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A comparative study of a qutrit (three-level atomic system) coupled to a classical field in a typical Markovian
reservoir (free space) and in a photonic band-gap (PBG) crystal is carried out. The aim of the study is to assess
the collective impact of structured environment and classical control of the system on the dynamics of quantum
coherence, non-Markovianity, and estimation of parameters which are initially encoded in the atomic state. We
show that the constructive interplay of PBG material as a medium and classical driving field as a part of system
results in a significant enhancement of all the quantum traits of interest, compared to the case when the driven
qutrit is in a Markovian environment. Our results supply insights for preserving and enhancing quantum features
in qutrit systems which are promising alternative candidates to be used in quantum processors instead of qubits.

I. INTRODUCTION

In physics, no realistic quantum system is completely iso-
lated from its surrounding environment and always there are
inevitable interactions that affect the evolution of the system.
As an adverse consequence of such detrimental interactions,
system loses its coherence. The theory of open quantum sys-
tems deals with such systems [1–3]. Since the genesis of many
quantum phenomena traces back to coherence, nowadays this
feature is considered as a key concept which enables tremen-
dous possibilities in a wide spectrum of quantum technolo-
gies, quantum metrology [4–7], and quantum thermodynam-
ics [8, 9]. Several strategies have been then devised to protect
coherence from being lost in quantum systems [7, 10–21].

The process of losing quantum coherence, named deco-
herence, is usually categorized into two Markovian and non-
Markovian regimes. In the Markovian regime, which is recog-
nized as a memoryless evolution, the information leaks out to
the environment irreversibly. In contrast, in non-Markovian
(memory-keeping) evolution, the leaked information returns
to the system [1, 21, 22]. As a fundamental trait, non-
Markovianity itself can be quantified by a variety of measures
[23–31] and exploited as a resource for certain applications
[32, 33].

On the other hand, measurements in open quantum systems
are the only way through which one can look at the quantum
world to gain insight. Therefore, any advancement in quantum
mechanics strongly depends on making progress in measure-
ment techniques. The more precise measurements, the more
reliable results. However, the measurement process itself can
also cause decoherence and consequently reduce the accuracy
of the quantum parameter estimation outcome. Increasing the
degree of sensitivity and accuracy of quantum parameter esti-
mation, exploiting quantum properties, is the primary purpose
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of quantum metrology [34, 35]. In recent years, this research
line has been under the spotlight owing to its profound impact
on quantum technology [36].

Quantum estimation theory provides a framework where
quantum Fisher information (QFI) is employed as a reliable
figure of merit to evaluate the accuracy of unknown parame-
ters in the system. The QFI represents intrinsic information
in the quantum state and is not related to the actual mea-
surement procedure. It characterizes the maximum amount of
information that can be extracted from quantum experiments
about unknown parameters using ideal measurement devices
[37, 38]. Behaviors of QFI have been widely investigated both
theoretically and experimentally in different systems [39–43].
Decoherence always acts as a drawback, limiting the preci-
sion in the measurement outcomes [44–46]. To tackle this
issue, proposals to control QFI against environmental noise
have been provided [47–57].

Decoherence effects may typically be weakened by engi-
neering suitable structured environments. In this context,
photonic crystals are materials possessing photonic band gap
(PBG) where a range of electromagnetic frequencies are pro-
hibited from propagating. Owing to such feature, the den-
sity of states of PBG materials substantially differ from a free
space vacuum field which enables us to localize and manipu-
late the light within its structure[58, 59]. Therefore, the men-
tioned difference leads to inhibition of spontaneous emission
of the atoms located in PBG material[60–63]. Moreover, as
the atomic resonance gets close to the photonic band edge,
the radiative dynamics experiences a long-time memory effect
[64–66]. Hence, the PBG materials can be a neat solution for
overcoming decoherence issue and subsequently for quantum
information tasks [67–69].

Besides environmental engineering, classical control by
driving fields can be adopted to manipulate individual quan-
tum systems. Classical control is indeed an effective method
to harness the dynamics of open quantum systems, which can
be implemented in both cavity-QED and circuit-QED setups
[70, 71].

To overcome limitations in controlling circuit elements for
performing computational tasks via superconducting qubits,
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qutrits (three-level quantum systems) have been proposed
as promising alternative candidates for quantum processors
[72, 73]. It is noteworthy that multilevel systems reduce the
number of required circuit elements through extending the
Hilbert space [74]. This characteristic offers interesting pos-
sibilities for novel fundamental tests of quantum mechanics
[75, 76], increased security in a range of quantum information
protocols [77–83], larger channel capacity in quantum com-
munication [84], and more efficient quantum gates [74, 85]. It
is thus of particular interest to increase our knowledge about
the dynamical behavior of the quantum features of a qutrit un-
der suitable environmental conditions.

In this work, we consider a classically driven three-level
atomic system as a qutrit which is placed in either free space
or a PBG crystal (structured reservoir). This way, we can
make a comparative study and individuate the conditions for
the enhancement of the quantum properties of interest. In par-
ticular, we assess the influence of both driving laser field and
PBG reservoir on the time evolution of quantum coherence,
non-Markovianity and QFI of the qutrit. Such a comprehen-
sive investigation supplies useful insights about the possibil-
ity of preserving and controlling quantumness in a three-level
open quantum system which can be employed as a constituent
of a qutrit-based register.

The paper is organized as follows: In Sec. II, we describe
the model and give explicit expression to the evolved reduced
density matrix of the atomic system for two considered situ-
ations; the atom in free space and the atom in photonic band
gap. In Sec. III, the time evolution of coherence for both sit-
uations are comparatively discussed. Sec. IV presents the re-
sults concerning the non-Markovian dynamics of the system
by employing the HSS measure. The dynamics of quantum
Fisher information and optimal parameters estimation is re-
ported in Sec. V. In Sec. VI we discuss the experimental con-
text where our results can be reproduced. Conclusive remarks
and perspectives of this work are summarized in Sec. VII.

II. MODEL AND SOLUTION

We consider a three-level atom which interacts with the
vacuum field and a driving field. As schematically depicted in
Fig. 1, the upper level |a〉 decays to the ground level |c〉 with
rate γ due to the interaction with vacuum reservoir modes.
Meanwhile, the transition |a〉 ↔ |b〉 is resonantly coupled by
means of a coherent laser field with the Rabi frequency Ω.
Such a system is recognized as upper-level coupling [86, 87].
The Hamiltonian of the system in the interaction picture can
be written as (~ ≡ 1)

V̂ = Ω |a〉 〈b| +
∑

k

gk |a〉 〈c| b̂kei(ωac−ωk)t + c.c, (1)

where ωab, ωac are the frequencies of |a〉 → |b〉 and |a〉 → |c〉
transitions, respectively; bk(b†k) indicates annihilation (cre-
ation) operator for the k-th vacuum mode with frequency ωk.
The parameter Ω characterizes the Rabi frequency of the cou-
pling laser field. Here gk (assumed as a real number) denotes

FIG. 1. Illustration of the energy levels of the atomic qutrit. Atomic
states of the system are characterized by |a〉, |b〉 and |c〉. The double
arrow and the wavy arrow respectively denote the coupling laser field
with Rabi frequency Ω and the spontaneous emission of rate γ.

the coupling constant between the k-th vacuum mode and the
atomic transition |a〉 → |c〉. Its expression is

gk =
ωacdac

~

(
~

2ε0ωkV

)1/2

êk · d̂ac, (2)

where dac and ˆdac are the magnitude and unit vector of the
atomic dipole moment for the transition |a〉 → |c〉, V is the
sample volume, êk is the transverse polarization unit vector,
and ε0 is the Coulomb constant.

We assume the atom to be initially in a pure superposition
of |a〉 and |b〉,

|ΨA(0)〉 = cos(θ/2) |a〉 + eiφ sin(θ/2) |b〉 , (3)

and the field in the vacuum state |0〉. Hence, at any later time
t, the quantum state of the whole system can be described as

|ΨAF(t)〉 = A(t) |a〉 |0〉 + B(t) |b〉 |0〉 +
∑

k

Ck(t) |c〉 |1k〉 , (4)

where |1k〉 indicates the state with one photon in k-th vacuum
mode. Substituting Eq. (4) into the Schrödinger equation, we
obtain the following set of coupled equations for the probabil-
ity amplitudes A(t), B(t), and Ck(t)

Ȧ(t) = −iΩ∗B(t) − i
∑

k

gkCk(t)e−iδk t, (5a)

Ḃ(t) = −iΩA(t), (5b)

Ċ(t) = −igkA(t)eiδk t, (5c)

where δk = ωk −ωac is the detuning of the radiation mode fre-
quency ωk from the atomic transition frequency ωac. Solving
Eq. (5c) formally and substituting the solution into Eq. (5a),
one obtains

Ȧ(t) = −iΩB(t) −
∫ t

0
F(t, t′)A(t′)dt′ (6)
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where

F(t − t′) =
∑

k

g2
ke−iδk(t−t′). (7)

is the correlation function including the memory effects in-
duced by the reservoir. The memory kernel strictly depends
on the spectral density of the field in the reservoir.

The evolved reduced density matrix ρ(t) of the driven
atomic qutrit is straightforwardly obtained by tracing out the
environmental degrees of freedom in Eq. (4). In the basis
{|a〉 , |b〉 , |c〉}, it is given by

ρ(t) =

ρaa ρab ρac
ρba ρbb ρbc
ρca ρcb ρcc

 , (8)

with

ρaa = |A(t)|2 , ρbb = |B(t)|2 , ρcc = 1 − |A(t)|2 − |B(t)|2 ,
ρab = ρ∗ba = A(t)B∗(t), ρac = ρ∗ca = 0, ρbc = ρ∗cb = 0,

(9)

In the following, we give the solutions for the time-
dependent amplitudes in the two cases of interest: free space
and photonic crystal.

A. Qutrit in free space

Let us assume the atom is located in free space, i.e., a broad-
band reservoir with the photon dispersion relation ωk = ck.
One can thus use the Weisskopf-Wigner approximation [88]
to obtain F(t − t′) =

γ
2δ(t − t′) (no memory effects), with

γ = 1
4πε0

( 4ω3
ac |dac |

2

6~c3 ) being the spontaneous emission rate from
level |a〉 to level |c〉. Simultaneously solving Eqs. (5b), (5c)
and (7) yields the amplitudes

A(t) = A1ey1t + A2ey2t, (10a)
B(t) = B1ey1t + B2ey2t, (10b)

Ck(t) = −igk

[
A1

e(y1+iδk)t − 1
y1 + iδk

+ A2
e(y2+iδk)t − 1

y2 + iδk

]
, (10c)

where, defining β = [(γ/2)2 − 4 |Ω|2]1/2,

y1,2 = −[(γ/2) ± β]/2,

A1 = −[y1 cos(θ/2) − iΩeiφ sin(θ/2)]/β,
A2 = cos(θ/2) − A1,

B1 = −[sin(θ/2)(y1 + γ/2)eiφ − iΩ∗ cos(θ/2)]/β,

B2 = eiφ sin(θ/2) − B1.

(11)

Putting the above solutions for A(t) and B(t) in Eq. (9), we get
the evolved reduced density matrix ρ(t) of the driven qutrit in
the free space.

B. Qutrit in a photonic crystal

We now divert our attention to the case in which the three-
level atom is embedded in a 3D PBG material, assuming the

transition frequency ωac is near the edge of a photonic band
gap [61, 62, 89–92]. Regarding this situation, and owing to
the rapid change of the density of electromagnetic modes in
the vicinity of the atomic transition frequency, the Weisskopf-
Wigner approximation is no longer valid. Therefore, a more
rigorous relation is required instead of Eq. (7). It is well-
known that, in a real 3D PBG material with an allowed point-
group symmetry, the gap is highly anisotropic and the photon
dispersion relation in the effective-mass approximation gets
the form [91, 92]

ω~k = ωc + A(~k − ~k0)2, A ≈ f c2/ω2
c , (12)

where ωc is the upper band edge frequency and ~k denotes the
wavevector; ~k0 is a specific wavevector related to the point-
group symmetry of the dielectric material with modulus k0 ≡

π/L with L being the lattice constant of the photonic crystal.
Also, f is a dimensionless scaling factor, whose value depends
on the nature of the dispersion relation near the band edge ωc.
The anisotropic effective mass dispersion (Eq. (12)) leads to a
photonic density of states at a band edge ωc which behaves as
J(ω) ≈ (ω − ωc)1/2, for ω > ωc, characteristic of a 3D phase
space [89]. This dispersion relation is valid for frequencies
close to the upper photonic band edge.

Using the anisotropic effective-mass dispersion relation
Eq. (12) and assuming and assuming (t− t′) is large enough to
satisfy the condition ωc(t − t′) � 1, the kernel in the contin-
uum limit can be derived as [91, 92]

F(t − t′) = −α
ei[δ(t−t′)+π/4]√

4π(t − t′)3
, ωc(t − t′) � 1, (13)

where

α2 ≈
ωc

16 f 3

(
γ

ωac

)2

, (14)

has the dimension of a frequency and δ = ωac−ωc denotes the
detuning of the atomic transition frequency ωac from the up-
per band edge frequency ωc. In contrast to the free space case,
Eq. (13) explicitly keeps memory of the past history (times) of
the system. Hence, it describes memory effects in the spon-
taneous emission dynamics due to the presence of the pho-
tonic band gap. In other words, the atom-reservoir interaction
within a PBG is expected to be non-Markovian.

By taking the Laplace transforms of Eqs. (6) and (5b) and
using the initial state of Eq. (3), we obtain

Ã(s + iδ) =
(s + iδ) cos(θ/2) −Ωeiφ sin(θ/2)

D(s)
, (15)

B̃(s+ iδ) = [(s+αeiπ/4 √s+ iδ)eiφ sin(θ/2)+Ω cos(θ/2)]/D(s),
(16)

with D(s) = (s+iδ)2+αeiπ/4(s+iδ)
√

s+Ω2 =

4∏
j=1

(
√

s−eiπ/4u j).

Here, u j ( j = 1, ..., 4) are the roots of the quartic equation

x4 + αx3 + 2δx2 + αδx − (Ω2 − δ2) = 0, (17)
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which are given by

u1,3 = −σ1 ±

√
E − r/2 + σ2

1,

u2 = u∗4 = −σ2 − i
√

E + r/2 − σ2
2,

(18)

where

σ1,2 = (α ±
√
α2 − 8δ + 4r)/4, (19a)

E = (r2/4 + Ω2 − δ2)1/2, (19b)

r = (M − q/2)1/3 − (M + q/2)1/3 + η1/3, (19c)

with

M =

[(P
3

)3

+

(q
2

)2
]1/2

, P = −
η2

1

3
+ η2,

q = −2
(
η1

3

)3
+
η1η2

3
+ η3,

(20)

and

η1 = 2δ,

η2 = α2δ + 4(Ω2 − δ2),

η3 = (α2 − 8δ)(Ω2 − δ2) − α2δ2.

(21)

Numerical analysis shows that the roots u1,3 are real (u1 is pos-
itive but u2 is negative), and the roots u2,4 are complex conju-
gates of each other with a negative real part (u2 and u4 lie in
the third and second quadrants, respectively). The probability
amplitudes A(t) and B(t) are determined by inverting Eqs. (15)
and (16) via the complex inversion formula, that is

A(t) =

2∑
j=1

p jQ3 jei(u2
j +δ)t +

αeiπ/4

π

∫ ∞

0

g3(x)e−(x−iδ)t

Z(X)
dx, (22)

B(t) =

2∑
j=1

p jQ2 jei(u2
j +δ)t+

αΩeiπ/4

π

∫ ∞

0

g2(x)e−(x−iδ)t

Z(X)
dx, (23)

where

p j =
2u j

(u j − ul)(u j − um)(u j − un)
, (24a)

(l,m, n = 1, ..., 4 j , 1 , m , n),

Q3 j = (u2
j + δ) cos(θ/2) + iΩeiφ sin(θ/2), (24b)

Q2 j = (u2
j + αu j + δ)eiφ sin(θ/2) − iΩ cos(θ/2), (24c)

g3(x) = [(−x + iδ) cos(θ/2) −Ωeiφ sin(θ/2)](−x + iδ)
√

x,
(24d)

g2(x) = [(−x + iδ) cos(θ/2) −Ωeiφ sin(θ/2)]
√

x, (24e)

Z(x) = [(−x + iδ)2 + Ω2]2 + iα2(−x + iδ)2x. (24f)

Having A(t) and B(t), from Eq. (9) we obtain the evolved re-
duced density matrix ρ(t) of the driven qutrit in the photonic
crystal.

Knowledge of the evolved reduced density matrix of the
atomic qutrit shall allow us to study the dynamics of the quan-
tum properties of interest, comparing them to the case of free
space. This analysis is reported in the following sections.
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FIG. 2. Dynamics of qutrit coherence for different Rabi frequencies
Ω of the driving laser field. Column (I) and column (II) correspond
to the case when the atom is placed, respectively, in free space and in
a band-gap material with δ = 0. Values of the initial state parameters
are θ = π/2, φ = π/4.

III. QUANTUM COHERENCE

Quantum coherence represents the coherent superposition
of distinct physical states which draw fundamental distinction
between quantum mechanics and classical physics. It is also
a resource for quantum information processing [7]. Hence,
it is important investigate the dynamical behavior of quan-
tum coherence in basic systems which can be promising con-
stituents of quantum registers, such as the qutrit system de-
scribed above. In this section we perform such a study.

To quantify coherence we employ the l1 norm of coherence,
which is defined as a sum of the absolute values of all off-
diagonal elements in the density matrix ρi j using following
expression [93]

Cl1 (ρ(t)) =
∑
i, j

∣∣∣ρi j(t)
∣∣∣ , (25)

where |ρi j(t)| are the absolute values of all off-diagonal ele-
ments of the qutrit density matrix ρ(t) of Eq. (8). Notice that
the coherence of the initial pure state |ΨA(0)〉 of Eq. (3) is
Cl1 (ρ(0)) = sin θ. The angle θ of the initial state is fixed to
θ = π/2 to maximize the initial quantum coherence of the
qutrit, Cl1 (ρ(0)) = 1.

Fig. 2 shows the quantum coherence as a function of the
scaled time for different Rabi frequencies of the driving laser
field. The two situations are compared in which the atom is
placed in either free space or photonic band gap; the corre-
sponding plots are presented, respectively, in column (I) and
column (II) of the figure. When the atom is located in a free
space, it is seen that the coherence of the system rapidly di-
minishes and vanishes in a short while. This behavior is typi-
cal for all the intensities of the laser field, since it stems from
the leakage of quantum information from the quantum system
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FIG. 3. Dynamics of qutrit coherence for different values of φ with
θ = π/2. (a) Atom in free space with Ω = 0.5γ; (b) atom in band-gap
material with Ω = 0.5α2, δ = 0.

to the environment. Contrarily, for the case in which the atom
is placed in a photonic band-gap material, the qutrit loses co-
herence to some extent and reaches a non-zero steady-state
value. Furthermore, it is clear for both cases that as Ω in-
creases, quantum coherence dynamics manifests a nonmono-
tonic behavior with oscillations.

Fig. 3 displays the time evolution of qutrit coherence for
various values of the initial relative phase φ. This analysis is
useful to supply the dependence of the dynamics on the rel-
ative phase assigned to the initial state of the qutrit. As is
evident, the initial relative phase significantly affects the dy-
namic behavior of quantum coherence in both the environ-
mental conditions. Although the dynamics exhibits the same
pattern at the beginning in both media, it radically changes at
longer times. The initial fluctuating dynamics depends on φ
for both cases, but quantum coherence in free space eventu-
ally vanishes regardless of the initial relative phase. Instead,
in the case of the photonic band-gap crystal, quantum coher-
ence tends to a steady-state value whose amount is ruled by
the value of φ.

The main message of this analysis is clear: while the pho-
tonic crystal as a structured reservoir can guarantee a station-
ary quantum coherence of the driven qutrit, the relative phase
of the initial state has to be opportunely chosen in order to
maintain it to a desired extent. Instead, the Rabi frequency of
the driving laser does not seem to have significant effects to
the long-time behavior of coherence.

IV. NON-MARKOVIANITY

The appearance of oscillating behavior in the dynamics of
quantum coherence, shown in Figs. 2 and 3, motivates us to
find out whether these oscillations are due to non-Markovian
features or not. This is the objective of this section.

We quantify the non-Markovian dynamics of the system by
means of the Hilbert-Schmidt speed measure (HSS), which
has been introduced recently [29]. In the following, we briefly
recall the gist of this non-Markovianity measure. Introducing
the distance measure [94]

[
d(p, q)

]2
=

1
2

∑
x

|px, qx|
2 , (26)

where p = {px}x as well as q = {qx}x are probability distri-
butions, and subsequently considering the classical statistical
speed

s
[
p(φ0)

]
=

d
dφ

d (p(φ0 + φ), p(φ0)) , (27)

one can define a special kind of quantum statistical speed
called HSS by extending these classical notions to the quan-
tum case. We assume an arbitrary pair of quantum states
ρ and σ from the positive-operator-valued measure (POVM)
which respectively possess the measurement probabilities
Px = Tr{Exρ} and qx = Tr{Exσ}. Let us notify that the POVM
is defined by the {Ex ≥ 0} and meets

∑
x Ex = I condition.

The maximization of the classical distance of Eq. (26) over
all possible choices of POVMs yields the associated quantum
distance called Hilbert-Schmidt distance [95]

D(ρ, σ) ≡ max
Ex

d(ρ, σ) =

√
1
2

Tr[(ρ, σ)2]. (28)

Likewise, the corresponding quantum statistical speed (HSS)
can be obtained by maximizing the classical statistical speed
of Eq. (27) over all possible POVMs [29]

HS S (ρ(φ)) ≡ max
Ex

s[P(φ)] =

√
1
2

Tr

(dρ(φ)
dφ

)2. (29)

Thus, HSS can be conveniently determined using this expres-
sion in which there is no need to diagonalize dρ(φ)/dφ.

Given a quantum system with a n-dimensional Hilbert
space and initial state

|Ψ0〉 =
1
√

n

(
eiφ |ψ1〉 + ...... + |ψn〉

)
, (30)

where φ is a relative phase and {|ψi〉 , i = 1, 2, ...., n} form a
complete and orthonormal basis, the time derivative of HSS
χ(t) = dHS S (ρφ(t))/dt can be interpreted as a bona-fide wit-
ness of information flow between the system and its environ-
ment [29]. In particular, χ(t) ≥ 0 stands for an irreversible
flow of information from the system to the environment, iden-
tifying a Markovian regime. In contrast, χ(t) < 0 indicates a
backflow of quantum information from the environment to the
system which identifies a non-Markovian regime.

To suitably investigate non-Markovianity by the HSS dy-
namics for the considered qutrit, the latter has to be initially
set in a state of the form of Eq. (30), that is

|ΨA(0)〉 =
1
√

3
(|a〉 + eiφ |b〉 + |c〉). (31)

Such an initial state leads to a density matrix ρ(t) of the form
of Eq. (8), whose elements are given by Eq. (9) with the dif-
ference that now

ρac = ρ∗ca =
A(t)
√

3
, ρbc = ρ∗cb =

B(t)
√

3
, (32)

and A(t), B(t) are obtained from Eqs. (10)-(11) (atom in free
space) and from Eqs. (15)-(24) (atom in photonic crystal) by
substituting cos(θ/2) = sin(θ/2) ≡ 1/

√
3.
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FIG. 4. Dynamical behavior of HSS for different Rabi frequencies
Ω of the coupling laser field. Column (I) corresponds to the atom
placed in free space and column (II) to the atom in a photonic band-
gap material with δ = 0.
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FIG. 5. Dynamics of HSS for different values of φ. (a) Atom in free
space with Ω = 0.5γ; (b) atom in band-gap material with Ω = 0.5α2,
δ = 0.

Fig. 4 displays the HSS dynamics for different Rabi fre-
quencies Ω of the coupling laser field. It is seen that for the
case of free space, the qutrit evolution exhibits a Markovian
behavior regardless of the value of Ω. In fact, the HSS always
has a monotonic behavior with no change of its time deriva-
tive χ(t). On the other hand, the HSS dynamics in the case of
photonic band-gap material quickly reacts to the increase of
the intensity (Ω) of the driving field (nonmonotonic curves).
Moreover, a larger Rabi frequency of the coupling laser field
not only gives rise to non-Markovian behavior, but it also af-
fects the time duration of non-Markovianity.

To finalize the investigation about non-Markovianity, we
now assess the impact of the initial relative phase φ of the
state vector on the time evolution of the HSS. This is shown
in Fig. 5. It is observed that both situations (free space and
photonic crystal) exhibit the same dynamics of the HSS for
the pairs of phases φ = 0, π and φ = π/2, 3π/2. As expected,
when the qutrit is placed in free space, phase change can-
not induce a non-Markovian behavior anywise. On the other
hand, for the situated qutrit in photonic crystal, phase change
has a minor effect on the non-Markovian behaviour of system.

Thus, as a general characteristic, one deduces that the relative
phase φ does not significantly affect the memory effects of the
system dynamics neither in free space nor in PBG.

Our analysis clearly demonstrate that the photonic crystal
as a structured reservoir enhances the non-Markovianity of
the system dynamics. The study performed in this section pro-
vides the general tools and some values of the system parame-
ters to quantitatively manipulate the emergence of dynamical
memory effects.

V. QUANTUM FISHER INFORMATION

In this section, we enter the context of quantum metrology,
being interested to dynamical variations in the estimation pre-
cision of the angle parameters φ and θ encoded into the initial
state of the atomic qutrit defined in Eq. (3). In particular, we
aim at figuring out how changes of both Rabi frequency Ω of
the coupling laser field and initial values of the relative phase
φ affect the sensitivity in the measurement of φ, θ. Multipa-
rameter quantum estimation theory allows us to deal with such
a study [96].

Based on this theory, the precision of simultaneous estima-
tion of the two unknown parameters θ and φ is limited by the
quantum Cramer-Rao bound (QCRB) as [37, 38]∑

≥
∑

min
= F−1(θ, φ), (33)

where
∑

is the covariance matrix for the parameters θ and φ,
F−1(θ, φ) is the inverse matrix of the quantum Fisher informa-
tion matrix (QFIM) F(θ, φ). The latter is given by

F(θ, φ) =

(
Fθ(t) Fθφ(t)
Fφθ Fφ(t)

)
, (34)

with Fθ = Tr[ρ(t)L2
θ], Fφ = Tr[ρ(t)L2

φ] and Fθφ(t) = Fφθ =
1
2 Tr[ρ(t)(LθLφ + LφLθ)], where Lθ and Lφ are the symmetric
logarithmic derivatives for the parameters θ and φ defined by

∂

∂θ
ρ(t) =

1
2

[
Lθρ(t) + ρ(t)Lθ

]
,

∂

∂φ
ρ(t) =

1
2

[
Lφρ(t) + ρ(t)Lφ

]
,

(35)

respectively [97]. Since Lθ = L†θ and Lφ = L†φ, the QFIM
F(θ, φ) is Hermitian. Notice that a key feature of this matrix is
to impose a lower bound to the mean-square error of any un-
biased estimator for the parameters through the Cramer-Rao
inequality [37, 38].

A. Single-parameter Fisher information

We first analyze the time evolution of the individual QFIs
Fφ and Fθ related to the parameters φ and θ, respectively. It is
noteworthy that in the single-parameter quantum estimation,
the corresponding quantum Cramer-Rao bounds for indepen-
dent estimations of the parameters φ and θ are [37, 38]

δφ ≥ 1/
√

Fφ, δθ ≥ 1/
√

Fθ. (36)
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FIG. 6. Dynamical behavior of QFI Fφ for different Rabi frequencies
of coupling laser field (Ω), with θ = π/2, φ = π/4. Column (I)
corresponds to the case in which atom is placed in free space and
column (II) corresponds to the case when the atom is in a band-gap
material with δ = 0.

Therefore, to have a better measurement precision, we look
for the conditions that maintain the QFIs as high as possible
during the time evolution.

To meet the target, Fφ and Fθ are respectively depicted ver-
sus the scaled time for various values of Ω in Fig. 6 and Fig. 7.
The other parameters are chosen as θ = π/2, φ = π/4 and
δ = 0. As can be observed in column (I) of Fig. 6, when the
atom is placed in the free space, Fφ quickly decays to zero
for all the Rabi frequencies except for Ω = 0.1γ for which
the decay is slower. Larger Ω produces a nonmonotonic dy-
namics for the QFI. For the atom placed in a photonic band
gap (column (II) of Fig. 6), Fφ decays and reaches a nonzero
steady-state value. In this case, it is interesting to observe that
increasing Ω not only causes the appearance of an oscillat-
ing evolution of Fφ but also accelerates the attainment of its
stationary value. The larger Ω, the larger the achieved steady-
state value. In Fig. 7 we report the dynamics of Fθ, that re-
sponds in a completely different fashion to the increasing of
Ω compared to Fφ. For both media, one sees that larger val-
ues of Ω have detrimental effects on Fθ. The most convenient
condition for maintaining Fθ closer to its initial value is found
for a weak coupling field, that is small values of Ω. These
radically different time behaviors of Fθ and Fφ are linked to
the different role of the two angle parameters within the qutrit
state: θ fixes the initial probability amplitudes of the state,
while φ is a relative phase. The precision of the two differ-
ent parameter estimations during the dynamics is differently
influenced by the interaction of the atomic qutrit with the en-
vironment and the coupling field. Moreover, one expects that
these time behaviors strongly depend on the values of the two
initial parameters θ and φ to be measured.

To go deeper towards this relevant aspect in the quantum
metrology scenario, we first study the influence of the initial
relative phase on the dynamics of Fφ and Fθ, fixing θ = π/2.
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FIG. 7. Dynamical behavior of QFI Fθ for different Rabi frequencies
of coupling laser field (Ω), with θ = π/2, φ = π/4. Column (I)
corresponds to the case in which atom is placed in free space and
column (II) corresponds to the case in which atom in a band-gap
material with δ = 0.

In Fig. 8, Fφ (panels (a), (b)) and Fθ (panels (c), (d)) are plot-
ted as a function of the scaled time for various values of φ.
Column (I) regards the case of free space with Ω = 0.5γ for
the driving field, while column (II) the case of band-gap ma-
terial with Ω = 0.5α2. As expected for these values of Ω,
when the atom is in the free space both QFIs quickly tend to
zero regardless of the initial phase value. On the other hand,
when the atom is in the photonic band gap medium, Fθ tends
to different nonzero steady state values (Fig. 8(d)) for any φ,
which is not true in general for Fφ (Fig. 8(b)). Some values
of the initial relative phase can compromise the parameter es-
timation, causing Fφ to vanish. The initial phase value affects
the evolution of Fφ for the specific case θ = π/2.

From the previous plots, we symmetrically expect that
changing the value of θ for a given φ will also affect the evolu-
tion of the QFIs. To have a wider view of this feature, consid-
ering the advantageous case of photonic band gap reservoir, in
Fig. 9 we report the steady-state values of Fφ and Fθ in a con-
tour plot for a comprehensive range of initial state parameters
φ, θ. The central role of the latter in determining the steady-
state values of Fφ and Fθ is evident. Appropriate choices of
φ and θ can yield nonzero steady-state values for Fφ and Fθ.
For the chosen values of Ω and δ in these plots, we also notice
that the steady-state value of Fφ is larger than Fθ. In partic-
ular, for opportune combinations of initial angle parameters,
one can reach the optimal condition for the stationary amount
of Fφ = 0.5, enabling a sensitivity δφmin = 1/

√
0.5 for the

initial relative phase of the atomic state.

B. Two-parameter Fisher information

We now consider a two-parameter estimation problem and
employ the QFIM approach to calculate the QCRB in the si-
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FIG. 9. Density Plot of the steady-state QFI (a) Fφ and (b) Fθ as
functions of φ and θ when the atom is placed in a band-gap material.
Values of parameters are: t → ∞, Ω = 0.5α2, δ = 0.

multaneous estimation of both two parameters φ and θ.
Along this route, we return to Eq. (33) and display

∑
min

(optimal sensitivity) versus scaled time for different Rabi fre-
quencies Ω of coupling laser field in Fig. 10. In general,
for both types of reservoir (free space and photonic crystal),∑

min is going to increase as time goes by but with different
rates depending on the Rabi frequency. For the case when the
atomic qutrit is placed in free space (column I of Fig. 10), it is
clear that the best optimal two-parameter estimation can be ac-
quired for Ω = 0.1γ; other values of Ω do not yield favorable
results for the two-parameter estimation during the dynamics.
In contrast, the band gap material as a reservoir (column II of
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FIG. 10. Dynamical behavior of
∑

min for different Rabi frequencies
of coupling laser field (Ω). Column (I) corresponds to the case in
which atom is placed in free space and column (II) corresponds to
the case in which the atom is in a band-gap material with δ = 0.
Initial state parameters are fixed as θ = π/2, φ = π/4.
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FIG. 11. Dynamical behavior of
∑

min for different values of φ, with
θ = π/2. (a) Atom in free space with Ω = 0.1γ; (b) atom in a band-
gap material with Ω = 0.5α2, δ = 0.

Fig. 10) enables a wider range of values of Ω (within about
two orders of magnitude) which keep

∑
min small enough dur-

ing the dynamics, with the most enduring results occurring for
Ω ≤ 0.5α2; for larger values of Ω this behavior is lost.

Fig. 11 depicts the time evolution of
∑

min for various values
of initial phase φ with θ = π/2. We compare the two environ-
mental conditions choosing the best case scenario for Ω as
evinced from the above plots of Fig. 10: Ω = 0.1γ for free
space, Ω = 0.5α2 for band gap material. In general, one sees
that the initial phase value affects the results for both reser-
voirs. Notice that different values of φ give the most advanta-
geous conditions for

∑
min, e.g. φ = π for the free space and

φ = π/2 for the photonic crystal. A remarkable aspect can
be however individuated: the case of photonic crystal keeps
changes of

∑
min contained enough during the initial stages of

the dynamics when φ varies, while changes of
∑

min can be
abrupt for the case of free space.

The main message of this analysis is the following: the in-
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teraction between the qutrit and the driving field must be in
general suitably adjusted via Ω for achieving the best possible
optimal sensitivity in the two-parameter measurement. Com-
pared to the case of free space, a PBG material as structured
environment interestingly allows a very large margin of error
in setting the desired Ω and a minor dependence on variations
of initial relative phase parameter φ. This aspect may be espe-
cially relevant from an experimental viewpoint.

VI. DISCUSSION ON EXPERIMENTAL FEASIBILITY

Since the experimental validation of a theoretical study
matters, we aim to find out the experimental feasibility of
the proposed qutrit for both real and artificial atoms. For
real case, the calcium atom exemplifies our model whose en-
ergy levels aptly map onto the considered qutrit [87]. So that,
level 4s2 1S 0 functions as ground state |c〉 level 4s3d 1D2
and 4s6p 1P1 which can be labeled as |b〉 and |a〉 respec-
tively correspond to metastable and excited states. In this case,
the excited state 4s6p 1P1 can be coupled to level 4s3d 1D2
via a coupling field possessing a wavelength of 504 nm [87].
Nobody could overlook the fact that fabrication of appropri-
ate photonic crystal is equally important to embed the can-
didate qutrit into it. Although, the steady technical advance-
ments have paved the way for fabrication of the photonic crys-
tals having three-dimensional gap in both visible and infrared
ranges [98–100].

On the other hand, compared to real atoms, quantum dots
(artificial atoms) have the merit to be readily coupled to pho-
tonic crystals. Solid-state nanostructures are attractive alter-
natives to atomic single photon emitters due to the fact that
unlike real atoms, they do not require complex laser cooling
and trapping techniques. In this regard, In recent years, signif-
icant progress has been achieved in the field of solid-state with
three-level QD and photonic-crystal cavity [101–104]. Mean-
while, a substantial number of three-level QDs have been put
forward which received considerable attention [105–109].

Albeit diverse three-level quantum dots have been fabri-
cated so far, none of them perfectly conforms to our qutrit.
The exceptional facet of our model that distinguishes it from
the previous ones is its spontaneous decay rate from the ex-
cited state |a〉 to the metastable state |b〉 (i.e., γab). So, the rate
γab is negligible compared to the γac (γ) and the fabricated
qutrits lack the required condition. Such controversial but ap-
pealing nature of the model poses a challenge to pondering
possible ways to meet the constraint and find an appropriate
quantum dot for implementation of the qutrit.

One of the neat possible solutions is to consider a quantum
dot qubit whose excited state is connected to a level of another
quantum dot via tunneling effect which leads to the formation
of a so-called quantum dot molecule [110–114]. Such quan-
tum dot molecule constitutes a way-out to the problem pro-
vided that the decay rate of the coupled level (second quan-
tum dot) is small enough. The experimental realization of this
particular qutrit does not seem far-fetched and is still open to
debate.

VII. CONCLUSIONS

A comparative study of a classically driven three-level
atomic system (qutrit) placed in either free space (Markovian
environment) or a photonic band gap crystal (structured en-
vironment) has been carried out. The aim of the study is
to assess the impact of a classical driving field on the time
evolution of relevant quantum properties, such as quantum
coherence, non-Markovianity, and quantum Fisher informa-
tion (QFI), which are encoded initially in the qutrit state.
The study provides quantitative evidence that PBG materi-
als can be employed as an effective environment in which
all the achieved behaviors concerning non-Markovianity in-
crease, coherence protection and quantum parameter estima-
tion supersede those in the case of free space.

The initial state of the atomic qutrit has been defined by
two angle parameters, namely θ (ruling the probability ampli-
tudes) and φ (relative phase between basis states). We have
found that the initial relative phase has a substantial impact
on the steady-state value of coherence. In particular, half of
the initial coherence can be maintained by well-adjusting φ.

The angle parameters of the initial state can be unknown
and therefore subject to precision measurements for their es-
timation. Within this quantum metrology context, we have
investigated the QFI matrix both for single-parameter estima-
tion, namely Fφ and Fθ individually, and for the simultaneous
two-parameter estimation. Interestingly, it has been observed
that Fφ and Fθ exhibit opposite behaviors versus variations of
the intensity of the classical field. In particular, increasing the
Rabi frequency of the classical driving field leads to increas-
ing (decreasing) the steady-state value of Fφ (Fθ). In other
words, a larger Rabi frequency can enrich the sensitivity of
phase estimation (φ) in the steady state; instead, a more pre-
cise estimation of θ occurs as a result of decreasing the Rabi
frequency. Moreover, we have reported that larger values of
the Rabi frequency always lead to deterioration of simultane-
ous optimal two-parameter estimation. As a general trait, we
have found that the values of relative phase φ affect the preci-
sion of both single and two-parameter estimation outcomes.

We have finally discussed the experimental context where
the findings of this work can be reproduced, showing that sys-
tems made of controlled quantum dots in photonic crystals
appear to be the most promising platforms. Ultimately, we
have demonstrated that the cooperative utilization of a PBG
material as medium and a classical driving field as part of
the system enhances the quantum features of the qutrit dur-
ing the dynamics. In conclusion, our results provide useful
insights towards the development of techniques for preserv-
ing the quantum properties of qutrit-based compounds in a
quantum information scenario.
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