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Even if the incidence of tuberculosis (TB) has been decreasing over the last years,
the number of patients with TB is increasing worldwide. The emergence of multidrug-
resistant and extensively drug-resistant TB is making control of TB more difficult.
Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary
TB in adults, and there is an urgent need for a vaccine that is also effective in
patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control
may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed
immunotherapies could offer therapeutic strategies for patients with drug-resistant TB
or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after
hematopoietic stem cell transplantation has emerged as a new strategy in the cure of
hematologic malignancies in order to induce graft-versus leukemia and graft-versus-
infection effects. Moreover, adoptive therapy has proven to be effective in controlling
cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients
with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a
heterogeneous group of T lymphocytes with limited diversity. One of their characteristics
is that antigen recognition is not restricted by the classical major histocompatibility
complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-
related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class
Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent,
they are also termed “donor unrestricted” T cells. The combined features of low donor
diversity and the lack of genetic restriction make these cells suitable candidates for T
cell–based immunotherapy of TB.

Keywords: host-directed therapy, tuberculosis, unconventional T cells, cytotoxicity, T cell receptor

INTRODUCTION

Tuberculosis (TB) is the deadliest infectious disease worldwide, even if the global incidence
has declined over the past decades. The etiologic agent Mycobacterium tuberculosis still causes
more than 10 million cases and 1.5 million deaths every year. Although drug treatment usually
provides microbiological cure in patients treated with 6-month regimen for drug-sensitive strains,
1.1 million people remain sick (1), because of the spread of strains resistant to multiple drugs.
Moreover, it is estimated that one-quarter of people worldwide are latently infected, and of
these, 5 to 15% will develop TB during their lifetimes, due to the higher risk for people with
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immunocompromised system, such as human immunodeficiency
virus (HIV), malnutrition, or diabetes, or people who use
alcohol or tobacco (2). Treatment for latently infected people
is necessary for the global control of TB. The emergence of
multidrug-resistant TB remains a growing threat to global public
health; in fact, in the absence of a vaccine more efficient than
Mycobacterium bovis bacillus Calmette–Guérin (BCG) vaccine to
prevent primary infection or progression to active TB in latently
infected people, TB global control needs novel therapeutic
strategies in order to improve M. tuberculosis eradication and
limit the excessive pathology.

In this context, the research of more effective and cheaper
drugs represent one of the solutions (3, 4), while therapeutic
interventions that can modulate the immune response have been
proposed (5–7).

These interventions, termed “host-directed therapies”
(HDTs), are directed to evaluate different aspects in order to
better understand the inflammatory and immune pathways
governing protective or detrimental outcomes of the disease.
HDTs consider several mechanisms of action: the research of
biological drugs useful to reduce treatment regimens strategy
to reduce TB pathology targeting M. tuberculosis such as
granuloma structure, autophagy induction, anti-inflammatory
response, and cell- and antibody-mediated immune responses
(8–10).

We review here developments and current advances in
adoptive T cell therapy; in particular, we will focus on the role of
unconventional T cells and discuss whether such approach may
be helpful to offer a valid strategy for the cure of TB applicable
also to other infectious diseases.

As the role of CD4 and CD8 T cells has been largely studied
in TB, highlighting the limit of the high most polymorphic
presentation of peptides antigens by MHC classes I and II
molecules, the donor unrestricted nature of antigen presentation
by molecules that are apparently non-polymorphic, elicits strong
interest for vaccine or T cell immunotherapeutic approaches
to target the entire global population without respect to host
genetic factors.

NATURAL KILLER T AND
MUCOSAL-ASSOCIATED INVARIANT
T CELLS

Natural killer T (NKT) and MAIT cells constitute a subset of
T cells that recognize antigens of non-peptidic nature. These
cells are named as unconventional or “innate-like” T cells for
their distinct features (11, 12). These cells have different memory,
kinetics, and ligand recognition compared to conventional T
cells (13).

MAIT and NKT cells recognize microbial metabolites and
lipids presented by MHC-related protein 1 (MR1) and cluster of
differentiation 1d (CD1d), respectively (Figure 1).

In M. tuberculosis infection, the role of NKT cell subsets
has been investigated; here, we report some evidences of
their role depending on the type of mycobacterial antigens
specifically recognized.

NKT Cells
It has been shown that NKT cells play a key role in a variety
of infectious and autoimmune diseases and cancer (14). NKT
cells express a rearranged αβ T cell receptor (TCR) and NK
cell receptors, which confer the capability to exert several
effector functions in immune surveillance. Based on their TCR
repertoire and antigen recognition, NKTs can be split up into
invariant (iNKT) and diverse (dNKT). Both cell types are CD1d-
restricted and respond to glycolipid and lipid antigens/CD1
complexes, respectively.

Invariant NKT
Invariant NKT cells, also termed classical type I cells, use
an invariant TCRα chain (Vα14-Jα18 in mice, Vα24-Jα15 in
humans) paired with limited TCRβ chains (Vβ7, 8.2 or 2 in mice,
Vβ11 in humans), and constitute a majority of the overall CD1d-
restricted repertoire (15, 16). iNKT cells specifically recognize
the endogenous α-linked monoglycosylceramides, α-galactosyl
ceramide (αGalCer) and α-glucosylceramide (αGalcCer). Similar
to helper CD4 T cells, notwithstanding their specificity for
αGalCer recognition, they are able to produce different
cytokines such as interferon γ (IFN-γ), interleukin 4 (IL-
4), or IL-17A, which designate them as iNKT1, iNKT2,
and iNKT17.

Diverse NKT Cells
Diverse NKT cells have a more diverse repertoire and
recognize a wider range of self and non-self lipids such as
sphingolipids (e.g., sulfatides and βGalCer) and phospholipids
(e.g., phosphatidylinositol, phosphatidylglycerol, and
phosphatidylethanolamine).

Mycolipids, lipids belonging to the mycobacterial cell wall, can
bind CD1d molecules and activate human NKT cells. dNKT cell
activation in responses to different antigens has been detected in
individuals infected with M. tuberculosis (17).

Their role has been investigated in in vitro, in vivo, and in
preclinical models of M. tuberculosis infection (18–22). Active TB
patients had a decreased percentage of iNKT cells in peripheral
blood or bronchoalveolar lavage samples (23, 24), with respect to
subjects with latent TB infection (25–30), even if these cells still
maintained the capability to secrete high amounts of IFN-γ and
displayed an activated phenotype (30, 31).

However, NKT cells from active TB patients express
programmed death 1 (PD-1) molecule at cell surface that leads
to their subsequent apoptosis, an event that can be abrogated
through PD-1 blockade (23, 32). This finding is highly suggestive
of an immunological approach to achieve a protective immune
response against M. tuberculosis. In addition, iNKT cells present
in pleural effusion in TB patients produce IL-21 and can then
participate to local B cell activation and humoral immune
response to M. tuberculosis (33).

While these studies do not clarify a key role for NKT cells in
human TB, their rapid activation and the different role they can
exert in TB infection poise them as an intriguing target for cell-
based therapies (34).
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FIGURE 1 | Unconventional T cells, grouped on the base of their restriction elements. α-GalCer, α-galactosyl ceramide; 5-OP-RU, 5-(2-oxopropylideneamino)-6-D-
ribitylaminouracil; unknown, insufficient or very limited data.

Finally, results from non-human primate (NHP) models of
M. tuberculosis infection have demonstrated that CD8+ iNKT
cells play a protective role in preventing lung pathology (19, 35).

Altogether, these cells are promising tools for potential use
as HDT in human TB, in a similar way to their use in cancer
immunotherapy (36).

MAIT Cells
MAIT cells recognize very rapidly non-peptidic antigens
presented by MR1 molecule (37). MAIT cells respond to
Ag stimulation rapidly either because they are constitutively
activated by Ags derived from commensal bacteria and maintain
activated/memory phenotype, or their clonal size is larger than
conventional T cells (38). In humans, MAIT cells express a
Vα7.2-Jα33/12/20, TCRα chain preferentially paired with Vβ2
or Vβ13 (39–41). In their structure and function, MAIT cells
represent a bridge between the innate and adaptive immunity.
They are αβ T cells whose TCRs have restricted diversity and
recognize small microbial metabolites. In the riboflavin synthesis
process, many bacterial and fungal organisms produce small
intermediates able to activate MAIT cells (42–45). There is also

evidence that non–riboflavin-based antigens, also of microbial
origin (46) and tumor cell–derived molecules (47), can bind to
MR1 and activate some MR1-restricted T cells, although the
identity of these antigens remains to be defined. MAIT cells
comprise 1 to 10% of circulating CD3+ T cells in healthy adults
(48, 49) and have also been found in the gastrointestinal tract,
liver, and airways (50–54).

The role of this population of T cells in the response
against microorganisms is still a matter of studies. TCR-mediated
activation of MAIT cells leads to cytokines production, cytotoxic
effector function, migration, and proliferative expansion (12,
39, 55).

Because MAIT cells can respond to a range of bacteria and
yeasts, several studies have supported the proposal of a peculiar
and non-redundant role in protection against infectious diseases.

In particular, MAIT cells can contribute to the destruction
of infected cells and activation of other immune cell types
(56) through the release of perforin and granzymes; moreover,
they are a source of several proinflammatory cytokines and
chemokines, such as tumor necrosis factor α (TNF-α), IFN-
γ, IL-17A, and MIP-1α. MAIT cells can also produce IL-22,
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IL-13, IL-26, or IL-2, depending on the different cytokine milieus
and tissue localization (57–60). Indeed, MAIT cells can even
be activated by inflammatory stimuli in the absence of TCR-
mediated antigen recognition (57–59, 61–68).

In animal models of mycobacterial infection, MAIT cells are
able to reduce mycobacterial burden and increase the ability
of macrophages to inhibit the growth of intracellular bacilli
(56). MAIT cells were demonstrated to protect mice against
mycobacterial infection (55, 69).

In human TB infection, several studies have evaluated
MAIT cell frequencies in peripheral blood or in inflamed
tissues, demonstrating that this cellular population decreases
during active TB in diverse geographic settings (55, 70–72).
Moreover, this decrease is paralleled by their enrichment in the
inflamed tissue such as that found in the lungs and pleural
effusions of TB patients (73), where they displayed a phenotype
of activated/memory cells and a higher capacity to produce
cytokines such as IFN-γ and TNF-α (74).

Studies have evaluated the relative increase or decrease of
the absolute number or percentage with the progression of TB
infection. In fact, in some circumstances, MAIT cell deficiency
has been associated with the different clinical TB conditions.
Moreover, their decrease has been inversely correlated with other
biological parameters, such as high levels acid–fast bacilli in
sputum of TB patients or with systemic markers of inflammation
(72). Additionally, peripheral blood MAIT cells showed an
impaired production of cytotoxic molecules and cytokines such
as IFN-γ in patients with active pulmonary TB (75). These
functionally impaired MAIT cells express higher levels of
proapoptotic markers and PD-1 than MAIT cells from non-
TB patients (71, 72, 74). PD-1+ MAIT cell expression has been
related to active TB status and declines with TB treatment
(74, 76).

In vitro blockade of PD-1 can increase IFN-γ production in
circulating MAIT cells from patients with TB, thus resembling
the data obtained in studies on NKT cells.

Human data about MAIT cells still gave incomplete
information about the role these cells play in bacterial disease,
but it was stated that in active TB disease MAIT cells decrease
in peripheral blood and those that remain show a dysfunctional,
yet reversible phenotype. An immunological approach could be
to use MR1 ligands in therapeutic settings, in order to potentiate
the functional activities of MAIT cells in M. tuberculosis
infection. This therapeutic approach would be applicable in the
heterogeneous human populations because of the monomorphic
nature of MR1, which displays very limited restriction barrier in
human populations.

γδ T Cells
T cell receptor (TCR) of γδ T cells in humans consists of a γ and
a δ chain; they are usually identified on the base of the δ chain
expressed on the surface, Vδ1+, Vδ2+, and a minor subset Vδ3+.
The knowledge about their antigen recognition repertoire is not
fully elucidated; in fact, some TCRs specifically recognize soluble
antigens in the absence of Ag presentation, whereas other can
bind antigens presented by MHC-I like molecules such as MICA,
CD1, and EPCR (77, 78) (Figure 1).

The Vδ2+ T cells are the major γδ subset in the
blood, and their TCR consists of a Vδ2 and a Vγ9 chain
that recognize microbially derived phosphorylated antigens
associated with the monomorphic butyrophilin 3A1 (BTN3A1)
molecule (79). Metabolites known as phosphoantigens (PAgs)
activate Vγ9Vδ2 T cells (80, 81). One of these metabolites
is isopentenyl pyrophosphate (IPP), produced in eukaryotes
through the mevalonate pathway, a pathway involved in protein
prenylation, and in cholesterol synthesis (82). A dysfunction
of this pathway can lead to overproduction of endogenous
IPP, as occurs in stressed cells (83, 84). Moreover, some drugs
can manipulate the production of endogenous IPP. Another
metabolite able to activate Vγ9Vδ2 T cells is hydroxymethyl-
but-2-enylpyrophosphate (HMBPP), an intermediate of the
alternative, non-mevalonate pathway of cholesterol used by some
Eubacteria and by Plasmodium falciparum, the etiologic agent of
malaria (85, 86).

Pags are recognized in a TCR-dependent manner, and very
recently, the molecule BTN3A1, belonging to the butyrophilin
(BTN) protein family, has been implicated as essential molecule
in the PAgs activation pathway of Vγ9Vδ2 T cells (87–89).

BTN3A proteins are receptors expressed in several cell types,
including immune cells and some malignant cells such as ovarian
cancer. Even if the prominent role of BTN3A1 in PAg-induced
Vγ9Vδ2 T cell activation is well documented, the mechanism
of recognition of the PAg has not been fully delineated. There
is strong evidence that Vγ9Vδ2 T cell activation is due to an
intracellular sensing of PAg through the interaction with the
B30.2 domain of BTN3A1 molecule (90–93).

Vγ9Vδ2 T cells can recognize another antigen belonging
to M. tuberculosis, the 6-O-methylglucose-containing
lipopolysaccharides.

Even if other two minor subsets of γδ T cells are less
represented in blood, they are able to recognize mycobacterial
lipid or glycolipids antigens presented by CD1c and CD1d
molecules. Interestingly, some Vδ1+γδ T cells are activated
following recognition of α-GalCer presented by CD1d molecule
(94), which might be relevant in human clinical trials.

Generally, any γδ T cell antigen could be used to design
TB vaccines due to their ability to drive in vivo expansion of
M. tuberculosis–reactive γδ or to generate in vitro γδ T cells to
be used in adoptive cell therapy.

In human blood, γδ T cells are relatively abundant, so it is
possible to isolate them in large numbers and characterize their
effector mechanisms such as the ability to produce TH 1-, TH 2-,
or TH17-type cytokines and to exert potent cytotoxicity, this latter
function being closely correlated to the elimination of infected
or tumoral cells. These findings, together with their capacity to
rapidly migrate to peripheral sites suggest that γδ T cells are good
candidates for adoptive transfer models of therapy.

They are included in the cluster of unconventional T
cells, because of their MHC unrestricted antigen recognition;
therefore, they have been used and transferred from an
MHC mismatched background without causing graft-versus-host
disease (GVHD), which can be a life-threatening complication
with adoptive transfer of conventional αβ T cells (95).
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In M. tuberculosis infection, Vγ9Vδ2 T cells are activated
rapidly after PAg stimulation, exerting effector mechanisms such
as release TNF-α and IFN-γ (96), and cytotoxic molecules
such as perforin, granzymes, and granulysin that are involved
in the killing of M. tuberculosis–infected macrophages and in
the reduction of the viability of intracellular and extracellular
M. tuberculosis (97). In humans, BCG vaccination determines
in vivo expansion of γδ T cell population with a memory
phenotype, and similar findings have been observed in BCG or
M. tuberculosis–infected rhesus macaques.

Moreover, adoptive transfer of activated Vγ9Vδ2 T cells in
M. tuberculosis–infected macaques has demonstrated protection
against this intracellular pathogen (79, 96). The adoptive transfer
of γδ T cells in NHP reduced the bacterial burden and limited
disease to the infected lobe by prevention of dissemination
(98). In primates, this expansion is clonal and selects for
Vγ9+Vδ2+ TCR usage (79). This clonal expansion is due to the
specific recognition of PAgs conserved among mycobacteria (99),
recognized by butyrophilin-dependent manner (96, 100). Further
advances in the use of γδ T cells, derived from the study in which
responses in NHP can specifically be boosted by addition of PAgs
to protein subunit vaccines are needed (101).

Therefore, clinical trials targeting γδ T cells may
offer improved outcomes that can best be harnessed for
immunotherapy approaches, as widely experienced in cancer
immunotherapy (102).

HLA-E–Restricted T Cells
HLA-E has been classically defined by the ability to present signal
sequence peptides from HLA class I, which inhibit NK cells
cytolytic activity upon interaction with CD94/NKG2A receptors
(103). However, it has been shown that HLA-E molecules are
able to bind and present other self or pathogen-derived peptides,
including M. tuberculosis, and can be recognized by adaptive T
cells (104–106) (Figure 1).

HLA-E/mycobacterial peptide complexes are recognized
differently from HLA-E/self-peptides; in fact, in our previous
study, we have demonstrated that the latter are predominantly
recognized by NK cells in a CD94 dependent manner; the former
are specifically recognized by CD8+ T cells in a CD3/TCR αβ-
dependent manner (106).

The binding of peptides to HLA-E molecule has been
described (107). The peptide-binding motif reveals that most
of the peptides that bind to HLA-E are similar to HLA I
leader sequence with P2 Met and P� Leu. This motif has been
identified for 21 peptides, but the discovery of new HLA-E–
specific peptides needs to be characterized in sharing anchor
residues or motifs. In fact, the crystal structure analysis of
HLA-E- bound to a mycobacterial peptide has revealed that the
flexibility of the conformation of the bound peptides is also
critical in the activation of CD8 T cells despite the preferred
anchor residues (108).

Therefore, HLA-E plays a role in both innate and adaptive
immune response, thanks to their interaction with both NK
cells and antigen-specific CD8+ T cells. One important aspect
of HLA-E molecule is its low allelic variability, rendering this
molecule an interesting candidate antigen-presenting molecule

for peptide-based vaccination strategies (103, 109–111). These T
cells can inhibit intracellular M. tuberculosis growth in human
macrophages. Moreover, compared to class Ia molecules, HLA-
E molecule is enriched in M. tuberculosis phagosomes and
accessible for loading withM. tuberculosis peptides generated into
the phagosome (112, 113).

Studies in mouse and NHP suggest a contribution of HLA-E–
restricted T cells to protective immunity against TB.

It was found that the murine homolog of HLA-E, Qa-1
molecule, can bind and present human HLA-E–binding peptides
to murine CD8+ T cells, which display cytolytic and regulatory
activities (114). Moreover, knockout studies confirmed a direct
role for Qa-1 in regulating histopathology and bacterial burden
and contributing to protection against M. tuberculosis (114).

MHC-E–restricted CD8+ T cell responses are elicited
in rhesus macaques (Rh) by an experimental rhesus
cytomegalovirus (CMV) vaccine, which express genes coding
for proteins specific for simian immunodeficiency virus
(SIV). This attenuated Rh CMV vaccine showed strong
protection against a subsequent challenge with SIV infection,
and protection was due to activation of CD8+ T cells that
recognized SIV peptides bound to either MHC class II or MHC-
E molecules, but not conventional MHC class Ia molecules,
explaining in part the involvement of MHC-E–restricted T
cells in protection (115–117). Further investigation revealed
that naturally occurring SIV epitopes matched the Rh CMV
vector–elicited CD8+ T cell–restricted epitopes contributing to
protection against a subsequent SIV challenge (112). Similarly
to the model described above, Rh CMV-TB antigen vectors
induced strong protection against TB following vaccination
in 41% of treated NHPs (118). Moreover, Hansen et al.
(118) demonstrated that one of three tested Rh CMV strain
68-1 vectored vaccines expressing six or nine protein from
M. tuberculosis was able to elicit unconventionally restricted
MHC class II and MHC-E restricted CD8+ T cell responses.
Therefore, viral-vectored vaccines can be developed in order
to induce immunogenicity of HLA-E–restricted T cells against
many pathogens in human patients.

Recently, we have demonstrated that M. tuberculosis–specific
and HLA-E–restricted CD8+ T cells are abundant but exhausted
in peripheral blood of TB–HIV-1–coinfected patients, and this
dysfunctional phenotype is correlated with high levels of PD-
1 molecule expression. The use of anti-PD1 mAb may restore,
even partially, the number and the functions of M. tuberculosis–
specific and HLA-E–restricted CD8+ T cells (119). Like NKT
and MAIT cells, HLA-E–restricted CD8+ T cells are associated
with exhaustion. This abnormal phenotype is probably caused
by the direct recognition of M. tuberculosis–infected cells and
the exposure to high levels of inflammatory cytokines. Further
research is needed to develop strategies for restoring this subset
in patients with M. tuberculosis infection/disease, with or without
HIV coinfection, in order to better define the therapeutic
potential of immune checkpoint blockade.

Taking advantage for the relative monomorphism of HLA-E
molecule and for its stable expression in HIV–M. tuberculosis
infection, which represents an important issue of global health,
the use of antigen recognition through HLA-E molecule, should
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be considered as another valuable approach to promote or
boost activation of CD8+ T cells in vaccine formulation
or immunotherapy.

PERSPECTIVE

Translational research can begin to use the knowledge
of unconventional T cell biology to develop new
immunotherapeutic approaches. Vaccine or immunotherapy
development could represent a good strategy in infectious
diseases prevention, but obviously, it is very important to
demonstrate that identified ligands for unconventional T cells are
expressed at the surface of infected cells at densities and durations
that are able to engage TCRs and induce T cell activation
and immunological memory phenotype. In fact, the efficacy
of vaccine or immune protection in case of the re-encounter
with the same pathogen could be reached by the induction
of memory T cells.

Therefore, unconventional T cells can be used to improve
T cell immunotherapy, thanks to several aspects, such as
the rapid cytokine release without the need to previous
clonal expansion due to their presence at high number of
available experienced antigen-specific cells that have developed
as memory-like state (77). Another important aspect is
represented by the monomorphic model of antigen recognition
by unconventional T cells that could be universally effective
in human infectious diseases and cancer context. Moreover,
their TCRs will not be able to give alloreactive responses and
to cause GVHD, making these cells more suitable in cellular
therapy such as chimeric antigen receptor (CAR) T cell therapy
(120, 121).

MAIT, NKT, and γδ T cells are crucial players in the
development and maintenance of immunity. These aspects have
been demonstrated by the array of infectious, inflammatory, and
malignant diseases in which they play diverse roles (81, 122–127).

Depending on the nature of the infectious or inflammatory
setting, these can range from host protective functions,
for example, antimicrobial or antitumor responses, to the
augmentation of disease (122–126). A number of clinical trials
based on γδ T cell therapy have been conducted or are ongoing
to evaluate the safety and antitumor efficacy (128). Moreover,
several clinical trials have assessed the safety and efficacy of
Vγ9Vδ2 T cells for immunotherapy. Because of their high

plasticity, studies using CAR- γδT cells could be of great interest
also in infectious diseases.

Until now, no clinical trials have investigated on the
efficacy of unconventional T cells in inducing protection toward
M. tuberculosis disease.

Because of the role that these cellular populations play during
the early stages of infection, they could be studied as promising
tools in immunotherapy against the intracellular pathogen.

Finally, therapy using anti–PD-1 and anti–CTLA-4
monoclonal antibodies, important checkpoints of the immune
response, has demonstrated to play an important and valid
approach to treat some types of cancer (129), where it is assumed
primarily to enhance CD8+ T cell–mediated tumor destruction.

Given that unconventional T cells also express the inhibitory
receptors such as PD-1 upon activation and that blockade of these
receptors can enhance their effector activities and antitumor
capacity (74, 130–132), the potential role that unconventional
T cells play should be considered in infectious disease and the
immunotherapy for infectious diseases, and the incorporation
of unconventional T cells into these studies has the potential to
provide novel approaches to this important area of medicine.
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