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year. Much of this loss would be avoidable if 

the problem were recognized early. 
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and predictable than earthquakes, 
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only a few countries have taken advantage 

of this knowledge to reduce landslide 
hazards… 
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1. Introduction 

One of the more important tools which has been developed in the last decades for landslide 

risk mitigation and planning strategies has resulted from the application of GIS-supported 

multivariate statistical analysis for producing landslide susceptibility maps. 

Stochastic approaches to landslide susceptibility assessment are based on the hypothesis that 

the new slope failures will occur under the same conditions which caused the past landslides 

which are (on the field or remotely) presently recognizable. Therefore, recognizing and 

mapping the past landslides allow preparing inventories which can be exploited to 

quantitatively assess the spatial correlations between an outcome status (no 

landslide/landslide or stable/unstable) and a set of predictors, corresponding to those geo-

environmental variables assumed as directly or indirectly involved in the morphodynamic 

causal relations. Stochastic approaches have the great advantage to increase at the most the 

need for obtaining a quantitative objective susceptibility scoring of the study areas. 

Landslide susceptibility assessment through a stochastic approach is typically based on a 

standardized sequence of steps, consisting of i) preparation of GIS vector/raster layers, 

including a landslide inventory (the outcome) and a set of controlling factors (the 

predictors); ii) partition of the area into mapping units and assignment of the status (from 

the outcome layer) and the factors conditions (from the predictor’s layers); iii) setting of a 

model building and validation strategy; iv) calibration and modelling; v) validation; vi) 

preparation of the final maps. 

A lot of modelling methods have been made available from applied statistics in the recent 

decades, ranging from inferential to classification based, from Bayesian to frequentists, from 

bivariate to multivariate, etc. At the same time, different model building and validation 

strategies are adopted, depending on the type, quality and number of available landslide 

inventories: Chrono-validation (time partition-based), when both a calibration and a non-

coeval validation inventory are available (we calibrate using one and validate using the 

other); Self-validation (random partition-based), when the single landslide inventory we 

have is randomly split into calibration and validation subset; Export/Import validation 

(spatial validation), when a model is calibrated in a training area and validated into a 

different validation area. 

A very relevant component of landslide susceptibility studies is strictly dependent on the 

way the final maps are prepared and in particular on their final user-friendly design. In fact, 

despite the very high performing results which can be achieved by means of classification 
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and regression trees techniques implemented on a pixel-based units partition of the study 

area, very unmanageable prediction images are typically obtained, with the susceptibility 

changing in the space of a few meters, and a very black-box susceptibility model which 

doesn’t give to the user any geomorphological reference from understanding the adequacy 

of the model. In this sense, optimal solutions are investigated to obtain a performing open-

box model implemented on geomorphologically reasonable mapping units. 

Landslide susceptibility maps allow the user to recognize in a given area the grade of the 

propensity of new slope failures to occur in each of the mapping units into which is 

partitioned. Although no indications regarding time recurrence or magnitude are explicitly 

given in a susceptibility map, a useful hazard interpretation of the susceptibility prediction 

image can be obtained, considering that landslide volume or mass and their typical velocity 

can be hypothesized for any given landslide type in the study area, on the basis of the features 

of the recognized past phenomena. At the same time, the time recurrence of landslides can 

be roughly estimated from its spatial frequency and known historical records. As matter of 

fact, low discrimination ordinal of magnitude and time recurrence assessment is largely 

enough for taking civil protection and land use planning decisions. Besides, landslide 

susceptibility maps are the basic step in a multilevel approach to complete hazard assessment 

and early warning system devising, as they allow to restrict to a cost/effective scale a 

differently unsolvable task. 

The research activities which have been carried out during the PhD three years period have 

been designed to face some of the more relevant topics landslide susceptibility assessment 

issue poses: optimal mapping units extraction, low-quality landslide inventories managing, 

new model building and validation strategies designing, comparing and optimizing 

statistical modelling methods, methods for landslide susceptibility mapping. All the 

researches were designed so to search for the best trade-off between time/money costs and 

resolution, precision, reliability and adequateness of the results. 

The PhD research activity has been carried out and supported by the SUFRA (“SUscettibilità 

da FRAna” = Landslide Susceptibility) project, funded by the Regional Basin Authority for 

the completing of the regional landslide susceptibility maps of Sicily, and the RIESCA 

project, funded by the Italian Ministry of Foreign Affairs, aimed at capacitating technics and 

researchers of El Salvador in the issues of Natural Hazards.  

The thesis is structured into five chapters: 2 Theoretical background; 3 Introduction to the 

applications; 4 Study areas; 5 Applications; 6 Concluding remarks. 



5 
 

In the second chapter three main topics are discussed: i) landslides definition and 

description, with a deep analysis of the controlling factors; ii) theoretical/conceptual view 

of landslide susceptibility materials and methods; iii) description of main validation schemes 

and tools.  

In the third chapter, an introduction of the main applications carried out during the three 

years of PhD research is given. In particular, the main topics faced by the applications are 

reported and a deep description of the importance of the topics is provided. 

The fourth chapter is focused on the description of the study areas. An analysis of the main 

characteristics, including the geomorphological and lithological setting of the areas, is 

reported. 

In the fifth chapter, the main applications related to the research are shown.  

In the sixth chapter, the final discussions, and conclusions relative to the research carried 

out during these three years are discussed. 
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2. Theoretical background 

2.1. Landslides 

2.1.1. Landslide classification 

According to a simple definition (Varnes 1978), a landslide is “a downward and outward 

movement of a mass of rock, debris, or earth down a slope, under the influence of gravity”. 

However, landslides can be considered complex phenomena, the result of the interaction of 

different factors that determine their characteristics. Therefore, different definitions of 

landslide are proposed in the literature and, due to the real high complexity of these 

phenomena, the scientific community has to suggest several classification schemes (e.g., 

Varnes 1984; Cruden and Varnes 1996; Hungr et al. 2014). In fact, landslides can involve 

various types of material, according to several movement mechanisms, and can occur in 

different climatic environments. 

Given that, it is not easy (if not impossible) to limit landslides inside a single rigid grid. 

However, according to the scientific method, the use of a classification system is necessary 

to minimise ambiguity and deception.  

Among the proposed classifications, in this research, the system of Hungr et al. (2014) was 

exploited. As the authors declare, “the starting point of the modifications is the 1978 version 

of the classification (Varnes 1978), taking also into account concepts introduced by Cruden 

and Varnes (1996)”, but updating the latter in some aspects, related mainly to: i) the 

typology of involved material and ii) the movement mechanisms. Besides, the authors 

suggest that a simple term needs to be assigned to a given landslide type, thus avoiding 

ambiguity in the definition. For this purpose, the “complex” class of Varnes was deleted, 

recommending a deeper analysis for this typology for a more specific classification of each 

phenomenon inside. 

The Hungr et al. (2014) classification overcomes the threefold material division proposed 

by Varnes (1978). The latter considers only the rock, the debris, and the earth as typology, 

while Hungr et al. (2014) suggest the use of geotechnical material terminology, considered 

more appropriate and detailed for characterising the mechanical behaviour of the landslides. 

in particular, the types considered are rock, clay, silt, sand, gravel, boulders, peat, ice, debris, 

and mud (first column of Table 2.1.1.1). 

As reported by the authors, the words “debris” and “mud” do not have clear equivalents in 

geotechnical terminology but have acquired status in geology and landslide science and have 

therefore been retained (Bates and Jackson 1984) Debris is a mixture of sand, gravel, 
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cobbles, and boulders, often with varying proportions of silt and clay. Mud is a similar 

unsorted material, but with sufficient silt and clay content to produce plasticity 

(cohesiveness) with high moisture content. Both debris and mud may contain a proportion 

of organic matter (e.g., Swanston D.N. 1974) and may be gap-graded (“diamictons”). These 

are materials that have been mixed from various components by geomorphic processes such 

as weathering (residual soil), mass wasting (colluvium), glacier transport (till or ice contact 

deposits), explosive volcanism (granular pyroclastic deposits), or human activity (e.g., fill 

or mine spoil). 

The second column of Table 2.1.1.1 is proposed by the authors as supplementary terms for 

a better description of the main material (if necessary). The third column gives a brief 

description of the main characteristics of each material, while the last two columns report 

the corresponding soil classes (the 4th) and the geotechnical indices which allow objectively 

to determine the case (the 5th). 

Material 
name 

Character 
descriptors 

(if important) 

Simplified field description for the 
purposes of classification 

Corresponding 
unified soil 

classes 

Laboratory 
indices (if 
available) 

Rock 
Strong Strong-broken with a hammer  UCS>25 

MPa 

Weak Weak-peeled with a knife  2<UCS<25 
MPa 

Clay 
Stiff 

Plastic, can be moulded into standard 
thread when moist, has dry strength 

GC, SC, CL, 
MH, CH, OL, 

and OH 
Ip> 0.05 Soft 

Sensitive 

Mud Liquid 
Plastic, unsorted remoulded, and close 

to Liquid Limit 
CL, CH, and 

CM 
Ip>0.05 and 

Il>0.5 

Silt, sand, 
gravel, and 

boulders 

Dry 

Nonplastic (or very low plasticity), 
granular, sorted. Silt particles  

ML 

Ip<0.05 Saturated 
SW, SP, and 

SM 

Partly saturated 
GW, GP, and 

GM 

Debris 

Dry 

Low plasticity, unsorted and mixed 

SW-GW 

Ip<0.05 Saturated SM-GM 

Partly saturated 
CL, CH, and 

CM 

Peat  Organic   

Ice  Glacier   

Figure 2.1.1.1: Landslide-forming material types (modified from Hungr et al., 2014). 
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Regarding the type of movement, Hungr et al. (2014) propose six main movement 

mechanisms, giving a deeper description of specific landslide types, according to the 

material involved. 

Table 2.1.1.2 summarizes the movement types proposed by the authors. Below is a brief 

description of all main movement mechanisms and a more specific description of the 

landslide types which have been faced in this research, directly based on the definition of 

Hungr et al. (2014). 

Type of movement Rock Soil 

Fall Rock/ice falla Boulder/debris/silt falla 

Topple Rock block topplea Gravel/sand/silt topplea 

Rock flexural topple 

Slide Rock rotational slide Clay/silt rotational slide 

Rock planar slidea Clay/silt planar slide 

Rock wedge slidea Gravel/sand/silt slidea 

Rock compound slide Clay/silt compound slide 

Rock irregular slidea 

Spread Rock slope spread Sand/silt liquefaction spreada 

Sensitive clay spreada 

Flow Rock/ice avalanchea Sand/silt/debris dry flow 

Sand/silt/debris flowslidea 

Sensitive clay flowslide 

Debris flow 

Mud flow 

Debris flood 

Debris avalanche 

Earthflow 

Peat flow 

Slope deformation  Mountain slope deformation Soil slope deformation 

Rock slope deformation Soil creep 

Solifluction 

Figure 2.1.1.2: Summary of the proposed new version of the Varnes classification system. The words in 

italics are placeholders. a Movement type that usually reaches extremely rapid velocities as defined by 

Cruden and Varnes (1996). The other landslide types are usually (but not always) extremely slow to very 

rapid (modified from Hungr et al. 2014). 

a) Fall: phenomena characterised by the detachment of material from a steep slope or 

cliff, through discontinuities of different nature. Based on the inclination and 

morphological characteristics of the base of the slope, the movement of the detached 
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mass occurs by free-fall and/or by "jumps and bounces", to run out with the 

disintegration of the mass into blocks of different sizes. Both the two types of falls 

identified by the authors are analysed in this research: 

1 Rock fall: detachment, fall, rolling and bouncing of rock or ice fragments. May 

occur singly or in clusters, but there is little dynamic interaction between the 

most mobile moving fragments, which interact mainly with the substrate 

(path). 

2 Boulder fall: detachment, fall, rolling, and bouncing of soil fragments such as 

large clasts in soil deposits, or blocks of cohesive (cemented or unsaturated) 

soil. The mechanism of propagation is similar to rockfall, although impacts 

may be strongly reduced by the weakness of the moving particles. 

b) Topples: phenomena characterised by the detachment of material from a steep slope 

or cliff, through discontinuities of different nature. The detached mass rotates around 

some pivotal point, below or low in the mass. Only the rock block topple type is 

analysed in this research. 

3 Rock block topple: forward rotation and overturning of rock columns or plates 

(one or many), separated by steeply dipping joints. The rock is relatively 

massive, and rotation occurs on well-defined basal discontinuities. Movement 

may begin slowly, but the last stage of failure can be extremely rapid. Occurs 

at all scales. 

c) Slide: phenomena where a weak mass slides, separating from a more stable 

underlying material. In this research, the following typologies are detected: 

4 Clay/silt rotational slide (“soil slump”): Sliding of a mass of (homogeneous 

and usually cohesive) soil on a rotational rupture surface. Little internal 

deformation. Prominent main scarp and back-tilted landslide head. Normally 

slow to rapid but may be extremely rapid in sensitive or collapsible soils. 

5 Clay/silt planar slide: Sliding of a block of cohesive soil on an inclined planar 

rupture surface, formed by a weak layer (often pre-sheared). The head of the 

slide mass separates from stable soil along a deep tension crack (no active 

wedge). May be slow or rapid. 

6 Gravel/debris slide: Sliding of a mass of granular material on a shallow, planar 

surface parallel with the ground. Usually, the sliding mass is a veneer of 

colluvium, weathered soil, or pyroclastic deposits sliding over a stronger 
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substrate. Many debris slides become flow-like after moving a short distance 

and transform into extremely rapid debris avalanches. 

d) Spread: phenomena characterised by lateral extension of material along very gentle 

slopes or flat terrain. The slope failure is linked to the liquefaction of a ductile 

lithotype underlined a brittle lithotype, which begins to break into blocks. The 

landslide is so characterized by blocks and plastic/liquefied material spread along 

the slope. Spread type is not analysed in this research. 

e) Flows: rapid to very rapid movements of a mixture composed of air, water, and 

sediments of varying sizes. Hungr et al. (2014) distinguish ten different types of 

flows based on the involved material. In this research, the following are detected:  

7 Sand/silt/debris flowslide: very rapid to extremely rapid flow of sorted or 

unsorted saturated granular material on moderate slopes, involving excess 

pore-pressure or liquefaction of material originating from the landslide source. 

The material may range from loose sand to loose debris (fill or mine waste), 

loess, and silt. Usually originates as a multiple retrogressive failure. May occur 

subaerially, or underwater. 

8 Debris flow: very rapid to extremely rapid surging flow of saturated debris in 

a steep channel. Strong entrainment of material and water from the flow path. 

9 Mud flow: Very rapid to extremely rapid surging flow of saturated plastic soil 

in a steep channel, involving significantly greater water content relative to the 

source material. Strong entrainment of material and water from the flow path 

(Plasticity Index>5 %). 

10 Earthflow: Rapid or slower, intermittent flow-like movement of plastic, clayey 

soil, facilitated by a combination of sliding along multiple discrete shear 

surfaces, and internal shear strains. Long periods of relative dormancy alternate 

with more rapid “surges”. 

f) Slope deformation: large-scale gravitational deformation of steep, high mountain 

slopes, valleys, or hill slopes. Usually, they are very slow. This type of landslide is 

not detected in this research. 

 

2.1.2. Feature and geometry of a landslide 

The landslides are characterised by specific features. A nomenclature for these features, 

largely accepted in the literature, is proposed by Cruden & Varnes (1996) and reported 
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below. Figure 2.1.2.1 shows the original schemes proposed by the authors for the position 

of these features in an earth slide.  

- Crown (1): the non displaced material adjacent to the highest parts of the main scarp; 

- main scarp (2): the steep surface on undisturbed ground at the upper edge of the 

landslide area caused by movement of the displaced material (13) away from the 

undisturbed ground. It is the visible part of the surface of rupture (10); 

- top (3): the highest point of contact between the displaced material (13) and the main 

scarp (2); 

- head (4): the upper parts of a landslide along the contact between the displaced 

material and the main scarp (2); 

- minor scarp (5): the steep surface on the displaced material of a landslide produced 

by differential movements within the displaced material; 

- main body (6): the part of displaced material of a landslide that overlies the surface 

of rupture between the main scarp (2) and the toe of the surface of rupture (11); 

- foot (7): the portion of a landslide that has moved beyond the toe of the surface of 

rupture (11) and overlies the original ground surface (20); 

- tip (8): the point on toe (9) farthest from the top (3) of a landslide; 

- toe lower (9): usually curved margin of the displaced material of a landslide, most 

distant from the main scarp (2); 

- surface of rupture (10): the surface which forms (or which has formed) the lower 

boundary of the displaced material (13) below original ground surface (20); 

- toe of surface of rupture (11): the intersection (usually buried) between the lower 

part of the surface of rupture (10) of the landslide and the original ground surface 

(20); 

- surface of separation (12): the part of the original ground surface (20) now overlain 

by the foot (7) of a landslide; 

- displaced material (13): the material displaced from its original position on the slope 

by movement in a landslide; forms both the depleted mass (17) and the accumulation 

(18); 

- zone of depletion (14): the area of a landslide within which the displaced material 

(13) lies below the original ground surface (20); 

- zone of accumulation (15): the area of a landslide within which the displaced 

material lies above the original ground surface (20); 
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- depletion (16): the volume bounded by the main scarp (2), the depleted mass (17), 

and the original ground surface (20); 

- depleted mass (17): the volume of displaced material that overlies the surface of 

rupture (10) but underlies the original ground surface (20); 

- accumulation (18): the volume of displaced material (13) that lies above the original 

ground surface (20); 

- flank (19): the undisplaced material adjacent to sides of the surface of rupture. 

Compass directions are preferable in describing the flanks, but if left and right are 

used, they refer to the flanks as viewed from the crown; 

- original ground surface (20): the surface of the slope that existed before a landslide 

took place. 

 

Figure 2.1.2.1: Main element of idealized complex earth slide-earth flow (modified from Cruden and Varnes 

1996) 

Theoretically, the feature described above is common to all types of landslides. However, it 

is not simply recognising all the features in all types of slope failures (e.g., falls). 

 

Furthermore, starting from the nomenclature established by the IAEG Commission on 

Landslides (1990), Cruden and Varnes (1996) update the list of morphometric parameters 

of a landslide. The original definition of these parameters is reported in Table 2.1.2.1 and 

shown in Figure 2.1.2.2. 

  



13 
 

NUMBER NAME DEFINITION 

1 Width of displaced mass, Wd 
Maximum breadth of displaced mass 

perpendicular to length, Ld 

2 Width of surface of rupture, Wt 
Maximum width between flanks of landslide 

perpendicular to length, Lt 

3 Length of displaced mass, Ld Minimum distance from tip to top 

4 Length of surface of rupture, Lr 
Minimum distance from toe of surface of 

rupture to crown 

5 Depth of displaced mass, Dd 
Maximum depth of displaced mass measured 

perpendicular to plane containing Wd and Ld 

6 Depth of surface of rupture, Dr 

Maximum depth of surface of rupture below 

original ground surface measured perpendicular 

to plane containing Wr, and Lr. 

7 Total length, L 
Minimum distance from tip of landslide to 

crown 

8 Length of center line, Lcl 

Distance from crown to tip of landslide through 

points on original ground surface equidistant 

from lateral margins of surface of rupture and 

displaced material 

Table 2.1.2.1: definition of landslide dimension (modified from Cruden and Varnes 1996) 

 
Figure 2.1.2.2: Landslide dimension: upper portion, plan of typical landslide in which dashed line is trace of 

rupture surface on original ground surface; lower portion, section in which hatching indicates undisturbed 

ground, stippling shows extent of displaced material, and broken line is original ground surface (modified 

from Cruden and Varnes 1996) 
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2.1.3. Landslide activity and evolution 

A landslide is a physical system that develops in time through several stages (e.g., Terzaghi 

1950; Leroueil et al. 2012). As reviewed by Skempton and Hutchinson (1969), the history 

of a mass movement comprises pre-failure deformations, failure itself and post-failure 

displacements. Many landslides exhibit several movement episodes, separated by long or 

short periods of relative quiescence. The evolution of a landslide can be evaluated 

considering the following aspects (Cruden and Varnes 1996): 

i. State of Activity, which describes what is known about the timing of movements; 

ii. Distribution of Activity, which describes broadly where the landslide is moving;  

iii. Style of Activity, which indicates the manner in which different movements 

contribute to the landslide. 

 

The state of activity of a landslide describes, through geomorphological and historical 

information, the temporal evolution of a slope failure. According to the morphodynamic 

indications suggested by the recognized feature or by historical documents and data and 

referring to the time of recognition of the phenomenon, the authors suggest the following 

terms define a landslide: 

a) active: those landslides currently moving; 

1. new activation; 

2. reactivations 

i. reactivated: landslide that is again active after being inactive; 

ii. suspended: landslides that have moved within the last annual cycle of 

seasons but that are not moving at present; 

b) inactive: landslides which last activity happened more than one annual cycle of seasons 

ago.  

1. dormant: inactive landslide that can be reactivated by the original trigger; 

2. natural abandoned: inactive landslide that cannot be reactivated from its 

original causes; 

3. stabilised: if by artificial remedial measures the movement of the landslides 

have been stopped; 

4. relict: landslides that have clearly developed under different 

geomorphological or climatic conditions, perhaps thousands of years ago, so 

a reactivation due to the original or other causes is not possible. 
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It is important to note that if erosion moves the newly acquired equilibrium of a slope failure, 

landsliding can restart, consequently transforming a dormant/inactive landslide into an 

active one. 

For this reason, in light of the predictional perspective of the topics of this research, all the 

recognizable landslides were grouped in the same dormant/active undifferentiated class, as 

they share the same meaning and suitability for calibrating susceptibility models.  

 

The distribution of the activity of a landslide refers to diachronic multi-storied landslides, 

expressing the past spatial evolution of the slope failure rupture surface. This type of 

characterization, in the hypothesis of continuity of the movement, can also provide 

information about the future evolution of the phenomenon. The distribution of the activity 

of a landslide is distinguished in the following classes (Figure 2.1.3.1): 

1. advancing: if the surface of rupture is extending in the direction of movement; 

2. retrogressive: if the surface of rupture is extending in the direction opposite the 

movement of the displaced material; 

3. widening: if the surface of rupture is extending at one or both lateral margins; 

4. enlarging: if the movement can be limited to the displacing material or the surface 

of rupture; 

5. progressive: if the surface of rupture of the landslide is enlarging in two or more 

directions; 

6. confined: if movements have a scarp but no visible surface of rupture in the foot of 

the displaced mass; 

7. diminishing: active landslide in which the volume of material being displaced is 

decreasing with time seems free of undesired implications; 

8. moving: a landslide in which displaced materials continue to move but whose surface 

of rupture shows no visible changes. 
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Figure 2.1.3.1: distribution of activity of a landslide (modified from Amanti et al. 2001). 

The style of the activity of a landslide (figure 2.1.3.2) describes the way in which different 

movements contribute to the same single or multi-storied landsliding. The type of style can 

be: 

a) single: when the failure is characterised by a single movement; 

b) complex: if the failure is characterised by the combination, in temporal sequence, of 

two or more types of movement; 

a) composite: landslides in which different types of movement occur in different areas 

of the displaced mass, sometimes simultaneously; 

b) successive: when the recognized movement appears as a repetition of a phenomenon 

of the same type that occurred previously in the same portion of the slope or closely; 

c) multiple: landslide shows repeated movements of the same type, often following 

enlargement of the surface of rupture. The newly displaced masses are in contact 

with previously displaced masses and often share a surface of rupture with them. 

It is important to note that, according to Hungr et al. (2014), in this research, all the landslides 

detected are reported as single phenomena. In fact, even when complex or composite 

phenomena are present, more information about a single event is collected.  
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Figure 2.1.3.2: the style of activity of a landslide (modified from Amanti et al. 2001). 

 

2.1.4. Landslides controlling factors 

The assessment of landslide susceptibility requires in-depth knowledge of the controlling 

factors that affect slope stability, which is divided into predisposing and triggering factors. 

The formers correspond to the geo-environmental conditions which characterise the study 

area driving the landslide activity and acting constantly over time. The most important 

predisposing factors for slope stability are lithology and its geomechanical properties, land 

use, tectonics, slope morphology, and hydrogeology. Just a few of these factors actually are 

directly involved in the static slope equilibrium, while the majority actually act as a proxy 

factor. 

Triggering factors are considered all impulsive causes that could modify the natural slope 

equilibrium causing the landslides activation. They can be extreme meteorological events 

(intense rainfall, and also intense wind for landslides of fall and topple type), fast snow 

melting, earthquakes, volcanic eruptions, anthropic actions (as alteration of the natural 

profile of the slope, increasing of pore pressure). 

Therefore, the triggering factors cause the landslide activation due to: 

- decrease of shear strength due to the variation of pore pressure (for an increase of 

water content and a relative decrease of cohesion or for dynamic solicitation) or loss 

in cohesion;  
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- increase of shear stress for modification of slope geometry and for natural or artificial 

vibrations. 

 

Among the controlling factors, extreme meteorological events and, more in general, rapid 

soil saturation, represent the most common landslide triggers. Besides, soil saturation can 

occur according to different causes and time trends as well as the increase in water content 

is both predisposing and triggering factor. Indeed, the variation of pore pressures occurs due 

to infiltration driven by rainfalls, snow melting, changes in the coastline or in the water level 

of lakes, rivers, and natural or artificial dams, anthropic action. The greater the intensity of 

causes, the faster the increase in pore pressure and the soil saturation will transform from a 

predisposing factor to a triggering factor.  

Earthquakes are the second most frequent type of trigger. The energy released by these 

events often causes the loss of cohesion of the pseudo-coherent material for a decrease in 

shear strength. The dilation of the material also facilitates the rapid infiltration of water and 

a rapid increase in neutral pressures. 

 

2.2. Landslide Susceptibility 

2.2.1. General assumptions 

Landslide susceptibility is the likelihood of a landslide occurring in an area depending on 

local terrain conditions (Brabb 1984), consisting of the prediction of “where” landslides are 

more likely to occur. Therefore, the temporal probability (or time recurrence) of slope 

failures and their associated magnitude is not included in a landslide susceptibility 

evaluation, which only provides the proneness of a slope to be affected by a specific 

landslide typology (National Research Council 2004). Nevertheless, information about 

magnitude can be indirectly included by landslide susceptibility assessment if focusing on 

specific typologies or different-sized landslides (Carrara et al. 1995).In particular, according 

to their expected movement type, landslides can be subdivided into rapid/normal/slow types, 

as well as into surficial/shallow/deep (or regolith/substratum/bedrock) slope deformations. 

In this sense, a landslide susceptibility map for rotational slides, configure large medium 

velocity diachronic deformations, whilst fall or debris flows typically involve small very 

rapidly moving movements.  

In mathematical language, landslide susceptibility can be defined as the probability of spatial 

occurrence of slope failures, given a set of geo-environmental conditions (Guzzetti et al. 
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2005). In common parlance, a landslide susceptibility map conveys in a nontechnical 

language where landslides are most likely to be a problem in the future (Brabb 1991) 

In light of its definition, landslide susceptibility assessment usually inspects regional to 

basin-scale areas. Not surprisingly, landslide susceptibility studies have increased 

considerably in the last 30 years, proportionally with the growth of Geographic Information 

System (GIS) and computational capabilities. In fact, due to the optimization of informatics 

instruments, collecting, manipulating, and analysing data (predisposing factors but also 

landslide archives) is simpler than in the past. Also, day by day, the quality and free 

availability of the required input data increases exponentially so as the resolution of remotely 

acquired images and associated Digital Terrain Models (DTM). 

As a general statement of the issue, landslide susceptibility assessment in a given area 

requires its partitioning into mapping units (pixels, dtm-derived terrain units, statistical 

multivariate unique conditions units, etc.), corresponding to homogenous domain sharing 

the same stability/instability conditions, and the categorical/ordinal/numerical 

characterization/scoring of each mapping unit through the assignment of a measure of its 

more or less propensity to “spatially host” a new landslide in the future. 

The assessment of landslide susceptibility is based on some theoretical-scientific 

assumptions widely shared by the researchers. These assumptions can be synthesised in 

three largely agreed rules (Varnes 1984; Crozier 1986; Hutchinson 1995; Guzzetti et al. 

1999, 2006): 

i. landslides leave discernible signs, most of which can be recognized, classified, 

and mapped in the field or from stereoscopic aerial photographs. 

ii. landslides are controlled by mechanical laws that can be determined empirically, 

statistically, or in a deterministic way. In light of this, the instability factors 

linked to slope failures can be analysed to understand which condition could 

cause the landslides. 

iii. for landslides, the past and present are keys to the future. According to this 

rephrasing of the actualism principle (Lyell, 1833), slope failures in the future 

will be more likely to occur under the conditions which led to past and present 

instability.  

In view of the above, a systematic mapping of past and present slope failures can offer the 

tools for investigating and evaluating the areas which are more prone to landslide occurrence 

due to their geo-environmental conditions.  
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However, the success in the mapping of landslide phenomena depends on several conditions 

that can weaken the correctness and completeness of the derived archives. In fact, if it is true 

that landslides leave clearly distinguishable shapes on the ground, it is also true that 

timeliness in recognition is essential: the ease in identifying the typical morphologies of a 

landslide is considerably reduced with the increase in the time elapsed between the 

occurrence of the phenomenon and its mapping. This effect is obviously much more 

important for those types of landslides which involve limited volumes of rocks, leaving on 

the landscape only surficial easily blurrable signs. Over time, therefore, only an expert 

observer is able to correctly distinguish the forms of a failure (Petschko et al. 2014), thus 

also determining a non-univocity in the inventories produced by different observers 

(Guzzetti 2005). For flow landslides, this difficulty in recognizing phenomena can be more 

pronounced. In fact, for this type of slope failure, the persistence over time of the signs is 

considerably reduced, especially in urbanised or cropped areas (Petschko et al. 2014). The 

surface of rupture is in fact very small and superficial (since, almost always, the deformation 

affects only the regolithic layer) and this implies that in a short time the shape can be 

cancelled by new processes of runoff water erosion. The landslide body moves along 

channels and its residues are quickly erased by runoff waters; at the same time, colluvial 

deposits tend to fill the topographic concavities. Finally, the accumulation fan can undergo 

different processes, from anthropic to natural actions, which cause its cancellation (Figures 

2.2.1.1 and 2.2.1.2). Again, this problem grows in climatic environments that favour rapid 

plant growth. 

 

Figure 2.2.1.1: a schematic view of landslide deposits modification (from McCalpin 1984). A) Active 

landslide; B) Landslide features modified slightly by erosion; C) Landslide features modified extensively by 

erosion; D) Landslide features so modified by erosion. 
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Figure 2.2.1.2: evolution of debris flows shapes in Ilopango Caldera, El Salvador. The sketch shows how 

shapes are modified in just two years. 

The above-recalled limits are obviously of different extent depending on the adopted type 

of landslide survey. Field mapping generally allows to recognize almost all the forms 

connected to recent instability phenomena (some of which are not appreciable with a remote 

mapping on orthophoto) and to capture even small instabilities landforms whose traces could 

be undermined by vegetation or agricultural actions. On the other hand, field surveys require 

high efforts in economic and temporal terms. Instead, remote landslide recognition allows 

landform mapping in a much shorter time, maintaining rather high quality. However, even 

in this case, some problems must be faced. In fact, in order to have a good quality mapping, 

the resolution of the images must be high and the acquisition period close to that of slope 

failures. As regards this point, two main conditions are given: single-extreme-events (SEEs) 

and multiple-standard-events (MSEs). The first case is configured by image acquisition 

performed soon after a strong extreme (storm/earthquake) triggering event and actually 

allows the interpreter to consider all the recognized phenomena as coeval and dated at the 

time of the triggering event. SEEs are typically the result of post-disaster remote recognition 

aero-photogrammetric flights. In the second case, which is actually the much more frequent 

one, unless specific but typically occasional landslide dating, the interpreter has to accept 

that the landslide scenario is the result of cumulated multiple activations since a far past the 

time of the recognized image, which could be set if antecedent images are available. This 
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drives the paradox that actually all the recognized and mapped landslides from the same 

image could have been triggered by different standard events in different times, potentially 

spanning through decades. An intermediate very marginal case is the one configured when 

an aerial image has been taken casually soon after an extreme event. In that case, the 

interpreter could single out among the whole set of recognized landslides a coeval subset 

presenting very fresh signs on the field which can be referred to as an extreme event not far 

in the past from the date of the image itself. 

Nowadays, the acquisition of high-quality recurrent satellite images is certainly favoured by 

the presence of a very dense satellite constellation. In addition, the development of 

Unmanned Aerial Vehicles (UAV) platforms facilitates the acquisition of high-resolution 

aerial photos from which algorithms can be applied to obtain point clouds, Digital Elevation 

Models (DEMs), and orthophotographs (Conoscenti et al. 2021). However, this choice can 

face criticalities linked to times and the cost of acquisition once again. On the other hand, 

the use of Google EarthTM (GE) has found wide use in landslide susceptibility studies (e.g., 

Costanzo et al. 2012a, b; van den Eeckhaut et al. 2012; Borrelli et al. 2015; Regmi and 

Poudel 2016; Conoscenti et al. 2016; Mandal and Mandal 2017; Vargas-Cuervo et al. 2019) 

thanks to the direct immediate no-cost access to a very performing remote surveying 

technology. Nevertheless, the images obtained from the GE system do not always have a 

coeval, homogeneous and high-resolution coverage for the whole investigated area and, 

obviously, the acquisition epoch is not necessarily linked with natural events or landsliding, 

rather depending on satellite recurrence and/or aerial flight plan cover. Therefore, it is often 

necessary to resort to compromises: reduction of the study area, splitting or even 

abandonment of the study area, or aerial/satellite cover. In this way, the forced choice of 

giving up the image of a specific epoch could result in a rather important loss of information 

and, certainly, the "jump" of a few years is more serious for those areas where coverage is 

not frequent. 

 

In light of all the above-recalled points, the limits in the reliability of the landslide 

inventories can strongly affect the quality of the geomorphological analysis: the lack of some 

phenomena could produce information gaps in the landslide inventory, leading to a 

significantly misleading gravitational instability scenario of an area. However, this problem 

can be differently endured by several approaches used for landslide susceptibility.  
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2.2.2. Methods for landslide susceptibility evaluation: a general view 

Several approaches have been adopted for landslide susceptibility, which can be discussed 

and classified depending on the type of score or class description they produce mainly, 

quantitative or qualitative, direct or indirect, inventory dependent or independent. 

 

Direct qualitative 

Qualitative methods are intrinsically based on the direct "expert" judgment of the interpreter 

geomorphologist, which has to correctly decipher the morphodynamic evolutive future 

tendency of the observed slopes, in light of the complete framework of landforms and 

running processes obtainable by field and/or remote surveys. Thanks to consolidated 

geomorphological conceptual models, this analytical approach is capable of synthetically 

capturing the complexity of the morphodynamic directed and crossing relations acting 

between landslides and their controlling factors. However, for the same reason, the future 

landslide scenario derived from this analytical approach is characterised by a more or less 

extended degree of subjectivity, depending on the expertise of the operator, as well as by 

mapped classes which are qualitatively discriminated into different degrees of susceptibility 

in terms of near discursive-descriptive terms. The same delimitation of the boundaries of the 

mapping units is actually dependent on the interpretation of the operator. As a consequence, 

the effectiveness of this approach is strongly dependent both on the geomorphological 

expertise of the subject who assesses the landslide susceptibility and of the one who finally 

reads and uses the obtained map. At the same time, direct analytical methods obviously 

require the systematic geomorphological recognition of the study areas, resulting in detailed 

but time/cost-ineffective protocols, unless incautious simplifications are assumed. 

 

Landslide Inventorying  

A specific category of direct, analytical, and quantitative susceptibility/hazard assessment 

methods is exclusively based on the use of landslide inventories. In this approach, the expert-

based predictions are limited to interpreting the evolution of landslide areas (those sectors 

where landforms produced by past phenomena are recognized), which are all considered to 

the same degree, the only susceptible sectors in the study area. Besides, according to a 

geomorphologically sound standardised schematic approach, hazard levels are assigned to 

each landslide area, depending on estimated extension/volume, expected velocity and state 

of activity, as estimated by landslide recognition. This approach, which is very rigidly linked 
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to the principle stating that new landslides are more likely to occur under the same conditions 

which activated the past ones, is widely used by the Administrative users from Basin 

Authorities, in spite of its evident limits. In fact, although the inventorying approach will 

never produce a false negative in an area which has been already hit by a landslide, it is 

hampered by a number of weak features, whose main items are: blind mapping for new 

activations or re-activations of unknown not-inventoried past landslides; subjectivity in the 

association of a magnitude or hazard class to a single extension/typology/state of activity 

condition; an increasing grade of subjectivity in the estimation of extension/volume, 

movement typology and state of activity, respectively. The hazard/susceptibility maps which 

are obtained through this kind of method distinguish classes in ordinal terms, with mapping 

units totally corresponding to the landslide bodies and blind unmapped areas in the outer 

sectors. 

A quantitative using of landslide inventories is configured when past landslides or landslide 

areas are used to compute their spatial frequency into a regular grid of cells in which the 

study area is partitioned, assuming the obtained 0-1 score as expressing landslide 

susceptibility. This approach, which relies on a spatial statistical basis, is however very 

limited in terms of resolution, being suitable only for regional assessment when the grid-

cells as meaningfully larger than a single landslide body. 

Deterministic 

Deterministic approaches are based on the setting of a physical-mathematical model 

representing the slopes from which, depending on physical-mechanical parameters (strength 

and cohesion) and on the geometry of topographic, groundwater and future-

hypothesised/past-recognized rupture surface, furnish an estimate of deforming stress and 

resistant strength resulting in a safety factor, corresponding to a susceptibility score. This 

approach is obviously cost/effectively applicable only on a single slope or site scale, being 

totally un-useful for basin-scale analysis. In fact, it requires a large investment for direct and 

indirect prospecting as well as for geotechnical laboratory tests on samples.  

 

Indirect quantitative 

Indirect methods perform the susceptibility assessment by analysing the spatial distribution 

of a set of controlling factors, selected as expressing the causes of the landslide activity in a 

given study area. These methods typically produce a quantitative mapping and have become 

more and more diffused with the development of GIS technology and the production of large 
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open access webgis database of geo-environmental thematic layers and satellite images. 

However, two very different categories can be distinguished among the indirect approaches: 

heuristically and statistically based. 

In the heuristically based approaches, once the set of controlling factors is defined, 

subjectively expert-based analysis is to be applied for the ri-classification of the factors and 

the assignments of scores to each class, expressing the degree of favourable conditions for 

slope failure. Finally, a more or less structured general function (typically, weighted sums 

or products) is defined for integrating all the scores produced into a single mapping unit, 

depending on its geo-environmental features, and computing multiple composed scores 

corresponding to a quantitative ordinal estimation of landslide susceptibility. The heuristic 

approach is very frequently implemented on a pixel partitioned layer of the study area and 

adopted for large scale assessment offering, although down from a subjective procedure of 

classification, a solution unconstrained to the availability of a landslide inventory. At the 

same time, heuristic models can be subjected to a pure validation procedure, as they are 

calibrated according to expert classification and scoring, resulting totally blind to any known 

landslides. 

Statistically based modelling diverges from the heuristic approach as no re-classification of 

factors is mandatory and, more important, the scoring of factors and classes is quantitatively 

and objectively inferred by statistically analysing the spatial relation between the factor 

layers and at least one available training landslide inventory. A number of statistical 

techniques are proposed in scientific papers, mainly ascribable to: conditional analysis, 

Fisherian principal component and discriminant analysis, and generalised linear models 

(linear and logistic regressions). In particular, conditional analysis is mainly based on the 

computation of the landslide frequency or density inside each analysed uni- or multi-variate 

class, searching for a generalised efficiency of the derived predictive function on the 

representativeness of the calibration inventory. Differently, Generalised Linear Modelling 

makes hypotheses on the processed calibration inventory (the sample), inferring the 

parameters for future landslides (the population) by testing for the significance of all the 

applied parameter estimations. 

To briefly summarise what is above described, the approaches used for the landslide 

susceptibility evaluation can be grouped into five main categories (Guzzetti et al. 1999). 

However, there is no clear distinction between the different methodologies, and frequently 

the researchers use more than one type of integrated approach. Table 2.2.2.1 resumes the 

characteristics of the main approaches. 
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The final aim of landslide susceptibility evaluation is to formulate ordinances and 

regulations to direct landslide risks in land management, contributing to adopting policies 

and taking proactive actions to avoid landslides and their negative consequences (Brabb 

1991), and address rescue in case of widespread landslide activation. For this reason, the 

landslide susceptibility maps must be objective (the result does not change according to who 

defines the map), quantifiable (which areas are more susceptible than others in an absolute 

way) and must represent as much as possible the reality. However, landsliding is a complex 

natural phenomenon, in which different predisposing conditions interact with each other and 

with a trigger (varying by type and intensity), determining the instability of an area. If 

detecting the single interactions between the predisposing factors and the occurrence of 

landslides may be relatively simple, it is much more complex to understand how the 

variables interact with each other and the presence of failure. Any landslide susceptibility 

evaluation has to replicate reality through simplifications. However, the degree of adaptation 

of the model to reality will also be inversely proportional to the degree of simplification 

applied. 

Approaches to landslide 

susceptibility evaluation 
Description – Based on Type 

Analytical 
Geomorphological 

mapping 

expert judgment of actual and potential slope failures, 

including their evolution and possible consequences 

direct and 

qualitative 

Landslide 

inventorying 

Landslide activity past distribution of landslide  
indirect and 

qualitative 

Landslide 

density/frequency 
past distribution of landslide  

indirect and 

quantitative 

Deterministic Physically-based 
physical laws controlling the slope stability (geotechnical 

parameters) 

indirect and 

quantitative 

Heuristic Index-based 

classification, ranking, and weighting (by experts) of 

instability factors according to their assumed or expected 

importance in causing mass movements 

indirect and 

qualitative 

Stochastic Statistic modelling 
functional relationships between instability factors and the 

distribution of landslides 

indirect and 

quantitative 

Table 2.2.2.1: schematic resume of main approaches used for landslide susceptibility evaluation. 
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As an example, we can say that a mudflow can occur on clays, and it can certainly be said 

that high slope steepness favours the phenomenon. However, other factors affect the 

landslide: the exposure of the slope, the concavity of the slope, the presence of water, and 

others. Not considering the other factors that are involved in the activation of a phenomenon 

means potentially offering a model that is only partially representative of reality. 

With this view, the methods based on the analysis of inventories do not identify the 

relationships between the predisposing variables and the landslide scenario but simply 

assign the level of landslide susceptibility of an area based on the density of landslides 

present in the past for the same area, thus entrusting the prediction skill of the model only 

to the quality of the archive. In this way, the result will be reliable only if the archive used 

is systematic and contains all the failures that occurred in the past. However, as seen in the 

previous chapter, rarely can an archive be defined as systematic and complete, due to 

uncertainties and errors associated with landslide inventories and to the complexity of 

landslide phenomena, methods based solely on landslide density may be misleading or 

incorrect (Guzzetti 2005). At the same time, the geomorphological mapping of susceptibility 

is not preferable among the different approaches because it is highly subjective. It is true 

that "subjectivity is not necessarily bad, particularly if it is based on the opinion of an expert" 

(van Westen et al. 1997) but subjectivity adds to the uncertainty of the model (Guzzetti 

2005). 

Similarly, heuristic methods are affected by the investigator's judgment on how the 

individual factors of instability can influence the occurrence of the phenomenon. Once 

again, therefore, subjectivity is introduced into the evaluation. This method also does not 

allow for determining how the predisposing factors can interact with each other in the 

triggering of the phenomenon. 

Deterministic methods use geotechnical variables that are generally situ-specific and do not 

have a large spatial resolution. In fact, they are methods usually adopted for the analysis of 

instability on a slope scale and normally include specific information about the instability 

(e.g., surface depth of failure). Although very detailed, they are therefore not suitable for a 

spatial prediction study of phenomena (and to answer the only question where failure will 

occur in the future). 

Conversely, the indirect methods produce a completely objective landslide susceptibility 

evaluation. These methods provide for consequential procedures which can be summarised 

as follows: 
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i. recognition and mapping of landslides in the study area (or collecting of available 

landslide archive) and extraction of diagnostic morphodynamic areas; 

ii. identification of geo-environmental factors directly or indirectly expressing the 

landslide controlling factors and production of relative layers (e.g., geological map, 

topographical indices, and so on); 

iii. partitioning of the study area into suitable mapping units and assignments of factor 

conditions and unstable/stable status to each;  

iv. estimation of the relative contribution of each factor to landsliding and classification 

of the study area in different susceptibility sectors; 

v. validation of the landslide susceptibility map produced and analysis of model 

prediction skill. 

In light of all the above-described pros and cons associated with the issue, quantitative, 

indirect, objective statistical methods are the one which more and more are adopted in 

landslide susceptibility modelling for basin studies to a scale up to 1:10.000. 

 

2.2.3. Statistic modelling 

In the last years, statistical methods have been widely applied in landslide susceptibility 

evaluation (Reichenbach et al. 2018). This approach allows to: 

i) optimise information input; 

ii) achieve objective results (mathematically obtained from data input) and 

numerically measurable.  

The first point is linked to the statistical inference. Statistical inference consists of the use 

of statistics to draw conclusions about some unknown aspect of a population-based on a 

random sample from that population (Sinharay 2010). In other words, the goal of statistical 

inference is to understand by analysing a sample of the population, all the characteristics of 

the population. In the case of landslides, by investigating the relationships between failures 

and geo-environmental conditions, the aim is to detect all areas that potentially can be 

affected by slope failures considering their characteristics. 

The second point is another advantage of the statistical approach: if the input data (landslides 

inventory and predisposing factors) do not change, the results are replicable by any 

researcher. Furthermore, the results attained for different sectors (catchment area, region) 

can be compared since susceptibility is numerically expressed. 
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Several statistical techniques are used in landslide susceptibility evaluation. Below, the main 

approaches used in this research are described and, in the following paragraph, the single 

methods used are explicated. 

 

Index-based methods  

These technics measure, directly or in a weighted form, the relative or absolute abundance 

of landslide area or numbers in different terrain categories. Differently from heuristic 

methods, the weights are assigned to the terrain categories, according to objective 

measurement (proportion, percentage, frequency, incidence of landslides).  

 

Bayesian statistical methods 

These methods are based on Bayes theory which defines the probability of an event 

according to the a priori knowledge of the conditions that could be related to the event. This 

probability is also known as conditional probability and can be written as: 

 𝑃(𝐴 | 𝐵)  =   𝑃(𝐵 | 𝐴) 𝑥 𝑃(𝐴)𝑃(𝐵)  

where P(A|B) is the probability of event A occurring conditioned by the fact that event B 

has occurred, P(B|A) is the conditional probability of event B occurring given that event A 

has occurred, P(A) is the “prior” probability of event A occurring, and P(B) is the “prior” 

probability of event B occurring. 

In landslide susceptibility evaluation, event B corresponds to all the predisposing factors 

that can condition landsliding and A represents the study (better the mapping units) that are 

affected by slope failures. 

Among approaches based on the analysis of conditional probability, Reichenbach et al. 

(2018) highlight that the weight of evidence method is the most used in landslide 

susceptibility evaluation (e.g., Sujatha et al. 2014; Regmi et al. 2014; Wang et al. 2016; Xie 

et al. 2017; Gupta et al. 2022). 

 

Fisherian statistical methods  

These methods are based on the analysis of the probability of frequency, according to which 

the probability of an event is its frequency over time, that is, its relative frequency of 

occurrence after repeating a process a large number of times under similar conditions. 
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Therefore, these methods draw conclusions from sample data by means of emphasising the 

frequency or proportion of findings in the data. In addition to developing first the idea that 

statistics could be inferred as a probabilistic frequency, Fisher developed the concept of 

"significance testing" and the relative "p-value", which indicate the significance of a statistic 

measure when two hypotheses were compared. 

According to Brenning (2005), among frequentist methods, logistic regression and 

discriminant analysis were the most frequently adopted classification modelling tools. 

However, a recent review of the literature (Reichenbach et al. 2018) shows that also linear 

regression analysis was largely used. 

 

2.2.3.1. Statistical methods  

As mentioned above, in this paragraph a description of the methods used in the research 

conducted is reported. 

Linear regression 

Linear regression is used to detect linear relationships between dependent and independent 

variables. In linear regression, both the dependent and the independent variables are 

continuous. 

In this way, the relationship is shown by the following equation: 𝑌 =  𝛼 +  𝛽𝑥 +  𝜀  
where Y is the dependent variable, x is the covariate, β is the slope of the line, α is the 

intercept and ε is the error which follows a normal distribution with a mean equal to zero 

and variance constant across levels of the independent variables.  

The values of parameters β and α are randomly assigned for calculating the value of Y for a 

given x.  

The performance of linear regression is evaluated by the mean squared error (MSE - or 

derived metrics) that calculate the error (residual) between the observed value of y and the 

calculated value ŷ, according to the formula:  

𝑀𝑆𝐸 =  1𝑛 ∑((𝑦𝑖 +  ŷ𝑖)2)𝑁
𝑖=1   

 

Binary Logistic regression 

In landslide susceptibility evaluation, linear regression is hard to use because predictors can 

be continuous or discrete, and the output is binary (0 = no landslide or 1= landslide). 
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For this reason, binary logistic regression is preferred. In fact, logistic regression is used to 

binary classify elements by calculating the probability of each element belonging to one of 

the two groups, by using independent variables that can be continuous or discrete (Hosmer 

and Lemeshow 2000).  

Different from linear regression, logistic regression does not assume that the dependent 

variable is linearly correlated to the covariate. However, first, the binary separation between 

the cases is determined by detecting the best-fitted line following the linear regression. Then, 

the predicted values are converted as the probability (scoring between 0 and 1) according to 

the sigmoid or logistic function, so passing from linear to a curvilinear relationship: 𝜋(𝑥) = 11 +  𝑒−(𝑥) =  𝑒𝑥1 +  𝑒𝑥 

 

The equation can be rewritten as:  𝜋(𝑥) = 𝑒(𝛼+ 𝛽𝑥 )1 +  𝑒(𝛼+ 𝛽𝑥 ) 
where 𝜋(𝑥) represents the conditional mean of Y given x when the logistic distribution is 

used. 

 

The inverse of logistic function is known as logit function or log-odds and is written as:  𝑔 (𝑥) =  𝑙𝑛 [ 𝑝(𝑥)1 − 𝑝(𝑥)] =  𝛼 +  𝛽𝑥 +  𝜀  
The logit transformation has many of the desirable proprieties of a linear regression model. 

The logit, g(x), is linear in its parameters, may be continuous, and may range from -∞ to +∞, 

depending on the range of x (Hosmer and Lemeshow, 2000). 

Moreover, in the case of a dichotomous outcome variable, the quantity ε may assume one of 

these values:  

- if y=1 than ε = 1- 𝜋(𝑥) with probability 𝜋(𝑥); 

- if y=0 than ε = - 𝜋(𝑥) with probability 1 − 𝜋(𝑥). 

 

The values of parameters β and α are determined by using an iterative procedure aimed to 

obtain the best fitting between the predicted and the observed Y. Given the dichotomous 

nature of Y, the maximum likelihood method must be used. This function l(β) expresses the 

probability of the observed data as a function of unknown parameters (Hosmer and 

Lemeshow, 2000): 
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𝑙(𝛽) =  ∏ 𝜋(𝑥𝑖)𝑦𝑖[1 − 𝜋(𝑥𝑖)]1−𝑦𝑖𝑛
𝑖=1  

 

However, generally the log of the likelihood function is used: 

𝐿(𝛽) =𝑙𝑛 𝑙𝑛 [ 𝑙(𝛽)]  = ∑{𝑦1 𝑙𝑛[𝜋(𝑥𝑖)] + (1 − 𝑦𝑖)𝑙𝑛[1 − 𝜋(𝑥𝑖)]}𝑛
𝑖=1  

 

The maximum likelihood estimator converges toward those parameters that maximise this 

function allowing the better consistency with the observed data. To estimate the global 

fitting of the model the negative log-likelihood (-2LL) is used. The latter estimates the 

goodness of fit, by comparing the fitting of the model with only the intercept (all the βs are 

set to 0, so is considered the model without the variable in question) and the full model (the 

predictor coefficients are non-null, so the variable is included). For evaluating the 

significance of the regression coefficients, the chi-square test and the pseudo-R2 statistic can 

be used. 

In this research, the BLR models were implemented through the ‘stats’ package of RStudio 

software (RStudio Team 2020).  

Multivariate Adaptive Regression Splines 

The MARS (Multivariate Adaptive Regression Splines - Friedman 1991) method, is a 

nonparametric technique that allows linear and non-linear adaptation relationships between 

predictors and independent variables. In practice, MARS divides the range of independent 

variable X into small intervals by knots and optimizes linear regression function (hinge 

function) between two consecutive knots. In this way, the result is a piecewise linear 

function that best fits the relationship between the predictors and outcome, according to 

𝑦 =  𝑓(𝑥) = 𝛼 + ∑ 𝛽𝑖ℎ𝑖(𝑥)𝑁
𝑖=1  

where y is the dependent variable (the outcome) predicted by the function f(x), α is the model 

intercept, βi are the coefficients of the hi basis functions and N is the number of basis 

functions.  

A basis function is structured as a hinge function delimited by knots. More complex basis 

functions can be defined as the product of one or more hinge functions associated with 

different covariates. A particular case is the basis function that corresponds to the model 
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intercept, set to a constant value of 1. The application of the MARS algorithm is based on a 

two-stage procedure. In the first stage (forward pass), a model is generated by stepwise 

adding (starting from a constant only model) pairs of terms corresponding to the mirrored 

hinge functions generated by a knot. At each step, the added pair of terms that result in the 

regression giving the maximum reduction of the residual sum-of-squares error (RSS) is 

added. In light of the simple structure and fast computing, the search for the best pair is run 

systematically (in a “brute force” fashion). This stage can be run up until either a minimum 

RSS gain is obtained or the whole set of possible basis functions are added. In the second 

stage (backward pass), MARS stepwise prunes the best fitting but typically overfitted model, 

by dropping out of the model at each step the single term whose removal results in the lowest 

generalized cross-validation parameter (GCV; Craven and Wahba 1979). The criterion 

expressed by the GCV parameter is in fact the best compromise between fitting (low RSS) 

and model complexity, the latter depending on the number of terms. At each pruning step, 

the best model subset is then obtained. 

In this research, the MARS models were implemented through the ‘earth’ R package 

(Milborrow 2014) of RStudio software, whose output also includes an estimation of the 

predictors’ importance. 

 

2.2.4. Validation schemes and tools 

2.2.4.1. Main validation schemes 

In a landslide susceptibility study implemented through statistical techniques, the validation 

of the model is a fundamental step. Without a severe and rigorous (objective and 

quantitative) validation step, the prediction model and image are totally useless and have 

hardly any scientific significance (Chung and Fabbri 2003). For this reason, efforts have 

been made in the last years to standardise the required validation indexes that should be 

produced together with the associated final maps (Guzzetti et al. 1999). 

According to Chung and Fabbri (2003), who were the first to define systematic blind tests 

and validation schemes for landslide susceptibility models, their associated prediction image 

or susceptibility map must be validated by comparison to a target pattern, which represents 

the areas affected by landslides. By comparing the cumulative curve obtained in a dispersion 

graph plotting %study area Vs. %landslides for decreasing score, rate curves whose 

subtended area corresponds to a standard performance index. However, two very different 
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types of accuracy performance can be evaluated depending if the target pattern is made of 

known, the one exploited for training (calibrating) the model, or unknown, a set of new 

testing (validation). In fact, in the first case the model goodness-of-fit is evaluated, whilst in 

the second case, it is the real prediction skill that is assessed. Coherently, Chung and Fabbri 

(2003) distinguished success and prediction rate curves, for known and unknown landslide 

pattern, respectively. In this way, to fully validate a susceptibility model, it is necessary to 

divide the landslide inventory into two subsets: a training (calibration) subset and a test 

(validation) subset. In the calibration phase, the model "learns" to recognize the relationships 

between the dependent and the independent variables by using the training dataset and so 

defining for each mapping unit a predicted status (stable or unstable). As a consequence, a 

success rate curve represents the maximum performance that a susceptibility model can 

obtain, as it only relies on the model fitting, in some way configuring the target of 

performance the prediction rate curve can achieve. 

However, this kind of analysis is not a real validation of the model prediction skill but still 

can be useful to evaluate the maximum performance of the model attesting if the landslides 

archives and the predictors can have some limits or not. In this sense, an important concept 

in predictive modelling, the overfitting conditions, arises when the model too strictly adapts 

itself to the calibration subset so that it then hardly reproduces any unknown target pattern. 

To proceed for a complete validation calibration and validation subsets are required. Chung 

and Fabbri (2003) describe the three techniques used to obtain the bipartition of landslides 

(calibration and validation dataset) and the structure of the related modelling (characteristics 

of the calibration and the validation phases). In the last years, many applications of such 

techniques by researchers (e.g., Fabbri and Chung; Conoscenti et al. 2008a, b, 2018; 

Costanzo et al. 2012a, 2014; Rotigliano et al. 2012; Lombardo et al. 2014; Cama et al. 2015, 

2016, 2017) made it possible to refine these methodologies, however proving their validity 

and robustness. 

In this research, all the three strategies have been applied but with a few differences with 

respect to the original schemes proposed by Chung and Fabbri (2003). In the following, a 

brief description of the adopted procedures is given. 

 

Chrono-validation scheme 

In time partition, for the study area, two or more landslide archives linked to different epochs 

are required so that temporal separation of the failures be carried out. The calibration phase, 
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or the first step of modelling, involves the preparation of a model and related prediction 

image (success-rate curves) through the use of a single-epoch landslide archive. The 

validation phase, or the second step, consists in comparing the prediction image produced 

in the first step with the landslide distribution of the different epoch. Two schemes can be 

applied, forward and backward chrono-validation, depending on the temporal relation 

between the calibration and the validation dataset (antecedent or subsequent calibration 

dataset, respectively). 

 

Spatial-validation scheme 

In spatial partition, the study area is divided into two (or more) subzones, A and B, thus also 

developing a spatial subdivision of phenomena. The method assumes that the calibration 

model is trained with only one area, such as area A, while the prediction image is produced 

on the remaining part, for example B.  

As the literature suggests (Costanzo et al. 2012a; Lombardo et al. 2014), the subzones may 

also not be adjacent but, to correctly apply the procedure, it is necessary that the landslides 

are well distributed throughout the investigated area and that the characteristics between the 

areas are homogeneous. 

 

Random-validation scheme 

In random partition, by using specific tools, landslides are randomly split. Generally, the 

training dataset is composed of 75% of the inventory while the remaining 25% represents 

the validation dataset. In this way, according to the methods seen before, first, a model is 

developed trained with the calibration set, then the prediction image is produced for the 

validation dataset.  

 

2.2.4.2. Main validation tools 

Two main validation tools have been adopted for estimating the accuracy of the models 

prepared in the present research: ROC-plots and confusion matrices. Besides, by applying 

cross-validation schemes, the robustness of the same models and the derived maps was 

assessed. 
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ROC curve 

ROC-curves are obtained from graphs very similar to those rate curves (Chung and Fabbri 

2003) are drawn from. 

A ROC curve (Receiver Operating Curve - Goodenough et al. 1974; Lasko et al. 2005; 

Fawcett 2006) allows the evaluation of the accuracy of a model by calculating the subtended 

(Area Under Curve: AUC) in a graph where true versus false positive rates are plotted, by 

cumulating the assessed mapping units through a decreasing (from 1 to 0) susceptibility 

score. For any given reference value of score (threshold or cut-off), all the mapping units, 

depending on the score assumed down to the model calibration step, can be split according 

to the predicted status into positive (above the threshold) and negative (below the threshold), 

so that, after comparison to the real observed status, true positive (TP), false positive (FP), 

true negative (TN) and false negative (FN) are produced. By decreasing the reference 

threshold, a corresponding vector of TP and TN is obtained and plotted in a dispersion graph. 

The ROC curve matches the obtained series of dots, with typical monotonically decreasing 

trend. The AUC is the metric through which the accuracy of the model is determined. 

According to Hosmer and Lemeshow (2000), the AUC value allows to define the 

performance of the model as acceptable, excellent and "out of the ordinary" or exceptional 

for AUC value between 0.7 and 0.8, 0.8 and 0.9 or greater that 0.9 respectively. 

ROC curves can be plotted for goodness-of-fit and prediction-skill assessment, depending 

on the nature of the landslide inventory adopted for assigning the real observed status to the 

mapping units. 

In light of their construction, ROC curves furnish a general cumulated score-decreasing 

response for the assessment of its accuracy, averaging the performance along the score axis, 

with greater emphasis on the more susceptible cases (left side of the plot). Besides, ROC 

curves also allow to geometrically calculate the optimal cut-off value which, according to 

Youden (1950), results in the best TP-rate value simultaneously with the lowest value of the 

FN-rate. In other words, the optimised Youden index cut-off (Figure 2.2.4.2.1) permits to 

simultaneously increase sensitivity and specificity, being the basis for passing to a binarized 

approach to the accuracy assessment. 

Confusion matrix 

A confusion matrix is a simple table that permits directly detecting the success and the error 

of the binarized prediction image (Table 2.2.4.2.1). In fact, by exploiting a cut-off (in the 

literature frequently a standard 0.5 value is used but, in this research, only the optimised 
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Youden index cut-off was applied), the mapping units are divided between stable and 

unstable predicted cases. By comparison with the observed stable (N) and unstable (P) cases 

of the validation set, the correct predictions as True Positive (TP - cases predicted as unstable 

with landslide) and True Negative (TN - cases predicted as stable without a landslide) or the 

prediction errors as False Positive (FP - cases predicted as unstable without a landslide) and 

False Negative (FN - cases predicted stable with a landslide) are defined.  

 

Figure 2.2.4.2.1: example of ROC plot: in red line is the ROC curve, the filled area is the AUC, and the point 

along the red curve is the best cut-off point calculated according to Youden 1950. 

Once the observed and predicted cases are discriminated, the specific indices for prediction 

skill evaluation can be calculated. In table 2.2.4.2.2 the main indices are reported: 

 Observed status 

 Stable 
(0) 

Unstable 

(1) 
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) True Negative 

(TN) 

False Negative 

(FN) 

U
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(1
) False Positive 

(FP) 

True Positive 

(TP) 

Table 2.2.4.2.1: confusion matrix. The table shows the possible combination of the cases. 
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Together with the accuracy, Sensitivity and Specificity (the ability to recall real positive and 

real negative cases, respectively), PPV and NPV (the success in predicting positives and 

negatives, respectively) directly refer to a binarized (more likely to be stable or unstable) 

representation whose performance index can diverge in same cases from that marked by 

cumulated index such the ROC_AUC is. 

Index name Formula 

Sensitivity or True Positive Rate (TPR) 𝑇𝑃𝑅 = 𝑇𝑃𝑃  

Specificity or True Negative Rate (TPR) 𝑇𝑁𝑅 = 𝑇𝑁𝑁  

Positive Predictive Value (PPV) 𝑃𝑃𝑉 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

Negative Predictive Value (NPV) 𝑁𝑃𝑉 = 𝑇𝑁𝑇𝑁 + 𝐹𝑁 

Accuracy (ACC)  𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁𝑃 + 𝑁  

Table 2.2.4.2.2: the main validation indices derived from the confusion matrix.  

Whatever the tool adopted for estimating the accuracy of the susceptibility models, it is 

worth to correctly interpret the two type errors and their nature. 

Errors, in general, can be due to any lacking in the basic assumption we pose in the 

assessment of landslide susceptibility: status/position errors in the landslide inventories, 

values/boundaries errors in the layers of the controlling factors, missing of some 

fundamental controlling factor, difference in the triggering event responsible for the 

calibration and the validation subsets. 

At the same time, while false negatives are to be considered as errors (the type II very severe 

error: a landslide is where it was predicted as safe), false positives actually include two types 

of cases: errors and future positives. In facts, as we apply a statistical spatial analysis with a 

temporal predictive perspective, new cases (negatives, at present, but positives in a near/far 

future) are to be considered as the main goal of the predictive map.  

 

2.2.4.3. Cross-validation for model robustness and error mapping 

The estimation of the model robustness aims at estimating, together with the accuracy (the 

correctness of the predicted cases) of the score/status estimations, their precision (the 

closeness of each produced score for the same assessed mapping units, both in the calibration 

https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Positive_predictive_value
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and the validation steps. This type of validation, frequently underestimated by the 

researchers, is a fundamental tool for the evaluation of the reliability of the model obtained. 

The robustness assessment basically aims at analysing if the parameters of the model and its 

derived prediction images change as the input data (calibration cases and modelling steps) 

change. The strategy for robustness assessment relies on the possibility of building a number 

(typically, hundreds) of datasets from a single dataframe by randomly extracting the 

calibrated cases, without replacement (each mapping unit is selected only one time). From 

each replicate dataset a model is calibrated, and its derived prediction image compared to a 

specific validation set. In this way, hundreds of estimates both for the model parameters and 

assessed score or predicted status of each mapping unit are obtained. The random sub-

extraction from the study area typically is a presence/absence balanced merging the whole 

set of positive cases with an equal number of negatives. As negative cases are generally ten 

to one hundred times more than positives, hundreds of extractions of negatives can be 

performed, and different datasets obtained. 

In this way, the different behaviour in terms of AUC values obtained (standard deviation) 

and susceptibility scores assigned (which produced the so-called error maps) to each 

mapping unit can be analysed and the precision and accuracy of the models evaluated. 

A law robustness suggests failing of the "Law of missing data" (Rubin 1987), according to 

which the population of data not used in modelling (25%), in function of the selected 

extraction principle (not affected by the characteristics of the cases or neither from X nor 

from Y), can be defined as missing at random (Missing Completely At Random- MCAR). 

In other words, the training and the validation sample are not a random subsample of the 

original population. Actually, this means that the main archive is incomplete and, moreover, 

that the missing is not random. For example, a very frequent case of missing not at random 

is the landslides for a part of the study area since not accessible for a field investigation or 

blind by cloud from a satellite detection (e.g., Rotigliano et al. 2019). 

 

2.2.5. Mapping units and diagnostic areas  

The landslide susceptibility evaluation required an adequate subdivision of the study area in 

terrain mapping units (TMU). Mapping units are defined as the portion of terrain where the 

geo-environmental conditions differ from the adjacent units across distinct boundaries 

(Carrara et al. 1995; van Westen et al. 1997; Guzzetti et al. 1999, 2006). The TMU are 
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essential both in predicting performance and output results, playing a very important role to 

determine the design of landslide susceptibility maps (Martinello et al. 2021).  

Based on the concept of a distinct and easily definable unit, different TMU typologies have 

been proposed (Meijerink 1988; Carrara et al. 1995; Guzzetti et al. 1999): 

i) grid-cells subdivide the territory in regular squares of predefined dimensions. 

Usually, grid-cells are directly derived through a Digital Elevation Model 

(DEM), so cells correspond to the pixels of dem; 

ii) slope-units are defined as the slope sectors limited by drainage and water divide 

lines. This division results into homogenous hydrological regions. Slope-units 

can be obtained by using specific GIS tools or by manually identification; 

iii) terrain units subdivide the territory according to environmental characteristics or 

with respect to the materials, forms and processes active in that area. Therefore, 

these units reflect the geomorphological and geological conditions of the specific 

sector outlined; 

iv) unique conditional units (UCUs) delimit areas with specific conditions of the 

control factors. To delineate the UCU, a reclassification in categorical classes of 

each predictor is necessary. Then, by overlapping the obtained layer, the portions 

of the territory with homogeneous properties are circumscribe. The number and 

characteristics (dimensions, geometry, etc.) of these units depend on the criteria 

used to reclassify control factors; 

v) geo-hydrological units derive from a further partitioning of the slope units 

according to the main outcropping lithologies in the area. This subdivision is 

considered fundamental for the recognition of zone with different behavior 

within the same slope; 

vi) topographic units derive from a particular division of slope units, based on 

vectors of tubular flow elements of irregular size and shape. For each tubular 

element, the morphometric and hydrological variables are calculated, including 

the cumulative drainage of the area above the unit; 

vii) political or administrative units correspond to national, political, administrative 

or demographic regions and, generally, are used for studies involving very large 

areas. 

 

As part of this research, a new TMU has been proposed (Martinello et al. 2021, 2022): the 

Landform Classification Slope Units (LCL_SLU). This type of TMU derived from a 
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partitioning of classical slope units with the Landform Classification (LCL - Guisan et al. 

1999; Wilson and Gallant 2000) map. This particular subdivision aims to detect sectors with 

a different geomorphological characteristic in a single slope unit. The details of this 

procedure and the research aimed at obtaining these cartographic units are described in the 

chapter 5, sections 5.4 and 5.5. 

 

Martinello et al. (2022) reports that the choice of a specific mapping unit arises from several 

factors: i) the analysis target; ii) study scale; iii) resolution of both the input (required data) 

and output (depicted maps); and iv) suitability of the final results and derived maps for risk 

managers and land use planners. 

Each type of mapping unit is characterised by pros and cons that can affect the results of the 

geomorphological analysis. However, grid cells, the slope units and UCUs are largely 

preferred due to their particularly useful in association with statistical methods (Clerici et 

al.; Rotigliano et al. 2011; Poiraud 2014; Reichenbach et al. 2018). 

 

Once the mapping unit has been chosen, a status relative to landsliding needs to be assessed. 

It means determining if a specific mapping unit is stable or unstable. The identification of 

the landslide phenomenon in space takes place through the delineation of the diagnostic area. 

The diagnostic area represents the sector of the territory characterised by the presence of an 

instability and, as such, identifies the areas in which the set of triggering factors and the 

predisposing factors have caused the activation of the phenomenon itself. 

Therefore, the diagnostic area becomes the fundamental element in landslide susceptibility 

studies, identifying the place where the model must "learn" to identify the conditions that 

caused the landslide occurrence. This means that, once the mechanisms causing landsliding 

in the past is detected, the model will be able to predict the status of mapping units based on 

the distribution and characteristics of the control factors. 

The correct identification of the diagnostic areas becomes fundamental to obtain good results 

of the landslide susceptibility evaluation. 

 

In the literature, three main typologies of diagnostic area are applied (Figure 2.2.5.1):  

i) landslide Identification Point (LIP), which corresponds to the highest point along the 

crown of the landslide area; 

ii) landslide body, that outline the surface directly affected by the slope failure; 
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iii) geometries, generally circular, which identify a portion of the surface influenced by the 

event. These geometries can include both the phenomenon itself and the portions of surface 

not directly affected by the landslide but very close to it or only the latter. 

The first type of diagnostic area produces a points inventory of landslides; the last two of 

polygonal type. Since each typology identifies different portions of the surface, the results 

obtained are strongly influenced by the methodology used (Rotigliano et al. 2011). 

Rotigliano et al. (2011) proves that the choice of the diagnostic area is strictly linked to the 

landslide type. According to the authors, for debris flow susceptibility assessment, by using 

LIPs best performances arise; for the evaluation of rotational slide susceptibility, the choice 

is linked to the elements that better defining the instability factors on the crown of slope 

failure (LIP or geometries that delineate the surface more closely to the landslide crown 

without the landslide body namely Buffered-LIP). 

 
Figure 2.2.5.1: a) scheme of a slope failure (earth slide), b) an example of the main diagnostic area types: 

the red point is the LIP, the blue line is the landslide body, the green line is a Buffered LIP.  

 

2.3. Landslide predisposing factors 

Generally, in landslide susceptibility evaluation, the predictors selected as predisposing 

causes of landslides are really proxy variables.  

A proxy variable is a factor used instead of an unobservable or immeasurable variable of 

interest. Although a proxy variable is not a direct measure of the desired variable, it is 

strongly related to the latter so that it can somehow represent its characteristics. In fact, a 
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good proxy must have a close correlation (positive or negative), not necessarily linear, with 

the variable of interest.  

In this research, the choice of the geo-environmental predictors was defined both on the 

basis of an expected direct or proxied role in the physics of slide-type slope failures and in 

light of the availability of good source layers. 

According to the literature (e.g., Conoscenti et al. 2008a; Rotigliano et al. 2011; Costanzo 

et al. 2012a, 2014; Cama et al. 2015, 2016, 2017; Lombardo et al. 2015; Vargas-Cuervo et 

al. 2019), terrain analysis was employed to derive topographic predictors as primary and 

secondary attributes of elevation. Below is a list of basic topographic predictors generally 

exploited in this research. Open-source Geographical Information System software (GIS; 

Quantum GIS(QGIS.org 2022), GRASS GIS (GRASS Development Team 2022) and 

SAGAGIS (Conrad et al. 2015)) were used for processing the thematic (geology and soil 

use) spatial data and a Digital Terrain Model (DTM). 

 

1) Elevation  

The elevation expresses the altitude above sea level. Generally, it is correspondent 

to the Digital Elevation Model. Actually, a DEM represents the bare-earth surface, 

without any natural or artificial features. On the other hand, DTM or Digital Terrain 

Model represents the earth’s surface but natural features (e.g., rivers) are here 

included. By using GIS software, DTM may be interpolated to generate a DEM, but 

not vice versa. 

To obtain a DEM (but also for cleaning DTM from built/artificial features), accurate 

classification techniques focused on the selection of undesired ground points are 

applied. In this way, starting from a more complex point cloud (e.g., which of 

LIDAR), it is possible to target and isolate undesired ground points from the 

remaining dataset. Then, by using one of several interpolation algorithms to create a 

mesh jointed fabric, an accurate image of the real-world ground model is obtained. 

The DEM is one of the main factors in landslide susceptibility evaluation. In fact, 

elevation could be a proxy for differentiating the mapping units in terms of the mean 

annual rainfall, which typically reflects the altitude. On the other hand, from DEM 

are derived the topographic predictors generally used for the landslide susceptibility 

evaluation.  
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2) Steepness 

The steepness, the first derivative of elevation, is obtained by measuring the rate of 

altitude variation, in the same direction in which the slope steepness decreases. 

Among the predisposing factors of landslides, the slope inclination plays a key role 

since it determines the direction and the speed of the water both superficial (of 

runoff) and underground (sub-superficial movement or epidermal and underground). 

The steepness is also considered a proxy for the inclination of potential underlying 

rupture surfaces (Martinello et al. 2022). In the literature, several algorithms are 

reported that can be used for the study of steepness but the most used is the method 

of Neighborhood (Burrough and McDonnell 1998) or the "neighborhood analysis". 

The method analyses the maximum variation of the slope with respect to a central 

point, implementing a window of 3x3 cells to study the trend of the neighbor cells. 

The steepness can be reported in degrees, radians, or as a percentage of inclination. 

 

3) Aspect 

The slope aspect corresponds to the direction in which the slope degrades more 

rapidly (slope direction). Aspect controls insolation, evapotranspiration, weathering, 

physicochemical erosion operated by temperature and vegetation, distribution and 

abundance of flora. All these elements determine seasonal wet/dry cycles of soils 

(Auslander et al. 2003) so that the aspect (also linked to the elevation) can be 

considered as a good proxy of this variable. 

The aspect is calculated from the elevation by using an algorithm (Wilson and 

Gallant 2000a) that exploits a moving 3x3 cell window to derive the local surface 

direction of the central cell by comparison with the neighbouring cells. The results 

are expressed in degrees, in a range from 0 (minimum value indicating north) to 360 

(maximum value coinciding again with the north), while the value -1 marks the flat 

areas for which it is not possible to define exposure. 

Usually, the obtained results are reclassified according to Table 2.3.1 or transformed 

into continuous values by applying cosine and sine to the slope aspect (northerness 

and easterness). 
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Degree range Classes 

0 - 22.5 and 337.5 - 360 North 

22.5 - 67.5 NorthEast 

67.5 - 112.5 East 

112.5 - 157.5 SouthEast 

157.5 - 202.5 South 

202.5 - 247.5 SouthWest 

247.5 - 292.5 West 

292.5 - 337.5 NorthWest 

Table 2.3.1: the classes used for reclassified the aspect.  

4) Landform classification 

Landform classification (LCL - Guisan et al. 1999; Wilson and Gallant 2000) is a 

factor that allows automatically identifying the morphologies of the slope from a 

DEM. The landform classification is actually based on a further factor, the 

Topographic Position Index (TPI). The TPI compares the elevation of each DEM 

cell with the average elevation of the nearest cells. In this way, by exploiting a 

specific inner/outer radius (e.g., 100/1000,100/2000 meters), the valleys (depressed 

areas with respect to surrounding areas), the slopes (elevated areas with respect to 

the surrounding areas), and flat areas or constantly inclined (which present with 

respect to the areas surrounding a gradient of elevation near zero) are detected. In 

particular, the classes detected by the algorithm are streams, midslope drainages, 

upland drainages, valleys, plains, open slopes, upper slopes, local ridges, midslope 

ridges, and high ridges.  

In light of this, landform classification directly differentiates the morphological 

setting of the mapping units, which is assumed to play a central role in controlling 

and expressing their morphodynamic behavior. 

 

5)  Topographic curvature 

The topographic curvature is a factor that allows discriminating of the areas of 

convergence and those of divergence of flows (both runoff waters and landslides). 
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Generally, two types of study of topographic curvature are carried out: the profile 

curvature and the plan curvature (Zevenbergen and Thorne 1987). 

The profile curvature studies the geometry of the slope surface in the direction of 

the maximum steepness of the slope. This variable is a proxy of the direction of flow. 

Positive values indicate concavity facing upwards; negative values indicate that the 

surface has a convexity facing upwards; values equal to zero indicate flat areas 

(Figure 2.3.1). 

The plan curvature studies the geometry of the slope surface perpendicular to the 

direction of the maximum steepness of the slope. In this case, the results can be used 

to identify areas of activation and propagation of landslides (Ohlmacher 2007).  

Positive values indicate that the surface has a facing concavity upward; negative 

values indicate that the surface has a convexity facing upwards; values equal to zero 

indicate flat areas (Figure 2.3.2). 

 

Figure 2.3.1: sketch of the possible geometries of profile curvature.  

 

Figure 2.3.2: sketch of the possible geometries of profile curvature.  

6) Topographic Wetness Index 

According to (Beven and Kirkby 1979), the Topographic Wetness Index, computed 

on each cell, is the natural logarithm of upslope drained cells divided by the local 

slope. 
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The algorithm identifies the number of cells that feed the supply of water that arrives 

in each pixel. In other words, this parameter identifies the amount of water that 

reaches each cell by runoff. In this way, the topographic wetness index is a good 

proxy for estimating the potential infiltration or saturated soil thickness ((Rotigliano 

et al. 2011; Martinello et al. 2022). 

In order to calculate this factor, GIS software requires flow tracing or analysis of the 

path of the water threads with respect to the reference basin (catchment area). The 

simplest GIS tools used to calculate this factor assign a weight of 1 to each cell so 

that, in the output raster, each cell will be characterized by a value that derives from 

the sum of the pixels that "flow" into the cell. Therefore, cells characterized by high 

values indicate areas heavily affected by runoff: this method can therefore be used 

to identify the gullies and rivers. 

The parameter is also closely related to the characteristics of the soil (percentage of 

organic matter, regolith depth, etc.). 

 

7) Stream Power Index 

The stream power index is calculated as the natural logarithm of the catchment area 

multiplicated the tangent of the slope gradient (Florinsky 2012). 

The index can be used to describe potential flow erosion or the energy of the flowing 

water on the bed and banks of channels. As catchment area and slope gradient 

increase, the amount of water contributed by upslope areas and the velocity of water 

flow increase, hence stream power index and erosion risk increase (Florinsky 2012).  

For this reason, the stream power index can be considered a proxy of intensity of 

surface water erosion (Martinello et al. 2022). 

 

8) Topographic Ruggedness Index 

The Terrain Ruggedness Index is used to express the local morphology of earth’s 

surface. Developed by Riley et al. (1999), the method exploits a 3x3 cell window to 

calculate the difference of elevation of the central cell with respect to each of the 8 

neighbouring ones. 

The algorithm automatically squares each of the eight-elevation difference values, 

sums them, and takes the square root values to obtain positive results. 
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The terrain Ruggedness index is assumed to express the convergence, divergence, 

and variability of both runoff and shallow mechanical stresses (Ohlmacher 2007; 

Costanzo et al. 2012, Martinello et al. 2022). 

 

9) Lithology 

The mechanical behavior of landslides is determined by the geotechnical proprieties 

of the involved material. However, no layers of geomechanical properties of terrain 

are generally available spatially distributed at basin scale. On the other hand, 

geomechanical properties are intrinsically linked to the lithology. For this reason, the 

outcropping lithology is assumed to be a good proxy for the physical-mechanical 

properties of rocks (Martinello et al. 2022). 

The outcropping lithology maps can be always available since they can be directly 

derived from geological maps, by unified formations characterized by similar 

geomechanical properties. 

For each study area, in the following section, a detailed analysis of outcropping 

lithology is reported. 

 

10) Soil use 

Soil use potentially expresses the role of potential anthropogenic hydrological and/or 

surface hydric erosion/wash-load/creep/solifluction-induced disturbances 

(Martinello et al. 2022). 

Vegetation directly influences runoff and infiltration and the presence of surficial 

underground water: the foliage captures rainwater, allows to diminish the impact of 

water drops to the ground (sheet erosion), and promotes slow infiltration. In addition, 

through the root system, the water of aeration zone (the upper part of the ground 

level) is gradually absorbed. However, roots accelerate the mechanical degradation 

of lithotypes. In general, the effects of water erosion are much more intense in 

abandoned and vegetation-free areas. The urbanization, through the waterproofing 

of the surfaces, favours the runoff of the waters which, if not properly conveyed, can 

flow into restricted areas, thus causing intense phenomena of local erosion and rising 

of the water level for that area (increasing of pore pressure). The areas subject to 

agricultural actions are frequently involved by works that gradually causes soil 

erosion. Such operations often also cause the deletion of path of concentrated water 

runoff (such as grooves) thus favouring the long surface runoff on the slope. Among 
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the agricultural operations, the watering of plants (if it is not well managed) favours 

the water accumulation in the aeriation zone. 

For each study area, in the specific section, a detailed analysis of soil use is reported. 
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3. Introduction to the applications 

During the three years of activity, applications were carried out aimed to investigate the 

main methodological topics that were theoretically explained in the first part of the thesis. 

The nature of the topics is shown below. For each section, the reference to the application 

carried out is also reported, which will then be further explored in Chapter 5. 

Table 3.1 shows the main applications developed during the three years of activity and the 

relative topics faced, which have been the subject of published/submitted papers in 

international journals. 

 
Table 3.1: main applications developed during the three years of activity and the relative topics faced. 

3.1. Triggers 

A very basic key element potentially hampering the whole real effectiveness of landslide 

susceptibility models and derived maps are connected to the type and strength of the trigger 

responsible for the calibration inventory. In fact, together with basin long term analysis, 

which is based on inventories typically cumulated in the time span of decades, event 

inventories can be obtained only if mapping the landslides produced by a single specific 

extreme event (frequently activated in the time span of one or few hours). This is the case 

of seismically induced or intense storm triggered landslide. Under these conditions, it is 

possible to verify if and how landslide susceptibility changes depend on the type and 

magnitude of the related reference triggering event, highlighting limits and related solutions 

to a weaker holding of the “the past is the key to the future” basic brick. 

In the last decade, several studies have examined landslide susceptibility with respect to a 

meteoric trigger both "normal" (e.g., Costanzo et al. 2012a; Conoscenti et al. 2016; 
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Persichillo et al. 2017; Bordoni et al. 2020a, b), that is, with rainfall values coherent with 

the average rainfall trend of the areas under study, and extreme (e.g., Lombardo et al. 2014, 

2015; Cama et al. 2015; Vargas-Cuervo et al. 2019), while rare are the cases in which the 

two typologies are investigated at the same time. However, these researches do not define 

the predictive capacity of the models when the intensity of the trigger varies, thus limiting 

the application of the results obtained to an expected trigger event of magnitude equal to the 

meteoric phenomenon in which the models were calibrated with. 

Thus, some questions arise on the issue to which the scientific community must inevitably 

answer in order to be able to consider the results obtained from this type of study suitable 

for applications. What is the actual predictive capacity of stochastic models to identify the 

instability triggered by a trigger of a different intensity than the calibration one? Is there a 

linear correlation between the amount of rainfall and the number of activated phenomena? 

Are new regression laws established between the control variables and the 

stability/instability of the area in the event of extreme rainfall? 

Solving these scientific problems appears to be a priority given the current severity of the 

hydrogeological instability and the high importance of prevention with respect to this issue. 

In fact, the definition of valid landslide susceptibility maps even in the case of an extreme 

trigger means minimizing the risk to the population and damage to material assets, 

maximizing the effectiveness of the precautions taken, and developing management of the 

territory consistent with the environmental particularities of urbanization that respects the 

landscape. 

This research has attempted to answer the scientific questions raised above, investigating 

areas particularly affected by this type of phenomenon and developing specific 

methodologies. 

In fact, the study area examined is characterized by some peculiarities that make it an ideal 

application field for achieving the objective of the investigation. The Caldera Ilopango (El 

Salvador) is a territory that, due to its geographical position, is subject almost annually to 

intense meteoric phenomena (cyclones and hurricanes) responsible for the multiple 

activations of disasters that often cause death and destruction (MARN 2004, 2010a, b, 2011; 

CEPAL 2010, 2011; NGI 2013; Marineros-Orantes and García-González 2021). 
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The geomorphological setting as well as the temperate-humid climatic regime that 

characterizes the area make the latter subject to instability even during the rainy season or 

in the event of a normal trigger. 

The cyclical nature of extreme perturbations and the significant number of landslides 

triggered during the rainy period allow us to have a large archive of information, essential 

for robust and complete modelling. 

Please refer to section 4.1 for deep information regarding the study areas and to section 5.1 

for the specific application. 

 

3.2. Modelling and validation strategies 

Efforts in the research activity have been posed also to a deep comparative analysis in terms 

of pros and cons, driven by both statistical and geomorphological approaches.  

In the literature developed in recent years, studies of landslide susceptibility assessment 

applied several statistical methods (e.g., Multivariate Adaptive Regression Splines – MARS, 

Binary Logistic Regression – BLR, Support Vector Machine – SVM, Random Forest – RF, 

Maximum Entropy – MaxEnt). 

Studies in which several methods are used at the same time (e.g., Youssef et al. 2016; 

Pourghasemi and Rossi 2017; Huang et al. 2020; Panahi et al. 2020; Sajadi et al. 2022) are 

getting more and more frequent in literature. However, these studies often result in a simple 

application of the different methods, without any solid comparative evaluation capable of 

highlighting the different geomorphological adequacy of the methods. More generally, it is 

often missing a clear discussion of the relations between susceptibility and controlling 

factors in discussing the results in terms of geomorphological adequacy. On the other hand, 

the quality of the results is often evaluated on a surficial and simple ROC analysis. 

 

In the research developed in these three years, according to the literature (Chung and Fabbri 

2003), a robust calibration and validation scheme is proposed, (see all model building and 

validation strategies of the applications in Chapter 5). At the same time, new strategies 

focused on preparing and validating models and deeply check their performance, suggesting 

protocols for validation to be adopted for going behind the simple ROC analysis are 

proposed (in particular, see the application in section 5.3).  

A detailed analysis of the importance of the variables is reported in all the applications. 

Moreover, in the application 4.5, a deep analysis of the link between the chosen mapping 
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unit and the resolution of the predictors in the same and the performance of the models is 

proposed. 

Finally, application 4.4 is aimed at showing the difference in terms of the predictive 

performance of two statistical methods (i.e., BLR and MARS), by using two robust 

validation schemes. 

3.3. Mapping units and susceptibility mapping 

In landslide susceptibility modelling, the type of mapping unit adopted plays a very 

important role in determining the quality, resolution, and suitability of the output results 

(Guzzetti et al. 1999; Carrara et al. 2008; Martinello et al., 2022). Mapping units are in fact 

assumed to be diagnostically suitable to train a predictive model to discriminate between 

potentially stable/unstable geomorphological settings or conditions. At the same time, the 

type of adopted mapping unit defines the spatial resolution of the model and controls the 

spatial pattern and geomorphological adequacy of its final prediction images (i.e., the 

susceptibility map). In the literature, the proposed mapping units can differ in terms of the 

following: (i) the analysis target; (ii) study scale; (iii) resolution of both the input (required 

data) and output (depicted maps); and (iv) suitability of the final results and derived maps 

for risk managers and land-use planners. 

Indeed, due to their geomorphological relevance, grid cells and slope units (SLUs) are the 

most used mapping units (Reichenbach et al. 2018); however, in both cases, their application 

involves pros and cons that must be evaluated in light of the end users’ needs. 

A number of papers (Costanzo et al 2012; Costanzo et al 2014; Cama et al 2015; Conoscenti 

et al 2015; Lombardo et al 2015; Cama et al 2016; Cama et al 2017; Chen et al 2017; 

Persichillo et al 2017; Lay et al 2019; Zhang et al 2019; Nhu et al 2020; Pourghasemi et al 

2020; Bordoni et al 2020) found that grid cells, directly obtained through the rasterization 

of the study area, offer a very high modelling performance, especially when the initiation 

points of flow, like landslides or gullies, is to be predicted. Nevertheless, due to their very 

local significance, without any constraints of spatial coherence or connectivity between the 

adjacent pixels in a slope, the final maps could be misleading and/or hard to read for the 

final users. This limit is very evident in the case of shallow to deep landslides 

(rotational/translational slides) as their slope instability conditions are not so strictly 

dependent on local (pixel) properties. Conversely, slope units are potentially very suitable 

for capturing within a whole slope, those clusters of the connected pixel which are actually 

involved in the slope-failure mechanics (Rotigliano et al 2012). However, the employment 
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of SLUs entails some difficulties in defining criteria for i) SLU partitioning, which is crucial 

to finding the best performing model and more adequate coupling between real 3D failure 

mechanisms and surface landforms, and ii) proxy variable zonation, which determines the 

adequate and correct definition of the SLU setting. Actually, there is no univocal approach 

in the choice of optimal criteria (Rotigliano et al. 2012; Alvioli et al. 2016, 2020; Camilo et 

al. 2017; Cheng and Zhou 2018; Amato et al. 2019; Hua et al. 2020; Sun et al. 2020; 

Martinello et al. 2021).  

In this research, innovative solutions to the topic of setting the more appropriate mapping 

units both for modelling (Modelling Mapping Units, MMUs) and depicting (Cartographic 

Mapping Units, CMUs) landslide susceptibility have been tested and compared both to the 

typical adopted ones and to some new types which have been proposed by other researchers. 

The emphasis which has been posed on this topic has become stronger and stronger and has 

attracted some other international research groups (e.g, Van Den Eeckhaut et al 2009; Erener 

and Düzgün 2012; Zêzere et al 2017; Ba et al 2018; Qin et al 2019; Jacobs et al 2020). At 

the same time, the direct strict connection between the research project, including all its 

methodological scientific components, and the requirements exposed by relevant 

stakeholders such as the Basin Authority in the framework of the project SUFRA, has given 

further input and solicitations to the development of suitable solutions for the cartographic 

representation of landslide susceptibility. 

In this research, several approaches to obtain a suitable landslide susceptibility map were 

tested by exploiting the most used mapping units by the researchers (grid cells and SLU) 

and by testing a new mapping unit: the Landform-CLassification SLope Units (LCL_SLU). 

This research was performed in the Imera Settentrionale river basin (northern Sicily, Italy) 

and has resulted in two main publications (sections 5.4 and 5.5). 

3.4. Inventories  

The need of optimizing landslide assessment methods with respect also to the stakeholders’ 

requirements finds its main key point in implementing modelling strategies resulting robust 

to the typical incompleteness or typological misclassification affecting available public 

inventories. Indeed, civil protection urgently asks for regional-scale landslide susceptibility 

scenarios attempting to define statistically-based national maps, eventually exploiting even 

limited but available landslide inventories for their calibration. To this aim, grouping 

multiple clustered available datasets is frequently adopted as a solution to obtain landslides 

inventories large enough to train the statistical models. However, such landslide datasets can 
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result in heterogeneous either in terms of spatial distribution, expertise of the operators, 

classification and mapping criteria, survey recognition methods and resolution (field, 

remote, reports), epoch and related triggering events, etc. It is worth to note that these limits 

could hamper the resolution and precision of the predictive models without giving clear 

effects down from standard validation procedures. 

To cope with this need, approaches have been tested for proposing indexes, suitable for 

warning the users about the real reliability of the derived susceptibility maps. 

By exploiting landslide inventories from five volcanic areas of El Salvador, for which 

rainfall triggered debris flow archives were available, a multiscale validation strategy was 

applied to verify the actual predictive skill of the regional susceptibility model. Tools and 

strategies for detecting negative effects produced by inaccurate/incomplete landslide 

inventories are applied and proposed. For more information about the study areas, please 

see the section 4.1, while for the application please see the section 4.5.  
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4. Study areas 

In this chapter, the main characteristics of the study areas are described. For each area, a 

paragraph of regional setting is displayed and then a subparagraph with the specific geo-

morphological condition of each study sector is reported.  

4.1. El Salvador  

4.1.1. Regional setting 

The Salvadorian territory stretches SE–NW along the Central American Volcanic Front for 

about 250 km on the Pacific side of Central America, near 150 km inboard of the Middle 

American Trench, where the Cocos plate is subducted beneath the Caribbean plate (Jibson 

et al. 2004a; Agostini et al. 2006; Lexa et al. 2011).  

The Caribbean plate is a lithospheric element composed of a slightly deformed crust of the 

oceanic plateau of the basins of Colombia and Venezuela and that of the continental block 

Chortis of the Paleozoic-Mesozoic age, both surrounded by deformed margins, the result of 

the interaction with the adjacent Nazca, Cocos, North and South America Plates, from 

Mesozoic to Present. The thickness of the Caribbean plate is very variable, going from 3-5 

km in the Venezuela Basin, up to 20 km in the southern belts (Diebold and Driscoll 1999). 

The northeast subduction of the Cocos plate and the Nazca plate below the Isthmus causes 

an intense deformation of the deep soils and the rise of magmas that stay or cross the crust 

and come out to form the Mesoamerican Volcanic Arc. 

Small-scale fault systems (such as the Polochic-Motagua fault, Santa Elena-Hess system 

fault) are associated with large-scale faults through which lateral sliding, lowering, and 

lifting they have produced are carried out in the current morphotectonic structure of Central 

America (Figure 4.1.1.1) 
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Figure 4.1.1.1: regional setting of Central America (modified from Corti et al. 2005, Lücke et al. 2015, and 

Major et al. 2003). 

The interactions between the plates constantly accumulate stress along the edges, originating 

an intense seismic activity that makes Central America one of the most active seismic 

regions in the world (Corti et al. 2005; Lücke et al. 2015). Most of the seismicity is 

concentrated along the plate edges with earthquakes of high magnitude and with epicentres 

located on the structures tectonic. In addition, the obduction of the Caribbean plate causes 

horizontal and vertical movements of the weak crust which is dissected into small parts 

through a set of faults, many of them such as seismogenic. 

As a result of the regional collisional tectonic setup and in accordance with the 

characteristics of the Central American Isthmus, the Salvadorean territory is characterized 

by the presence of the Mesoamerican Volcanic Arc which extends from north-northwest to 

south-southeast near the Pacific coast. In El Salvador, the Mesoamerican Volcanic Arc 

consists of an alignment of 22 volcanoes. Among these, the San Salvador, San Vicente, San 

Miguel, Ilopango Caldera, Santa Ana, Izalco and Conchaguita are considered active, so it is 

considered one of the most active volcanic regions of the world (Major et al. 2003).  
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A second volcanic range is located northeast along the border with Honduras: it is the Sierra 

Madre de Chiapas Mountain range, and it crosses the region from north-northwest to south–

southeast.  

Frequently, the crater of the volcanoes, some of which are still active, is occupied by lakes. 

Among these, Ilopango is the largest in the country (72 km²), followed by Olomeca (24.2 

km²), Coatepeque (24 km²) and Güija (45 km²) in common with Guatemala. 

The Salvadorian territory is almost completely composed of volcanic soils derived from the 

intense Plinian eruptions of the Tertiary period (Schiaidt-Thomé 1975) In particular, the 

outcropping lithologies of the central part of the region derived from the recent eruption of 

the Ilopango Caldera. At least four exceptional eruptions in the last 100kys, the last of which 

was nearly 2500 years ago, produced tephra layers and ignimbrites deposits which covered 

wide sectors of the central part of the country (Stoiber and Carr 1973). 

In this way, often the steep slopes of the region are characterized by pseudo-coherent 

materials particularly prone to soil erosion and landsliding (Crone et al. 2001; García-

Rodríguez et al. 2008; García-Rodríguez and Malpica 2010), especially in the region of the 

Cordillera El Bálsamo, the Ilopango caldera and the flanks of San Vicente, Usulután, El 

Picacho, San Salvador, and Chalatenango volcanoes (Jibson and Crone 2001). Landslides 

can be activated by both seismic and climatic triggers as well as by eruption. 

Several earthquakes caused landslides: during the 1965’s earthquake (M 6.3) 125 people 

died, mostly near the Caldera Ilopango, where landslides, liquefaction and diffusion 

phenomena also occurred affecting pumice slopes; in the 1986 earthquake (M 5.5), 

devastation linked both to the earthquake and also to the numerous landslides triggered along 

the roads between San Salvador and Lake Ilopango, caused 1500 dead and 100000 homeless; 

many failures activated by the sadly known 2001 earthquakes (M 7.7 and M 6.6), especially 

along the Cordillera El Bálsamo where two debris flows at Las Colinas (Figure 4.1.1.2) and 

Las Barrioleas, caused nearly 1000 deaths (Jibson et al. 2004b). 
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Figure 4.1.1.2: the January 2001 earthquake-induced slide that demolished much of the Las Colinas 

neighbourhood of Santa Tecla, a suburb of San Salvador (from United States Geological Survey) 

Rainfall triggered landslides are linked both to the normal rainy season and to climatic 

extreme events. In fact, El Salvador, as well as the Central American area, falls within the 

zone of humid tropical: the average annual temperatures are between 19 and 31 °C, while 

average annual rainfall values are often higher than 1800 mm (The World Bank Group 

2021). The rainy season is between May and October and frequently precipitations occur in 

the form of thunderstorms. During this period, El Salvador and, in general, the Central 

America area, can be affected by tropical cyclones. 

A tropical cyclone is a storm system characterized by a closed circulation around a low-

pressure centre, in association with strong winds and a high amount of rainfall. Tropical 

cyclones develop almost exclusively in tropical regions of the planet, due to the collision of 

hot air masses originating on large marine surfaces. If the climatic conditions are favourable, 

the cyclone continues to acquire energy and increases its size; at this point, it will begin to 

dissipate only when the contact ceases with the ocean (direct source of supply for the storm) 

and after a long path on the ground, during which it will download the energy possessed 

through intense precipitation and strong winds. 

The phenomena often turn out to be of low or medium power (respectively called tropical 

depressions and tropical storms) and only rarely reach energy levels high (in this case we 

will speak of a hurricane). 
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Another very important climatic phenomenon, exclusive to the tropical Pacific, is ENSO – 

El Niño Southern Oscillation. ENSO is a phenomenon characterized by the combination of 

an oceanic component, namely El Niño or la Niña, and an atmospheric component, called 

Southern Oscillation, the latter characterized by pressure changes in the West-central 

Pacific. 

El Niño consists of a warming of the waters of the central-southern and the eastern Pacific 

Ocean, for values equal to or greater than 0.5 °C and duration over 5 months; la Niña, on the 

other hand, consists of an analogous cooling having equal duration. On average, the 

maximum observed intensity of the temperature oscillation is of the order of 3-4 °C. 

The two components, the oceanic and the atmospheric one, are mutually involved: when El 

Niño is underway, the Western Pacific pressure is high, while when it is in the course of La 

Niña, the pressure in the western Pacific is low (Figure 4.1.1.3). 

 

Figure 4.1.1.3: El Niño and La Niña conditions in the equatorial Pacific, modified from the Australian 

Bureau of Meteorology (http://www.bom.gov.au/climate/enso/history/ln-2010-12/three-phases-of-

ENSO.shtml). 

The causes of these fluctuations are still being studied. The return time of the ENSO is not 

easily definable, being placed in an interval that goes from 2 to 7 years. Generally, El Niño 

occurs between December and January, while La Niña occurs between August and October. 

The mechanisms that govern ENSO generate ideal conditions for the development of 

cyclones so much so that many of the phenomena that occurred in the tropical Pacific belt 

http://www.bom.gov.au/climate/enso/history/ln-2010-12/three-phases-of-ENSO.shtml
http://www.bom.gov.au/climate/enso/history/ln-2010-12/three-phases-of-ENSO.shtml
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can be related to that cause. The perturbations generated by ENSO are characterized by 

intense rainfall in the areas directly affected by the cyclone, while the more distal areas from 

the low-pressure vortex are affected by drought. 

Therefore, whether it is tropical cyclones s.s. or cyclones generated by ENSO, the tropical 

regions are periodically hit by severe disturbances, often with tragic consequences.  

In this research, landslide phenomena linked to two extreme events are detected: the 

hurricane IDA (2009) and the tropical depression Twelve-E (2011). Below, is a short 

summary of the main characteristics of these events. 

 

The hurricane IDA 

The Hurricane Ida developed on 4th November as a tropical depression in the south-western 

sector of the Caribbean Sea, increasing its strength up to tropical storm grade on 7th 

November, when it crossed the shoreline of Nicaragua, and to a second level hurricane at 

the midday on the 8th (Avila and Cangialosi 2010).The hurricane then moved northward 

crossing the Caribbean Sea and the Mexico Gulf, weakening back to a tropical storm and to 

depression on the 9th and completely dissipating on the 12th. During these same days, the 

low-pressure system 96E moved from the eastern Pacific Ocean causing intense rainfall 

between November 7th and 8th (CEPAL 2010, 2011). In these two days, Ida and 96E 

simultaneously struck an area of around 400 km2 centred between Ilopango Lake and San 

Vicente Volcano, producing more than 300 mm/24 h at the Ilopango and San Vicente 

villages (Figure 4.1.1.4). In this area, large damages were recorded caused by floods and 

landslides with around 200 deaths and a quarter of a billion dollars of economic losses 

(MARN 2010a). The larger part of this was in the north-western flank of San Vicente 

Volcano, where huge debris flow phenomena severely struck the villages of Verapaz and 

Guadalupe. At the same time, in the Ilopango Caldera area, hundreds of landslides triggered 

by steep slopes caused damage to cropland, rural houses and roads, as well as strongly 

affected and modified the connected fluvial system. 
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Figure 4.1.1.4: cumulative rainfall recorded by the Ilopango rain gauge during the Ida Hurricane event. 

The Tropical Depression 12E 

Starting on October 6 as low pressure from the Gulf of Tehuantepec, several hundred miles 

south of the Mexican coast, the disturbance quickly developed and became a tropical 

depression just six days after (Brennan 2011). After hitting the southern Mexican territory 

among the state of Oaxaca and the municipality of Arriga, 24 hours after its formation, the 

Tropical Depression 12E dissipated its energy. However, by joining forces with a monsoon 

system, the Tropical Depression 12E continued to blow with its winds the Central American 

territory, causing also heavy rains for about 10 days.  

Tropical Depression 12E affected El Salvador during the period from 10th to 20th October. 

With a cumulative maximum of 1513 mm, equivalent to 42% of the mean annual rainfall of 

the period 1971-2000 (CEPAL 2011), the tropical depression 12E was defined by the 

minister of MARN Herman Rosa Chávez as “the most severe meteorological event recorded 

in the region”. Also in this case, with 10% of the national territory affected especially along 

the coastal plains and the volcanic mountains, El Salvador was heavily hit by the related 

floods and landslides, reporting 35 victims and an economic loss of more than nine hundred 

million dollars (CEPAL 2011; MARN 2011). 
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4.1.2. Main characteristics of the studies sectors  

The choice of the study areas was determined by the availability of landslide archives or by 

the quality of the input layer necessary for the landslide susceptibility evaluation. In 

particular, the first and the second applications (see section 5.1 and 5.2) were conducted in 

a small catchment of the Ilopango Caldera for which a pre- and post-hurricane IDA high-

resolution satellite image for the remote landslides mapping was detected. For the third 

application, a set of volcanoes/calderas areas where debris flows recurrently activate and 

where landslides archives were already mapped, was selected. This set was composed of 

(Figure 4.1.2.1): i) the Coatepeque area, which extends for about 82 km2, east of the 

homonymous caldera lake; ii) the San Salvador area, surrounding for about 144 km2 the 

homonymous volcano; iii) the watershed inner basins of the Ilopango caldera, for a total area 

of about 121 km2; iv) the San Vicente area, which include the whole homonymous volcano, 

extending for about 287 km2; v) the tip sector of the San Miguel volcano, for a total area of 

about 11 km2. 

 

 

Figure 4.1.2.1: location of the study areas 

These areas are characterized by different elevations (Figure 4.1.2.2). There is a good 

overlap in terms of altitude between the areas of Coatepeque and Ilopango, with a range 

between ~ 500 m and ~ 1200 m a.s.l.. The territory of San Vicente, which includes the entire 

volcano and also the foothills, has altitudes starting from ~ 100 meters and reaching peaks 

of ~ 2200, but even in this case most of the territory is between ~ 500 m and ~ 1200 m a.s.l. 
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The areas of San Miguel and San Salvador cover the summit areas of the volcanoes, with 

altitudes between 820 and 2120 m for the first, and 500 and 1820 m for the second. 

 

Figure 4.1.2.2: distribution of the elevation in the five study sectors. 

With regard to the slope aspect, Figure 4.1.2.3 shows that all directions are represented in 

each of the study areas. However, it is possible to detect dominant exposures for some areas: 

for the San Miguel a prevalent exposure from W to S is identified while for the Coatepeque 

area the prevalence is towards the directions between NE and S. On the other hand, the San 

Salvador area has several areas exposed to the N and NW. 
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Figure 4.1.2.3: distribution of the exposure of the slopes in the five study sectors. 

The analysis of the Landform CLassification (LCL) classes distribution in the five areas 

(Figure 4.1.2.4) shows that the open slopes class, albeit in a variable percentage but always 

higher than 35%, is the most present class of LCL. On the other hand, the upland drainages 

and local ridges classes have very low frequencies in all areas. In the Coatepeque area, the 

other most important classes are Midslope drainages and midslopes ridges, thus 

characterizing a predominantly mountainous/hilly area. For the San Vicente area, in addition 

to the classes that represent the high sloping areas (slopes ridges and upper slopes), the plains 

and valleys classes are also represented and identify the foothills of the volcano. For the 

Ilopango area, all the classes are present, witnessing a territory that, starting from slopes 

with different inclinations, gently degrades into valleys and flat areas. The San Salvador area 

also has a similar trend to that of the Ilopango area, although here the open slopes clearly 

prevail, with a percentage that almost touches 60%. Finally, the San Miguel area is instead 

characterized mainly by slopes with different inclinations, with the total absence of flat 

areas. 
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Figure 4.1.2.4: distribution of the landform classification classes in the five study sectors. 

With regard to land use (Figure 4.1.2.5), cultivated areas prevail in the five territories, both 

with permanent and annual crops. Mixed crops are also very present in all territories except 

in the San Miguel area. In the latter, in fact, probably because of its position on the top of 

the volcano, more than 80% of the territory has shrub vegetation and it should be emphasized 

that no type of urbanization is present. In general, about 10% of the territory of each sector 

has urbanized areas. 

 

Figure 4.1.2.5: distribution of the land use classes in the five study sectors. 
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Finally, Table 4.1.2.1 shows the distribution of the outcropping lithologies in the study 

sectors. The outcropping lithologies, consisting of primary volcanic deposits and remodelled 

material, are grouped into three main formations (Schmidt-Thomé 1975). 

Table 4.1.2.1: geological classes of each study area with description of lithology, epoch, code, and the 

relative outcropping area. 

Formation Lithology Epoch Code 
Outcropping 

area 

C
oa

te
pe

qu
e 

Bálsamo 
Basic-intermediate pyroclastics and epiclastic breccias 

and lavas 
Miocene b1 0.25% 

Bálsamo 
Basic-intermediate effusive rocks, pyroclastics and 

epiclastic breccias and lavas 
Miocene-
Pliocene 

b2 6.51% 

Bálsamo Basic-intermediate effusive rocks Pliocene b3 4.04% 
Cuscatlán Acid effusive Pleistocene c2 0.21% 

San Salvador Quaternary sedimentary deposits Holocene Qf 2.51% 

San Salvador 
Acid pyroclastics, epiclastic breccias and lavas and basic-

intermediate effusive 
Pleistocene s1 3.46% 

San Salvador Basic-intermediate effusive rocks Pleistocene s2 1.87% 

San Salvador 
Acid pyroclastics, epiclastic breccias and lavas ("Tobas 

color café") 
Holocene s3a 77.45% 

San Salvador Accumulation cones Holocene s5c 3.70% 

Il
op

an
go

 

Bálsamo 
Basic-intermediate pyroclastics and epiclastic breccias 

and lavas 
Miocene b1 6.37% 

Bálsamo Basic-intermediate effusive rocks Pliocene b3 6.53% 

Cuscatlán Piroclastitas ácidas, epiclastitas volcánicas 
Plio-

quaternary 
c1 25.12% 

Cuscatlán Acid effusive Pleistocene c2 9.58% 
Cuscatlán Efusivas-básicas-intermedias Pleistocene c3 0.67% 

San Salvador Quaternary sedimentary deposits Holocene Qf 6.09% 
San Salvador Efusivas ácidas Holocene s3b 0.40% 
San Salvador Acid pyroclastics ("Tierra Blanca") Holocene s4 44.90% 
San Salvador Accumulation cones Holocene s5b 0.34% 

S
an

 
M

ig
ue

l San Salvador Basic-intermediate effusive rocks Pleistocene s2 26.58% 

San Salvador Accumulation cones Holocene s5b 72.39% 

San Salvador Quaternary sedimentary deposits Holocene Qf 1.03% 

S
an

 S
al

va
do

r 

San Salvador Quaternary sedimentary deposits Holocene Qf 0.71% 
San Salvador Basic-intermediate effusive rocks Pleistocene s2 54.67% 

San Salvador 
Acid pyroclastics, epiclastic breccias and lavas ("Tobas 

color café") 
Holocene s3a 11.98% 

San Salvador Acid pyroclastics ("Tierra Blanca") Holocene s4 9.00% 
San Salvador Efusivas básicas intermedias Holocene s5a 5.42% 
San Salvador Accumulation cones Holocene s5b 3.82% 
San Salvador Tuffs and dusty deposits Holocene s5c 14.40% 

S
an

 V
ic

en
te

 

Bálsamo 
Basic-intermediate pyroclastics and epiclastic breccias 

and lavas 
Miocene b1 6.94% 

Bálsamo Basic-intermediate effusive rocks Pliocene b3 17.02% 

Cuscatlán Piroclastitas ácidas, epiclastitas volcánicas 
Plio-

quaternary 
c1 30.14% 

Cuscatlán Acid effusive Pleistocene c2 0.81% 
Cuscatlán Efusivas-básicas-intermedias Pleistocene c3 3.57% 

San Salvador Quaternary sedimentary deposits Holocene Qf 1.03% 
San Salvador Basic-intermediate effusive rocks Pleistocene s2 22.84% 

San Salvador 
Acid pyroclastics, epiclastic breccias and lavas ("Tobas 

color café") 
Holocene s3a 0.34% 

San Salvador Acid pyroclastics ("Tierra Blanca") Holocene s4 17.31% 
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Bálsamo Formation (Pliocene) 

Andesitic lava flows (~ 10 m thick) interspersed with epiclastic and pyroclastic sequences. 

In the sequence, levels of variable thickness between 0.5 and 1.5 m of reddish paleosol are 

also found. Once exposed, the pyroclastic rocks (b1) break into irregular blocks as the 

epiclastic rocks (b2) shatter into medium-fine sized plates. The matrix of pyroclastic rocks 

is formed by tuffaceous material, greyish or brown, classified and of medium-fine size, with 

angular blocks of andesitic lava of dimensions varying between 5 and 30 cm. Epiclastic 

rocks have similar compositions but are more classified. Effusive rocks (b3) have a massive 

structure and are only possible locally appreciate levels of fine-grained crystals 

(phenocrysts). On the roof and in the bed of these rocks it is possible to find slag levels. The 

rocks have a high resistance to weathering. 

 

Cuscatlán Formation (Plio-Pleistocene)  

Pyroclastic rocks (ignimbrites – c1), effusive acidic rocks (c2), epiclastic rocks (c3) and 

levels of reddish-brown paleosol about 0.5 m thick. Pyroclastic rocks are formed from fine-

grained yellowish pumice, volcanic tuff, and locally dark grey volcanic ash levels. They are 

rarely found xenoliths with different chemists with a maximum size of 20 cm. Acid effusive 

rocks are massive and only locally exhibit levels of phenocrysts, generally isoriented, in 

places with a glassy matrix. 

The ignimbrites, due to the weathering and the discontinuities present, often form the 

columnar-polygonal bodies with a maximum diameter of 3 m. Where the discontinuities of 

pyroclastic rocks are more pronounced and irregular due to weathering how epiclastics are 

shattered into blocks of size and shape irregular. 

 

San Salvador Formation (Late Pleistocene-Holocene) 

The formation can be divided into four main members: 

− level of effusive rocks. It forms the basal level of the San Salvador formation only near 

the Boquerón volcano. It is a level of basaltic andesites often from 5 to 10 m, generated 

by medium-fine-grained lava flows. Due to the scarce outcrops present, it is not clear 

whether the effusive rocks are interspersed with the member of the Tobas color cafe. 

However, the hypothesis seems reasonable enough since the processes that produced the 

two different members took turns very quickly. The member turns out to be particularly 

resistant to weathering processes. 
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− Tobas color café (s3a). Basal member consists of medium-grained or fine acid 

pyroclasticites, tobacco and yellowish coloured, with different degrees of consolidation 

and intercalated to black slag. The thickness of this member is maximum near the 

Boqueron volcano (2 m) and decreases considerably with the distance from it. A horizon 

of about 1.5 m of brown soil is found above, resulting from the degradation of the 

underlying rocks. The degree of consolidation of this level is remarkably variable and, 

often, during the heaviest rains, the material is subject to strong weathering processes. 

− Tierra Blanca (s4 - TB). Represents the youngest member of the San Salvador formation. 

It is formed by white acid pyroclasticites and epiclastic rocks formed on the occasion of 

the various eruptions of Ilopango. The thickness is greater than 50 m near the caldera and 

decreases considerably with the distance from it. It consists of fine-grained dacitic pumice 

(also powder) of a white-greyish colour, interspersed with levels of angular pumice 

blocks of different sizes and acid xenoliths. Hart and Steen-McIntyre (1983) divide the 

Tierra Blanca member into 4 levels, each separated from the others by a level of a few 

meters of reddish-brown palesoil. These levels are informally called TB4, TB3, TB2 and 

TBJ (Tierra Blanca Joven), respectively from the oldest to the youngest. Rose et al. 

(1999) date the earliest level to ~ 60,000 years ago while the youngest level is dated to ~ 

430 years BC. (Dull et al. 2001). The paleosoils testify to an elaboration of the 

topographical surface of ~ 10,000 years. Levels of andesitic volcanic dust from 

surrounding volcanoes are often found between the dacitic and rhyolitic levels of the 

Tierra Blanca. The TBJ level is considered to be the most dangerous material in the area 

Salvadoran (Rolo et al. 2004). It is, in fact, characterized by the presence of different 

levels with different degrees of consolidation and permeability. A sequence typical of the 

TBJ presents at the base a centimeter or decimeter level of lapilli e fall blocks of the 

Plinian column; a basal sequence of pyroclastic flows with intercalations of falling 

material (variable thickness up to 10 meters); a permeable layer sequence (medium grain 

graded pumice) and layers waterproof (volcanic ash); a higher sequence of pyroclastic 

flows rich in volcanic ash (Figure 4.1.2.6). Due to the different mechanical properties of 

the different levels, the latter plays a key role in the triggering of landslides (Rolo et al. 

2004). 

− Juvenile river deposits (Qf). They result from the degradation of the volcanic material 

described above. 
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Figure 4.1.2.6: a geological natural cross section of Terra Blanca Joven (TBJ). Photo by Giuseppina Kysar, 

1999 (Smithsonian Institution). 

Focusing on the five study areas, the lithologic units of the San Salvador formation are the 

most frequently outcropping rocks: “Tobas color café”, in the Coatepeque area (77%), 

“Tierra Blanca”, in the Ilopango area (45%) and to a lesser extent in the San Salvador area. 

Accumulation cones dominate the San Miguel area (72%), while Pleistocene effusive rocks 

prevail in the San Salvador area (57%) largely outcropping also in the San Vicente area. 

Besides, acid pyroclastites of the Cuscatlán formation are widely diffused both in the 

Ilopango and the San Vicente areas. Finally, with very limited outcropping areas, the 

pyroclastic and effusive rocks of the Bálsamo formation are observed in the Coatepeque, 

Ilopango and San Vicente areas. 

For some of the applications, the above-mentioned outcropping lithologies were grouped 

based of the geomechanical expected response, as soft, medium, hard rocks; very soft, soft, 

medium, hard soils (Table 4.1.2.2). Figure 4.1.2.7 shows the distribution of the 

geomechanical units among the study areas.  

It is possible to note that the distribution of the geomechanical units is not uniform, with a 

clear predominance of medium soil in the Coatepeque and San Miguel areas, while in the 

San Salvador area soft rock prevails. In the Ilopango area, very soft soil and hard soil 

together represent approximately 80% of the territory. On the other hand, for the San Vicente 

area hard soil, soft soil, hard soil and very soft soil classes are present with a variable 

percentage between 15 and 30%. 
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Geomechanical 

classification 
Geological units 

Hard soil c1 

Soft soil Qf 

Very soft soil s4 

Hard rock c3, b3 

Soft rock b2, s2 

Medium soil b1, s5a, s1, s5c, s3a 

Medium rock s3b, s5b, c2 

Table 4.1.2.2: the geomechanical classes with their corresponding geological unit. 

 

Figure 4.1.2.7: distribution of the geomechanical units in the five study sectors. 
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4.2. Sicily  

4.2.1. Regional setting 

Sicily is located in the western central part of the Mediterranean Sea. The region stretches 

along the African-European plate boundary and is configured as the result of post-collisional 

convergence between Africa and the European crusts and the roll-back of the subduction 

hinge of the Ionian lithosphere (Doglioni et al. 1999; Faccenna et al. 2004; Chiarabba et al. 

2005). In this way, the Sicilian Fold-and-Thrust Belt (SFTB) is a Neogene-Quaternary 

southeast-verging sector of Apennine-Maghrebian orogen (Catalano et al. 1996; Avellone 

et al. 2010; Accaino et al. 2011; Gugliotta et al. 2013).  

The chain and its submerged western and northern extensions are partly located between the 

Sardinia block and the Pelagian-Ionian sector, and partly beneath the central southern 

Tyrrhenian Sea (Figure 4.2.1.1). The collisional complex of Sicily and adjacent offshore 

areas is characterized by (Basilone 2012): 

− the Pelagian-Iblean foreland with its African crust. The sedimentary succession is 7/8 km 

thick and includes Triassic and Jurassic carbonates indicative of shelf and a slope-to-

basin environment; late Jurassic and Cretaceous-to-Miocene pelagic carbonates, 

followed upwards by clastic open platform deposits; 

− a Late Pliocene-Quaternary narrow foredeep, onlapping the frontal sector of the thrust 

belt in southern Sicily and units offshore in the Sicily Channel. The sediments are late 

Miocene-to-Pleistocene in age and include the Gessoso-Solfifera formation of the 

Messinian age and the overlying Trubi and Monte Narbone formation. The Gela nappe 

was displaced in the early Pleistocene; 

− a complex, south to southeast-vergent fold and thrust belt, locally more than 15 km thick, 

consisting of a “European” element (Peloritani Units with a metamorphic basement), a 

“Tethyan” element (Sicilide Units) and an African element (Maghrebian-Apenninic 

Units). The tectonic units derived primarily from the deformation of some original 

paleogeographic domains (carbonate basinal and platform succession) that developed 

during the Meso-Cenozoic interval in the Sicilian sector of the African continental 

margin.  
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Figure 4.2.1.1: structural map of Sicily (modified from Catalano et al. 1996). 

Two main tectonic events produced the current orogenic belt (Catalano et al. 1996; Gugliotta 

et al. 2013):  

− the first step (Event I), developed in the middle Miocene, was characterized by shallow-

seated thrusts (present-day SW-verging) and associated folds (at present showing NW 

SE-trend) which involved relatively thin deep-water carbonate rock successions;  

− the second step (Event II), developed since the latest Tortonian, involved the lowermost 

carbonate platform units by the development of S-verging, deep-seated thrusts and back-

thrusts often showing kinematic features of transpressional ramps.  

 

The deep-seated thrusting transferred part of the deformation into the overlying thrust pile 

and sedimentary cover inducing passive-imbrication, shortening and development of several 

late Miocene to Pliocene syntectonic basins (Gugliotta et al. 2013).  

 

4.2.2. Main characteristics of the study sector  

The Imera river catchment (Figure 4.2.2.1) is one of the largest watersheds of Sicily 

(southern Italy): the main channel and its tributaries drain an area extending about 343 km2 

from the northern sector of the Madonie Mountains to the Tyrrhenian Sea, ranging from 

1866 m a.s.l. down to sea level (Figure 4.2.2.2). 
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Figure 4.2.2.1: location of study area. 

 

Figure 4.2.2.2: structural map of Sicily (modified from Catalano et al. 1996). 
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The geomorphological setting of the area is strictly linked to the outcropping lithologies, 

resulting from intense compressive tectonic activity starting in the Oligocene (Morticelli et 

al 2015), followed by a syntectonic relaxing phase during which the thrust sheets’ basins 

were filled with terrigenous deposits (Gugliotta et al 2013).  

In the area, 3 main sectors can be distinguished (Agnesi et al. 2000): 

- on the right bank upstream, the sector of the mountain group of the Western Madonie, 

dominated by the presence of Monte dei Cervi (1792 m a.s.l.), with more rugged and uneven 

shapes due to the presence of carbonatic-dolomitic outcrops with fragile behaviour 

alternating with lithotypes clayey and clayey-marly with ductile behaviour; 

- on the left bank upstream, the western sector, in which plastic outcrops prevail, giving rise 

to gentle and not very steep shapes. The carbonate reliefs of Rocca di Sciara (1080 m) and 

Sclafani Bagni (755 m) stand out in an isolated position; 

- the valley sector, corresponding to the Imera Settentrionale Valley, is mainly characterized 

by gentle slopes in clayey lithotypes and slopes with higher inclination on clayey-marly 

lithotypes, with isolated carbonate elements.  

Figure 4.2.2.3 shows the outcropping lithology map of the Imera river basin (modified from 

Abate et al. 1982, 1988; Catalano et al. 2011). Below, is a brief description of the geological 

units outcropping in the area. Please, see the main text below for the acronym in the legend 

of the map. 

Sicilide Domain Succession 

- Lower varicoloured shales (AVF) 

Varicoloured shales and marls in greenish-grey, red wine, brick red, ochre yellow or 

whitish-grey tones, often tectonized, jaspers, micaceous and quarzitic sandstones, 

greenish calcilutites. Cretaceous (Albian-Turonian)-Paleocene. 

- Polizzi formation (POZ) 

Grey to whitish marls in decametric-centimetric strata and greyish-violaceous, marly-

clayey thin beds, laminated whitish calcisiltitis, sometimes with lists and nodules of 

silex, white marls with intercalations and lenses of biocalcarenites, biocalcirudites 

with macro-foraminifera (nummulitids, alveolinids, discocyclinids). Middle-upper 

Eocene. 
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Figure 4.2.2.3: geological map of the Imera river basin (modified from Abate et al. 1982, 1988; Catalano et 

al. 2011).  

- Tufiti di Tusa (TUT) 

Marls, grey-blackish soapy marly limestones, greenish volcano-clastic sandstones and 

grey yellowish quartzitic feldspathic sandstones. In the area the marly member of the 

lithofacies manly outcrops. Oligocene. 

 

Numidian Flysch Basin Succession 

- Flysch Numidico (FYN) 

Clayey pelites and pelites with thin biocalcarenitic arenaceous levels and 

megabreccias with carbonate elements, tobacco-coloured silty clays with intercalation 

of arenaceous levels, quartzarenites and microconglomerates. In the area, the 

quarzarenitic and ruditic facies mainly outcrop. Chattian-Burdigalian. 
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- Tavernola formation (TAV) 

Greenish grey pelites, brown-greyish sandy and clayey marls, greyish clays 

interspersed with centimetre arenaceous levels that alternate with banks of fine yellow 

or greenish quartz. Upper Burdigalian to Langhian. 

 

Imerese Basin Succession 

- Scillato formation (SCT) 

Grey calcilutites (mudstone and wackestone) laminated with nodules in thin layers, 

alternating with marly levels, passing through crystalline calcilutites, graded 

calcarenites and calcirudites and laminated in large banks and upwards, to dolomitic 

limestones. Upper Carnian and the Rhaetian. 

- Fanusi formation (FUN) 

Dolomite and dolomitic breccias organized in cyclical alternations of graded and 

laminated dolorudites and doloarenites, grey dolomitic limestone and dolomitic 

breccias. Sometimes they appear as whitish floury, massive, or poorly stratified 

dolomites, passing upwards to well-stratified grey dolomitic limestones. Lower 

Liassic. 

- Crinoidal limestones and Altofonte Breccias (MCD) 
Alternation of reddish and yellowish marls and highly recrystallized calcarenites. 

Middle-upper Liassic. 

- Crisanti formation (CRI) 

The Crisanti formation consists of four main members: the radiolarian member, with 

laminated radiolarites and policromous silioceous argillites; the ellipsactinia breccias 

member, with calcareous breccias and massive calcareous conglomerates with 

ellipsactinia alternating with greenish marl; the marly spongolitic member composed 

of argillites, siliceous marl and marly limestone; the rudist breccias member, 

composed of limestone breccias, calcirudites, grey resedimented biocalcarenites. 

Upper Liassic – upper Cretaceous. 

- Caltavuturo formation (CAL) 

Calcilutites and calcisiltites with reddish or variously coloured lists and nodules of 

chert, marly limestone, and red marls, with intercalations of calcarenites and 

calcirudites and graded and laminated calcirudites, bioclastic calcirudites. Eocene - 

Lower Oligocene. 
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Panormide Domain Succession 

- Mufara formation (MUF) 

Calcareous marl, black calcilutites sometimes laminated and grey marly limestone. 

Middle-upper Carnian. 

- Monte Quacella formation (QUC) 

Grey dolostones and dolomitic breccias in massive or indistinct stratified strata, 

vacuolar, with lenses of calcareous sandstones and calcirudites. Upper Triassic - lower 

Jurassic. 

- Pizzo Carbonara limestones and dolostones (PZA) 

Dolostones, stromatolitic and loferitic limestones with intraclasts and bioclasts, 

dolomitic limestones and calcarenites. Upper Triassic - lower Jurassic. 

- Castelbuono marls (MCU) 

Grey marly and micaceous quartzosiltites in thin layers, with frequent interbedded 

yellowish to light grey marly megastrata. Lower Miocene. 

 

Miocene-Pliocene foredeep deposits 

- Castellana Sicula formation (SIC) 

Sandstones and quartzitic sands, laminated clays, grey-greenish pelites and sandy 

pelites, sometimes well cemented. Upper Serravallian to the Lower Tortonian. 

- Terravecchia formation (TRV) 

The formation consists of three heteropic members: the conglomeratic member, 

composed of greyish and yellowish polymittic ortho and paraconglomerates, with 

alternations of coarse pebbly yellowish sands; the sandy member, composed of 

yellowish to grey sands and arenites, with cross-bedded lamination, alternating with 

pelites and sandy pelites and thin conglomeratic layers; pelitic-clayey member, 

composed of sandy clays and bluish pelites with local arenite intercalations, grey 

marls, grey-greenish or bluish clays. Upper Tortonian – lower Messinian. 

- Baucina formation (BAU) 

Biocalcarenites and calcirudites, calcareous-marly arenites, massive biocalcarenites. 

Lower Messinian. 
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- Cattolica formation (GTL) 

The basal calcareous member outcrops in the area. Yellowish-grey crystalline 

limestones, vacuolar or brecciated dolomitic limestones and dolomites, with thin layer 

of laminated grey calcilutites. Upper Messinian. 

- Trubi (TRB) 

Marls and white marly limestones, with sandy intercalation, passing to grey-green or 

whitish sandy and clayey marl, sandy-marly calcarenites. Lower Pliocene (Zanclean). 

 

Quaternary deposits 

- Buonfornello Campofelice synthem (BCP) 

Marine deposits, formed in different sedimentary cycles preceding the Tyrrhenian hot 

phase, which cover abrasion surfaces. In the area, the deposits of the sub-synthem of 

Ganci di Cenere outcrops, consisting of deposits of pebbles in a sandy-silty matrix. 

Middle Pleistocene. 

- Imera Settentrionale river Synthem (IMR) 

It includes fluvial deposits (conglomerates, gravels, sands and silts) of the Imera 

Settentrionale river. The deposits of Piano Lungo sub-synthem outcrops, with gravels 

in silty-sandy matrix alternating with fine silty sands. Middle Pleistocene – 

Tyrrhenian(?) 

- Benincasa Synthem (BNI) 

Polygenic conglomerates, quartzitic sands and reddish or red-brownish silts are 

associated with colluviums.  

- Barcarello Synthem (SIT) 

Brownish sands and silty sands, conglomerates and siliceous calcarenites. Middle-

Upper Pleistocene. 

- Baffo Rosso synthem (RFR) 

Bedded talus deposits with rough and coarse carbonate-dolomitic elements.  

- Capo Plaia synthem (AFL) 

Colluvial and landslide deposits (a), terraced (b) and recent (c) valley floor fluvial and 

talus deposits, debris flows and accumulation of etherometric stuff with variable 

thickness. Upper Pleistocene. 
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According to the literature (e.g., Conoscenti et al. 2008a; Rotigliano et al. 2011; Costanzo 

et al. 2012a; Cama et al. 2017), the above-mentioned outcropping geologic units were 

grouped based on the geomechanical expected response. The derived units are (1) Anthropic 

deposits; (2) Alluvial deposits; (3) Alluvial fan and talus deposits; (4) Colluvium and old 

landslide deposits; (5) Evaporitic rocks; (6) Sandstones; (7) Flysch Numidico pelites; (8) 

Flysch Numidico sandstones/conglomerates; (9) ‘Terravecchia’ pelites; (10) ‘Terravecchia’ 

sandstones/conglomerates; (11) Varicolours clays; (12) Calcareous and clayey marls; (13) 

Lithoid units. The lithological map and the relative distribution are shown in Figures 4.2.2.4 

and 4.2.2.5. 

 

Figure 4.2.2.4: Outcropping lithologies in the study areas (modified from Martinello et al. 2020). 
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Figure 4.2.2.5: distribution of the lithological classes in study sectors. 

In the area, carbonate, siliceous-carbonate and siliciclastic successions alternating with more 

ductile pelitic flysch sediments, alluvial clastic sediments and marine pelites characterize 

the slopes where water erosion landforms (rills, gullies, pipes), badlands systems 

(Cappadonia et al 2011; Buccolini et al 2012; Pulice et al 2012; Cappadonia et al 2016; 

Brandolini et al 2018) and landslides (mainly of the flow, slide and fall type) shape the 

landscape (Agnesi and Macaluso 1997; Agnesi et al. 1997, 2005). On the whole, clayey 

lithologic units largely form (63%) the long to short slopes whose heads are characterized 

by the outcropping of either thin metric arenitic/marly (9%) or hundreds-of-meters-thick 

carbonate (7%) caps in the hilly and mountain sectors, respectively. Landslide bodies, debris 

talus/cones and present alluvial deposits account for 20% of the outcropping units. 

For the study areas, all aspect classes are represented but a general major exposure to sectors 

from SW to NE arises (Figure 4.2.2.6). 
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Figure 4.2.2.6: distribution of the exposure of the slopes in the study area. 

Based on the more recent Corine (2018) coverage, the soil use recognized in the area (Figure 

4.2.2.7) is mainly characterized by arable land (40%), sclerophyllous vegetation (14%), 

agricultural areas (13%), olive groves (9%), forest (6%) and bare (14%). 

 

Figure 4.2.2.7: distribution of the land use classes in the study area. 

The analysis of the Landform CLassification (LCL) classes distribution for the study area 

(Figure 4.2.2.8) shows that the open slopes class is the most present class of LCL. On the 

other hand, the valleys, streams, midslope drainages and midslope ridges classes are present 

with similar abundance (~7%). 
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Figure 4.2.2.8: distribution of the landform classification classes in study area. 
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5. Applications 

5.1. Predicting the landslides triggered by the 2009 96E/Ida tropical storms in 

the Ilopango caldera area (El Salvador, CA): optimizing MARS-based model 

building and validation strategies 

Published on: Environmental Earth Sciences (2019), 78:210, DOI: 10.1007/s12665-019-8214-3 

 

The main topic of this research was to evaluate the effect on the performance of stochastic 

landslide susceptibility models, produced by differences between the triggering events of 

the calibration and validation datasets. In the Caldera Ilopango area (El Salvador), MARS 

(multivariate adaptive regression splines)-based susceptibility modelling was applied using 

a set of physical–environmental predictors and two remotely recognized landslide 

inventories: one dated at 2003 (1503 landslides), which was the result of a normal rainfall 

season, and one which was produced by the combined effect of the Ida hurricane and the 

96E tropical depression in 2009 (2237 landslides). Both the event inventories included 

shallow debris flow or slide landslides, which involved the weathered mantle of the 

pyroclastic rocks that largely outcrop in the study area. To this aim, different model building, 

and validation strategies were applied (self-validation, forward and backward chrono-

validations), and their performances were evaluated both through cutoff-dependent and -

independent metrics. All of the tested models produced largely acceptable AUC (area under 

the curve) values, albeit a loss in the predictive performance from self-validation to chrono-

validation was observed. Besides, in terms of positive/negative predictions, some critical 

differences arose: using the 2009 extreme landslide inventory for calibration resulted in 

higher sensitivity but lower specificity; conversely, using the 2003 normal trigger landslide 

calibration inventory led to higher specificity but lower sensitivity, with a relevant increase 

in type-II errors. These results suggest the need for investigating the extent of such effects, 

taking multi-trigger intensities inventories as a standard procedure for susceptibility 

assessment in areas where extreme events potentially occur. 

 

a) Landslide inventories  

In this research, two landslide inventories, ante- and post- the passage of Hurricane Ida into 

the Ilopango Caldera were detected. A remote recognition was carried out through a 

systematic GE-based analysis, which was performed on two different epochs: one dated 

9/10/2003 (DigitalGlobe Catalog ID: 1010010002459C02) and the other dated 11/21/2009 
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(DigitalGlobe Catalog ID: 101001000AA5D801), the latter being taken just 2 weeks after 

the Ida/96E combined event. Unfortunately, the 2003 GE images were affected by partial 

cloud coverage, so the study area had to be subdivided into a 2003 cloud-free (CF) and a 

cloudy blind (CB) sector. 

In comparing 2003 with 2009 rainfall data, it is clearly evident (Figure 5.1.1) that 2003 can 

be considered a “normal” rainfall year, during which the maximum 24 h, 48 h, and 72 h 

rainfall were far below the Ida/96E records. As a consequence, the 2003 and the 2009 

landslide inventories were considered a “normal” and an “extreme” one, respectively. It is 

worth mentioning that, in the time span of some years, a large part of the 2009 landslide 

areas were almost completely covered by vegetation and hardly recognizable on the field. 

At the time of our field survey (May 2015), the study area was generally affected by dormant 

and active landslides, which were mainly classifiable as debris slides or debris flows. The 

warm humid climate is, in fact, responsible for the fast growth of vegetation so that with the 

exception of a few cases of very recent landslides, a large part of the study area showed only 

smoothed forms of the previous slope failures (Figure 5.1.2).  

 
Figure 5.1.1: a) Average, 2009 and 2003 monthly rain at the meteorological station Ilopango. b) 

Comparison between the Ida/96E rainfall records and 2003 maximum ten critical cases for 24 h, 48 h, and 

72 h durations 

Each landslide area was mapped as a polygon and represented by means of a landslide 

identification point (LIP; Costanzo et al. 2014), which was positioned on the highest point 
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along the crown line. In light of the type of slope movement, LIPs were assumed to be 

potentially suitable for detecting the site conditions responsible for the previous failures that, 

as such, can be used as diagnostic landforms (Rotigliano et al. 2011; Lombardo et al. 2014; 

Cama et al. 2015) for calibrating the predictive models. It is worth noting that, as a 

consequence, using a LIP inventory for calibrating the susceptibility models obviously led 

to estimating the probability for a pixel to be an initiating area, to be then integrated with 

propagation and/or runout stages modelling. 

 

Figure 5.1.2: Comparison between 2003 (a), 2009 (soon after the Ida/96E event; b) and 2015 (c) slope 

conditions on a representative sector of the study area (LIP: landslide identification point). 
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The two landslide inventories (Figures 5.1.3 and 5.1.4) included 1503 and 2237 landslides, 

for 2003 and 2009, respectively. It is worth noting that 253 2009 cases corresponded to the 

reactivation of the 2003 landslides. 

 

Figure 5.1.3: 2003 landslide inventory map. 

 

Figure 5.1.4: 2009 landslide inventory map. 
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b) Predictors 

The following covariates were assumed at the initial stage as potential predictors for slope 

failures in the study area: outcropping lithology (LIT), land use (USE), landform 

classification (LCL), elevation (ELE), steepness (STP), aspect (ASP), plan (PLN) and 

profile (PRF) curvatures, topographic wetness index (TWI) and terrain ruggedness index 

(TRI).  

The 10 m pixel structure of the source DEM was adopted for partitioning the study area into 

mapping units (Cama et al. 2016). The classes for each of the categorical predictors (for 

aspect see the section of predictors 2.3) are listed in Table 5.1.1. 

Factor Source layer Classes of the variable 

LCL Landform classification 

LCL_1 (streams) 

LCL_2 (midslope drainages)  

LCL_3 (upland drainages)  

LCL_4 (valleys) 

LCL_5 (plains)  

LCL_6 (open slopes) 

LCL_7 (upper slopes) 

LCL_8 (local ridges) 

LCL_9 (midslope ridges)  

LCL_10 (high ridges) 

LIT Lithology 

LIT_Qf (Quaternary sedimentary 
deposits)  

LIT_s4 (pyroclastics of “Tierra Blanca”)  
LIT_s5b (accumulation cones) 

LIT_c1 (acid pyroclastics) 

LIT_c2 (acid effusive) 

LIT_b3 (basic-intermediate effusive 
rocks) 

USE Land use 

USE_1 (wood) 

USE_2 (crop cultivation) 

USE_3 (vegetable cultivation) 

USE_4 (crop cultivation and pasture)  

USE_5 (pasture cultivation) 

USE_6 (pasture)  

USE_7 (river) 

USE_8 (continuous urban fabric) 

USE_9 (discontinuous urban fabric)  

USE_10 (precarious urban fabric) 

USE_11 (growing urban fabric)  

USE_12 (low shrubs) 

USE_13 (mine areas)  

USE_14 (uncultivated areas) 

Table 5.1.1: list of the categorical predictors. 
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c) Model building and validation strategy 

MARS (Multivariate Adaptive Regression Splines) modelling was exploited to regress the 

predictor variables to each landslide susceptibility archive. 

According to the adopted research design, two validation schemes were applied: chrono-

validation, based on the 2003/2009-time partition, and self-validation, based on the spatial 

random partition of each of the two inventories (Chung and Fabbri 2003; Guzzetti et al. 

2006; Cama et al. 2015, 2017; Lombardo et al. 2015). In particular, the forward chrono-

validation scheme was applied, by calibrating with 2003 and validating in 2009, whilst the 

opposite scheme was applied for backward chrono-validation. Moreover, due to the presence 

of the cloudy area in the 2003 GE coverage, chrono-validation schemes were adopted for 

predicting either the whole 2009 landslide inventory (2009ALL) or the CF (2009CF) subset. 

For the same reason, the backward chrono-validation procedure was performed only in the 

CF sector, by calibrating with 2009 landslides and validating in predicting the 2003s. By 

applying time and random partition schemes, starting from the three available calibration 

datasets (2003CF, 2009CF, and 2009ALL), the six models of Table 5.1.2 were obtained. 

Each model building scheme was replicated 100 times. 

Model Validation scheme Calibration Validation Dataset 

A SELF2003CF 2003CF_RND(90%) SELF2003CF_RND(10%) 10-fold cross-validation 

B FRWCHRONOCF-CF 2003CF_(100%) 2009CF_(100%) 100 (CAL X VAL) 

C FRWCHRONOCF-ALL 2003CF_(100%) 2009ALL 100 (CAL X VAL) 

D BCKCHRONOCF-CF 2009CF_(100%) 2003CF_(100%) 100 (CAL X VAL) 

E SELF2009CF 2009CF_RND(90%) 2009CF_RND(10%) 10-fold cross-validation 

F SELF2009ALL 2009ALL_RND(90%) 2009ALL_RND(10%) 10-fold cross-validation 

Table 5.1.2: Characteristics of the validation schemes adopted for the six susceptibility models. 

Comparison of model A with model D, or model B with model E, allows investigating the 

role of the calibration inventory in the prediction skill of the derived susceptibility models. 

In fact, in both the cases, the landslide scenarios (i.e., 2003 and 2009) were predicted by 

calibrating the susceptibility models either on samples of landslides caused by the same 

event or extracted from the other scenario. The different model performances were then 

more clearly highlighted by directly comparing model B with model D. At the same time, 

to have reference levels for evaluating the performance of the temporal (chrono-validated) 

predictions, the 2003CF, 2009ALL, and 2009CF datasets were also submitted to random 

splitting-based self-validation. 
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To estimate the potential role of the blind area in hampering the research strategy, B to C 

and E to F models were also compared. 

Each dataset was balanced by adding to the positives (i.e., pixels hosting a LIP) an equal 

number of randomly selected negatives, corresponding to LIP-free pixels (Conoscenti et al. 

2016). For temporal partition-based validations, 100 replicates were obtained by randomly 

multi-extracting a different subset of negatives both in the calibration and validation 

datasets. 

Self-validations were based on tenfold with ten repetition cross-validation schemes, 

obtaining one hundred estimates of model parameters and performance metrics (Table 

5.1.2). 

The performances of the models were evaluated by adopting both cutoff-dependent and -

independent metrics. In particular, the prediction skill of the model was evaluated by 

computing the AUC (area under the curve) in the ROC (receiver operating characteristics) 

sensitivity vs. fallout (1-specificity) plots, as well as from confusion matrixes by 

distinguishing the true/false positive/negative cases (i.e., TP, TN, FP, and FN, respectively), 

obtained from Youden index optimized cutoff (Youden 1950). 

For each of the validation procedures, the 100 replicates allowed to obtain the mean and 

variance of all the metrics enabling the estimation of the model performances in terms of 

precision and reliability. 

 

d) Results 

To explore the structure of the models in terms of selected variables, the n-subsets criterion 

was adopted (Conoscenti et al. 2016), by counting the number of model subsets including 

each selected variable throughout the pruning pass, which is assumed as expressing the 

variable importance. 

Table 5.2.3 summarizes the results for the three calibrated models. With a threshold of 

variable importance of 1 or more, only 27 variables were extracted at least for 1 model, out 

of the 44 included at the first step of the modelling procedures, with a larger set of variables 

included in the 2009CF and 2009ALL models. 

Based on the comparison between the results of the three models, five main groups of 

variables can be defined: I, variables selected for all the three models; II, variables selected 

only for the 2009CF and 2009ALL models; III, variables selected only for the models 

calibrated in the CF area; IV, variables selected for the 2003CF and 2009ALL models; V, 

variables selected only for one single model. TRI and ELE are the most important variables, 
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with very similar and high mean values. The Ia subgroup is completed by quite important 

and homogeneous variables. The high importance of the north-eastern aspect observed for 

the 2003CF model was not exhibited by E and F models. The Ic subgroup includes variables 

that are very important for the two 2009 models, whilst a lowering of one order of magnitude 

is observed for 2003CF. The II group includes a large set of variables that are important for 

the two 2009 models (ASP_South and ASP_SouthEast, in particular), but not extracted 

throughout the pruning pass in the 2003CF calibration. SLO is selected as a quite important 

variable only for models calibrated in the CF sector, whilst group IV variables were 

extracted with varying importance, only for 2003CF and 2009ALL models. Finally, group 

V variables were extracted only for one of the calibrated models. 

Variables 
ModA 

(2003CF) 

ModE 

(2009CF) 

ModF 

(2009ALL) 
Type 

LCL_2 6 5 9 I a 

TRI 17 19 21  a 

ELE 16 18 20  a 

ASP_W 2 3 6  a 

ASP_E 7 3 6  a 

ASP_NE 12 4 2  b 

USE_2 2 12 13  c 

TWI 3 10 17  c 

USE_4 4 17 19  c 

LTL_s5b NS 2 2 II  

PLC NS 3 2   

PRC NS 3 2   

ASP_NW NS 1 2   

LIT_b3 NS 7 5   

USE_9 NS 2 4   

LCL_6 NS 1 4   

ASP_SE NS 15 17   

ASP_S NS 13 17   

ASP_SW NS 6 12   

SLO 5 3 NS III  

USE_6 9 NS 8 IV  

LIT_s4 1 NS 6   

LIT_c1 NS NS 7 V 
 

LIT_c2 NS NS 4 
  

LCL_4 7 NS NS 
  

USE_14 3 NS NS 
  

Table 5.1.3: Summary of the variable importance index for the three calibrated models 
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As regards the predictive performances, Figure 5.1.5 shows the average ROC curves that 

were obtained for the six models through their replicates, while, to ease the comparison of 

the global accuracy, a box plot displaying each of the corresponding mean AUCs was 

prepared (Figure 5.1.6). 

The whisker symbols along the ROC curves (Figure 5.1.5) attest for highly stable results 

through the replicates, with higher dispersion gradually shifting from true to false positives 

in the direction of the lower scores. For the calibrated subsets, the frequency distribution of 

the scores shows a different shape in the intermediate range (0.7–0.3), with a clear bimodal 

trend for the 2003 model (Figure 5.1.5a-c), resulting in a flat zone, where a wide range of 

scores is equally represented in terms of mapped pixels. 

 

Figure 5.1.5: ROC plots for the six models 

As regards the AUCs (Figure 5.1.6), the 2003CF, 2009CF, and 2009ALL self-validated 

models obtained similar excellent performances, with AUC values above the 0.8 threshold 

(Hosmer and Lemeshow 2000). At the same time, in the CF sector, the forward and the 

backward chrono-validations produced almost the same results in terms of AUCs, with 

largely acceptable values of 0.76 and 0.78, respectively. 
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For the forward chrono-validations, only a slight performance decrease was observed from 

the CF sector to the whole catchment (AUC = 0.74); the same small difference was observed 

for the 2009 self-calibrated model, from 2009CF (AUC = 0.83) to 2009ALL (AUC = 0.81). 

If cutoff-dependent performance metrics are taken into consideration (Table 5.1.4), it is 

evident that the loss in prediction skill from 2003 to 2009 self-validation (model A and 

model E) to forward and backward chrono-validation (model B and model D), respectively, 

depends on a sensitivity decrease, which is more marked for the 2003 model, with no 

coupled loss of specificity. Furthermore, by directly comparing the backward (model E) to 

the forward (model B) chrono-validated models in the CF sector, in spite of the similar AUC 

performance (0.71 and 0.70, respectively), a marked higher sensitivity and lower specificity 

of the former arises. In both cases, the specificity does not change from self- to chrono-

validation. It is worth noting that the two opposite behaviours of specificity and sensitivity 

compensated for each other so that the two models resulted in similar accuracy. 

 

Figure 5.1.6: AUC boxplots for the six models 

Figure 5.1.7a, b shows the two susceptibility maps prepared by calibrating the models in the 

CF sector exploiting the 2003 and 2009 landslide inventory, respectively. The maps were 

obtained by averaging, for each pixel, 100 estimates of probability values. A map of the 

residuals is also shown (Figure 5.1.7c), where the difference in the estimated score of the 

two models (score2003-score2009) is depicted. In spite of the similar general spatial pattern 

of the two prediction images, the 2009 model produced higher scores on average, whilst 
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positive and negative residuals stretch along the north-westward and south-eastward slopes 

of the main SW–NE running pyroclastic ranges, respectively. 

However, in terms of positive and negative predictions, applying Youden Index cut-offs, 

few pixels were differently classified in the two maps (Figure 5.1.8): less than 5% of the 

pixels with scores diverging for more than one susceptibility class; a larger percentage (13%) 

of pixels classified with a one-class shift and crossing the cut-off score value. 

 

Figure 5.1.6: 2003 (a) and (b) 2009 landslide susceptibility maps. Map (c) and (d) frequency distribution of 

the residuals. 

e) Discussion 

The analysis of the variable importance of the three calibrated models highlights that more 

variables are involved in the definition of susceptibility for the extreme event datasets. At 

the same time, some variables play a role in the predictive models, no matter the intensity 

of the trigger, with two topographic factors showing the maximum importance: elevation 

(ELE) and topographic ruggedness index (TRI). On the other hand, some variables 

(topographic wetness index, pasture, and crop cultivation soil use) were more important (one 

order of magnitude) under the extreme scenario, as in the case of south and south-east aspect, 

which are among the most important variables for the two 2009 models but never extracted 
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for 2003CF. Conversely, the north-eastern aspect has an importance index of more than 10 

only for normal event condition. The SLO variable was selected only for the models 

calibrated in the CF sector, probably due to the geomorphologic conditions. 

 

Table 5.1.8: differences in positive (P)/negative (N) predictions between the two models. 

Figure 5.1.9 puts the main results of the validation tests inside the framework of the 

investigation strategy adopted in this research. The results attested that the 2003 landslide 

inventory allowed to calibrate a predictive model, whose AUC performance was estimated 

as very high and reliable, after a self-validation procedure was applied (model A); that was 

the only test we could have performed in 2003, before the 2009 Ida/96E event. However, if 

trying to predict the sites where then debris flow and debris slide phenomena are triggered 

(model B), a small AUC decreases (from above to below the 0.8 threshold), but coupled with 

a relevant number of false negative occurrences (low sensitivity), arose: relying on a map 

prepared on 2003 would have resulted in 32% of missing positives (against the 22% 

expected on the basis of the 2003 self-validation test). 

An analogous AUC decrease resulted for the backward chrono-validation (model D) with 

respect to the 2009CF self-validated model (model E) but was caused by a moderate false 

negative prediction (miss rate) increasing, with only 21% of missing positives (against the 

17% obtained from self-validation). It is worth highlighting that the model E showed the 

same accuracy as the self-validated model B in predicting the 2003 positives, suggesting the 

model calibrated with an extreme event landslide scenario of a different epoch (2009) as 
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being able to reach the same performance in recognizing the sites of activation for a normal 

season landslide scenario of a self-validated one. Conversely, the model calibrated with this 

lower trigger landslide scenario resulted in a markedly lower sensitivity than the one 

calibrated under the extreme event (sensitivity = 0.68, against 0.83). In particular, the 2009-

calibrated model resulted capable to detect as nearly as 80% of the 2003 landslides, but 

expecting a higher number of positives, actually corresponding to 2003 stable sites (type-I 

errors), with low specificity and a high number of false positives. The same model calibrated 

in 2003 recognized the negative locations in the 2009 landslide scenario with a higher 

performance than 2009 self-validated itself (specificity = 0.72, against 0.63). 

 

Figure 5.1.9: Graphical summary scheme of the adopted validation strategies and main performance 

metrics. 

The results of this research confirm non-linear stochastic relationships between predictors 

and outcome under different driving conditions, as the crossing with a more severe landslide 

scenario does not only correspond to a false-to-true conversion of the predicted positives 

(actually, a small decrease of PPV is recorded for the 2003 forward chrono-validation), but 

also to positive occurrences for a number of predicted negatives. However, a similar but 

slighter effect is observed when models are calibrated with the extreme landslide scenario, 

which means the larger scenario does not fully include the smaller one. 
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In terms of the geomorphological model, a more intense triggering of the slopes is 

responsible for the activation of a large part of those site conditions which typically activate 

under normal triggering but together with other regions of the multivariate parameter 

hyperspace, have stable status under normal triggering, as attested by the 2009 models, 

which are controlled by more variables. This means that, if we focus on the applicative 

relevance of the prediction, exploiting landslide scenarios caused by more intense triggering 

events allows us to fit a large part of the normal-trigger caused landslides as well as the same 

extreme-trigger ones. 

At the same time, a source of errors in terms of successful positive predictions is introduced 

by extreme events, so that a moderate lowering of the sensitivity is to be expected. 

This could be due to the activation on 2009 of a secondary triggering mechanisms, caused 

by landslide coupling, which add a non-stochastic component to the spatial relationships 

between predictors and outcome, being rather controlled by morphodynamic slope 

connectivity. In fact, in a relevant number of cases, landslides in that extreme event scenario 

were triggered by the impact or the erosion (either laterally or at the foot of the slopes) of 

the moving mass detached from the primary slope failures. In figure 5.1.10 a field example 

is given, highlighting a number of coupled landslides, in the 2009 landslide scenario. The 

same setting can be observed in figure 5.1.4. 

 

Figure 5.1.10: field example of coupled multiple landslides in 2009.  

As regards the susceptibility maps, under an applicative perspective the 2009-calibrated 

models were confirmed to be much more accurate in predicting positives, avoiding false-
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negative predictions. Among the pixels predicted as negatives in 2003, but as positive in 

2009, 227 out of 580 (39%) resulted in unstable in the 2009 landslide scenario (Figure 5.1.8); 

conversely, very few (0.5%) of the negative predicted pixels at 2009, but as positive at 2003, 

actually resulted unstable in 2003. Again, if considering the potential severity of a false 

negative prediction, the 2009 model was confirmed to produce a more realistic and 

prudential prediction image in terms of potential damages. 

Differences in temporal validations between models trained under normal or extreme event 

triggered landslide scenarios have been investigated in other papers (Lombardo et al. 2014; 

Cama et al. 2015 and references therein). 

However, in this research, deepening the analysis to cut-off dependent performance metrics 

highlighted that, together with the confirmation of an AUC decreasing from self- to the other 

model being the same, a clear difference arises in terms of the type of predictive errors. 

 

f) Conclusions  

Predicting storm-triggered landslides always poses the problem of the morphodynamic 

coherence between calibration and validation datasets. In fact, the prediction skill of a model 

can be hampered by a large difference between the trigger intensity of the event responsible 

for the calibration and one for the validation landslide dataset. 

In the present research, a test was carried out in the Caldera Ilopango, which is a 

representative area of Central America, where recurrent extreme events occur striking 

landslide-prone pyroclastic slopes. Two different landslide inventories were exploited: one 

produced by normal rainfall, the other being the result of a very intense triggering storm (the 

Ida/96E 2009 event). The results confirmed the relevant role played by the triggering 

conditions both in the importance of the variable included in the susceptibility models and 

in their predictive performance. As regards the predictors, it is worth noting that some 

variables were selected for both the two triggering scenarios, whilst some others were only 

for the extreme event one, demonstrating that the slope failures occur under different 

mechanisms depending on the rainfall intensity. At the same time, in terms of predictive 

performances, the specificity of the predictive models resulted as not conditioned by the type 

of validation (Chrono or self-validation), nevertheless being higher for the model calibrated 

under normal event. Conversely, the sensitivity changes from self- to chrono-validation, 

with the models calibrated with a landslide inventory associated with normal trigger less 

capable to predict the sites of landslide activation under intense triggering and resulting in 

very critical type-II errors (high miss rate). On the contrary, models calibrated with extreme 
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landslide scenarios resulted in very efficient in self-predicting the positives as well as less 

critically limited in predicting the normal event-triggered landslides. It is worth noting that 

focusing only on an AUC estimation for assessing the quality of a susceptibility model could 

be misleading in terms of the applicative exploitation of the susceptibility maps, whose 

quality is critically dependent on the correctness of binary positive/negative discriminations. 

This research demonstrated that validating on an extreme event landslide inventory a 

susceptibility map calibrated with a normal landslide dataset does not result in a simple 

conversion from false to true positives (i.e., the turning of negatives but susceptible cases 

into positive), but that new susceptible conditions arise under intense triggering, which 

cannot be predicted if a normal event inventory is used for calibration. Conversely, extreme 

landslide inventories allow for calibrated susceptibility maps which are very effective in 

predicting the landslides produced by normal events but with limits in discriminating stable 

conditions. 

Summarizing what above discussed, models calibrated with a normal landslide scenario 

result in higher specificity (less Type-I error) but lower sensitivity (more Type-II error). To 

explain these differences, two main hypotheses are here suggested: the non-linear behaviour 

in the trigger intensity dimension of regressed relationships that link predictors and outcome; 

the role of a non-stochastic (morphodynamic), related to the multiple coupled triggering 

between different landslides under extreme events. 

This point is obviously of great importance in terms of applicative consequences. In fact, it 

means that landslide susceptibility stochastic modelling requires multitemporal calibration 

inventories, to detect and estimate the effects of differences in the intensity of the trigger, 

optimizing positive and negative predictions. Strategies for integrating low and high trigger 

landslide inventories are to be issued and constitute the logical conclusive perspective of 

this research. 
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5.2. Evaluation of debris flow susceptibility in El Salvador (CA): a comparison 

between Multivariate Adaptive Regression Splines (MARS) and Binary 

Logistic Regression (BLR) 

Published on: Hungarian Geographical Bulletin (2021),67(4), 361-373, DOI: 10.15201/hungoebull.67.4.5 

 

In landslide susceptibility assessment studies, which have been developed in recent years, 

statistical methods have increasingly been applied. Among all, the BLR (Binary Logistic 

Regression) certainly finds a more extensive application while MARS (Multivariate 

Adaptive Regression Splines), despite the good performance and the innovation of the 

strategies of analysis, only recently began to be employed as a statistical tool for predicting 

landslide occurrence. The purpose of this research was to evaluate the predictive 

performance and identify possible drawbacks of the two statistical techniques mentioned 

above, focusing in particular on the prediction of debris flows. To this aim, an inventory of 

debris flows triggered by the passage of the hurricane IDA and the low-pressure system 

associated with it 96E, on 7th and 8th November 2009, in an area of about 26 km2 close to 

the Caldera Ilopango, El Salvador (CA), was employed. Two validation strategies have been 

applied to both statistical techniques, thus obtaining four models – BLR (I), MARS (I), BLR 

(II), and MARS (II) – to be compared in pairs. Model performance was assessed in terms of 

AUC (area under the ROC curve), Sensitivity, Specificity, Positive Prediction Value, and 

Negative Prediction Value. Moreover, to evaluate the robustness of the modelling 

procedure, 50 replicates were created for each model and the standard deviation was 

calculated for each of them. The results show that both techniques allow for obtaining good 

or excellent performances, so it is not possible to define one of the two techniques as 

absolutely better. However, the validation procedure reveals the slightly better performance 

of the MARS models, with greater sensitivity and greater discrimination among True 

Negatives (TNs). 

 

a) Landslide inventory  

The landslide archive used in this study is a database of landslide phenomena that occurred 

in the catchment of Ilopango Caldera at the passage of Ida and 96/E. The archive has already 

been used in Rotigliano et al. (2019). The recognition of the landslides and their mapping 

has been carried out remotely, using a high-resolution satellite image available on the 

Google Earth software, which is dated 11/21/2009 (DigitalGlobe Catalog ID: 

101001000AA5D801). This image, acquired only 2 weeks after the passage of Ida-96/E, 
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allowed the identification and mapping of 2231 debris flows triggered by the aforementioned 

rainfall event.  

Each failure has been mapped by using a landslide identification point (LIP), located at the 

point of origin of the movement. In the case of evaluation of susceptibility to debris flow, 

according to Rotigliano et al. (2011), LIPs allow us to obtain the most reliable landslide 

prediction as their environmental characteristics are those that best represent pre-failure 

conditions and thus can be considered the best diagnostic areas for calibrating (and 

validating) landslide predictive models (Rotigliano et al. 2011, Lombardo et al. 2014; Cama 

et al. 2015). For this reason, it was decided to use the archive without making any changes 

with respect to the initial characteristics. 

 

b) Model building and validation strategy  

Landslide susceptibility assessment requires a validation procedure in order to evaluate the 

accuracy of the predictive models. This is generally performed in two steps: i) calibration of 

the models and ii) validation of the models (Chung and Fabbri 2003).  

In this study, we evaluated the adaptation, accuracy, and robustness of the models generated 

with BLR (Binary Logistic Regression) and with MARS (Multivariate Adaptive Regression 

Splines). To this aim, two validation strategies were developed (Figure 5.2.1), applying a 

random partition to the same landslide archive.  

First, the study area was divided into 249994 10x10m grid cells corresponding to the pixels 

of the employed DEM. This data set includes 2231 “event” or “positive” cells (i.e., cells 

hosting at least one LIP) and 247763 “non-event” or “negative” cells (i.e., cells not 

intersecting any LIP). Through random selection, 50 balanced data sets were created, each 

of them containing all event cells and an equal number of randomly selected negative cells 

(Conoscenti et al. 2016), thus including in total of 4462 cells.  

The first validation strategy involved the calibration and validation of one model for each of 

the 50 data sets. Therefore, each data set was exploited both as a learning and validation 

dataset. In the second validation scheme, each of the 50 data sets was randomly divided into 

two balanced subsets: a training set, including 75 per cent of the cases, and a test set, 

including the remaining 25 per cent of the cases. 
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Figure 5.2.1: graphical summary schemes of adopted model building strategies. 

For both the validation schemes, it was possible to obtain a pair of models, one generated 

with the BLR and one with MARS, for each balanced data set. This allowed us to analyse 

the difference in terms of performance and robustness between the two employed statistical 

techniques. As training and test datasets were the same, these differences were assumed as 

due only to the different characteristics of the two statistical techniques. Statistical analyses 

were carried out to evaluate and quantify the goodness of fit, the prediction skill, and the 

robustness of the models.  

By comparing the prediction image of each model with the spatial occurrence of the event 

cells, the confusion matrix and thus the number of true positive, true negative, false positive, 

and false negative cases (TP, TN, FP, and FN, respectively) for each model, applying a 

Youden index optimized cut-off (Youden 1950).  
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To evaluate the goodness of fit and prediction skill of the susceptibility models the AUC 

(area under the receiver operating characteristic [ROC] curve) (Goodenough et al. 1974; 

Hanley and McNeil 1982; Lasko et al. 2005) was used. A ROC curve plots the true positive 

rate (sensitivity) against the false negative rate (1 – specificity), at any given cut-off value. 

For the AUC values, Hosmer and Lemeshow (2000) identified the threshold values of 0.7, 

0.8, and 0.9 corresponding to acceptable, excellent, and outstanding predictions 

respectively. 

Finally, to evaluate the robustness of the models, the validation procedures have been 

applied to all the model runs (50 for BLR and 50 for MARS, for each validation strategy) in 

order to analyse the accuracy and reliability of the models through the study of the average 

and standard deviation of the AUC values. These validation tools have already been 

successfully used in previous studies with the aim of comparing different methods and 

models (e.g., von Ruette et al. 2011; Conoscenti et al. 2015, 2016a; Cama et al. 2017). 

 

c) Result 

For the description of the developed models and the relative results, a subscript (I) is adopted 

for those models generated through the first validation strategy, while subscript (II) is used 

for those created with the second validation strategy.  

The mean AUC values of the BLR (I), MARS (I), BLR (II) and MARS (II) models are 0.796, 

0.821, 0.789 and 0.811, respectively. According to the classification proposed by Hosmer, 

and Lemeshow (2000), these values indicate excellent (> 0.8) and acceptable (> 0.7) 

performance of the models. As shown by the AUC standard deviation values (Table 5.2.1), 

the performance of both modelling techniques is quite stable. The boxplots of Figure 5.2.2 

show a low degree of dispersion in the AUC values, which, as expected, appears slightly 

higher for the second validation strategy.  

 

Table 5.2.1: characteristics of the AUCs for the four susceptibility models. 
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Figure 5.2.2: AUC boxplots for the four models. 

Figure 5.2.3 shows the ROC curves obtained from the replicates of each model (grey) while 

the average ROC curves are plotted in red.  

 

Figure 5.2.3: ROC plots for the four models 
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Table 5.2.2 shows the cumulative confusion matrices extracted by applying the models to 

the 50 validation data sets of both validation strategies. Table 5.2.3 shows the average values 

of sensitivity, specificity, positive prediction value (PPV) and negative prediction value 

(NPV) and the relative Youden index cut-off. 

 

Table 5.2.2: Confusion matrices of the four susceptibility models. 

 

Table 5.2.3: Summary of the validation metrics for the four susceptibility models.  

The accuracy of the models can be considered good, with values between 0.71 and 0.74. 

Sensitivity values between 0.76 and 0.82, attest to a good predictive power of positive cases 

while slightly lower is the ability to discriminate the true negatives (specificity in the range 

0.66–0.67). On the other hand, it is noteworthy that the NPV values, which are between 0.74 

and 0.78, reveal acceptable predictions of the TNs whereas the PPV values, which are 

approximately 0.7, attest to a slightly worse ability to predict the TPs. 
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d) Discussion 

For the discussion of the results of model validations, we have to take into account that in 

the first validation strategy (i) the training and the test data sets coincide whereas in the 

second strategy (ii), the learning and validation sets do not share any pixels and they are 

randomly extracted from the training/test data sets employed in the first procedure.  

 

Models’ validation using the first validation strategy  
MARS (I) demonstrate slightly better performance than BLR (I). It should be noted that the 

difference in terms of AUC is very small, being between 0.02 and 0.05. The accuracy of 

MARS (I) is only 0.02 higher than the accuracy of BLR (I), whereas the difference of 

average AUCs is only 0.03. Regarding the ability to predict event cells, a greater difference 

is recorded: the average sensitivity of MARS (I) is indeed 0.82 whereas that of BLR (I) is 

0.77. However, PPV values reveal the same ability for both BLR (I) and MARS (I). On the 

other hand, although the specificity values suggest similar abilities of BLR (I) and MARS 

(I) to predict the non-event cells, NPV values demonstrate the better performance of MARS 

(I) (0.78) compared to that of BLR (I) (0.74).  

 

Models’ validation using the second validation strategy  
Also, the second validation strategy reveals a slightly better performance of MARS 

compared to that of BLR, although the observed differences are once again weak. The 

difference in both accuracy and AUC values is indeed approximately 0.02. Again, the 

difference in terms of sensitivity between MARS (II) (0.81) and BLR (II) (0.76) does not 

result in a greater discriminatory power of TP (the difference of PPV is 0.01). Finally, the 

two techniques show the same specificity (0.66), but the discriminatory ability of TN is 

higher for MARS (II), with NPV values equal to 0.77 versus 0.74 of BLR (II). 

 

e) Conclusions 

The use of statistical methods in landslide susceptibility assessment raises the problem of 

the type of analysis to perform and which one is the best modelling approach and technique. 

BLR has been proven a useful technique for achieving a reliable assessment of landslide 

susceptibility. In recent years, however, several other statistical techniques have also 

demonstrated equally good, and sometimes even better, performance. MARS, which is a 

relatively new technique, has been employed in a few cases for assessing landslide 

susceptibility but it has already been demonstrated to provide very good accuracy in 
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predicting the occurrence of slope failures. However, as far as we know, MARS has never 

been employed to predict debris flows.  

The aim of this study was to highlight the differences in terms of predictive performance 

between BLR and MARS and, thus, identify the best method for the assessment of debris 

flow susceptibility in the area of Ilopango Caldera.  

The obtained results show that both methods achieve good to excellent predictive 

performances. Although MARS demonstrated slightly better performance, the difference is 

too small to be able to define this technique as clearly better than BLR.  

Rotigliano et al. (2019) hypothesize that in the 2009 dataset there is a problem related to a 

second triggering of a number of phenomena due to incision or lateral erosion produced by 

debris flows activated directly by the storm event. In fact, even in this study, the models 

obtained are affected by this problem, as shown by the low specificity values. In light of 

this, however, the performance in terms of NPV is higher than expected. MARS, in fact, 

with the same dataset, is able to discriminate TN with better ability than BLR. This is 

probably due to the ability of MARS of identifying different relationships between the 

dependent and the independent variables, for different regions of the predictors’ ranges. This 

allows MARS to overcome, even if only slightly, the problem of the second triggering of 

landslides, certainly with a better distinction of cases with respect to BLR. Furthermore, 

both validation strategies, albeit with subtle results, show a greater ability of MARS to 

identify positive cases compared to BLR.  

In light of this, although the differences are not marked and certainly the results do not allow 

the definition of a modelling technique as absolutely better than the other, it is possible to 

identify more merits in the MARS technique than in the BLR. 
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5.3. Investigating limits in exploiting assembled landslide inventories for 

calibrating regional susceptibility models: a test in volcanic areas of El 

Salvador 

Submitted to: Applied Sciences – section: Earth Sciences and Geography – Special Issue: Advancing 

Complexity Research in Earth Sciences and Geography 

 

The research is focused on the evaluation of the reliability of regional landslide susceptibility 

models obtained by exploiting inhomogeneous (for quality, resolution and/or triggering 

related type and intensity) collected inventories for calibration. In fact, this is a frequently 

adopted solution for those areas where the need of preparing basin to regional-scale landslide 

susceptibility maps for risk management and mitigation collides with the absence of 

systematic homogenous landslide inventory. At a large-scale glance, merging more 

inventories can result in good per-forming models hiding potential strong predictive 

deficiencies. An example of the limits such kind of models can find is given by a landslide 

susceptibility study which was carried out for a large sector of the coastal area of El 

Salvador, where an apparently high performing regional model was obtained by merging the 

landslide inventories from five volcanic areas (Ilopango and Coatepeque caldera; San 

Salvador, San Miguel, and San Vicente Volcanoes). A multiscale validation strategy was 

applied to verify its actual predictive skill on a local base bringing to light the loss in the 

predictive power of the regional model, with a smooth lowering of ROC_AUC, but strong 

effects in terms of sensitivity or sensitivity. 

 

a) Landslides inventory and related triggering rainfall events 

The main task of this research is to test the suitability of aggregated regional landslides 

archives in the evaluation of landslide susceptibility assessment. For this reason, a set of 

independent available debris flows/slides archives were exploited for training and validating 

a regional landslide susceptibility map. Archives from five different sectors of the El 

Salvador territory were considered, which, even in the same sector, are to be considered as 

un-uniform in terms of operators, methods (field/remote), and epoch (which means grouping 

debris flows/slides linked to multiple and/or different extreme rainfall). In facts, these 

landslide inventories were prepared in the framework of different studies (master’s degree 

thesis, Ph.D. thesis and so on, see Author Contribution), many of which have been part of 

the RIESCA project (Proyecto Regional de Formación Aplicada a los Escenarios de Riesgos 

con Vigilancia y Monitoreo de los Fenómenos Volcánicos, Sísmicos e Hidrogeológicos en 
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Centro América). For this reason, the study areas are not a priori limited and as mentioned 

above, they have been restricted to the sectors affected by the activation of the inventoried 

debris flows: Ilopango (ILO), Coatepeque (COA), San Miguel (SMG), San Vicente (SVC), 

and San Salvador (SSV) areas. 

As above mentioned, the main triggering events for these landslide scenarios are the 

hurricane Ida and the tropical depression 12E (TD12E). Tropical-humid climate setting of 

El Salvador produces, in the rainy season between May and October, very high rain-fall 

amounts (above 1500 mm, on average) that, usually, occur in the form of intense storms. 

Therefore, rapid saturation of the regolithic mantle and powerful surface runoff can cause 

the triggering of a huge number of landslides even in the case of a normal rainfall season 

(Rotigliano et al. 2019). 

All the mapped phenomena were individuated by exploiting Google Earth images and the 

Landslide Identification Point (LIP), which was generated for each of the mapped 

phenomena corresponding to the highest point along with the landslide crown, was also 

taken as indicating the area that effectively represents the activation conditions for surface 

debris flows (Rotigliano et al. 2011, 2018, 2019; Costanzo et al. 2014; Lombardo et al. 2014, 

2015; Cama et al. 2015). 

The Coatepeque archive includes 1895 debris flows, which have been triggered by the 

tropical depression (TD) 12E in 2003. The same extreme rainfall event activated the 382 

debris flows/slides of the San Salvador dataset. Hurricane Ida is the trigger of the 4975 

phenomena mapped in the San Vicente archive, while both TD12E and Ida activated the 

38525 debris flows/slides of the Ilopango dataset. Finally, the 233 landslides of the San 

Miguel archive were triggered by several rainfall events from 2001 to 2018. 

 

b) Model building and validation strategy 

i.  Predictors and mapping units 

The selection of a set of geo-environmental variables potentially expressing the landslide 

preparatory causes was based on largely adopted geomorphological criteria (Costanzo et al. 

2012b; Rotigliano et al. 2018, 2019; Vargas-Cuervo et al. 2019; Martinello et al. 2021, 2022; 

Mercurio et al. 2021). In particular, outcropping lithology and soil use, were derived from 

an available thematic map (Weber et al. 1978) and a remote survey, respectively. By 

processing a 10m pixel digital terrain model (DTM), the following continuous variables 

were derived: elevation (ELE), steepness (STP), plan (PLN) and profile (PRF) curvatures, 

topographic wetness index (TWI), and aspect, the latter expressed in terms of easterness 
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(EASTNS) e northerness (NORTHNS). Besides, the landform classification (LCL) 

categorical variable was obtained. In this way, a set of three categorial and seven continuous 

variables was prepared. 

Based on the geomechanical expected response, the outcropping lithologies were grouped 

as soft, medium, hard rocks; very soft, soft, medium, hard soils (Table 5.3.1). 

Geomechanical 

classification 
Grouped lithologies 

Relative 

outcropping area 

Relative percentage 

distribution of landslides 

Hard soil c1 18.1% 24.1% 

Soft soil Qf 2.1% 1.2% 

Very soft soil s4 18.1% 57.7% 

Hard rock c3, b3 11.0% 3.1% 

Soft rock b2, s2 23.9% 1.8% 

Medium soil b1, s5a, s1, s5c, s3a 22.3% 7.4% 

Medium rock s3b, s5b, c2 4.5% 4.7% 

Table 5.3.1: The geomechanical classes with their corresponding grouped lithologies, relative outcropping 

area, and relative percentage distribution of landslides into each geomechanical unit.  

Table 5.3.1 shows the percentage distribution of landslides in relation to the geomechanical 

units. On the basis of the landslide distribution in the study areas, soil classes are deeply 

involved in slope instabilities, with very soft and hard soils accounting for more than 80% 

of the mapped cases. The very low number of landslides recognized in soft soils has to be 

ascribed to the very limited extension of the outcropping areas. 

All the controlling factors were arranged in 10x10m raster layers. 

In order to optimize the final selected predictors that were included in the MARS modelling 

procedure, the variance inflation factor (VIF) (Naimi 2015) test was performed for 

multicollinearity analysis through the continuous variables. 

The same grid cell structure was then adopted as the susceptibility mapping unit, assigning 

a stable/unstable status depending on the intersection of LIPs. In fact, according to a number 

of debris flow susceptibility assessment studies (e.g., Rotigliano et al. 2011; Costanzo et al. 

2014; Nicu and Asăndulesei 2018; Mokhtari and Abedian 2019; Sameen et al. 2020; 

Martinello et al. 2021, 2022; Mercurio et al. 2021; Steger et al. 2021), we considered the 

instability conditions of each inventoried landslides to be effectively captured in the highest 

crown 10x10m pixel. 
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ii. Modelling and validation tools 

In this research, Multivariate Adaptive Regression Splines (MARS; Friedman 1991) was 

applied to regress the outcome (stable/unstable status) onto the covariates set from the 

controlling factor layers.  

MARS statistical modelling of landslide susceptibility conditions requires the random 

extraction of a sample made of a balanced number of stable and unstable cases to be split 

into calibration and validation subsets: the first is exploited for regressing the outcome status 

on the set of covariates that express the adopted controlling factors, while the latter furnishes 

the unknown-to-model target pattern whose status has to be blindly predicted. In a pixel-

based method, where the number of stable cases is typically largely greater than the unstable, 

balanced samples are obtained by merging all the positives to an equal number of randomly 

extracted negatives. To account for any potential unrepresentativeness of the extracted 

negatives, by adopting recurrent random selection routines, multiple samples were 

produced. Similarly, to control the influence of the specific cases which feed the calibration 

subsets, multiple (75/25%) calibration/validation splitting was applied to each sample as 

well. In this way, one-hundred samples were split one-hundred times so that each pixel was 

classified ten-thousand times allowing to estimate the model resolution and precision. 

Finally, to fully evaluate the prediction skill of the model, the regression coefficients gained 

in the calibration/validation subset were applied to the whole investigated area. 

Receiver Operating Curve (ROC) (Goodenough et al. 1974; Lasko et al. 2005; Fawcett 

2006) and confusion matrices analysis were the tools employed to investigate the model 

accuracy. In particular, ROC plot analysis is based on evaluating True versus False positive 

rates for decreasing susceptibility scores, larger Area Under Curve (AUC) (Hanley and 

McNeil 1982; Hosmer and Lemeshow 2000) attesting for more effective classifications. The 

score at the maximum gradient of the ROC is then used as optimized cut-off (Youden 1950) 

for building a binarized (positive/negative-observed/predicted) confusion matrix. In this 

way, the accuracy of the model can be evaluated both with score independent (ROC_AUC) 

and dependent (ACC) indices. 

 

iii. Research design and model building strategy 

In the following, we will refer to a super area (ALL), considering the one obtained by 

merging all the positive and negative cases of each of the five sectors (volcanic areas), the 

latter defining five local datasets (ILO, COA, SMG, SVC, SSV). 
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It is worth noting that, in light of the number of causes which have been here claimed as 

responsible for the inventory incompleteness, a different approach from Steger et al. (2017, 

2021) was to be designed for evaluating the influence of the bias landslide inventory. In 

particular, to explore the topic of the research, the following model building procedure was 

designed, by submitting to a strict validation procedure the hypothesizing of completeness 

of the inventory. 

First, a grand model (ALL) was prepared by applying the typical approach aimed at 

obtaining a regional model from the available landslide inventories, including in the 

processed dataframe the whole set of positives and negatives from the five sectors. To have 

a control on the variability of the negatives and the calibration/validation subset assignment 

of positives, a suite of one-thousands multiple datasets was obtained by randomly extracting 

one-hundred sets of negatives and submitting each dataset to ten randomly 

calibration/validation (75/25%) splitting. 

Once the grand model was prepared, it was first validated with respect to the spatial 

distribution of the landslides in the whole super area (ALL_ALL), according to a self-

validation scheme (Chung and Fabbri 2003; Guzzetti et al. 2006; Cama et al. 2015, 2017; 

Rotigliano et al. 2018, 2019; Vargas-Cuervo et al. 2019; Martinello et al. 2021, 2022). The 

validation performance of the grand model was then locally evaluated by restricting the 

validation dataset to a single sector in turn (e.g., ALL_ILO). For comparison, independent 

local models (e.g., LOC_ILO) were prepared for the five sectors by limiting the application 

of the modelling procedure to every single dataset and applying a local self-validation 

scheme. Finally, five one-leave-out models were prepared by applying the same above-

described procedure but adopting a 4/1 sectors calibration/validation splitting in the 

modelling scheme; a local validation was then obtained, by assessing the predictive skill in 

recognizing the specific positives and negatives of the extracted (left-out) target sector. In 

the following, these models are referred to as OLO models (e.g., OLO_ILO). 

Table 5.3.2 gives a summary of the prepared models, including the specification of the main 

characteristics. 

According to the main task of the research, the ALL_ALL is to be considered as that model 

one could take as representative for a regional prediction image. At the same time, the 

imported models (ALL_local), in re-defining the validation set on a local basis, could furnish 

a useful warning in case the performance of the grand models is actually locally misleading. 

The local models give an estimation of the reference performance the imported model (ALL 

or OLO) should achieve to be considered more informative. Finally, the one-leave-out 
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modelling procedure simulates the results of applying the model to totally unknown sectors 

(such as a hypothetical sixth unknown volcanic area would result in our research). 

Table 5.3.2: Adopted model building scheme for the tested models 

 

c) Results 

For each of the models above described, the results of the validation are reported both in 

Figures 5.3.1-5.3.3, where ROC curves and related AUCs are drawn, and in Table 5.3.3, 

where binarized positive/negative status comparisons between predicted/observed target 

cases are given. 

 
Figure 5.3.1: Roc plots and relative AUC values for the ALL models. 

type calibration validation 

ALL_ALL 
75% randomly extracted balanced 

subset from the ALL* dataset 
conjugate 25% randomly extracted 

balanced subset from the ALL dataset 

ALL_target 
100% randomly extracted balanced 

subset from the ALL dataset 
100% randomly extracted balanced 
subset from a single target** sector 

OLO_target 
100% randomly extracted balanced 

subset from a [ALL-target]*** dataset 
100% randomly extracted balanced 

subset from the subtracted target sector 

LOC_target 
75% randomly extracted balanced 
subset from a target sector dataset 

coniugate 25% randomly extracted 
balanced subset from a target sector 

dataset 

*ALL: the sum of the positive and negative cases of the five sectors 

**target: the sum of positive and negative cases of a single sector 

***[ALL-target]: the difference between ALL and a target 
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Figure 5.3.2: Roc plots and relative AUC values for the LOCal models. 

 

Figure 5.3.3: Roc plots and relative AUC values for the One Leave Out models. 
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 count positives negatives TN FN FP TP ACC Sensitivity Specificity AUC 
A

L
L

 
ALL 6311320 46010 6265310 4786221 8022 1479089 37988 0.76 0.82 0.76 0.87 

COA 806671 1895 804576 698607 967 105969 928 0.87 0.44 0.87 0.82 

SSV 1429050 382 1428668 1369074 367 59594 15 0.96 0.04 0.96 0.54 

ILO 1161436 38525 1122911 378750 4171 744161 34354 0.36 0.89 0.34 0.69 

SVC 2794399 4975 2789424 2221036 2295 568388 2680 0.80 0.54 0.80 0.73 

SMG 119964 233 119731 118754 222 977 11 0.99 0.05 0.99 0.78 

L
O

C
 

COA 806471 1895 804576 590261 219 214315 1676 0.73 0.88 0.73 0.88 

SSV 1429050 382 1428668 839269 66 589399 316 0.59 0.83 0.59 0.78 

ILO 1161436 38525 1122911 737214 13392 385697 25133 0.66 0.65 0.66 0.72 

SVC 2794399 4975 2789424 1880683 1038 908741 3937 0.67 0.79 0.67 0.80 

SMG 119964 233 119731 79805 25 39926 208 0.67 0.89 0.67 0.87 

O
L

O
 

COA 806471 1895 804576 622805 562 181771 1333 0.77 0.70 0.77 0.82 

SSV 1429050 382 1428668 1343953 361 84715 21 0.94 0.05 0.94 0.53 

ILO 1161436 38525 1122911 455548 7448 667363 31077 0.42 0.81 0.41 0.63 

SVC 2794399 4975 2789424 2044869 2021 744555 2954 0.73 0.59 0.73 0.69 

SMG 119964 233 119731 119002 229 729 4 0.99 0.02 0.99 0.76 

Table 5.3.3: Validation results (confusion matrices) for the sixteen models. 

The performance of the ALL_ALL model is very high, with excellent AUC and accuracy 

(0.87 and 0.76, respectively) and highly satisfactory sensitivity (0.82) and specificity (0.76). 

If comparing these values to the ones obtained in importing the grand model into the specific 

sectors (ALL_local) satisfactory to excellent AUC and ACC values still hold, with the 

exception of ILO and SSV. However, lower sensitivity and higher specificity were recorded 

for all the models, with the exception of ILO. It is worth to note that only the SVC imported 

local model still performs with acceptable scores for all the main indices (sensitivity, 

specificity, ACC, AUC). At the same time, the local models are in general characterized by 

higher (0.8-0.9) AUC values, with a much more balanced sensitivity/specificity ratio, as a 

result of higher sensitivity and lower specificity. Again, an opposite behavior is observed 

for ILO. 

Finally, the one-leave-out models confirm the general trend of performance indices variation 

which was observed for ALL_local validations. 

As regards the role of the predictors, the results obtained from the local modelling 

highlighted two very different responses (Figure 5.3.4): SMG and SSV are fully controlled 

by elevation and steepness, whilst ILO, COA, and SVC also required the discriminating 

contribution of either from landform classification (COA and SVC) or outcropping lithology 

(ILO and SVC) or soil use (for COA and ILO). Elevation, steepness, outcropping lithology, 

and soil use are all selected by the ALL grand model. 
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Figure 5.3.4: The most important variables for the ALL model (a) and the LOC (left side) and the OLO (right 

side) models (b-f). In amaranth, the common variables for the LOC and the OLO models, while in green the 

different variables. Thin lines are used for variables with a lower overall (minor than 30 out of 100). Here, 

are the acronyms used: geo 2 = soft rock; geo 3 = hard rock; geo 4 = medium rock; geo 5 = very soft soil; 

geo 6 = soft soil; geo 8 = medium soil; lcl 3 = valleys; lcl 4 = plains; lcl 5 = open slopes; lcl 8 = midslope 

ridges; uso 2 = forest; uso 4 = crop and pasture; uso 5 = permanent crop; uso 11 = shrub vegetation. 

 

d) Discussion 
The local landslides distribution in five different volcanic sectors was predicted both from 

imported (both ALL and OLO models) and locally calibrated models. The latter resulted in 

smoothly (with the exception of SSV) higher AUC values, with a proportional decrease of 

the cut-off dependent accuracy, but driven by a marked sensitivity increasing and slightly 

specificity decreasing. In particular, the more the LIP% incidence of a single sector, the 

higher the TPR decrease recorded for the imported models. A relevant exception that was 

highlighted by the results is the very odd behaviour of ILO, whose local model produced a 

worse performance in recognizing its own positives. 

The ILO sector includes the very large majority of landslides (83,7%) and, in light of its 

limited extension (18,4%), the maximum ratio between unstable and stable pixels. When 

trying to discriminate the status of the ILO pixels, on the base of the ALL or OLO imported 

model, a better performance arises in positive detection if compared to the skill of the local 

model. This is due to the undifferentiated presence of positives and negatives in the same 

geomorphologic conditions and this effect could have been enhanced by the severe 
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triggering conditions (IDA tropical storm) which activated landslides even in low 

susceptible areas. In fact, the better performance of ALL and OLO relies on the circumstance 

that these models take their cases outside ILO, for positive and negative cases of OLO, or 

prevalently outside ILO, for the negatives of ALL. As a consequence, the local dataset 

confuses the binary discrimination whilst recurring to the outside pixels allowed to better 

understand the unstable conditions. At the same time, for a more geomorphologically 

differentiated setting sub-catchment of ILO (“Arenal de Cujuapa”), Rotigliano et alii (2018; 

2019) obtained, with the same MARS modelling approach, higher AUC, and accuracy 

values (0.83 and 0.73, respectively). Moreover, the same loss in the model performance was 

observed when trying to temporally predict the landslide inventory of 2003 (produced by a 

non-extreme rainfall triggering) from the model calibrated with the same 2009 hurricane-

induced inventory that was used in the present research. 

Once the potentially hampering specific conditions of the ILO sector arose, a new grand 

model (ALL*) was tested excluding ILO from all sectors (which were reduced to four) and 

obtaining better locally imported results (Table 5.3.4). With the exception of SSV, these new 

imported models performed with similar largely satisfactory AUCs to the local models and 

even higher sensitivity. 

 
count positives negatives TN FN FP TP ACC Sensitivity Specificity AUC 

A
L

L
*_

C
O

A
 

806471 1895 804576 515857 166 288719 1729 0.64 0.91 0.64 0.85 

A
L

L
*_

S
S

V
 

1429050 382 1428668 1314478 349 114190 33 0.92 0.09 0.92 0.61 

A
L

L
*_

S
V

C
 

2794399 4975 2789424 1813333 1026 976091 3949 0.65 0.79 0.65 0.79 

A
L

L
*_

S
M

G
 

119964 233 119731 37646 8 82085 225 0.32 0.97 0.31 0.75 

Table 5.3.4: Validation results (confusion matrices) for the ALL* models. 
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e) Conclusions 

On the basis of the obtained results, it is confirmed that grouping landslide inventories from 

different areas to reach a number high enough to prepare performing susceptibility models 

can lead to very unreliable results unless further validation tests are carried out. In particular, 

depending on both the number of landslides and frequency distribution of all the predictors 

in each of the grouped sectors as well as on their area, the grand model can result as very 

performing on average, but really misleading and unstable in recognizing positives and/or 

negatives on a local scale, to the point that locally calibrated models result as more 

performing even if trained with a lower number of cases. This would typically lead to taking 

a sense of security and considering the obtained prediction image as reliable for the study 

area, eventually suggesting also to export the obtained model also to new neighbouring un-

recognized sectors, for instance, those between the five mapped ones. In this paper, a new 

approach was adopted, and related tools were proposed, for verifying the inventory 

completeness hypothesis. This approach can be involved in any model building procedure 

so to obtain warnings about the quality of the source data and its influence on the resolution 

of the derived susceptibility models. 

Comparing grand to local models should be a standard procedure when assembling large 

landslide inventories, even in the case of secondary catchments in large basin-scale studies. 

The main factors in controlling the skill of the grand model are the number of total pixels 

and the number of positives and the spatial distribution of the predictors. Two main factors 

hamper the accuracy and reliability of any grand model, based on a presence/absence 

method: depending on the relative spatial extension of the classes of each covariate, in light 

of the need to randomly extract the negatives to prepare balanced datasets, a forcing toward 

the more diffused classes results for stable conditions; depending on the different 

completeness of the merged landslide inventories, a forcing toward the unstable conditions 

coming to light in the sectors or catchments with a higher number of mapped landslides 

arises. These two effects are much more severe for the categorical variables in the case of 

un-homogeneous geologic/geomorphologic setting, whilst DTM-derived variables are more 

unlikely to result as so largely different to mislead the modelling. It is worth noting, that the 

limits produced by the qualitative and quantitative differences in the landslide inventories 

suggest as not suitable even the adoption of presence-only methods, in light also of the strong 

influence that any unrepresentativeness of the landslide inventories produce. 
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5.4. Optimal slope units partitioning in landslide susceptibility mapping 

Published on: Journal of Maps (2021), 17:3, 152-162, DOI: 10.1080/17445647.2020.1805807 

 

In this paper, a test was performed in the Imera Settentrionale river basin (Sicily). MARS 

(Multivariate Adaptive Regression Splines) modeling was applied to assess 

rotational/translational landslide susceptibility based on twelve predictors and a 1608 cases 

database. A pixel-based model was prepared, and the scores were zoned into ten different 

types of slope units layers, obtained by differently combining two half-basin (HB) and four 

landslide classification (LCL) coverages. The predictive performance of the ten models was 

then compared to select the best performing one, whose prediction image was finally 

modified to take into account also the propagation stage. The final results attest that 

integrating HB with LCL is more performing than using simple HB classification, with a 

very limited loss in predictive performance with respect to the pixel-based model. 

 

a) Landslide inventory and landslide conditioning factors 

Landslide recognition was carried out using high resolution (0.25m) LIDAR (LIght 

Detection And Ranging) images taken in 2012 by ARTA (Assessorato Regionale al 

Territorio e all’Ambiente). The inventory includes 1608 rotational/translational slides that, 

on the whole, affect an area extending for about 26 km2 (~8% of the study area). The 

obtained landslides inventory (Figure 5.4.1) was checked with a randomly hot spots field 

survey which was carried out in 2019; for each of the mapped landslide polygon, the highest 

point along the crown (Landslide Identification Point – LIP) was extracted, which several 

researches (Rotigliano et al. 2011; Lombardo et al. 2014, 2016; Cama et al. 2015) 

highlighted as an effective diagnostic site for landslide susceptibility evaluation. 

In this research, a set of ten topographic predictors was derived by processing with GIS 

hydro-morphological tools an 8m cell digital elevation model (DEM) obtained from a 

LIDAR survey in 2008 by ARTA: elevation (ELE), landform classification (LCL), steepness 

(STP), aspect (expressed as NORTHerness and EASTerness), plan (PLN) and profile (PRF) 

curvatures, topographic wetness index (TWI), terrain ruggedness index (TRI) and stream 

power index (SPI). 

A bedrock lithology map (LITO) was prepared by grouping the different outcropping 

lithologies in light of their expected mechanical behavior (see section 4.2.2). The boundaries 

between the different units were verified and adapted on the basis of remote and field 
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surveys. The Corine Land Cover 2018 (USE) was also used to classify land use of the Imera 

Settentrionale river basin. 

 

Figure 5.4.1: recognized active rotational/translational slides inventory map. 

 

b) Model building and validation 

Each 8m pixel was classified as stable or unstable (positive or negative cases) depending on 

whether or not it hosts at least one LIP and the local values of all the proxy predictors 

assigned. Thereby, a R dataframe was obtained and exploited to extract a suite of one-

hundred balanced (positive/negative) datasets, each including the whole set of positive 

pixels and an equal number of randomly extracted (without replacement) subsets of 

negatives. Each dataset was then submitted to a balanced random partition furnishing a 75% 

subset for calibration and a 25% unknown subset for blind validation tests.  

The Multivariate Adaptive Regression Splines (MARS; (Friedman, 1991)) stochastic 

method was applied to model landslide susceptibility. The model performance was analyzed 



121 
 

in terms of a cut-off independent metric (by AUC: the Area Under the receiver operating 

Curve) as well as, based on an optimal cut-off (Youden 1950), in terms of TPR and TNR 

(true positive and negatives rates, respectively) and related accuracy. By exploiting the 

availability of the one-hundred replicates, each accuracy metric was assessed also in terms 

of precision. 

Each model was tested in predicting the validation test, first, and the whole study area, then. 

In fact, in evaluating the suitability of the final maps it is of great importance to verify to 

what extent the forced false positive generation (all the unstable status pixels are inside the 

calibration/validation subsets) is balanced by the performance in terms of true negative 

prediction. 

c) Slope Units partitioning and scoring 

By using two main criteria, ten types of slope-unit partitioning schemes were adopted. 

Firstly, two classic hydro-morphological units were obtained by means of contributing area-

based procedures: in this way, by exploiting 2000 and 5000 contributing area thresholds, a 

2000 half basin (2000_HB_SLU) and a 5000 half basin (5000_HB_SLU) SLU-layers were 

obtained. 

Then, the TPI based Landform Classification (Guisan et al. 1999) SAGA tool was exploited 

to obtain four different LCL maps from the DEM, by changing the inner/outer radius as 

100/1000, 100/2000, 500/1000 and 500/2000 meters. LCL divides and classifies the study 

area in geomorphological-classes considering the relative vertical position of each pixel. 

By intersecting the 2000_HB_SLU and 5000_HB_SLU shapes with the four LCL maps, 

eight new types of slope-units were obtained (Table 5.4.1), in which each half basin unit 

was split into several areas having a different geomorphological classification (Figure 5.4.2). 

For each of the ten types of obtained slope-unit layers, MEAN (average) and MSTD (mean 

plus one standard deviation) of the pixel-based scores were zoned for producing ten derived 

prediction images. A positive (unstable) status was then assigned to the slope-units if 

containing at least one LIP. In this way, each slope-unit was so characterized by a predicted 

(derived by MEAN and MSTD scoring) and an observed status, so that Receiver Operating 

Curve (ROC)-plots and Confusion Matrixes, through a new Youden Index cut-off, were 

analyzed. 
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Hydro-

morphological 

units 

LCL 

inner-outer 

radius 

LCL_SLU 

 

2000_HB_SLU 

100-1000 211_LCL_SLU  

100-2000 212_LCL_SLU  

500-1000 251_LCL_SLU  

500-2000 252_LCL_SLU  

5000_HB_SLU 

100-1000 511_LCL_SLU  

100-2000 512_LCL_SLU  

500-1000 551_LCL_SLU  

500-2000 552_LCL_SLU  

Table 5.4.1: Characteristics of the LCL_SLU partitioning scheme adopted. 

 
Figure 5.4.2: example of LCL_SLU partition (HB_SLU: 5000 + LCL: 100-2000). 

 

d) Results  

The figure 5.4.3a, which shows the ROC-plot of the one-hundred pixel-based models, attests 

for excellent (Hosmer and Lemeshow 2000) AUC mean values (0.89), associated to very 

low standard deviations (0.01), and a 0.48 Youden Index cut-off. A similar high performance 

in terms of prediction accuracy (Figure 5.4.3b) was also obtained from the confusion matrix 

both for the balanced pixel-based model and the entire area (0.79 to 0.81). Coherently, both 
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specificity and sensitivity do not change from the balanced datasets (0.83) to the entire area 

(0.85). On the other hand, while similar (about 0.80) Positive and Negative Predicted Values 

(PPV and NPV) were achieved by the balanced test, very different results were obtained for 

the whole area (0.001 and 0.999, respectively). 

The figure 5.4.4a shows a graphical resume of the most important selected predictors, by 

using the nsubsets criterion (Conoscenti et al. 2016; Rotigliano et al. 2019). 

 

Figure 5.4.3: a) roc plot of pixel-based model (the one-hundred replicates are plotted in orange while the 

averaged ROC is in red); b) summary of the averaged confusion matrices for the pixel-based model 

validations (balanced and entire area schemes). 

The categorical variables (LCL, LITO, USE) were disassembled into specific classes to 

analyse their different impact. In this way, 23 out of 45 variables have contributed to 

discriminate the positive to negative cases but only seven can be considered very important. 

TRI, SPI, PRF, ELE, SLO and PLN are the most important DEM-derived variables. Between 

the categorical variables, “lithoid units” and “calcareous and clayey marls” lithology classes, 

“non-irrigated arable land” and “sclerophyllous vegetation” land use classes and all the LCL 

classes played a very important role to discriminate the stable/unstable pixels. 

The binary correlation between the continuous variables (Figure 5.2.4b) highlights a very 

high negative correlation between TWI and SLO, TWI and TRI whilst a positive one 

between SLO and TRI. 

In table 5.4.2, the MEAN- and the MSTD-derived LCL_SLU AUCs for the ten types of 

slope-units are showed. The LCL_SLU AUCs perform always slightly better by using the 
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MSTD-derived score (>0.84) rather than the MEAN-derived score (> 0.82). A similar 

behavior is observed also for the HB_SLU models but down-shifted toward less performing 

results (between 0.74 and 0.78). 

 

Figure 5.4.4: a) Variables importance for the pixel-based model: the predictors with an overall higher than 

25 are plotted in cyan while those with an overall lower than 25 are in light-cyan; b) Binary correlation 

between the continuous variables: the radius of circle is proportional to the intensity of correlation (between 

0 and 1) while the colour is representative to the direction (yellow for positive correlation, green for 

negative one); the X symbol corresponds to a non-significant correlation (p-value <0.01). 

The Youden Index cut-offs are lower than the pixel-based models ones, with a more marked 

decreasing when passing either from HB_SLU to LCL_SLU or from the MSTD- to the 

MEAN-derived score. 

By using the MSTD-derived score, very high sensitivity values arise for all the LCL_SLU 

models (>0.90) together with a lower specificity (about 0.7) resulting in a less performing 

accuracy (about 0.7). On the contrary, the 2000_HB_SLU and the 5000_HB_SLU 

performances, in spite of a similar (0.81 and 0.78) sensitivity, are affected by a marked 

decreasing in specificity (0.65 and 0.66) resulting in a just satisfactory accuracy (about 0.7). 

The principal behaviours of the HB_SLU and LCL_SLU models hold also using the MEAN-

derived score, but all the performances result lower than MSTD-derived score: the accuracy 

fall down (<0.7) due to a marked specificity decreasing (<0.7, with an extreme value equal 

to 0.56 for 5000_HB_SLU) while the sensitivity attains good or optimal values (between 

0.80 and 0.95). 
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Table 5.4.2 - Summary of the validation metrics for the ten susceptibility models. 

In order to explore the general coherence between pixel- and SLU-based scores for the ten 

different partitioning adopted criteria, the dispersion of the pixel scores zoned into the SLUs 

was analysed (Figure 5.4.5). It is worth to note that a less variability arises for HB_SLUs 

split by LCLs with a minimum internal radius (100m), whilst the maximum variability arises 

by using the HB_SLUs (especially with the 5000_HB_SLU). 

 
Figure 5.4.5: boxplot of the standard deviation pixel scores zoned into the SLUs. 

In Figure 5.4.6, a comparison between the source pixel-based and the final LCL_SLU 

susceptibility maps is presented for a selected representative sector. In order to objectively 

reclassify the susceptibility maps, three cut-off values were directly obtained by analysing 

the ROC-plot. A first main cut-off (m cut-off) was first identified on the ROC plot, as the 

probability value resulting in the maximum difference between false positive (FP) and true 
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positive (TP) rate (Youden 1950). The same procedure was then applied to the two semi-

plots which were obtained by splitting the ROC plot using the m cut-off. In this way, the 

two secondary cut-off values (l and h) were identified. Exploiting the l, m and h values, the 

score was finally reclassified into 4 classes depending on the susceptibility interval: NULL 

(S0; P<l), LOW (S1; l<P<m), HIGH (S2; (S1; m<P<h)) and VERY HIGH (S3; P>h). 

 

Figure 5.4.6: a) landslide susceptibility pixel-based map; b) landslide susceptibility LCL_SLU-based map 

(HB_SLU: 5000 + LCL: 100-2000) 
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e) Discussion and conclusions 

The pixel-based model shows excellent performances both in balanced and in the entire 

validation area. In fact, identical excellent AUC values are obtained for the two tests and the 

other performance metrics reveal only a slight variation. This proves that the false positive 

generation in the whole area is widely balanced by the true negative successful prediction. 

Moreover, the one-hundred replicates demonstrate both high accuracy and precision. In light 

of the above, the false positive cases potentially are to be expected as future positives (in 

other words, future landslide initiations) rather than type I errors. 

It is worth to note that the variables importance analysis shows that the LCL classes play a 

very important role in discriminating the landslide initiation areas. This suggests a further 

slope-units subdivision through the LCL classes as useful for the performant and correct 

identification of landslide initiation zones and, as a consequence, for developing a zonal 

environmental subdivision suitable for optimizing the landslide susceptibility map output. 

In fact, the results confirmed that the LCL_SLU models produced homogeneous and more 

easy to interpret prediction images, with a predictive performance higher than HB_SLU, 

suffering only from a limited performance lowering with respect to the pixel-based model, 

almost totally dependent on type I errors (false positives); at the same time, the LCL_SLU 

models resulted in the highest skill in finding/predicting the unstable pixels (sensitivity). In 

particular, the best LCL_SLU model (HB_SLU: 5000 + LCL: 100-2000) resulted in very 

high performances (AUC = 0.84; sensitivity = 0.95; specificity = 0.71) and much more 

readable maps. Moreover, the best LCL_SLU model is characterized by a very low pixel-

score variability inside each slope-unit, attesting also for a coherent and stable susceptibility 

zonation. 

Once the best performing susceptibility map was selected, the final step was to connect the 

propagation stage to the landslide initiation obtained from its prediction images. To this aim, 

the same morphodynamic meaning of the LCL_SLU was exploited after having dissolved 

the LCL_SLU smaller than 20000m2 (the 3rd quantile of the landslide frequency 

distribution). A degree of fit plot was then prepared to validate the new integrated 

susceptibility map in predicting the source landslide polygons, which actually represent the 

real landslide propagation/arrest areas for the calibration inventory. This plot was then 

compared to that obtained from a pixel-based model, which differently was calibrated using 

the same landslide polygons (Figure 5.4.7). The comparison between the two results attested 

a very more performing behavior of the LCL_SLU integrated model. 
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Figure 5.4.7: a) integrated landslide susceptibility LCL_SLU-based map (HB_SLU: 5000 + LCL: 100-2000) 

and whole basin degree of fit plot; b) landslide polygons calibrated susceptibility pixel-based map and whole 

basin degree of fit plot. 

All the obtained results show that by integrating the classical pixel-based modelling (Figure 

5.4.8b) on the LCL_SLU mapping units (Figure 5.4.8c), it is possible to optimize the results 

of the landslide susceptibility evaluation. The same LCL_SLUs allow also to involve the 

propagation stage into the predictive images, obtaining easy to interpret high performing 

integrated susceptibility maps (Figure 5.4.8d). 
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Figure 5.4.8: Main Map. a) Location of the Imera Settentrionale river basin, b) pixel-based landslide 

susceptibility map, c) integrated pixel-based LCL_SLU landslide susceptibility map, d) final landslide 

susceptibility map.  
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5.5. Landform classification: a high performing mapping unit partitioning tool 

for landslide susceptibility assessment. A test in the Imera river basin 

(northern Sicily, Italy). 

Published on: Landslides (2022), 19:539–553, DOI: 10.1007/s10346-021-01781-8 

 

In this research, landslide susceptibility models were prepared and compared by adopting 

four different types of mapping units: the largely adopted grid cells (PX); the typical 

contributing area-controlled slope units (5000_SLU); the recently optimized parameter-free 

multiscale slope units (PF_SLU); and a new type (LCL_SLU) of slope unit obtained by 

crossing classic hydrological partitioning with landform classification. At the same time, 

once a pixel-based model was prepared, four different SLU modelling strategies were 

applied to each of the obtained slope unit layers, including two different types of pixel score 

zoning, a pixel score re-modelling and a factor-based SLU re-modelling. 

The test was carried out in the Imera river basin, where the spatial relationships between a 

set of predictors and an inventory of 1608 rotational/translational landslides were analysed 

using the Multivariate Adaptive Regression Splines (MARS) method.  

 

a) Landslides inventory 

The landslide inventory (Figure 5.5.1) employed for this research consists of 1608 

rotational/translational slides (Hungr et al. 2014) detected using high resolution (0.25 m) 

LIDAR (LIght Detection And Ranging) images taken in 2012 by ARTA (Assessorato 

Regionale al Territorio e all’Ambiente). In terms of landslide risk, the Imera river catchment 

is very important for Sicily, as its main valley hosts the A19 motorway, which connects the 

capital (Palermo) to the second largest town (Catania), so that any potential landslides 

heavily threaten the local and regional economy. This was dramatically demonstrated by the 

landslide that damaged the pillars of the ‘Imera’ viaduct, causing the interruption of transit 

from April 2015 to July 2020 (Figure 5.5.2); at the same time, the widespread, landslide-

induced poor status of the secondary (national and country) road network has strongly 

limited any by-pass solution (Figures 5.5.2, 5.5.3). 

Translational and rotational landslides in the catchment are mainly associated with the 

outcropping of the alternation of arenitic and pelitic levels in flysch (Figures 5.5.3g and 

5.5.5) or fluvio-delta/transitional deposits (Figure. 5.5.4). Translational slides actively shape 

moderate to near-dip-slope slopes, while rotational slides typically are associated with 

horizontally-layered to moderate scarp-slope slopes. In both cases, the presence of an 
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outcropping hard rock level (calcareous or quartzous arenites) allows the slopes to preserve 

high steepness. For this reason, large parts of the slopes affected by slide slope-failures are 

typically long, with a steeper head sector, and they evolve for retrogressive landslide activity 

distribution. The pelitic levels are typically made of sandy/silty clay, so that the expected 

failure mechanism is almost systematically linked to rainfall activating infiltration, which 

causes the neutral pressure to increase and lowers the cohesion. A number of rotational slides 

in the area are characterized by the typical complex style, with subsequent flow deformation 

phenomena involving the foot area, down to the failure surface toe. As the susceptibility 

analysis in this research was focused on the activation phase, all these cases were included 

in the slide inventory. For the same reason, translational and rotational slides were grouped, 

with the few surficial regolith/bedrock translational slides being excluded. 

 

Figure 5.5.1: map of the landslide identification points (LIPs). The stars indicate the sites for the following 

field examples, with the same colours as the corresponding picture frameworks. 
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Figure 5.5.2: lateral (b) and main (c) scarps and damaged sectors (d, e, f) at the foot area of the 2015 

rotational/flow complex landslide affecting the A19 motorway 
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Figure 5.2.3: translational slides; main scarp (g) and landslide accumulation (h) of the 2015 rotational slide 

affecting the SS643 national road. 
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Figure 5.5.4: damage caused to a wind farm (i, before; j, after) in the head zone of the rotational slide 

affecting the SP53 country road. 

 

 

Figure 5.5.2: landslide scarp/head sector of the rotational slide/flow complex landslide in the Suvari area 
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b) SLU partitioning 

In this research, three different SLU types were employed and compared: 1) parameter-free 

slope units (PF_SLUs), obtained using an optimized iterative application of the r.slopeunits 

(Alvioli et al 2020) GRASS GIS module and directly downloaded for the study area from 

http://geomorphology.irpi.cnr.it/tools/slope-units; 2) 5000_SLU half-basins, delimited by 

applying the r.watershed (Ehlschlaeger 1989; Metz et al. 2011) GRASS GIS module with 

an heuristically set contributing area threshold (5000 cells); 3) LCL_SLU, obtained by 

intersecting the same 5000_SLU layer with the Topographic Position Index (TPI; 100/2000 

inner/outer radius)-based Landform Classification (Guisan et al. 1999; Wisz and Guisan 

2009)layer in order to select sub-units with different geomorphological settings (Martinello 

et al. 2021). 

All the slope unit partitioning schemes are controlled by the adopted contributing area 

threshold the user sets for half-basin recognition. For PF_SLUs, Alvioli et al. (2020) devised 

a parameter-free iterative nested procedure, which locally optimizes the best combination of 

the parameters a (minimum planimetric area) and c (circular covariance of the aspect). In 

this sense, their slope unit coverage is considered optimally scaled, and it is proposed by the 

authors for applications from the catchment to the national scale. At the same time, we 

propose here the LCL_SLU partitioning scheme, which is demonstrated to be optimized in 

the study area for 5000_SLU source half-basin partitions. The latter was also included in the 

comparative test to highlight potential pros and cons for landform classification-based sub-

partitions. 

Figure 5.5.6 schematically shows the spatial relations between the three different SLU 

typologies. In light of their delineation criteria, the number of LCL_SLUs in the same sector 

is expected to be much higher, and, as a consequence, the mean area of the LCL_SLUs will 

be lower than that of the 5000_SLUs and PF_SLUs. 

http://geomorphology.irpi.cnr.it/tools/slope-units
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Figure 5.5.6: comparison between PF_SLU (white border), 5000_SLU (black border) and LCL_SLU (red 

border) partitioning in a representative sector. The different background colours in (c) depict an example of 

landform classification classes, in particular, 1) midslope drainages, 2) upland drainages, 3) valleys, 4) 

plains, 5) open slopes, 6) upper slopes, 7) midslope ridges and 8) high ridges 

c) Landslide susceptibility assessment 

Based on the outcome of previous studies (e.g., Cama et al. 2016), a spatial resolution of 8 

m was set for preparing the grid layers of the covariate values and setting the stable/unstable 

status in the study area. These same layers were then directly used for the pixel-based 

modelling, while in the case of the slope units, further spatial processing (see below) was 

performed. 

Each of the 1608 landslide mapped polygons was reported in the inventory as a Landslide 

Identification Point (LIP), which corresponds to the highest point along the crown of the 

landslide area; here, it is assumed to be diagnostic in potentially marking unstable slope 

conditions (Rotigliano et al 2011; Lombardo et al 2014; Cama et al 2015; Lombardo et al 

2016; Rotigliano et al 2018; Rotigliano et al 2019). 
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To set the stable/unstable status of the different mapping units, a simple crossing between 

the LIP vector coverage and the three SLU layers was applied. Therefore, in the case of the 

pixel partition, the intersection produced the same number of positive cases (1608 cells), 

while in the case of the SLUs, as a direct consequence of their respective average area, a 

different number of positive mapping units included more than one LIP, so that 242, 543 

and 736 positive cases resulted for the PF_SLU, 5000_SLU and LCL_SLU layers. 

Twelve geo-environmental factors were considered as potential predictors for landslide 

susceptibility modelling: the outcropping lithology (LITO), land use (obtained by the Corine 

Land Cover 2018 – USE), elevation (ELE), landform classification (LCL), steepness (SLO), 

aspect (expressed as NORTHerness and EASTerness), plan (PLN) and profile (PRF) 

curvatures, topographic wetness index (TWI), terrain ruggedness index (TRI) and stream 

power index (SPI).  

d) Statistical method and validation strategy  
To detect the relations between the outcome and predictors, the Multivariate Adaptive 

Regression Splines (MARS; Friedman 1991) method was applied. 

MARS modelling was applied to subsets made of the whole set of positive units and an equal 

number of randomly extracted subsets of negatives. In the case of the PF_SLU slope unit 

partitioning, which resulted in a greater number of positives than negatives, the regressed 

dataset was made of all the negatives and an equal number of randomly extracted positives. 

To test the model’s precision and robustness, the extraction of the balanced subsets was 

repeated one hundred times. Each dataset was then submitted to a balanced random partition: 

a 75% subset was used for model calibration, while the remaining 25% subset was used for 

a blind validation test. 

The Receiver Operating Curve and confusion matrix analysis were the tools employed to 

investigate the model accuracy.  

In order to exclude redundant predictors from the set of the covariates, a factor 

multicollinearity analysis was performed before to proceed to the whole modelling 

procedures, based on the evaluation of the Variance Inflation Factor (VIF; Naimi 2017). 

e) Modelling strategy  

Together with the pixel-based model, twelve slope unit-based susceptibility models were 

prepared (Figure 5.5.7) by combining four different procedures with the three SLU-

partitioned layers. First, by regressing the pixels’ status on the twelve geo-environmental 
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predictor raster layers, the pixel-based model (PX) was prepared. Then, from the PX-scores, 

two zoned SLU-models were derived (-Zmstd and -Zcut_off, respectively), assuming a mean 

plus one standard deviation and using the weighted average of the binarized (using the 

Youden index-derived cut-off) scores to classify the susceptibility of each SLU. At the same 

time, SLU regression was performed by setting the ten deciles of the PX scores inside each 

unit as predictors and obtaining the -REGPX model. Finally, a fully PX-score-independent 

model (-REGFACT) was regressed by assigning to the slope units the deciles, for continuous, 

and the relative frequencies, for categorical, of the source predictor values (obtaining a total 

of 127 variables). In this way, for each of the three adopted slope units, a suite of four models 

was obtained. The two zoned models can simply be considered the result of direct SLU re-

classifications, as they aggregate the pixel-based maps differently; on the contrary, the two 

regressed models are based on new regression procedures, with one maintaining a link with 

the pixel susceptibility scores and one set back to the factor source domain. 

In analysing the results of the SLU-based models, predictive performance indices (accuracy, 

precision, and robustness) and geomorphological adequacy, together with the coherence 

with the PX model (i.e., the ability to recognize the same site score or predicted status), were 

considered. 

 

Figure 5.5.7: adopted model building scheme for the thirteen tested models (in green), with the red and blue 

labels indicating zoned and regressed models, respectively. Grey boundary boxes specify the adopted 

mapping units. The pixel-based landslide susceptibility map is shown in pink 
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f) Results 

The AUC values that were obtained for each model are synthetically shown in Figure 5.5.8, 

where violin plots allow us to compare the resulting accuracy and robustness. The PX model 

can be defined as excellent (near outstanding), with an average AUC value equal to 0.89 and 

a very limited dispersion, while, among the SLU-based models, the LCL_SLU and the 

5000_SLU suites achieved very high AUC accuracy and precision. In particular, the highest 

performances were systematically achieved by the LCL_SLU suite, while the PF_SLU 

models had largely lower performances, with AUCs well below the excellence threshold 

(with the exception of PF_SLU-REGPX, which nearly reaches an AUC of 0.8) and 

significantly larger dispersions. More specifically, for the LCL_SLU suite, the -REGPX and 

the -REGFACT models attain the same outstanding AUC (0.95), above the PX performance, 

while slightly lower but excellent values were observed for the two zoned models (0.85 for 

-Zmstd and 0.83 for -Zcut_off). A similar but down-scaled trend can be observed for the 

5000_SLU suite, with a slight AUC lowering (0.86 for the -REGPX and -REGFACT models 

and 0.76 for the two zoned models), together with a smaller difference between the 

5000_SLU- and PF_SLU-zoned models. 

 

Figure 5.5.8: validation results (AUC values) for the thirteen models 

By projecting each model from the modelling subset to the entire study area, confusion 

matrices based on the Youden index cut-off binarization were obtained (Table 5.5.1). Again, 

the LCL_SLU models achieved very high accuracy values, balanced in terms of sensitivity 

and specificity: additionally, in this case, an excellent performance is achieved by -REGPX 

(0.88) and -REGFACT (0.86). It is worth noting that, in contrast to what was observed for the 

AUCs, the PF_SLU models show the highest accuracies out of the zoned models and a near 

perfect predictive performance (0.98) for -REGFACT. However, these results are associated 
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with the marked inverse prevalence of positive cases (242 out of 296) for the PF_SLU 

partition, so that, with the exception of -REGFACT (whose AUC value, conversely, is below 

the acceptance threshold), lower sensitivities and specificities were observed. For the 

LCL_SLU suite, -REGPX and -REGFACT obtained very similar high performances, with the 

same numbers of True Positives (TP = 706) and False Negatives (FN = 30) and very similar 

True Negative and False Positive cases (FP = 1685 and 1804 and TN = 11156 and 11010 

for -REGPX and -REGFACT, respectively). 

 

Table 5.5.1: validation results (confusion matrices) for the thirteen models 

In order to investigate those variables playing a central role in determining the 

stable/unstable conditions of the SLUs, the importance of the predictors for the better 

performing 5000_SLU-REGFACT and LCL_SLU-REGFACT models was analysed and 

compared to PX (Table 5.5.2). On average, PX selected 16 factors through the replicates, 

while the two different slope unit-based models had the same lower number of predictors 

(10); 14, 9 and 6 factors have a mean predictor importance higher than 10/100 for PX, 

5000_SLU and the more parsimonious LCL_SLU models, respectively. Focusing on the 

variables that were selected the most, the 5000_SLU model is required to include two LCL 

classes (midslope ridges and high ridges, the first and fifth variables), together with the 

eastward aspect, high topographic ruggedness, and convex plan curvature, in order of 

importance. Conversely, the LCL_SLU model included the profile convex curvature, the 

northward aspect, high steepness, and the eastward aspect, in order of importance, out of the 

6 most selected predictors. 
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Table 5.5.2: most important variables (at least 10/100) for PX, 5000-SLU and LCL_SLU –REGFACT 

models. *for the PX model, DTM-derived factors were not reclassified into decile intervals 

 

g) Discussion 

The main task of this research was to evaluate four different types of mapping units by 

comparing the predictive performances of their derived models on a basin-scale landslide 

susceptibility analysis. 

One basic issue to be solved in analysing the results of the research was to estimate the 

potential trivial influence on the model performances of the differences in terms of the 

number of positive/negative cases resulting from the different spatial resolutions of the 

compared mapping units. In particular, there was a need to verify to what extent, if any, the 

higher number of cases produced by the LCL_SLU partition was responsible for making 

more accurate and precise derived models, so all modelling procedures were repeated after 

having reduced to the same number of cases the compared models. The obtained results 

(Figure 5.5.9) highlighted how the observed differences in performance still hold even after 

having dramatically scaled the LCL_SLU positive/negative balanced cases to 543 x 2 = 1086 
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and 54 x 2 = 108, for comparison to 5000_SLU and PF_SLU, respectively. More 

specifically, the comparison tests allowed us to recognize that the LCL_SLU partitioning 

scheme is very robust to case reduction, with a marked high performance (still well above 

the outstanding threshold) for -REGPX. In this sense, it is also worth highlighting that the 

LCL_SLU partitioning in the two reduced versions, despite its lower spatial resolution (area 

of LCL_SLUs equal to 2.5 ha on average) and related number of positive cases, maintained 

a higher predictive performance with respect even to the pixel-based model.  

 

Figure 5.5.9: Comparison of AUC values obtained for regressed models with equal case numbers: LCL_SLU 

Vs. PF_SLU and 5000_SLU Vs. LCL_SLU (543 cases). The red lines are the corresponding AUC values of 

LCL_SLU models calibrated with the 736 positive cases 

A further deep analysis of the relation between the accuracy and slope unit characteristics 

was carried out by comparing the two better-performing -REGPX models, obtained for 

5000_SLU and LCL_SLU partitioning of the study area, respectively. In particular, 

analysing the spatial relations between the source (mother) 5000_SLUs and the sub-

partitioned derived (sons) LCL_SLUs, the reasons for the higher performance of the latter 

were investigated. In this way, it was possible to verify if the higher accuracy of LCL_SLU 

was ascribable to a trivial 5000_SLU multi-splitting-induced true case replication, rather 

than to geomorphological adequateness and more accurate prediction. Table 5.5.3 shows in 

detail the relation between the SLU type and predictive performance from each 5000_SLU 

mother to its LCL_SLU sons. In general, from the 1544 mother SLUs, 13550 son elements 

were produced, with a ratio of mothers to sons, or prolificity rate (prlf. rate), of 8.8. The 737 

true negative 5000_SLUs produced 3511 LCL_SLUs, with 3117 TN confirmations (prlf. 
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rate = 4.2) and 394 reclassifications into false positive cases. It is definitely worth noting 

that the 2478 LCL_SLU sons derived from 264 false positive mother SLUs were confirmed 

only in 583 cases, while 1895 conversions to true negative conditions (prlf. rate = 7.2) were 

gained. Many of the 6639 son slope units generated from the 466 true positive mothers (prlf. 

rate = 14.2) instead received a true negative classification (5227; prlf. rate = 11.2), together 

with 766 false positive cases and 637 true positive confirmations (prlf. rate = 1.4). It is worth 

noting, together with the relevant increase in true negatives, the skill of the LCL_SLU model 

in discriminating true positive islands inside a number of multi-LIP positive 5000_SLUs, 

with the exception of only 9 false negative cases. In particular, the 77 false negative 

5000_SLUs were converted into 922 sons (prlf. rate = 12), which were correctly classified 

as 771 true negative (prlf. rate = 10), 69 true positive cases, 61 false positives and only 21 

false negatives. This suggests that LCL partitioning is capable of discriminating between 

true positives and negatives inside the 5000_SLU portion. 

 

Table 5.5.3: Scheme for the relationships between the source 5000_SLU mother, framed in light green, and 

the derived LCL_SLU sons (REGPX model), framed in cyan. Percent number (round brackets) and 

prolificity rate (square brackets) for mother and son units: total (TOT), true negative (TN), false positive 

(FP), true positive (TP), false negative (FN) cases 
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In light of the points summarized above, LCL_SLU partitioning performs better, and this 

performance is not trivially related to an increase in true cases generated by multiple sub-

partitions: its outstanding accuracy is robust to strong case reduction and higher than the 

accuracy obtained from the pixel-based model. By comparing the prolificity ratios and the 

derived generation of true/false positive/negative cases in the son mapping units, it is clear 

that the LCL_SLU splitting more specifically recognizes the susceptibility conditions inside 

the single 5000_SLUs, increasing TNs and TPs without increasing prediction costs in terms 

of FPs and FNs. 

Regarding the geomorphological adequacy of the LCL_SLU partitioning, a further analysis 

was carried out in terms of those slope unit characteristics (outcropping lithology and soil 

use) that are independent of the landform classification, as they are not DTM-derived (Figure 

5.5.10). For both of these attributes, LCL_SLU partitioning actually allowed the investigated 

area to be simplified into more homogeneous spatial domains. On the contrary, the mother 

5000_SLUs show a marked right asymmetry toward the multi-class cases: almost 80% of 

the LCL_SLUs are characterized by only one type of LITO or USE class, while the majority 

of the remaining slope units have two classes and just a few have more than two. More 

specifically, to investigate the geomorphological conditions of the LCL_SLUs responsible 

for the higher performance of the modelling based on this type of slope unit, true cases not 

correctly classified by the 5000_SLU-REGPX model were analysed.  

Figure 5.5.11 clearly highlights that the true negative successes are linked to homogeneous 

LCL_SLUs, while true positive cases are mainly related to sectors with no more than 3 

classes of outcropping lithology or soil use. Therefore, LCL_SLU partitioning has been 

demonstrated to immediately explain those simple and more diffused geomorphological 

settings responsible for the known mapped landslides: north- to east-facing, highly steep and 

convex slopes, which are typically set where arenite/pelite alternation outcrop (e.g., Figure 

5.5.3g and Figure 5.5.5). In fact, the areas where rotational/translational slides were 

activated are characterized by the outcroppings at the heads of arenite caps, so that convex 

and steeper slopes can be preserved from erosion lato sensu. In the investigated area, these 

conditions are more frequently recognized on the north- to east-facing slopes. Moreover, the 

geologic setting of the area is marked by northeast-vergent structures, and the north-facing 

slopes are characterized by a slightly scarp-slope / near-horizontal-to-dip-slope strata 

attitude, which are the more typically required conditions for rotational and translational 

slides, respectively. 
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Figure 5.5.10: Analysis of the homogeneity of LCL_SLUs and 5000_SLUs for outcropping lithology and soil 

use predictors 

 

Figure 5.5.11: Analysis of the distribution of true cases with respect to the number of LITO and USE classes 

in each LCL_SLU 
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In terms of SLU modelling strategy, the regressed models performed better than the zoned 

models, suggesting that it is more correct, when passing from pixel- to SLU-based 

susceptibility mapping, to adopt new modelling procedures that are rooted in partitioning 

the same mapping units rather than statistically zoning the pixel-based scores. Additionally, 

the skill in coherently recognizing the pixel-based status of all the pixels in the study area 

was also assessed by comparing the number of matching cases to the PX predicted status for 

the two best performing models: LCL_SLU-REGPX and -REGFACT. The histogram in Figure 

5.5.12 displays, for the four PX predicted/observed statuses, the difference in terms of 

matching between the -REGPX and -REGFACT models, highlighting how the former supports 

a higher number (303033 pixels = 19.4 km2) of TNs. At the same time, the slightly higher 

number of FNs can be considered negligible (9 pixels). 

 

Figure 5.5.12: Matching TP, TN, FP and FN cases between PX, LCL_SLU-REGFACT and LCL_SLU-

REGPX 

Figure 5.5.13 shows a representative zoomed sector extracted from the susceptibility maps 

obtained by PX, 5000_SLU-REGPX and LCL_SLU-REGPX. The pixel-based MARS model, 

which was confirmed to be suitable for high performing predictive modelling, results in a 

derived prediction image that typically shows scattered score spatial patterns (e.g., Figure 

5.5.13b). Conversely, the LCL_SLUs, which resulted in the best AUC performance and cut-
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off-based accuracy, produced susceptibility maps in which clustered homogeneous pixels 

were correctly aggregated and classified (Figure 5.5.13c). The 5000_SLU model 

performance indices assumed intermediate values, with related susceptibility maps denoting 

larger units resulting in a lower resolution than LCL_SLU (Figure 5.5.13d). 

 

Figure 5.5.13: (a) Geomorphological setting of a representative sector and corresponding (b) pixel-based, 

(c) LCL_SLU-based and (d) 5000_SLU-based landslide susceptibility assessments 

 

h)  Conclusions 

MARS modelling is confirmed to be suitable for a very high-performing landslide 

susceptibility assessment using either pixel- or slope unit-based models. Regarding the 

mapping units, based on the test we carried out in the Imera river basin, LCL_SLU 

modelling seems to be the optimal compromise between high-performing but scattered and 

smoothed but lower-performing prediction images, which were obtained from pure pixel-

based and hydrologic SLU-based modelling, respectively. In particular, we demonstrated 

that the higher performance of LCL_SLU models is not trivially related to their smaller area, 

but rather is strictly dependent on their suitability for capturing the spatial pattern of the 

slope failure conditioning factors. Additionally, in terms of geomorphological adequacy 

(outcropping lithology, soil use and landform classification), the LCL_SLU partition was 
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much more suitable for recognizing those settings for which a homogeneous 

morphodynamic response can be expected. Furthermore, the LCL_SLU-based modelling is 

capable of producing SLU scores that match the source pixel score, confirming that their 

boundaries reflect an optimized spatial aggregation pattern for landslide susceptibility 

assessment. At the same time, landform classification was confirmed to be a powerful proxy 

for selecting homogeneous mapping units is in terms of outcropping lithology and soil use. 

As a consequence, LCL_SLU partitioning is the basis for correctly defining more/less 

landslide-prone mapping unit conditions in terms of all the controlling factors: together with 

a more parsimonious selection of the important variables, LCL_SLUs are more 

geomorphologically interpretable with respect to either the scattered or too-smoothed 

prediction images obtained from pixel rasterization and slope unit partitioning, respectively. 

Regarding the optimal LCL_SLU modelling strategy, a difference between the better-

performing -REGPX and -REGFACT arose, due to the fact that -REGPX takes the score as a 

summary-oriented indicator of slope instability proneness in a more simple way, while in 

the case of -REGFACT, a very large fan of predictors (typically, more than one hundred) has 

to be generated. Moreover, if a pixel factor characterization seems to be too local, especially 

for slide-type landslides, extracting deciles from slope units that are too large could be 

geomorphologically misleading if morphodynamically disconnected pixels contribute to the 

same susceptibility class. In this sense, LCL_SLU partitioning seems to be a very promising 

solution, as it delimits much more restricted units that share a very basic common feature: 

their landform classification. 

LCL_SLU partitioning and -REGPX modelling are proposed here as a high-performing 

solution in basin scale translational/rotational slide susceptibility assessment. The 

susceptibility maps we obtained in this research were set to predict landslide initiation 

conditions and would need to be integrated into a complete susceptibility model that also 

includes the propagation phase. To this end, the landform classification-based slope unit 

partitioning approach we propose here seems to contain potential tools for correctly 

routing/chaining landslide susceptibility through the slopes. 
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6. Concluding remarks 

As specific conclusions regarding the applications which have been carried out in this PhD 

research project have been already given in chapter 5, in the following some summary 

concluding remarks are given so as to link the experimental activity to the theoretical design 

of the thesis. 

GIS-based statistical modelling is a powerful approach for landslide susceptibility 

assessment in multiscale studies up to a high-resolution basin scale. However, in spite of the 

more and more increasing source data availability and high performing statistical modelling 

techniques, some issues related to the very theoretical structure of the stochastic approach 

still require insights and innovative solutions. 

In this thesis, some of these topics have been faced with the aim of investigating the limits 

of standard methods and eventually selecting strategies for giving some solutions to these. 

In particular, the studies which have been carried out in El Salvador allowed exploring a 

topic potentially hampering the basic key principle (the past is the key to the future) the 

stochastic approach relies on. In fact, in non-stationary conditions such as the ones produced 

by climate changes, calibrating models by exploiting landslide inventories produced by 

standard rainfall events could lead to underestimating the susceptibility conditions or 

prediction images which could be produced by extreme events. In this sense, it is important 

to exploit areas where extreme events are typically recurrent as this is the scenario which, 

on a more local scale, is going to prevail also into Mediterranean areas. In these areas, very 

local and intense phenomena (named Medicanes) can strike small hilly/mountain coastal 

sectors in autumn (during the westerlies falldown) triggering thousands of landslides in a 

few square kilometres. In this case, the susceptibility map calibrated with normal seasonal 

rainfall demonstrates to underestimate of the susceptibility of some multivariate conditions, 

suggesting as a better solution to calibrate the models in the small sectors already hit by past 

storms. This approach has been confirmed as suitable in the test we carried out in the 

Ilopango caldera. 

As regards, the implementation of effective regional/basin approaches, two big issues have 

been here faced: mapping units and incomplete inventories. These two topics are strictly 

connected to the real possibility of completing the technological transfer to the public 

authority so that stochastic susceptibility modelling could be taken (as indicated at a 

communitarian level) as the reference approach for land-use planning and civil protection. 

In fact, the incompleteness of the inventories is one of the main limits for accepting as 
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time/cost-effective this approach for systematic application to regional territories. However, 

the research we carried out in El Salvador allowed defining a method for obtaining indexes 

suitable to warn the user about the false sense of completeness, when highly populated 

regional inventories are obtained just by merging sparse data. At the same time, solutions 

for integrating the data have been tested in Sicily (Torto basin), so to optimize the efforts in 

landslide recognition to integrate poor inventories. 

As regards the topic of mapping units, in this research project efforts have been put into 

searching for optimal solutions both for susceptibility modelling and mapping. In particular, 

by crossing terrain units automatically obtained by means of hydrologic tools with the 

landform classification classes based on the topographic position index, a much more refined 

susceptibility zoning has been obtained. In fact, LCL-SLUs are allowed to split those 

Rock/Scarp to Clayey/Slope sequences which are undistinguished in normal terrain units-

based modelling. At the same time, adopting slope units for susceptibility reclassification 

and mapping demonstrated to results in much more final user-friendly maps, where the alarm 

of high scores is eventually not dispersed into unconnected pixels. Moreover, in light of their 

morphodynamic meaning, LCL-SLUs allow also to extend the interpretation of the 

susceptibility maps from a simple image of where is more likely new landslides will trigger 

from, also including the propagation phase. 

The comparison between binary logistic regression and MARS allowed highlighting the 

importance of maintaining a strict link between the statistical and the geomorphological 

modelling. MARS indeed is capable of more strictly fitting the model, resulting in more 

performing prediction. However, efforts are required to explain in geomorphological terms 

the role of factors, as these are split into intervals which can escape from a simple 

interpretation. In this thesis, a strong focus has been always kept on the analysis of the role 

of the controlling factors, devising tools for making direct the reading for the user. 

Finally, all throughout the experimental tests which have been carried out, severe validation 

procedures have been applied with the aim of suggesting a standard for outputs in the public 

territory administration. A large part of this research was carried out in the framework of a 

project (SUFRA) requiring the preparation of susceptibility maps for the whole Sicilian 

territory and as such, standardizing analysis, and map design, as well as validation strategies 

and tools was among the final tasks of the research. 

Much more efforts are to be put into solving or even exploring the limits of stochastic 

approaches for landslide susceptibility modelling. However, in the present research, some 
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contributions have been given and the related solutions made available both to the scientist 

and territorial administrative-technical levels. 
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