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Photon-mediated interaction between quantum emitters in engineered photonic baths is an emerging area of quantum
optics. At the same time, non-Hermitian (NH) physics is currently thriving, spurred by the exciting possibility to access
new physics in systems ruled by non-trivial NH Hamiltonians—in particular, photonic lattices—which can challenge
longstanding tenets such as the Bloch theory of bands. Here, we combine these two fields and study the exotic interaction
between emitters mediated by the photonic modes of a lossy photonic lattice described by a NH Hamiltonian. We show
in a paradigmatic case study that structured losses in the field can seed exotic emission properties. Photons can mediate
dissipative, fully non-reciprocal interactions between emitters with range critically dependent on the loss rate. When this
loss rate corresponds to a bare-lattice exceptional point, the effective couplings are exactly nearest neighbor, implement-
ing a dissipative, fully non-reciprocal Hatano–Nelson model. Counterintuitively, this can occur irrespective of the lattice
boundary conditions. Thus photons can mediate an effective emitter’s Hamiltonian which is translationally invariant
despite the fact that the field is not. We interpret these effects in terms of metastable atom–photon dressed states, which
can be exactly localized on only two lattice cells or extended across the entire lattice. These findings introduce a paradigm
of light-mediated interactions with unprecedented features such as non-reciprocity, non-trivial dependence on field
boundary conditions, and range tunability via a loss rate. © 2022 Optica Publishing Group under the terms of the Optica Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.443955

1. INTRODUCTION

The irreversible leakage of energy into an external reservoir is tra-
ditionally viewed as a detriment in physics, as losses usually spoil
the visibility of several phenomena, in particular, those relying
on quantum coherence. A longstanding tool for describing these
detrimental effects is non-Hermitian (NH) Hamiltonians [1].
While their introduction dates back to the early age of quantum
mechanics [2], only in recent years was it realized and experimen-
tally confirmed that systems described by NH Hamiltonians can
exhibit under suitable conditions a variety of exotic phenomena
[3,4]. Among these are: coalescence of eigenstates at exceptional
points (EPs) [5], unconventional geometric phase [6], failure
of bulk-edge correspondence [7], critical behavior of quantum
correlations around EPs [8–10], and NH skin effect [11]. As a
typical consequence, traditional tenets of physics such as the Bloch
theory of bands and even the very notion of “bulk” may require
a non-trivial revision in the NH realm [12]. Such NH effects are
intensively studied in several scenarios (such as mechanics, acous-
tics, electrical circuits, biological systems) [4] and, most notably, in
view of our purposes here, optics and photonics [13,14].

Here, we investigate NH physics in a setup comprising a set of
emitters (such as atoms, superconducting qubits, or resonators)
coupled to a photonic lattice, implemented, e.g., by an array of
coupled cavities [15–27]. Such types of systems are currently
spurring considerable interest in the quantum optics community,
in particular due to the possibility of tailoring directional emission
[20,28,29] or exploiting photon-mediated interactions between
emitters to engineer effective spin Hamiltonians [17,21,22,26,30].
Remarkably, the range and profile of these second-order inter-
actions are directly inherited from the form of atom–photon
dressed states (typically arising within photonic bandgaps), which
in turn depend on the lattice structure [31]. Experimental imple-
mentations were demonstrated in various architectures such as
circuit quantum electrodynamics (QED) [32–34], cold atoms
coupled to photonic crystal waveguides [35], and optical lattices
[36,37].

Studying the spoiling effect of photon leakage in such quantum
optics setups is a routine task, even through NH Hamiltonians
(see, e.g., Ref. [18]), the usual configuration considered being yet
that of uniform losses. In contrast, here we introduce an engineered
pattern of photonic losses so as to affect the photonic normal

2334-2536/22/050565-07 Journal © 2022Optica PublishingGroup

https://orcid.org/0000-0002-6981-0613
https://orcid.org/0000-0002-0827-5549
https://orcid.org/0000-0002-4402-2207
https://orcid.org/0000-0002-6061-1255
mailto:federico.roccati@unipa.it
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://doi.org/10.1364/OPTICA.443955
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.443955&amp;domain=pdf&amp;date_stamp=2022-05-17


Research Article Vol. 9, No. 5 / May 2022 / Optica 566

modes. The basic question we ask is whether and to what extent
shaping the field structure through patterned leakage (besides
photonic hopping rates) can affect the nature of atom–photon
interactions, and hence photon-mediated couplings.

By considering a paradigmatic case study, we will in particu-
lar show that photons can mediate dissipative non-reciprocal
interactions between emitters with exotic features such as:
(i) loss-dependent interaction range (from purely long range
to purely nearest neighbor), (ii) formation of short- and long-
range metastable dressed states, and (iii) insensitivity to the field
boundary conditions (BCs).

2. SETUP AND HAMILTONIAN

The setup we consider [see Fig. 1(a)] comprises a composite 1D
photonic lattice (coupled-cavity array), whose unit cell consists of a
pair of cavities denoted with a and b.

Importantly, only cavities b are leaky, the associated loss rate
being γ . By denoting with an (bn), the bosonic annihilation opera-
tor of cavity a (b) in the nth cell, the bare Hamiltonian of the field
reads (we set~= 1 throughout)

H f =
J
2

N∑
n=1

[
a †

nbn+1 + b†
nan+1 − ia †

nan+1 + ib†
nbn+1

+ 2a †
nbn +H.c.

]
− iγ

N∑
n=1

b†
nbn, (1)

(c)(a)

(b)

Fig. 1. (a) Setup: photonic lattice with unit cell comprising a pair
of cavities labeled a (lossless) and b (lossy). Each quantum emitter is
locally coupled to a lossy cavity. (b) Same setup as (a) defined by the
unitary (intra-cell) transformation Eq. (3). All cavities are now lossy
with uniform loss rate γ /2 while intra-cell couplings are non-reciprocal.
The bare photonic lattice is a non-Hermitian generalization of the SSH
model. Each emitter now couples to the lattice at two different sites whose
respective couplings differ by a π/2 phase. (c) Schematics of the bare
field Hamiltonian H f (odd N) under open BCs (open loop) and the
corresponding induced effective Hamiltonian of the emitters, Heff (closed
loop) for Ne = N, and γ = 2J . Both Hamiltonians feature fully non-
reciprocal couplings but with opposite chirality, where Heff in particular
implements a dissipative Hatano–Nelson model. Remarkably, Heff is
translationally invariant despite the bare field (hence the total system)
breaks translational invariance.

with N the numbers of lattice cells. The first line describes the
interaction between neighboring cells, i.e., the a − a and b − b
horizontal couplings and a − b diagonal couplings with strength
J /2 [see Fig. 1(a)]. In the second line, the first term describes the
intra-cell interaction, i.e., the vertical a − b couplings (strength
J ), whereas the last term accounts for the local losses on b cavities.
Note that for γ = 0, we would have H†

f = H f , namely, the NH
nature of the field Hamiltonian comes only from the local losses
on b cavities (the overall setup being passive). Model Eq. (1) is well
known in the NH physics literature as the Lee model [7,38].

The system additionally comprises Ne identical two-level quan-
tum emitters (“atoms”), each locally coupled under the rotating
wave approximation to a lossy cavity b [see Fig. 1(a) showing the
case Ne = N]. The total Hamiltonian is thus

H = H f +

Ne∑
i=1

g (σ †
i bni + b†

ni
σi ), (2)

with ni the cavity directly coupled to the i th atom, and where σi =

|g 〉i 〈e | is the pseudo-spin ladder operator of the i th atom with |g 〉
and |e 〉, respectively, the ground and excited states.

We anticipate that the physical properties that we are going to
focus on involve only a single excitation and are thus insensitive
to the nature of the ladder operators σi of the emitters, which
could thus be thought of as cavities/oscillators themselves [39,40].
Our system could thus be implemented as well in an all-photonic
scenario.

In the above, we assumed that the cavities (either a or b)
and emitters all have the same frequency ω0 and set this to zero
(i.e., energies are measured fromω0).

A key feature of the bare photonic lattice [cf. Fig. 1(a) and
Hamiltonian H f ] is that, for γ 6= 0, it is non-reciprocal in that
photons propagate preferably from right to left. Thus losses endow
the structure with an intrinsic left–right asymmetry. One can
show that the complex a − a couplings energetically favor left
propagating photon and b − b couplings favor right propagating
ones. Indeed, under the standard Peierls substitution (see, e.g., Ref.
[41]), the kinetic energy associated with a hopping term is mini-
mized by the momentum k = θ , where θ is the complex phase of
the hopping amplitude, which is θ =−π/2 for the a − a cou-
plings and θ = π/2 for b − b couplings. When losses are present
(i.e., for γ 6= 0) the left–right symmetry is broken because right-
propagating photons (lying predominantly on b sites) are more
subject to dissipation than left-propagating ones. This effectively
results in photons propagating leftwards with higher probability
than rightwards.

Such a dissipation-induced non-reciprocity, which was shown
also in other lattices (see, e.g., Ref. [42]), can be formally derived
by performing the field transformation [38] {an, bn}→ {αn, βn}

with

an =
1
√

2
(αn − iβn), bn =−

i
√

2
(αn + iβn). (3)

This unitary, which is local in that it mixes cavity modes of the
same cell, defines a new picture where the free field Hamiltonian
now reads [see Fig. 1(b)]

H ′f =
∑

n

[(
J +

γ

2

)
α†

nβn +

(
J −

γ

2

)
β†

nαn

]
+

∑
n

J (α†
n+1βn +H.c.)− i

γ

2

∑
n

(α†
nαn + β

†
nβn). (4)
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Fig. 2. Field dynamics during spontaneous emission. (a)–(c) Spatial profile of photon density |〈ηn||9t 〉|
2 versus time, where |9t 〉 = e−i Ht

|90〉, |ηn〉 =

|g 〉η†
n|vac〉, η= a , b [referring to the original picture of Fig. 1(a)]. In the plots, we re-indexed cavities in a way that neutral (lossy) cavities are labeled by odd

(even) site indices. We set g = 0.1J and N = 100 with the atom coupled to the lossy cavity of cell n = 15 [see Fig. 1(a)]. Time is measured in units of 0−1

with0 = g 2/(4J ). The atom’s excited-state population pe = |〈e |〈vac||9t 〉|
2 decays exponentially as pe (t)= e−0t . (d) Functional dependence of Ploc, PR ,

and PL on the loss rate γ /J (where each probability is rescaled to the sum PL + Ploc + PR). Here, Ploc is the time-averaged probability to find the photon in
the cell where the atom lies or the right nearest-neighbor cell (four cavities overall), while PL (PR ) is the probability to find it in the remaining left (right) part
of the lattice. We set an average time tav ∼ 20J −1 with g small enough such that tav <0

−1.

This tight-binding Hamiltonian is a NH generalization of
the Su–Schrieffer–Heeger (SSH) model [38,43]. Unlike the
original picture, H ′f features uniform loss on all cavities with rate
γ /2. Remarkably, intra-cell couplings are now manifestly non-
reciprocal for non-zero γ : the hopping rate of a photon from site
αn to βn differs from that from βn to αn (respectively, J + γ

2 and
J − γ

2 ). Inter-cell couplings J are instead reciprocal. We see that
whenever γ 6= 0 [non-zero cavity leakage in the original picture;
see Fig. 1(a)], the mapped lattice features an intrinsic chirality
(i.e., non-reciprocity) in that the rate of photon hopping depends
on the direction (rightward or leftward). At the critical value
γ = 2J , which corresponds to an EP of the bare lattice [7], the
intra-cell couplings are fully non-reciprocal (all couplingsαn→ βn

vanish). Thus at this EP, photons can propagate only to the left.
Consider now the total Hamiltonian in the new picture, which

using Eq. (3) reads [cf. Eqs. (2) and (4)]

H ′ = H ′f +
Ne∑

i=1

g
√

2

(
σ

†
i (βni − iαni )+H.c.

)
. (5)

Notably [see Fig. 1(b)], in the new picture, the atom–field inter-
action is no longer local, as each atom is coupled to both cavities α
and β of the same cell. The corresponding (complex) couplings
have the same strength but, importantly, aπ/2 phase difference.

Thus, to sum up, in the picture defined by Eq. (3), the system
features: (i) uniform losses, (ii) intra-cell non-reciprocal pho-
ton hopping rates, and (iii) bi-local emitter–lattice coupling. The
simultaneous presence of these three factors is key to the occurrence
of the phenomena to be presented.

3. SPONTANEOUS EMISSION OF ONE EMITTER

To begin with, we consider only one emitter (Ne = 1) and study
spontaneous emission (initial joint state |90〉 = |e 〉|vac〉with |vac〉
the field’s vacuum state), and we set g � J . When γ = 0 (no loss),
the bare lattice is effectively equivalent to a standard tight-binding
model with uniform nearest-neighbor couplings [see Fig. 1(b)]
yielding a single frequency band of width 2J with the atom’s
frequency at its center.

Figures 2(a)–2(c) report the time behavior of the photon density
profile across the lattice for different loss rates γ , while the atom’s
excited-state population decays exponentially as pe = e−0t with
0 = g 2/(4J ) (not shown in the figure; see caption for details).

For γ = 0 (no loss), directional emission occurs in that the pho-
ton propagates predominantly to the right. This is a known effect
[28] due to the effective bi-local coupling andπ/2 phase difference
in the picture in Fig. 1(b), which effectively suppresses the interac-
tion of the emitter with left-going modes of the field. As γ is turned
on (lattice leaky) the behavior considerably changes [see Figs. 2(b)
and 2(c)]. Based on the previously discussed non-reciprocity of
intra-cell couplings [see Fig. 1(b)], one might now expect the
emitted photon to propagate away mostly to the left (in contrast
to the γ = 0 case). Instead, this behavior is generally exhibited
only by a tiny fraction of emitted light. Rather, a significant part
localizes within a very narrow region of the lattice and eventually
leaks out on a long time scale of the order of 0−1

� γ−1. Such
photon localization dominates for γ = 2J [see Fig. 1(c)], at which
value it occurs strictly in two cells only: the one directly coupled
to the atom and the nearest neighbor on the right. This is best
illustrated in Fig. 2(d), where the time-averaged fraction of light
localization in these two cells (Ploc) is plotted versus γ /J along
with the fraction lying in the remaining left and right parts of the
lattice (PL and PR , respectively). We note that Ploc is maximum at
the EP, where PR = 0 and PL ' 0 (for g → 0, PL→ 0).

4. MANY EMITTERS

We consider next a pair of quantum emitters and study the (dissipa-
tive) dynamics of excitation transfer between them when one is ini-
tially excited and the other is in the ground state. We again set γ =
2J [see Fig. 1(b)]; hence, the photonic lattice has an intrinsic left-
ward chirality.

When the atoms lie in nearest-neighbor cells [see Fig. 3(a)], an
excitation initially on the left emitter is partially transferred to the
right emitter with a characteristic rate∼0 with both emitters even-
tually decaying to the ground state (transfer is only partial because
of the leakage). Notably, as shown by Fig. 2(b), the reverse process
does not occur: if the excitation now sits on the right emitter, this
simply decays to the ground state with the left atom remaining
unexcited all the time. Thus the field mediates a fully non-reciprocal
(dissipative) interaction between emitters. At first sight, one might
expect this second-order interaction to straightforwardly follow
from the aforementioned intrinsic uni-directionality of the bare
lattice [recall Fig. 2(b) for γ = 2J ]. Yet, note that the directionality
resulting from Figs. 3(a) and 3(b) is rightward in contrast to that of
the lattice that, as said, is leftward [cf. Fig. 2(b)]. Later on, we will
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Fig. 3. Excitation transfer between two quantum emitters. We con-
sider two quantum emitters (Ne = 2) and set J = γ /2. We plot the time
behavior of emitter 1’s excited-state probability p1 (blue line) and that of
emitter 2, p2 (red) for the initial state |90〉 = |e 〉1|g 〉2|vac〉 [(a), (c), (e)]
and |90〉 = |g 〉1|e 〉2|vac〉 [(b), (d), (f )], where p1= |1〈e |2〈g |〈vac||9t 〉|

2

and an analogous definition holds for p2. The inset in each panel shows
the cells where the emitters sit in: nearest-neighbor cells [(a) and (b)],
non-nearest-neighbor cells in the bulk [(c) and (d)], and edge cells [(e) and
(f )]. We set g = 0.1J .

show that the lattice unidirectionality is indeed a key ingredient for
such a non-reciprocal atomic cross talk, but, notably, not the only
one.

Besides being non-reciprocal, the atom–atom effective inter-
action is exactly limited to emitters sitting in nearest-neighbor cells.
This can be checked [see Figs. 3(c) and 3(d)] by placing the emit-
ters in any pair of non-nearest-neighbor cells, in which case, no
matter what atom is initially excited, no transfer occurs. A notable
exception to this behavior yet arises when the lattice is open and
emitters sit just on the two opposite edge cells. In this configuration
[see Figs. 3(e) and 3(f )], counterintuitively, the coupling is again
non-zero and fully non-reciprocal. The associated strength and
directionality is just the same (up to a sign) as if the lattice were
periodic and the two edge emitters were sitting next to each other
[see Figs. 3(a) and 3(b)].

Fig. 4. Many-emitter excitation transfer. We set Ne = N = 9 (one
emitter/cell) and plot against time the excited-state probability of atoms
n = 1 (red line), n = 2 (black), n = 3 (yellow), and n = 9 (cyan) when
atom n = 9 (sitting on the lattice right edge) is initially excited. We set
g = 0.1J .

Results similar to those in Fig. 3 hold also for many emitters, in
particular in the case of Ne = N (one atom per unit cell). Figure 4
is the N-atom analog of Fig. 3(f ): it clearly shows that an excitation
initially on the Nth atom (on the right edge cell) is first transferred
to atom 1 (sitting on the left edge), then atom 2, then 3, etc. Again,
this behavior is compatible with nearest-neighbor non-reciprocal
(rightward) effective couplings between the emitters where,
remarkably, the emitters on the edges couple to one another as if
the lattice were translationally invariant (ring). Indeed, it can be
checked that plots in Fig. 4 remain identical if the lattice is now
subject to periodic BCs (no edges).

5. EFFECTIVE HAMILTONIAN

All these dynamics (in particular) are well described by the effective
Hamiltonian of the emitters, which for a bare lattice with periodic
BCs reads

Heff =
∑

ij

Hni n j σ
†
i σ j with (6)

Hm 6=n = i4g 2 J
(γ − 2J )m−n−1

(γ + 2J )m−n+1 , Hmm =−i
g 2

γ + 2J
, (7)

where periodic BCs are understood, i.e., in Eq. (7), any n is equiv-
alent to n + N. Thus Heff is traslationally invariant. This NH
effective Hamiltonian can be derived analytically in the weak-
coupling Markovian regime (g � J ) through a natural NH
generalization [39] of the standard resolvent method [1,44]. For
γ > 0 and N� λ, where we defined the interaction rangeλ as

λ−1
=− ln

∣∣∣∣γ − 2J
γ + 2J

∣∣∣∣ , (8)

the entries ofHmn above the main diagonal vanish (i.e., for m < n).
Hence, inter-emitter couplings are non-reciprocal with right-
ward chirality for any γ > 0. Instead, the interaction range λ
is strongly dependent on γ (see Fig. 5). For γ = 0 (no loss), λ
diverges, witnessing that couplings are purely long range [see
matrix plot in Fig. 5(b)]: all possible pairs of atoms are coupled
with the same strength (in modulus) [28] [this can be checked from
Eq. (7) for γ → 0]. As γ increases, the interaction range decreases
until vanishing at the lattice EP γ = 2J —where it exhibits a
critical behavior (see cusp)—and then rises again as γ > 2J .
The zero occurs because at γ = 2J [cf. Eq. (7) for γ → 2J ],
Hm>n is non-zero only for m = n + 1 where it takes the value
Hn+1,n = i g 2/(4J )= i0 ≡H1N [see matrix plot in Fig. 5(c)].
At this point of the parameter space, therefore, besides being effec-
tively periodic (see above) the non-reciprocal interaction between
the emitters is exactly limited to nearest neighbors: this implements
a Hatano–Nelson model [45] with fully non-reciprocal hopping
rates and uniform on-site losses under periodic BCs. The results in
Figs. 3 and 4 fully reflect these properties.

Even more remarkably and counterintuitively, it can be demon-
strated [see Supplement 1, Section 3] that, for odd N, Heff is
insensitive to the BCs of the lattice (matching the results of Fig. 4).
In other words, even if the lattice is subject to open BCs (ring with
a missing cell), Heff is always given by Eq. (6). For even N, the
hopping rate across the missing cell is modified by just an extra
minus sign [see Supplement 1, Section 3.C]. Figure 1(c) sketches
the open lattice for Ne = N (one atom/cell) and γ = 2J : both H f

and Heff feature fully-non-reciprocal couplings yet with opposite

https://doi.org/10.6084/m9.figshare.19406663
https://doi.org/10.6084/m9.figshare.19406663
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Fig. 5. Photon-mediated couplings between emitters. (a) Interaction
range of Heff (see main text) versus γ . (b), (c) Matrix plot of Hmn [cf.
Eq. (7)] (imaginary part) for γ = 0 (b) and γ = 2t1 (c) in units of g 2 (the
real part vanishes). In (c), note the upper right corner witnessing that
Heff is translationally invariant. All plots are independent of the lattice
boundary conditions.

chirality, and, moreover, Heff is periodic while H f is not. We thus,
in particular, get that photons can mediate translationally invariant
interactions between emitters despite the field (hence the total
system) lacking translational invariance.

6. ATOM–PHOTON DRESSED STATE

Hamiltonian Eq. (6) can be understood in terms of a dressed atom–
photon state |9〉mediating the second-order interaction between
two generic emitters i and j according to the scheme: emitter
i→|9〉→ emitter j , where |9〉 is a state where i is dressed by a
single photon. The resulting i - j coupling is non-zero provided that
|9〉 has non-zero amplitude on the location of j [see Supplement
1, Section 3.D]. Similar descriptions were successfully applied to
dissipationless interactions for lossless lattices with emitters inside
bandgaps [17,20,22,26,29,46,47], in which case |9〉 is stationary.
In our lossy gapless lattice, instead, interactions between emitters
are dissipative and |9〉metastable.

To pinpoint the essential physics, we set γ = 2J (EP) and con-
sider first an emitter sitting in any bulk cell indexed by n = ν. It is
convenient to refer to the picture in Fig. 1(b) and introduce a light
notation such that |e 〉|vac〉→ |e〉, while |g 〉|ηn〉→ |ηn〉 with η=
α, β.

One can check by direct substitution that, to the second order in
g /J , H admits the eigenstate and associated energy:

|9〉 = |e 〉 − i g
√

2γ
(|βν〉 − i |αν+1〉) , ε=−i0 (9)

(recall that0 = g 2/4J ). Note that |9〉 is normalized to the second
order in g , while |9〉→ |e 〉 and for g → 0. Most remarkably, |9〉
is strictly localized in only two lattice cells (ν and ν + 1), in par-
ticular, on cavities βν and αν+1. Such strict localization is possible
due to a simultaneous “decoupling” of |9〉 from the lattice’s right
branch (sites βν+1, αν+2, . . .) and left branch (. . . , βν−1, αν). The
right-branch decoupling requires 〈βν+1|H|9〉 = 0 so that |9〉
has a node on βν+1, which is guaranteed by the non-reciprocal
leftward nature of intra-cell hopping rates. To get the left-branch
decoupling, instead, we must require 〈αν |H|9〉 = 0 (so that
|9〉 can have a node on αν). It is easily seen [see Supplement
1, Section 2] that this condition can be met only provided that
ε=−i0 (showing the metastable nature of the state) plus,

Fig. 6. Atom–photon dressed state mediating emitter–emitter interac-
tion. (a) Dressed state |9〉 forming when a quantum emitter (“source”) is
coupled to a bulk cell. Vertical bars measure the photonic wave function
modulus. Another emitter (shaded) couples to |9〉 (“coupling active”),
hence to the source emitter, only provided that it sits in the right nearest-
neghbor cell. If not (“zero coupling”), the two emitters do not interact.
(b) Long-range dressed state arising when the source atom is coupled to
the right-edge cell. Due to phase cancellation, an emitter placed in any
bulk cell remains uncoupled from |9〉 unless it lies on the opposite edge.
In (a) and (b), we set γ = 2J and refer to the picture in Fig. 1(b) defined
by Eq. (3). (c) Pictorial representation of the state in (b) but in the original
picture [cf. Fig. 1(a)]. Note that the photonic wave function is zero on all
b sites in the bulk, which gives rise to a dissipationless channel bussing
excitations between the two edges without involving emitters in the bulk.

crucially, 〈αν+1|9〉 6= 0. The latter circumstance clarifies why
the emitter can couple to another emitter sitting in cell ν + 1:
any other location will give zero coupling since |9〉 vanishes
everywhere outside cells ν and ν + 1. This explains both the non-
reciprocal and nearest-neighbor nature of Heff at the lattice EP [cf.
Eq. (6)] for atoms in the bulk.

We next consider an open lattice with the source atom now sit-
ting in the cell on the right edge [see Fig. 6(b)]. Again by direct sub-
stitution, H can be shown to admit the eigenstate

|9〉 = |e 〉 −
g
√

2γ

N∑
n=1

e iπn [(1+ δn1) |αn〉 − i (1+ δnN) |βn〉] ,

(10)
the associated energy still being ε =−i0. This state is normalized
to leading order in g under the condition g � γ /

√
N [in line

with the Markovian regime assumed to derive Eq. (6)]. Unlike
Eq. (9), |9〉 is extended across the entire lattice [see Fig. 6(b)]. In
bulk sites, the photonic wave function has a flat modulus but non-
uniform phase. Remarkably, the pattern of phases combines with

https://doi.org/10.6084/m9.figshare.19406663
https://doi.org/10.6084/m9.figshare.19406663
https://doi.org/10.6084/m9.figshare.19406663
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the bi-local nature of emitter–field coupling [see Figs. 1(b) and
6(b)] in such a way that, due to phase cancellation, another atom
placed in any bulk cell cannot couple to |9〉 (hence to the source
atom). This conclusion yet does not apply to the leftmost cell,
where |〈α1|9〉| 6= |〈β1|9〉|: thus atoms placed on opposite edges
are able to cross talk. For odd N, the resulting coupling strength
matches that for nearest-neighbor emitters in the case of Fig. 6(a)
[see Supplement 1, Section 3.C].

To better grasp the physical mechanism enabling Eq. (10) to
mediate an interaction between edge emitters, it is useful to rewrite
state Eq. (10) in the original picture [cf. Fig. 1(a)] through the
inverse of Eq. (2). This reads

|9〉 = |e 〉 −
g

2γ

N∑
n=1

e iπn
[
(2+ δ1n + δnN)|an〉 + i(δ1n − δnN)|bn〉

]
.

(11)
Note that the state has zero amplitude on all the lossy sites b in

the lattice bulk. On one hand, this explains why state |9〉 cannot
mediate any cross talk between bulk atoms. On the other hand,
it makes intuitive how the mediating photon can bus excitations
between the system’s edges without decaying in the bulk: as the
unit cell contains a lossless site, there exists a dissipationless channel
connecting the two lattice edges as sketched in Fig. 6(c).

Finally, we point out that the emergence of states Eqs. (9) and
(10) relies on the simultaneous occurrence of properties (i)–(iii) at
the end of Section 2, witnessing in particular the NH nature of the
above physics.

7. DISCUSSION

These findings introduce a new quantum optics/photonics
paradigm, where “structured” leakage on the field can shape
unprecedented emission properties and second-order emitter–
emitter dissipative interactions. Besides engineered leakage, a key
ingredient for the predicted physics was shown to be the effectively
non-local nature of emitter–field coupling (in a suitable picture).
Emitters subject to such unconventional non-local interaction
are dubbed “giant atoms” in the context of an emerging literature
[48]. They can be implemented via superconducting qubits [49],
cold atoms [50], or all-photonic setups [51] and seed tunable
dipole–dipole Hamiltonians [30,52–54]. From such a perspective,
the presented results stem from an interesting combination of
giant atoms physics, NH Hamiltonians, and, in some respects,
chiral quantum optics [55–57], holding the promise for further
developments, e.g., using three-local coupling [58] and 2D NH
lattices [59].

We point out that the considered setup [cf. Fig. 1] is fully
passive. In our framework, this naturally follows from the decay
nature of the studied phenomena, a type of non-unitary dynamics
currently receiving considerable attention also in other scenarios
[60]. On the other hand, the passive nature of our system favors an
experimental verification of the predicted dynamics, e.g., in pho-
tonics (where NH Hamiltonians are often implemented through
their passive counterparts [61]). A circuit-QED implementation
appears viable as well: arrays of resonators coherently coupled to
superconducting qubits—including excitation transfer mediated
by atom–photon bound states—were experimentally demon-
strated [33,34,62], and implementations of lattices like the one in
Fig. 1(a) were put forward [63]. Patterned losses can be realized by
interspersing resonators with low and high quality factors. This is
easily achieved in state-of-the-art settings where external losses can

be reduced up to four orders of magnitude compared to photon-
hopping rates, while large losses can be obtained and controlled
by selectively connecting lattice resonators to transmission lines
[33,34,62].

It is natural to ask whether analogous effects occur also in pho-
tonic lattices different from the one considered here. We checked
that this is the case for a sawtooth-like photonic lattice very similar
to the one in Refs. [29,64] with added losses on one sublattice. A
general classification of the photonic Hamiltonians exhibiting
these physical properties is a desirable (and non-trivial) task that is
left for future work.

Finally, whether by building on the physics presented here one
could realize exotic interactions that are dissipationless (possibly
adding active elements) is under ongoing investigation.
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