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Abstract. This paper deals with the multi-object tracking (MOT) prob-
lem in videos acquired by 360-degree cameras. Targets are tracked by a
frame-by-frame association strategy. At each frame, candidate targets
are detected by a pre-trained state-of-the-art deep model. Associations
to the targets known till the previous frame are found by solving a data
association problem considering the locations of the targets in the scene.
In case of a missing detection, a Kalman filter is used to track the target.
Differently than works at the state-of-the-art, the proposed tracker con-
siders the depth of the targets in the scene. The distance of the targets
from the camera can be estimated by geometrical facts peculiar to the
adopted 360-degree camera and by assuming targets move on the ground-
plane. Distance estimates are used to model the location of the targets
in the scene, solve the data association problem, and handle missing de-
tection. Experimental results on publicly available data demonstrate the
effectiveness of the adopted approach.

Keywords: multi-object tracking · equirectangular image · 360 degree
videos · depth.

1 Introduction
Multi-object tracking (MOT) is the problem of analyzing a video, namely a
sequence of images, and detecting the locations on the image plane of targets
moving in the environment over time. The problem can be extended to 3D when
a world coordinate system is known or is estimated, and is especially challeng-
ing in a crowd scenario where objects with similar appearances are difficult to
discriminate from each other. In these cases, not all targets are detected due to
partial/total occlusions, and false positives have to be handled. Handling occlu-
sions can take advantage of knowing the distance of the targets from the camera.
Objects close to the camera can still be detected while the farthest ones require
algorithms to predict their location on the image plane.

Recently, the work in [16] showed how to estimate the distance from the
camera of objects of interest given only the height of the 360◦ camera and the
coordinates, on the spherical image, of the contact point of the target with the
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Fig. 1. The figure shows on the left two half-spheres, each one acquired by a lens in a
dual lens 360◦camera. On the right, the equirectangular image on which the spherical
one is projected. The middle line represents the equator of the spherical image, while
the uppest and lowest rows are the sphere poles.

ground plane. 360◦ camera devices acquire panoramic images with a view span-
ning 360◦ horizontally and 180◦ vertically. Recent devices are typically formed
by a system of two wide-angle lenses, each of which can shoot (more than) half
of the scene. In the acquired spherical images, pixels are mapped onto a sphere
centered into the camera. Spherical images can be stored by applying equirectan-
gular projections [6], after correcting the distortion introduced by lenses, if their
shape is known. As shown in Fig. 1, the central row of the equirectangular is the
equator, and the upper and lower rows are the poles. This projection introduces
a distortion, which is more visible approaching the poles.

Tracking in equirectangular images is challenging due to the image’s circu-
larity and high resolution. The former is a consequence of the sphericity of the
image and implies that a target walking around the camera and depicted close
to the left/right border of the image may re-appear at the opposite right/left
side of the image itself. High resolution of the image is required to represent the
entire scene without losing too many details.

We propose to exploit geometrical facts about the equirectangular projection
to estimate and track the targets’ locations onto the ground plane by taking ad-
vantage of the estimated distances of the targets from the camera. In Fig. 2, four
targets are moving around the scene. Green bounding boxes represent ground-
truth information, while the colored ones are the tracker’s predictions (in this
case only two). The radial plot on the left shows the estimated targets’ locations
on the ground plane. The center of the plot is the camera location. Concentric
circles are the loci of points equidistant from the camera. Circles are exactly one
meter apart from each other. Numbers are identifiers (color-coded) associated
with the targets and are close to their location on the ground.

To the best of our knowledge, this is the first multi-object tracker for 360◦ videos
that explicitly estimates and uses targets’ distances from the camera to track
the targets. In this respect, we propose a novel depth-aware multi-object tracker
that does not need any calibration procedure.
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Fig. 2. At the center, an extended equirectangular image (dotted areas are included
to enhance target detection). Green bounding-boxes are ground-truth, colored ones
are tracker’s predictions. The image shows two pedestrians far more than 15 meters
from the camera. They are annotated but not detected. On the left, the plot shows the
locations on the ground-plane of the two tracked objects. On the right, the plot shows
the locations of the annotated objects. Pedestrians distant more than 15 meters from
the camera are not shown.

The only assumption of our approach is planar motion of the targets on the
ground-plane. We stress that if the camera height is known, exact targets’ loca-
tions on the ground plane can be derived. This characteristic is very appealing in
several applications, especially in surveillance but also in behavior understand-
ing applications to better understand how people interact. We tested our tracker
on the publicly available dataset [16] by adapting the MOT evaluation protocol
to spherical images. We also implemented a baseline technique to compare with.
The plan of the paper is as follow. In Sec. 2 we summarize state-of-the-art work
in multi-object tracking; In Secs. 3 and 4 we present our novel approach and
implementation details respectively. Finally, in Sec. 5 we discuss experimental
results and in Sec.6 we present conclusions and future work.

2 Related Work
Solution of MOT problem relies on the matching, at time t, between observed
objects and targets detected at time t − 1. Information used to establish the
matches can be about object appearance, 2D/3D location, or trajectory and is
incrementally refined over time, including the possibility of dynamically changing
the number of targets to account for objects entering/exiting in/from the scene.

Matching can be found by two main approaches [1]: frame-by-frame associ-
ations of observations to targets and deferred-logic tracking. With the former
sequential tracking strategy, at each frame, the most likely associations between
object detections and targets are estimated and not modified anymore. The prob-
lem is modeled as a data association (DA) one, and often linear programming
techniques involving constrained optimization problems are adopted [2, 11, 12].

Global Nearest Neighbor Standard Filter [11, 1] considers all assignments
within a region of interest and solves a maximal bipartite matching problem
to find the best assignments between detections and targets, generally by the
Munkres algorithm.
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In deferred-logic tracking, observation-to-target associations are delayed un-
til evidence of their correctness is accumulated. Multiple Hypotheses Tracking
(MHT) [20] builds a hypothesis tree whose root-leaf paths represent all possi-
ble combinations of detection-target associations through time. The exponential
growth of the tree is avoided by pruning heuristics, and the path with the highest
likelihood is selected as the correct target track.

In this paper, we adopt a frame-by-frame association strategy. At each frame,
we detect candidate targets and associate them with the identities known until
the previous frame. Considering that we are processing spherical images, and we
can estimate the distance from the camera of the detected targets, we solve the
DA problem through the Munkres algorithm by considering the targets’ depth
while accounting for the image circularity.

A recent survey of MOT works using deep learning is in [5]. In general, these
works [24, 23, 4] use a deep model for solving the detection problem, the Munkres
algorithm to solve the DA problem, and prediction methods such as Kalman
filter to track the targets through the occlusions. Deep models can additionally
be used to estimate similarities [23] or model motion [4].

Works about tracking in 360-degree videos [17] focus mostly on single object
tracking by applying deep learning strategies [15, 9] and Kalman or particle fil-
ters [19, 18, 3]. The work most similar to ours is the one in [14], which is built
upon DeepSORT [22]. DeepSORT solves the DA problem by considering deep
features extracted by the detector (YOLO v2). In contrast to our approach,
in [14], detections are taken on image slices to account for the high image res-
olution. Similar to our approach, the method computes the detections on the
extended frame in order to account for the image circularity. With respect to
this work, we model tracking by considering the distances from the camera when
tracking pedestrians, and use them to handle occlusions.

3 Modeling Targets’ Locations on Spherical Images

Despite targets are detected on the equirectangular image, in our approach track-
ing is performed on the ground-plane. On the image plane, the target’s ground-
touching point is approximated by the middle point of the lower side of the
bounding box detected on the image. By geometrical facts, the distance of the
target from the camera is estimated and, together with the azimuth angle, pro-
vides the polar coordinates of the target on the ground in a coordinate system
centered onto the camera ground location. In this section we provide details on
the adopted reference systems.

3.1 360◦ Videos and Equirectangular Images

As shown in Fig. 1, a 360◦ camera device can acquire panoramic images with
a view spanning 360◦ horizontally and 180◦ vertically, and can represent the
surrounding environment at each shot. This is of interest in several fields such
as video surveillance, robotics, and cultural heritage applications.
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Fig. 3. The image shows the world coordinate system on the left, and the equirectan-
gular coordinate system on the right.

Regardless of the type of 360◦ device, pixels of the images are mapped onto
a sphere centered into the 360◦ camera. Equirectangular and cubic projections
are often adopted to allow displaying the image on monitors or viewers [6].
While cubic projections map the spherical points onto the plane tangent to the
sphere, equirectangular projection maps the whole sphere to a single image. In
particular, the central row of the equirectangular image represents the sphere
equator; the uppermost and lowermost rows correspond to the sphere poles. In
general, each row of the equirectangular image corresponds to the intersection
between the sphere and a plane parallel to the horizontal plane of the camera [16].

Pixel coordinates (xr, yr) on the equirectangular image represent normalized
values of polar and azimuth angles of the corresponding point on the sphere
surface. The angles can be recovered from the pixel coordinates by a simple re-
scaling and shifting such that the polar angle ϕ ranges in [−90◦, 90◦], while the
azimuth angle θ ranges in [−180◦, 180◦] (see Fig. 3). Of course, by this projection,
the radial coordinate of the spherical coordinate system cannot be preserved.

3.2 Estimating Targets’ distances and locations

The algorithm to estimate the targets’ distances from the camera [16] is based
on pure geometrical facts and is uncalibrated, as there is no need to estimate
the camera parameters. The algorithm takes advantage from a simple fact: all
points of a plane parallel to the horizontal camera plane and equally distant
from the camera are projected onto the same row of the equirectangular image.
The only hypothesis that must hold to apply the method is that target move on
the ground plane, and that the ground plane is parallel to the horizontal camera
plane. Furthermore, it must be possible to measure the touching point of the
target with the ground on the spherical image (the target must be visible). We
define the touching point P = (xL, yL) as the middle one in the lowest side of
the bounding box enclosing the target on the equirectangular image.

As shown in Fig. 4, the distance d of the object of interest from the camera
can be estimated as [16]:

d = hc cotα (1)

where hC is the camera height and α is the angle between the camera plane
passing through the sphere equator and the line through the camera center and
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Fig. 4. The figure shows how the distance of the target from the camera can be esti-
mated. hc is the camera height (in meters). α is the angle between the camera horizontal
plane and the line passing through the target’s ground-touching point and the cam-
era center. d is the distance of the target from the camera and can be estimated by
trigonometrical equations.

the target’s touching point (see Fig. 4). With this formulation, the distance d is
the length of one of the two catheti of the resulting right triangle, and is related
to the other one by the trigonometric formula 1.

The angle α is estimated from the point P on the equirectangular image:

α =
h
2 − yL

h
2

· 90◦ (2)

where h is the equirectangular image height (in pixels).
For each target, we can model its location considering the polar coordinates

(d, θ) of its touching point. We then model the location of the target in Cartesian
coordinates as l = (d cos θ, d sin θ) on the ground-plane.

4 Proposed MOT Algorithm
Our tracking strategy relies on a simple and very common MOT strategy that
aims at updating the targets’ locations by associating the targets’ predicted lo-
cations with the ones provided by a pre-trained pedestrian detector. Hence, the
main steps in our algorithm are: pedestrian detection, prediction of the targets’
location, and data association. Differently than other works, in our algorithm
locations are modeled directly on the ground and expressed in a coordinate sys-
tem centered in the camera’s ground-touching point. Another advantage of our
formulation is that it naturally accounts for the circularity of the equirectangular
image due to the adopted reference coordinate system.

4.1 Pedestrian Detection

Similar to [14], we run a state-of-the-art detector directly on the equirectangular
image. Of course, deformations affect the detection process but we have experi-
mentally found that the loss of accuracy is negligible. Since we are interested in
pedestrians, we ignore objects from other classes.

A simple approach to account for the image circularity is expanding the image
as shown in Fig. 2 and removing duplicated bounding boxes. Let us assume that
the image is originally W ×H while the extended image is W ′ ×H ′. Duplicated
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bounding boxes are removed by shifting all of them to the left by W . Then, those
with positive coordinates on the image plane are retained and matched with the
non-shifted ones by intersection-over-union. Finally, the most internal ones are
selected. In our experiments, we have adopted the Faster-RCNN[8] detector.

4.2 Modeling and Predicting Targets’ Locations
We model targets’ trajectories as discrete-time linear dynamical systems. The
state of the system represents the location of the target on the ground-plane
and its velocity st = (xt, yt, v

x
t , v

y
t ), modeled as continuous variables. We use

Kalman filter (KF) to make the state evolve over time in two steps: prediction
and update steps. The prediction step allows to make the state evolve over time
based on the knowledge of the past state. At each discrete time, the state st−1

is linearly combined to generate the new state st by also accounting for some
Gaussian noise wt−1 ∼ N(0, Σs). In our model, no external control signal is
needed and we assumed targets move based on a uniform linear motion model.

The update step uses the difference between predictions and observations to
refine the state estimate.

KF is a recursive filter where prediction and update steps alternate to pro-
gressively refine the current state estimation. In particular, as detailed in [7],
the filter can be viewed as a weighted average estimator where noise covariance
matrices and Kalman-Gain matrix are iteratively computed to refine the state
estimations. Whenever an observation is unavailable, no updating step is per-
formed and KF is used to predict the target location. In the long run, this can
of course yield to drifting of the tracker.

4.3 Data Association
Since we use a frame-by-frame association approach, we need to associate de-
tections with known targets at each frame. We also need to decide when a new
target has to be included in the pool of tracked objects, and when a target is
exiting the scene. Associations are estimated by using ground-plane coordinates
found through the estimates of targets’ distances from the camera. As already
explained, this approach naturally accounts for the image circularity.

As usually done, we model MOT as a minimum weight matching problem
in bipartite graphs. In a bipartite graph, vertices are grouped into two disjoint
sets such that no two vertices within the same set are adjacent. A matching is a
subset of edges of the graph that do not share common vertices. The minimum
weight matching has minimal sum of the edge weights.

In our framework, the vertices of one set of the bipartite graph represent
the targets’ locations predicted at time t by Kalman filter, while the vertices in
the other set represent the locations of the pedestrian found by the detector on
the image plane and converted into ground coordinates as detailed in Sec. 3.2.
Each vertex of the first set can potentially match any other vertex in the sec-
ond set. Edge weights measure the dissimilarity between targets and detections
considering both their locations on the ground plane and the appearance fea-
tures. Appearance features are extracted by using the first flattened layer of a
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pre-trained CNN (ResNet-50 [10] trained on Imagenet in our experiments), but
any other appearance descriptor may be used as well.

We fuse appearance features and locations by considering that the two data
vectors have different lengths and values varying in different ranges. Given a
target with a predicted location PT

t ∈ R2 and a detected bounding box with
estimated touching point PD

t ∈ R2 at time t, the dissimilarity l(T,D) between
the two locations is defined as

l(T,D) =
1

2
||PT

t − PD
t ||1. (3)

Assuming the appearance features of the target and the detection are FT
t−1 ∈ RL

and FD
t ∈ RL respectively, the dissimilarity f(T,D) between the two feature

vectors is defined as

f(T,D) =
1

L
||FT

t−1 − FD
t ||1. (4)

In the above dissimilarity scores, L1-norm is used since it is more meaningful
and efficient than L2-norm in case of high-dimensional data. We compute l(T,D)
and f(T,D) for all pairs of n targets and m detected bounding boxes. To make
the L1-norm values comparable, we estimate the z-scores of the two sets of n×m
norm values, zl(T,D) and zf (T,D) respectively. Hence, the final dissimilarity
score for a pair is obtained as the minimum between zl(T,D) and zf (T,D). With
this score, the tracker associates a target to a detection or because the locations
are close or because the appearance features are similar.

4.4 Trackers’ birth, death and updating

At each frame, two cases can arise: new targets enter the scene (or false positives
are detected) or some targets exit the scene (or are not detected, for instance
due to occlusions). To account for such cases, we adopt the strategy in [11], and
augment the two sets of vertices in the bipartite graph with “fake” vertices. The
vertices added to the target set represent potentially new targets entering the
scene. The vertices added to the detection set account for missing. By including
these fake vertices, each set will count n+m nodes.

With these additional vertices, it is necessary to set a default weight value for
the fake edges. This value is especially important for the success of the tracking
strategy since it represents an error tolerance on the dissimilarity score of the
matches and, hence, defines the search area on the ground-plane and in the
appearance feature space. We have experimentally found that a value of 2 works
pretty well. This value is the superior limit of the 95% of the confidence interval
of the estimated z-scores.

Once the data association problem is solved, we use the associations to update
the targets’ locations and the corresponding Kalman filters. When no association
is found, we maintain the Kalman filter prediction as target’s location. We keep
the target alive for T frames (T = 90 in our experiments) such that the target
can be tracked through potential occlusions. However, this strategy increases the
risks of tracking false positives. To limit this issue, when a new target identity is
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discovered, we wait for K frame (K = 3 in our experiments) before adding this
new target to the pool of tracked objects.

5 Experimental results
We performed tests on the publicly available CVIP360 dataset [16]. The dataset
includes two sets of videos. The first set includes 11 videos acquired indoor, while
the second one includes 6 videos collected outdoor. Overall, the dataset includes
about 18K frames with more than 50K annotated bounding boxes.

We use the CLEAR metrics [13], including MOTA, FP, FN, ID-switches to
assess the tracking quality. We also report the IDF1 score [21] that evaluates the
identity preservation ability and focuses more on the association performance.

Performance have been evaluated with a modified version of the py-motmetrics
library. Since images are circular, we assessed tracking on the ground-plane.

Our baseline method, Baseline (image), implements a standard MOT tech-
nique by using the same detector and data association technique as our tracker
but models trajectories on the image plane. It is not able to account for the
image circularity. In case of missing, the target’s location is not updated.

We present ablation studies by constructing our tracker step-by-step. The
tracker Ours (image, circularity) tracks targets on the image plane and accounts
for the image circularity by an ad-hoc matching process. Duplicated bounding
boxes on the extended frame are not filtered out but are used to solve data as-
sociation by retaining the minimum dissimilarity score. This approach requires
more comparisons but accounts for the image circularity. This method is rela-
tively close to [14], except for the detection strategy, as explained in section 2. In
our ablation study, we compare trackers on equal terms of pedestrian detector.
We detect pedestrians on the whole image, focusing on the tracking strategy.

The tracker Ours (ground) tracks on the ground-plane and can naturally
account for the image circularity. Duplicated bounding boxes are not used for
data association. The tracker Ours (ground + KF) uses Kalman filter to track
targets in case of missing detection. Results of the above techniques are presented
with and without using appearance features.

5.1 Results

Tables 1 and 2 show our experimental results in indoor and outdoor videos
respectively. The tables report average values of the metrics over the test videos.
FP, FN and ISDW are average raw values (not percentage). We note that the
number of FP and FN (missing) in the various experiments are similar be-
cause they are run on equal terms of detector. In indoor videos, best results
are achieved by modeling tracking on the ground.

Despite the appearance model is weak, it contributes to a small improvement
of the performance. In outdoor videos, all methods are comparable. Without ap-
pearance features, KF improves the IDF1 score but not the MOTA due to a
small increase of the ID-switches. In outdoor videos, appearance does not help
the tracker and, while MOTA scores are comparable, IDF1 decreases. This might
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Table 1. Results on the indoor video dataset

Tracker IDF1↑ MOTA↑ FP↓ FN↓ IDSW↓
Baseline (image) 92.78 93.22 163.09 49.27 41.18
Ours (image, circularity) 92.86 94.95 74.36 49.27 35.09
Ours (ground) 93.66 96.78 61.73 49.27 7
Ours (ground + KF) 94.21 96.10 61.72 49.27 5.73

Baseline (image + appearance) 93.82 95.88 60.45 49.63 18.54
Ours (image + appearance, circularity) 93.82 95.89 60.45 49.64 17.36
Ours (ground + appearance) 94.00 96.05 61.82 49.82 8
Ours (ground + appearance + KF) 94.61 96.19 53.63 49.81 10.18

Table 2. Results on the outdoor video dataset

Tracker IDF1↑ MOTA↑ FP↓ FN↓ IDSW↓
Baseline (image) 86.5 88.8 81.16 317.67 67.33
Ours (image, circularity) 86.83 88.18 120.67 338.33 58.3
Ours (ground) 86.6 89.21 47.5 393.3 12.3
Ours (ground + KF) 89.52 89.69 33.5 393.33 12.83

Baseline (image + appearance) 88.6 89.62 49 337.5 34.3
Ours (image + appearance, circularity) 88.30 89.38 49 365.67 24.17
Ours (ground + appearance) 85.8 88.90 64 393.22 16
Ours (ground + appearance + KF) 87.28 89.43 49.33 393.33 15.17

be due to the fact that generally appearance features are sensitive to illumination
variations. The decreases of the performance when using ground-plane coordi-
nates in outdoor videos might be due to the uncertainty in the touching-point
estimate on the image plane, especially for the farthest pedestrians. Indeed, in
outdoor, distance from the camera can be more than 10 meters. One of such
cases is shown in Fig. 2 (pedestrian with ID 3). The detector may be unable to
detect the pedestrian and, if it does, the bounding box is not much reliable.

Despite the limitations of the detection step, all experiments show that track-
ing on the ground-plane decreases the number of ID-switches. In practice, espe-
cially in case of occlusions, is much easier for the tracker to solve ambiguities.

6 Conclusions and Future Work
This paper proposes a MOT tracker that estimates targets’ locations on the
ground-plane by using the distance of the targets from the 360 degrees cam-
era. Such distance is estimated by the method in [16], which is uncalibrated
and works under mild hypotheses. Targets’ locations on the ground-plane are
used to solve data association and model trajectories. We experimentally found
that measuring the location on the ground is required to properly measure per-
formance of any tracker in 360◦videos. Our preliminary results show that, when
the targets’ touching point can be reliably estimated on the image, ground-plane
coordinates improve tracking especially in case of occlusions.

In future work we will study how to improve the detection of farthest objects
in order to have a better estimation of the touching point. We will also improve
appearance and motion models to handle occlusions.
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