝛽(𝜔t)|2, ∀ k (red solid line) [see Equation (22)] in case of
N = 9 number of M-spin chains, for 𝛾k = 𝛾 , ∀ k and 𝜔a = 0. b) Effects
of the detuning on the time dependence of |𝛽k(𝜔t)|2 = |𝛽(𝜔t)|2, ∀ k, in
case of N = 9 and 𝛾k = 𝛾 , ∀ k; different values of the ratio ℏΔ∕𝛾 are con-
sidered: 0 (red dotted line), 1 (green dot-dashed line), 5 (blue dashed line)
and 10 (black solid line).

Weunderline that, for the initial condition under scrutiny, only
one effective frequency, namely 𝜔, characterizes the time evolu-
tion of the system. Thus, the XX spin-star system comes back
to its initial condition with a period T = 2𝜋∕𝜔 and behaves as
if its dynamics were governed by an effective Hamiltonian de-
scribing N different spins homogeneously coupled to the cen-
tral one, that is with the same effective coupling constant. Pre-
cisely, such an effective model can be obtained by substituting in
Equation (8) 𝛾xk = 𝛾

y
k = 𝛾eff with 𝛾eff = ℏ𝜔, which is independent

of k.
Moreover, it is interesting to note that, for 𝛾k = 𝛾 , ∀ k and 𝜔a =

0, when t = n𝜋∕𝜔 (so that 𝛼(t) = 0), we get the state

|W⟩ = |↓a⟩
[

1√
N

N∑
k

|−1⋯ +k ⋯−N⟩
]

(24)

up to a global factor exp{−i𝜋∕2}. For this scenario, the time be-
haviours of the probabilities |𝛼(𝜔t)|2 and |𝛽k(𝜔t)|2 = |𝛽(𝜔t)|2, ∀ k,
are shown in Figure 2a in the case of N = 9.
We highlight that the N-two-level system results in a W-like

state and that, therefore, each of these N involved two-level sys-
tems represents one of the N M-spin chains. Thus, the ancilla-
mediated (quantum) correlations which arise between the effec-
tive N spin-1/2’s can be interpreted as correlations get estab-
lished between the N spin-chains. It means that such a W-state
is a ‘macro-state’ consisting in a superposition of states involv-
ing all the M-spin-chains in the systems. We can then write the
W-like state in terms of the spin-chains as

|W⟩ = |↓a⟩
[

1√
N

N∑
k

|↓1⟩⊗M … |↑k⟩⊗M … |↓N⟩⊗M

]
(25)

Therefore, we claim that the XX spin-chain-star model [Equa-
tion (16)] allows for the generation of ‘macro’W-like states of the
chains and then for the creation of a large-scale entanglement be-
tween all the subsystems in the spin-chain-star physical scenario.

3.2. Effects of Detuning

Let us suppose to apply a uniform magnetic field to all the iden-
ticalM-spin-chains of the system, namely

ℏ𝜔0

M

N∑
k

M∑
j

�̂�zkj (26)

In this case the unitarily equivalent spin-star model reads

H̃′
xx = ℏ𝜔a�̂�

z
a + ℏ𝜔0

N∑
k

�̂�zk +
N∑
k

𝛾k
[
�̂�xa ⊗ �̂�xk + �̂�

y
a ⊗ �̂�

y
k

]
(27)

It is easy to check that, for such a physical scenario, the expres-
sion of the evolved state in Equation (21), obtainedwhen the spin-
chain-star system is initially prepared in the state (19), remains
formally identical, as well as that of 𝛽k(t) in Equation (22b).

[66,67]

The only slight variation is found in the mathematical expres-
sions of 𝛼(t) and 𝜔 which become now respectively[66,67]

𝛼(t) = cos(𝜔 t) − i Δ
𝜔
sin(𝜔 t) (28a)

𝜔 =
√∑

k

(𝛾k∕ℏ)2 + Δ2 (28b)

where the detuning is defined as follows:

Δ = 𝜔0 − 𝜔a (29)

The effects of the detuning on the probabilities |𝛽k(t)|2 are shown
in Figure 2b, for 𝛾k = 𝛾 , ∀ k. We see, as expected, that the greater
is the detuning, the lower are the probabilities |𝛽k(t)|2 (and then
the higher the complementary probability |𝛼(t)|2), meaning that
the system tends to remain in its initial condition for high values
of the detuning.
This result, thus, demonstrates also that, although a non-

vanishing field (inducing a splitting energy ℏ𝜔a) is present on
the ancilla spin, it is still possible generating theW-state in Equa-
tion (24), provided that a further magnetic field inducing a split-
ting energy ℏ𝜔a∕M is uniformly applied to all theM-spin chains
(so that Δ = 0).

3.3. Entanglement

In this section we investigate the possible quantum correlations
emerging in the spin-chain-star system. To this end, we con-
sider the case of N = 2 chains, each made ofM spin-qubits, and
𝛾k = 𝛾 , ∀ k. It is interesting to note that in this case, through the
procedure previously exposed and forΔ = 0, if we get−1 bymea-
suring the ancilla dynamical variable �̂�za at t = 𝜋∕𝜔, Equation (21)
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foresees that the resulting spin-state of the two chains has the fol-
lowing form

|GHZ⟩ = |↑⟩⊗M|↓⟩⊗M + |↓⟩⊗M|↑⟩⊗M√
2

(30)

Since in this state the concurrence[68] between two generic spin-
1/2’s (in the same or different chains) vanishes and the measure
of the collective z-component of the whole spin-chain can give
only the two values ±N, it is legitimate to call this multi-spin
state a GHZ-like state. The legitimacy of such a denomination
of the state (30) can be convincingly strengthened simply observ-
ing that, exploiting our mapping (18), the same state (30) can be
written as the Bell state

|GHZ⟩ → |Ψ+⟩ = |+⟩|−⟩ + |−⟩|+⟩√
2

(31)

which is characterized by the maximum level of concurrence
(C = 1). We stress that, as a result of our analysis, the entan-
glement should be intended as the signature of the existence of
quantum correlations between the spin-chains. We wish to em-
phasize the added value of the representation in terms of ficti-
tious two-level systems, since it provides information about quan-
tum correlations get established between the spin-chains. Ac-
cording to this interpretation, it becomes relevant to calculate the
time dependence of the concurrence exhibited by two chains in
the state (21):

|𝜓(t)⟩ = 𝛼(t)|↑a⟩|−⟩|−⟩
+ |↓a⟩[𝛽1(t)|+⟩|−⟩ + 𝛽2(t)|−⟩|+⟩]

= 𝛼(t)|↑a⟩|↓⟩⊗M|↓⟩⊗M

+ |↓a⟩[𝛽1(t)|↑⟩⊗M|↓⟩⊗M + 𝛽2(t)|↓⟩⊗M|↑⟩⊗M
]

(32)

It is possible to verify that the concurrence for the density matrix
of the two effective spin-1/2’s is

C(t) = 2|𝛽1(t)||𝛽2(t)| (33)

We are therefore able to write the time-dependence of the en-
tanglement emerging between the two chains. The latter results
to be maximum for 𝛽1(t) = 𝛽2(t) = 1∕

√
2, corresponding to the

GHZ-like state previously examined.
Analogously, in the case ofN = 3M-spin chains, bymeasuring

𝜎za = 1 at t = 𝜋∕𝜔, the state reached by the spin system is

|W⟩ = |+ − −⟩ + |− + −⟩ + |− − +⟩√
3

=

|↑⟩⊗M|↓⟩⊗M|↓⟩⊗M + |↓⟩⊗M|↑⟩⊗M|↓⟩⊗M + |↓⟩⊗M|↓⟩⊗M|↑⟩⊗M√
3

(34)

which can be interpreted as a maximally entangled W-like state
of the threeM-spin chains. Also in this case we may infer the en-
tanglement between the three spin chains with the help of the ef-
fective description involving three interacting two-level systems

as well. It is easy to verify that, for the state (21) in the case of
N = 3, each pair i-j of chains exhibits a non-vanishing concur-
rence equal to 2|𝛽i||𝛽j|. Each pair of two generic true spin-1/2’s
is, instead, disentangled as in the case of two chains.
This result can be extended to the case ofN spin-chains. In this

instance, it is possible to check, indeed, that the entanglement
between two generic true spins vanishes, while the concurrence
for a generic pair of chains i-j results to be 2|𝛽i||𝛽j|.
This means that the spin-chain-star system here discussed, be-

sides generating quantum correlations in a large spin-system,
is suitable to generate different types of entangled states of the
chains considered in the model under scrutiny. The origin of
such differences can be traced back to specific topological and
structural properties of the spin-chain-star system, as for exam-
ple the number of chains and the number of spins per chain.

4. Conclusions

In this work we have considered a special class of spin-chain-
star systems. Precisely, we have focused our attention on spin
chains characterized by many body N-wise interactions, that is
interaction terms involving all the spins in a chain at once. We
have taken into account several types of spin-chain-star models
including different types of N-wise interactions as well as the
presence of local magnetic fields on both the ancilla and the spins
in the chains.
We have shown that eachmodel we have considered can be an-

alytically treated through unitary transformations and that each
chain, for specific initial conditions, effectively behaves and can
be thought of as a two-level system. This implies that a spin-
chain-star system belonging to the class under scrutiny is unitar-
ily equivalent to a standard spin-star system. Therefore, we can
exploit the knowledge and the results obtained for the standard
spin-star models and interpret them in terms of multiple-chain
states. For example, we have demonstrated that, by starting from
a disentangled state of the spin-chain-star system, our model and
scheme allow for the generation of a ‘macro’-entangled state of all
the spin chains which form the system. Therefore, we can speak
of quantum correlations arising between the actual spins and be-
tween the spin chains globally described as two-level systems.
In case of N = 2 and N = 3 spin chains, thanks to the mapping
into a spin-1/2-star model, we can affirm that the system evolves
and reaches a maximally entangled superposition at appropriate
instants of time. Moreover, we are also able to quantify the en-
tanglement get established between two spin chains through the
calculation of the concurrence (since the two chains effectively
behave as two spin-qubits).
Finally, we have analysed the effects on the probability related

to the generation of such a state stemming from the presence
of magnetic fields acting on the ancilla and (homogeneously) on
the chains. In this way, we have found the optimal experimen-
tal work condition necessary to get a macro-entangled state. Our
result, thus, paves the way to the possibility of generating large-
scale entanglement in spin systems made of several spins.
Further investigations could concern quantum oscillator

baths(s) interacting with the spin chains and/or the ancilla. In
this case, likely, a numerical approach to solve the dynamics is
necessary. Several approaches could be used to deal with this
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scenario, from the standard Lindblad theory[69,70] to the partial
Wigner transform[71–77] and the non-Hermitian formalism.[78–87]

Appendix A: Symmetry-Based Unitary
Transformations

Let us consider the following N-spin model

H = 𝛾x

N⨂
k=1

�̂�xk + 𝛾y
N⨂
k=1

�̂�
y
k + 𝛾z

N⨂
k=1

�̂�zk (A1)

where �̂�x, �̂�y and �̂�z are the standard Pauli matrices. The N dis-
tinguishable spins are coupled only through N-wise interaction
terms, that is interaction terms which involve all the N-spins
at once.
To exactly diagonalize the model, it is useful to begin with the

easiest case of two interacting spin-1/2’s[88–91]:

H2 = 𝛾x�̂�
x
1 �̂�

x
2 + 𝛾y�̂�

y
1�̂�

y
2 + 𝛾z�̂�

z
1 �̂�

z
2 (A2)

for which �̂�z1 �̂�
z
2 is an integral of motion, [H2, �̂�

z
1 �̂�

z
2 ] = 0. It is pos-

sible to verify that the following unitary and Hermitian operator
(𝟙 is the identity operator in the four dimensional Hilbert
subspace)

𝕋12 =
1
2

[
𝟙 + �̂�z1 + �̂�

x
2 − �̂�

z
1 �̂�

x
2

]
(A3)

transformsH2 into

𝕋 †
12H2𝕋12 = H̃2 = 𝛾x�̂�

x
1 − 𝛾y�̂�

z
2 �̂�

x
1 + 𝛾z�̂�

z
2 (A4)

Since �̂�z2 is a constant of motion for H̃, it can be treated as a pa-
rameter (= ±1), rewriting

H̃𝜎z2
=
(
𝛾x − 𝛾y𝜎z2

)
�̂�x1 + 𝛾z𝜎

z
2 (A5)

The existence of such a symmetry (giving rise to the constant
of motion) implies the existence of two dynamically invariant
Hilbert subspaces, each of which related to an eigenvalue of
𝜎z2 . Each single-spin-1/2 Hamiltonian, obtainable by assigning a
value to 𝜎z2 , governs the two-spin dynamics in one of the two dy-
namically invariant Hilbert subspaces. Therefore, in this way, we
have reduced the two-interacting-spin problem to two indepen-
dent single-spin-1/2 problems.
Let us consider now the analogous three-spin model

H3 = 𝛾x�̂�
x
1 �̂�

x
2 �̂�

x
3 + 𝛾y�̂�

y
1�̂�

y
2�̂�

y
3 + 𝛾z�̂�

z
1 �̂�

z
2 �̂�

z
3 (A6)

This time the new constant of motion �̂�z2 �̂�
z
3 appears. By applying

the analogous procedure used for the two-spin case, we get the
following new Hamiltonian

𝕋 †
23H3𝕋23 =H̃3 = 𝛾x�̂�

x
1 �̂�

x
2 − 𝛾y𝜎

z
3 �̂�

y
1�̂�

x
2 + 𝛾z𝜎

z
3 �̂�

z
1 (A7)

In this case, the unitary transformation involves the second and
the third spin, and the operator accomplishing such a transfor-
mation, inspired by 𝕋12, reads

𝕋23 =
1
2

[
𝟙 + �̂�z2 + �̂�

x
3 − �̂�

z
2 �̂�

x
3

]
(A8)

Since �̂�z1 �̂�
z
2 is a constant of motion for H̃3, we can exploit the oper-

ator written in Equation (A3) and apply one more time the same
procedure to H̃3. So, we get

𝕋 †
12H̃3𝕋12 = 𝕋 †

123H3𝕋123 = ̃̃H3

= 𝛾x�̂�
x
1 − 𝛾y𝜎

z
3 �̂�

y
1 + 𝛾z𝜎

z
3 �̂�

z
1

(A9)

where we put 𝕋123 = 𝕋23𝕋12. In this case we have four dynamically
invariant subspaces related to the four pairs of eigenvalues of the
two constants ofmotion �̂�z1 �̂�

z
2 and �̂�

z
2 �̂�

z
3 . So, we have four two-level

Hamiltonians governing the three-spin dynamics in each sub-
space. Therefore, we have reduced the initial dynamical problem
of three interacting spins to four independent single-spin-1/2 dy-
namical problems.
Basing on this last result, it is easy to understand that we can

apply the same sequence of unitary transformations also in the
case ofN spins. More precisely, we can iterate the transformation
procedure until the initial N-spin Hamiltonian is completely re-
duced to a set of 2N−1 two-level Hamiltonians. Each of these effec-
tive single-spin-1/2 Hamiltonians governs the N-spin dynamics
within an invariant subspace identified by the specific values of
the 2N−1 constants of motion. The total unitary operator accom-
plishing the chain of unitary transformations can be written as

𝕋 = 1
2N−1

N−2∏
k=0

[
𝟙 + �̂�zN−(k−1) + �̂�

x
N−k − �̂�

z
N−(k+1)�̂�

x
N−k

]
(A10)

where each piece of the product acts on a ‘spin-triplet’, say [i, j, k].
As shown in the two- and three-spin cases, each three-spin trans-
formation leaves the Hamiltonian dependent on the dynamical
variables of the first spin of the triplet (i-th spin) and on those
of all other spins not affected by the transformation. The spins
j and k appears only with the z-component, i.e. �̂�zj and �̂�

z
k which

are constants of motion. They can be therefore treated as param-
eters and substituted with their eigenvalues in the expression of
the transformed Hamiltonian.
The effects on the Hamiltonian after the spin-triplet transform

are:

• the appearance of a -1 factor in the interaction term in 𝛾y;
• the appearance of the 𝜎z operator (parameter) of the last spin
of the triplet in the interaction terms in 𝛾y and 𝛾z;

• the invariance of the Pauli spin operators (�̂�x, �̂�y and �̂�z) of
the first spin of the triplet under consideration in each relative
interaction term (𝛾x, 𝛾y and 𝛾z).

The final set of parametric single-spin-1/2 Hamiltonians is
then

H̃ = 𝛾x�̂�
x
1 +

[
(−1)

N−1
2 𝛾y

(N−1)∕2∏
k=1

𝜎z2k+1

]
�̂�
y
1

+

[
𝛾z

(N−1)∕2∏
k=1

𝜎z2k+1

]
�̂�z1

(A11)
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in the case of an odd number of spins, and

H̃ = 𝛾x�̂�
x
1 +

[
(−1)

N
2 𝛾y

N∕2∏
k=1

𝜎z2k

]
�̂�x1 + 𝛾z

N∕2∏
k=1

𝜎z2k (A12)

whenN is an even number. For the sake of clearness, we point out
that (N − 1)∕2 andN∕2, appearing respectively in Equation (A11)
and (A12), are the numbers of transformations necessary to get
the final set of two-level Hamiltonians from the original N-spin
Hamiltonian [Equation (A1)].
Finally, we can consider local magnetic fields applied to the

spins of the chain, that is a further term in the Hamiltonian in
Equation (A1) of the following type

N∑
k=1

ℏ𝜔k�̂�
z
k (A13)

In the case of two and three spins (k = 2 and k = 3, respectively),
the above operator, subject to the unitary transformation based
on the operators (A3) and (A8), acquires the forms

ℏ(𝜔1 + 𝜎z2𝜔2)�̂�
z
1 (A14a)

ℏ(𝜔1 + 𝜎z2𝜔2 + 𝜎z2𝜎
z
3𝜔3)�̂�

z
1 (A14b)

respectively. Then, in the case ofN spins, the general form of the
factor multiplying �̂�z1 and depending on the 𝜔k parameters reads

ℏ

[
𝜔1 +

N∑
k=2

k∏
k′=2

𝜎zk′𝜔k

]
(A15)
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