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Simple Summary: Milk production is the most economically crucial dairy sheep trait and constitutes
the major genetic enhancement purpose via selective breeding. Also, mastitis is one of the most
frequently encountered diseases, having a significant impact on animal welfare, milk yield, and
quality. The aim of this study was to identify genomic region(s) associated with the milk production
traits and somatic cell score (SCS) in Valle del Belice sheep using single-step genome-wide association
(ssGWA) and genotyping data from medium density SNP panels. We identified several genomic
regions (OAR1, OAR2, OAR3, OAR4, OAR6, OAR9, and OAR25) and candidate genes implicated
in milk production traits and SCS. Our findings offer new insights into the genetic basis of milk
production traits and SCS in dairy sheep.

Abstract: The objective of this study was to uncover genomic regions explaining a substantial
proportion of the genetic variance in milk production traits and somatic cell score in a Valle del Belice
dairy sheep. Weighted single-step genome-wide association studies (WssGWAS) were conducted
for milk yield (MY), fat yield (FY), fat percentage (FAT%), protein yield (PY), protein percentage
(PROT%), and somatic cell score (SCS). In addition, our aim was also to identify candidate genes
within genomic regions that explained the highest proportions of genetic variance. Overall, the full
pedigree consists of 5534 animals, of which 1813 ewes had milk data (15,008 records), and 481 ewes
were genotyped with a 50 K single nucleotide polymorphism (SNP) array. The effects of markers and
the genomic estimated breeding values (GEBV) of the animals were obtained by five iterations of
WssGBLUP. We considered the top 10 genomic regions in terms of their explained genomic variants
as candidate window regions for each trait. The results showed that top ranked genomic windows
(1 Mb windows) explained 3.49, 4.04, 5.37, 4.09, 3.80, and 5.24% of the genetic variances for MY, FY,
FAT%, PY, PROT%, and total SCS, respectively. Among the candidate genes found, some known
associations were confirmed, while several novel candidate genes were also revealed, including
PPARGC1A, LYPLA1, LEP, and MYH9 for MY; CACNA1C, PTPN1, ROBO2, CHRM3, and ERCC6 for
FY and FAT%; PCSK5 and ANGPT1 for PY and PROT%; and IL26, IFNG, PEX26, NEGR1, LAP3, and
MED28 for SCS. These findings increase our understanding of the genetic architecture of six examined
traits and provide guidance for subsequent genetic improvement through genome selection.
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1. Introduction

Milk production and udder health are economically important traits affecting dairy
farming profitability. Improvement of milk production traits will directly bring greater
benefits to dairy operations, and improved mastitis resistance will reduce cost of mastitis
treatments [1]. Mastitis is the most common inflammatory condition that develops as a
result of infection with pathogenic microorganisms or physical trauma. The expense of lost
milk, as well as diminished milk output and quality, are all related to significant economic
losses for the dairy sheep industry [2]. Somatic cell count (SCC) or log transformed SCC
(somatic cell score, SCS) has relatively higher heritability compared to mastitis (from 0.14
to 0.19 for SCS and from 0.02 to 0.05 for mastitis) and are used as the first trait to improve
mastitis resistance [3]. Uncovering regions of the genome associated with milk-related traits
and SCS is essential to get inside the biological mechanism involved in their phenotypic
expression [4].

In this context, genome-wide association studies (GWAS) are a good way to discover
associations between single-nucleotide polymorphism (SNP) markers across the genome
and a trait of interest. Nevertheless, the strength of these studies is generally conditioned by
the sample available with accurate genotypic and phenotypic data. There are usually a lot
of individuals with phenotypes and pedigree, but only a small number with genotypic data.
Wang et al. [5] proposed the single-step GWAS (ssGWAS) as an approach to get around
this limitation. The ssGWAS method assumes that all SNPs have the same variance, which
is improbable in the case of characteristics with segregating main genes or quantitative
trait loci (QTL). To overcome the limitations of single-step genomic BLUP (ssGBLUP), a
method known as weighted single-step genomic BLUP (WssGBLUP) uses unequal variance
or weights for all SNPs [6].

The WssGBLUP [6] is a method that provides the estimation of SNP effects using
GEBV predicted by single-step genomic BLUP (ssGBLUP) [7] on the basis of all phenotypes,
genotypes, and pedigree data. Furthermore, WssGWAS allows for unequal variances for
SNPs, which increases the accuracy of SNP effect estimation [6]. Therefore, the WssGWAS
might work better than classical GWAS methods when few animals are available with
phenotypic and genotypic data, and the traits are under the control of a QTL with large
effects [8]. As a result, using a sliding window method, WssGWAS allows researchers to
give a different weight to the SNPs and to test many markers at the same time. Therefore,
this approach could allow obtaining more accurate estimations of the genetic parameters
than traditional GWAS, resulting in higher QTL detection power [9].

The WssGWAS has been successfully applied for milk production traits and feed
efficiency in cattle [10–13] and in goats [14], and for wool and weight traits in sheep [15].
However, few studies examining milk production traits and SCS in dairy sheep have been
conducted using WssGWAS.

The Valle del Belice (VDB) is the main economically important dairy breed reared in
Sicily. Nowadays, part of the milk produced by this breed is transformed into two PDO
(Protected Designation of Origin) cheeses: the mono-breed Vastedda della Valle del Belice
and the Pecorino Siciliano. Preliminary analyses on GWAS for milk production and quality
traits have been reported in the VDB breed [16]. However, no studies have been obtained
so far in this breed using WssGWAS. Hence, the goals were (1) to identify SNP windows
that account for the greater amount of the genetic variance in milk yield (MY), fat yield (FY)
and percentage (FAT%), protein yield (PY) and percentage (PROT%), and somatic cell score
(SCS) in Valle del Belice breed using a weighted single-step approach and (2) to investigate
for putative candidate genes within them.

2. Materials and Methods
2.1. Phenotypes and Pedigree

The pedigree file included 5534 animals with 178 sires and 2548 dams. About
15,000 observations were collected for 1813 Valle del Belice sheep from 15 different herds
between 2006 and 2016. The A4 recording procedure was followed to record the following
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data [17]: daily milk yield (MY), fat yield (FY), fat percentage (FAT%), protein yield (PY),
protein percentage (PROT%), and milk SCC. SCC was log-transformed into somatic cell
score (SCS) [18]. A detailed summary of the phenotypic records for each trait is in Table 1.

Table 1. Descriptive statistics for studied traits.

Traits Number Mean ± SD CV(%) Min-Max h2

MY (g) 15,008 1318 ± 552 41.91 62–4140 0.10
FY (g) 15,008 91.06 ± 34.91 38.34 3.91–393.53 0.06

FAT (%) 15,008 7.08 ± 1.09 15.41 2.53–10.80 0.11
PY (g) 15,008 75.43 ± 29.81 39.52 2.93–238.98 0.09

PROT (%) 15,008 5.80 ± 0.65 11.16 2.14–8.10 0.15
SCS 15,008 2.67 ± 0.72 0.27 1–5.31 0.04

SD, standard deviation; CV, coefficient of variation; Min-Max, minimum and maximum values; h2: heritability.

2.2. Genotyping and Quality Control

A total of 481 ewes were genotyped with the Illumina OvineSNP50K BeadChip. The
ovine genome sequence assembly Oar_v4.0 revealed chromosomal coordinates for each
SNP. Quality control was performed using the PLINK v. 1.9 [19]. Animals and markers
that did not fulfil the following criteria were removed from the analysis: (i) minor allele
frequency 2% or less, (ii) call rate per individual and per SNP 95% or greater and (iii) no
extreme deviation from Hardy-Weinberg equilibrium (p ≥ 0.001, Bonferroni corrected).
A total of 469 ewes and 37,228 SNPs were retained for analysis after quality control.

2.3. Weighted Single-Step Genome-Wide Association Study

Since this approach can use both genotyped and ungenotyped animals in the pedigree,
a total of 1332 ungenotyped animals were included in the analysis. Moreover, 5534 indi-
viduals in the pedigree file were used to estimate GEBV and SNP effects, recognizing that
sample size might affect the power of GWAS [8].

The analyses were carried out using the BLUPF90 family programs. In particular, the
RENUMF90 package was used to renumber animals and effects sequentially and construct
the input files for AIREMLF90 and BLUPF90 modules to predict GEBV [9]. Finally, the
postGSf90 package was used to perform the WssGWAS [7].

The six traits were analyzed using the following single trait animal model in WssG-
BLUP [14]:

y=Xβ+Zhtd+Za+Wp+e

where y is the vector of phenotypic observations, and β is the vector of fixed effects as
reported in [16]. It was assumed that

α ∼ N(0, Hσ2
a ) ; p ∼ N(0, Iσ2

p) ; e ∼ N(0, Iσ2
e

)
where σ2

a, σ2
p,, and σ2

e were the random additive genetic variance, random permanent
environmental and residual variance, respectively. I denoted the identity matrix, and H was
a blend of pedigrees and the SNP derived matrix. The inverse of matrix H was calculated
as follows:

H−1=A−1+

[
0 0
0 G−1−A−1

22

]
(1)

where A represented the numerator relationship matrix for all individuals based on the
pedigree; A22 was the numerator relationship matrix for the genotyped animals; the G
matrix was a genomic relationship matrix that was constructed according the method of
VanRaden et al. [20]:

G=
ZDZ

′

∑M
i=1 2pi (1− pi)
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where Z is the marker matrix coded for allele frequencies (aa = 0; Aa = 1, and AA = 2), and
D is a diagonal matrix of weights for SNP variances. M is the number of markers, and
pi is equal to the minor allele frequency of the ith SNP. For ssGWAS, the SNP effects and
weights were determined iteratively as follows [5]:

Step 1: in the first iteration (t = 1), D(t) = I; G(t) = ZD(t)Z
′
λ, where λ is a normalization

constant or a variance ratio that was estimated following VanRaden et al. [20]:

λ=
σ2

u
σ2

a
=

1

∑M
i=12pi (1−pi)

Step 2: estimated GEBV for all animals using the ssGBLUP approach;

Step 3: calculated SNP effects as:
^
u(t) = λD(t)Z

′
G−1

(t)
^
ag, where

^
u(t) is a vector of the

SNP effects estimation and
^
ag was the GEBV of individuals with genotypes;

Step 4: the weight of each SNP is equal to: di(t+1) =
^
u

2

i(t)2pi(1− pi), where i is the
ith SNP;

Step 5: the SNP weights are normalized to keep the total genetic variance constant:

D(t+1) =
tr
(

D(1)

)
tr
(

D(t+1)

)D(t+1);

Step 6: the weighted matrix G is calculated: G(t+1) = ZD(t+1)Z
′
λ; and

Step 7: loop back to step 2.
The number of iterations for weighting procedure in WssGWAS was determined as

the iteration number that maximized the accuracy of predictions. Iterations increase the
weights of SNPs with large effects and decrease those with small effects [6]. The procedure
was run for five iterations on the basis of the accuracies of GEBV for our study. The
proportion of variance explained by non-overlapping windows was estimated using the
PostGSf90 algorithm by summing the variance of SNPs within 1 megabase (Mb) [21].

2.4. Detection of top SNP Windows and Functional Annotations of Candidate Genes

Putative candidate genes were identified based on initial and final coordinates of each
selected window on the Oar v4.0 assembly of the ovine genome, using the NCBI Genome
Data Viewer (https://www.ncbi.nlm.nih.gov/genome/gdv/?org=ovis-aries, accessed on
20 November 2015), within the top 10 windows explaining the highest percentage of
additive genetic variance. The selection of the top 10 windows explaining the highest
percentages of additive genetic variance is a methodology widely used in association studies
to evaluate several traits in different animal species [15,22,23]. For all identified genes,
literature and database searches were performed to investigate the metabolic function
of the genes identified. We used the DAVID bioinformatics database (http://david.abcc.
ncifcrf.gov/, accessed on 21 December 2021) to conduct Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to better understand the
biological processes and pathways represented by these candidate genes. Fisher’s exact
test was used to determine which terms were significantly enriched (p < 0.05).

3. Results and Discussion
3.1. Identification of Genomic Region and Candidate Genes

In our previous study, a classical GWAS (single-SNP GWAS) was performed for
SCS in the VDB breed [16]. In the present investigation, many more genomic region
windows affecting this trait were identified, and the explained genetic variance was up to
0.75%, which demonstrated that the WssGWAS was more successful in identifying window
compared with our previous analysis.

https://www.ncbi.nlm.nih.gov/genome/gdv/?org=ovis-aries
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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Of the top 10 genomic windows identified for SCS, one was reported in our prior
GWAS results and contained the gene NEGR1 [16]. NEGR1 (on OAR1) is a member
of the LON family of immunoglobulins (IgLON) of Glycosylated (GPI-anchored) cell
adhesion molecules that also includes Limbic system-associated membrane protein (LAMP),
neurotrimin [24]. The gene is related with medium white blood cell count in Yak [25].

In addition, we found several genes which were not previously reported for the
studied traits. For example, ROBO2, a fat-related QTL in marbling score [26], was identified
as a novel candidate gene for milk fat yield and protein yield in the present study.

Across the six traits, the total genetic variation explained by the top 10 ranked windows
varied from 3.49% (MY) to 5.24% (SCS). The largest genetic variance explained by a window
was 0.75% for SCS and 0.64% for milk fat percentage, respectively. However, the majority
of the windows explained less than 0.5%, and these low-contributing regions spread
throughout the genome for all analyzed traits. This suggests that both milk production
traits and SCS are moderately to highly polygenic, that is many regions over the genome
contribute to the genetic variation of the traits (Figure 1).
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Figure 1. Manhattan plots of the additive genetic variance (%) explained by 1.0 Mb window of 
adjacent SNPs for milk production traits and SCS: (A) milk yield, (B) fat yield, (C) protein yield, (D) 
fat percentage, (E) protein percentage, and (F) SCS. Each dot represents a window. 

Table 2. Identification of genes based on additive genetic variance explained by top 10 window 
regions for milk yield trait. 

Trait OAR Start (bp) Stop (bp) % VE Genes 
MY 22 5,250,187 6,225,066 0.396 PCDH15, U6 

 3 214,344,054 215,239,751 0.375 
EPS8, PTPRO, RERG, PDE6H, ARHGDIB, 

ERP27, MGP 
 27 106,515,599 107,465,396 0.373 - 
 9 31,897,584 32,871,881 0.372 C9H8orf76, TBC1D31, DERL1, ZHX2 
 9 54,661,246 55,632,383 0.359 TMEM70, LY96, JPH1, GDAP1, MIR2052 
 3 212,632,779 213,605,435 0.351 LMO3, MGST1 
 6 47,499,788 48,496,456 0.337 PPARGC1A 
 6 40,445,167 41,445,859 0.311 LYPLA1, FAM13A, NAP1L5 

 3 107,748,212 108,707,604 0.310 
LYG2, MRPL30, MITD1, C2orf15, MYH9, 

TSGA10, MGAT4A 
 4 92,470,191 93,383,584 0.291 KCND2, LEP, TSPAN12  

OAR = ovis aries chromosome; %VE = percentage of explained genetic variance. 
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Figure 1. Manhattan plots of the additive genetic variance (%) explained by 1.0 Mb window of
adjacent SNPs for milk production traits and SCS: (A) milk yield, (B) fat yield, (C) protein yield,
(D) fat percentage, (E) protein percentage, and (F) SCS. Each dot represents a window.

The top 10 ranked windows for each trait by that explained the largest proportion of
additive genetic variance and the important candidate genes for all investigated traits are
presented in Tables 2–5. The characteristics of these window regions for the six traits are
explained in detail in the following paragraphs.

Table 2. Identification of genes based on additive genetic variance explained by top 10 window
regions for milk yield trait.

Trait OAR Start (bp) Stop (bp) % VE Genes

MY 22 5,250,187 6,225,066 0.396 PCDH15, U6
3 214,344,054 215,239,751 0.375 EPS8, PTPRO, RERG, PDE6H, ARHGDIB, ERP27, MGP

27 106,515,599 107,465,396 0.373 -
9 31,897,584 32,871,881 0.372 C9H8orf76, TBC1D31, DERL1, ZHX2
9 54,661,246 55,632,383 0.359 TMEM70, LY96, JPH1, GDAP1, MIR2052
3 212,632,779 213,605,435 0.351 LMO3, MGST1
6 47,499,788 48,496,456 0.337 PPARGC1A
6 40,445,167 41,445,859 0.311 LYPLA1, FAM13A, NAP1L5

3 107,748,212 108,707,604 0.310 LYG2, MRPL30, MITD1, C2orf15, MYH9,
TSGA10, MGAT4A

4 92,470,191 93,383,584 0.291 KCND2, LEP, TSPAN12

OAR = ovis aries chromosome; %VE = percentage of explained genetic variance.

Table 3. Identification of genes based on additive genetic variance explained by top 10 window
regions for milk fat yield and fat percentage traits.

Trait Chr Start (bp) Stop (bp) % VE Genes

FY 11 17,769,576 18,742,505 0.551
GOSR2, RPRML, LYZL6, RDM1, PLEKHM1, ARHGAP27,

MAP3K14, FMNL1, HEXIM2, HEXIM1, ACBD4,
PLCD3, NMT1

3 151,003,018 151,972,475 0.483 ANO6, DBX2, NELL2
6 3,644,480 4,610,354 0.420 BBS7, CCNA2, EXOSC9, SMIM43

19 5,602,339 6,570,519 0.404 GADL1, OSBPL10, STT3B

3 229,350,131 230,350,131 0.376 ATP6V1E1, TUBA8, CDC42EP1, LGALS2, GGA1,
CACNA1C, U6, PDXP

2 56,504,189 57,464,796 0.373 -
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Table 3. Cont.

Trait Chr Start (bp) Stop (bp) % VE Genes

7 37,844,731 38,839,931 0.373 SNAP23, LRRC57, HAUS2, CDAN1, TTBK2, UBR1,
TMEM62, CCNDBP1, EPB42

5 47,771,920 48,762,985 0.368 TCF7, CDKL3, UBE2B, JADE2, SAR1B, SEC24A, CAMLG,
DDX46, C5orf24

1 156,102,645 157,082,096 0.357 ROBO2, U2

13 81,534,944 82,519,944 0.301 UBE2V1, CEBPB, PTPN1, PARD6B, BCAS4, DPM1,
KCNG1, MOCS3

FAT% 6 3,563,877 4,559,472 0.649 NAF1, BBS7, CCNA2, EXOSC9, SMIM43
26 3,879,792 4,875,104 0.619 -
8 82,898,823 83,853,076 0.571 ESR1, SYNE1, MYCT1, VIP

8 79,925,767 80,905,873 0.550 UST, TAB2, ZC3H12D, PPIL4, GINM1, KATNA1, LATS1,
NUP43, PCMT1, LRP11

26 700,916 1,677,676 0.540 DLGAP2, CLN8, CETN2, KBTBD11, MYOM2
9 53,991,923 54,979,070 0.533 RDH10, ELOC, TMEM70, LY96
2 124,285,685 125,280,477 0.527 FAM168B, PLEKHB2
25 12,322,443 13,278,443 0.483 ZNF248, BMS1, CHRM3, ZNF33B
7 50,459,248 51,446,200 0.470 RORA, ICE2, ANXA2

25 45,303,771 46,293,771 0.419 DRGX, ERCC6, SLC18A3, C25H10orf53, OGDHL, PARG,
TIMM23B, SNORA74, MARCHF8, ZFAND4

Table 4. Identification of genes based on additive genetic variance explained by top 10 window
regions for milk protein yield and protein percentage traits.

Trait Chr Start (bp) Stop (bp) % VE Genes

PY 7 37,844,731 38,839,931 0.518 SNAP23, LRRC57, HAUS2, CDAN1, TTBK2, UBR1,
TMEM62, CCNDBP1

8 14,481,631 15,471,954 0.505 HDDC2, TPD52L1, RNF217, NKAIN2
13 12,488,726 13,487,350 0.449 SFMBT2, ITIH5, ITIH2, ATP5F1C, TAF3, GATA3
2 111,987,606 112,986,964 0.398 KIF13B, MSRA, PRSS51, PRSS55, PINX1

14 25,500,650 26,497,592 0.397 MT1A, MT1C, MT2, OGFOD1, OGFOD1, NUDT21,
AMFR, GNAO1, CES5A

2 63,313,028 64,303,381 0.393 VPS13A, FOXB2, GCNT1, RFK, PCSK5
2 59,313,028 60,303,381 0.388 -
1 156,123,514 157,114,945 0.379 ROBO2, U2
9 77,706,323 78,625,358 0.354 ANGPT1, ABRA, OXR1
3 151,003,018 151,972,475 0.305 ANO6, DBX2, NELL2

PROT% 13 77,917,677 78,910,066 0.507 DNTTIP1, TNNC2, SNX21, ACOT8, CTSA, PLTP, PCIF1,
ZNF335, MMP9

2 80,632,041 81,604,796 0.452 KDM4C, DMAC1
17 29,494,464 30,441,072 0.420 -
1 38,670,059 39,649,763 0.368 TM2D1, PATJ, KANK4
7 37,916,711 38,872,804 0.357 CDAN1, TTBK2, UBR1, TMEM62, EPB42
3 179,367,669 180,265,170 0.357 -
5 72,168,942 73,159,451 0.342 SOX30, THG1L, LSM11, CLINT1
2 134,606,095 135,598,790 0.337 TTC21B, GALNT3
2 154,466,090 155,460,561 0.332 ZNF804A

13 76,376,357 77,356,228 0.332 YWHAB, PABPC1L, STK4, KCNS1, MATN4

3.2. Candidate Genes for Milk Yield (MY)

Using the WssGWAS method, the top 10 identified genomic regions related with
milk yield, in terms of percentage of genetic variance explained (%), were detected on
chromosomes 3, 4, 6, 9, 22, and 27. The discovered genomic regions explained 0.29–0.39% of
the additive genetic variances and jointly explained 3.49% for MY. Within these windows,
there were 33 known genes (Figure 1A and Table 2).
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Table 5. Identification of genes based on additive genetic variance explained by top 10 window
regions for SCS.

Trait Chr Start (bp) Stop (bp) % VE Genes

SCS 1 33,955,437 34,931,948 0.758 U6, OMA1, TACSTD2
6 41,728,563 42,727,105 0.677 LAP3, MED28, FAM184B, DCAF16, NCAPG, LCORL
9 34,510,191 35,480,917 0.562 PRKDC, MCM4, EFCAB1, SNAI2, PPDPFL
1 32,365,838 33,350,564 0.557 PLPP3, PRKAA2, C8A, DAB1
7 38,236,462 39,205,426 0.485 UBR1, TMEM62, CCNDBP1, EPB42
3 213,347,420 214,351,547 0.484 LMO3, MGST1, SLC15A5, PEX26, STRAP
1 49,775,153 50,755,499 0.463 NEGR1
3 161,701,025 162,705,420 0.421 CPM, SLC35E3, NUP107, RAP1B, MDM1, IL22, IL26, IFNG
9 28,511,250 29,492,867 0.420 LRATD2
1 61,734,830 62,648,480 0.413 ADGRL2

The most important window region was located on OAR6: 47,499,788–48,496,456 bp,
and explained 0.33% of the genetic variance for MY.

Two genes were previously reported to directly regulate milk yield [27,28]. The
PPARGC1A gene is involved in the activation of various significant hormone receptors, in
thermogenesis, gluconeogenesis, glucose transport, and β-oxidation of fatty acids [29].

Polymorphism of PPARGC1A gene in Italian Mediterranean buffaloes was associated
with milk yield and protein percentage [28]. In Italian Holstein cattle, the SNPs harbored in
PPARGC1A gene on BTA6 were linked with milk yield, protein yield and percentage [27].
Consequently, PPARGC1A could act as a marker gene for milk production traits also in the
Valle del Belìce breed. LYPLA1 has been reported as candidate gene in the regulation of
prolactin secretion, feed intake and gain in cattle [30], and as marker involved in milk yield
in Chios dairy sheep population [31].

The second most important window (OAR4: 92,470,191–93,383,584 bp) was located inside
the leptin (LEP) gene, which is of great importance in animal growth and metabolism [32].
It controls feed intake, energy metabolism, and body fat distribution [33]. Genetic variants
identified in LEP have been proven to affect milk production in cows [34]. Furthermore, a
polymorphism located in the LEP gene was found to be associated with milk production in
Najdi sheep breed [35].

Other genes were demonstrated to have mechanisms indirectly related to milk yield [36].
The MYH9 gene is a member of the myosin superfamily which shares the common charac-
teristics of the hydrolytic activity of ATPase, actin binding, and potential for kinetic energy
transduction. Myosin plays an important role in muscle growth and contraction [37]. More-
over, Lopdell et al. [38] found that MYH9 is associated with milk phenotypes in cattle together
with CSF2RB.

3.3. Candidate Genes for Milk Fat Yield (FY) and Fat Percentage (FAT%)

For FY, there were nine chromosomes that contain associated genomic regions, includ-
ing chromosomes OAR1, 2, 3, 5, 6, 7, 11, 13, and 19. The percentage of genetic variance
for these windows ranged from 0.30 to 0.55%. Within these regions, 56 known genes were
identified to be associated with FY (Figure 1B and Table 3).

Two candidate genes were previously reported for FY: CACNA1C [39] and PTPN1 [40].
CACNA1C is part of a group of genes that give instructions for constructing calcium
channels. Long-chain fatty acids are implicated in the calcium channel activation processes,
probably acting at some near lipid binding sites on these channels or directly over the
channel protein itself [39]. The CACNA1C was reported as a milk fatty acids profile
candidate gene in Santa Inês ewes [39].

The gene PTPN1 is associated with milk cholesterol content. In fact, it is a key gene for
plasma total and high-density lipoprotein cholesterol (HDL-CHL) [40] and directly linked to
CHL. A region on OAR1 in position 156,102,645–157,082,096 bp was found to be associated
with milk fat and protein yield. This region contains the gene ROBO2. This window was
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detected within guidance receptor 2 (ROBO2) of the ROBO family [41]. According to
previous studies, ROBO2 was associated with fat metabolism, particularly in the fatty acid
profile and includes C18:3 IMF [26,42].

For FAT%, top 10 windows in seven different chromosomes (OAR2, 6, 7, 8, 9, 25, and
26) were identified (Figure 1D and Table 3). Results showed that these windows explained
0.41–0.64% of the genetic variance for FAT%.

The most important window, OAR25: 12,322,443–13,278,443 bp, accounted for 0.48%
of the genetic variance of FAT% and was found within the cholinergic receptor gene,
muscarinic 3 (CHRM3). This gene plays an essential role in lipid metabolism, which may
have an effect on the milk fat yield [43]. Mei et al. [44] stated that highly significant SNPs
for meat quality in Qinchuan cattle were found inside CHRM3 gene.

Another important window for fat yield was found on chromosome 25 between
45,303,771 and 46,293,771 bp. This region contained ERCC6, an important candidate gene
involved in milk fat in Canadian Holsteins [45]. The involvement of ERCC6 gene in milk
production has been poorly investigated so further studies are needed.

3.4. Candidate Genes for Milk Protein Yield and Protein Percentage

Top 10 windows genomic regions with a high impact on PY were located on chromo-
somes 1, 2, 3, 7, 8, 9, 11, 13, and 14. The proportion of genetic variance for these windows
ranged from 0.30 to 0.51%. A total of 44 known genes associated with protein yield were
identified in these regions (Figure 1C and Table 4).

From these regions, genomic regions located on chromosome 2 (from 63,313,028 to
64,303,381 bp) were found in protein yield. PCSK5 gene product is known to directly
inactivate endothelial lipase and indirectly cleave and activate angiopoetin-like protein 3,
a natural inhibitor of endothelial lipase. A recent study reports PCSK5 as gene linked to
meat quality traits in beef cattle [46]. Further studies are necessary to clarify the role of the
PCSK5 gene in the milk protein yield association.

Relevant window for protein yield was found on OAR9 between 77,706,323 and
78,625,358 bp. Among the putative candidate genes mapped within this window, we
found Angiopoietin-1 (ANGPT1), which explained more than 0.35% of the genetic variance.
ANGPT1 is mainly produced by cardiac, skeletal and smooth muscle cells, and adventitial
cells [47]. The association of ANGPT1 gene with milk quality in Chinese Holstein has been
reported in a previous study [48].

Regarding milk protein percentage, the top window identified OAR1, 2, 3, 5, 7, 13, and
17, together with 30 genes close to the most important SNP within each window (Figure 1E
and Table 4). The identified genomic windows explained 0.33–0.50% of the genetic variance
for PROT%. Interestingly, these genomic regions were not reported in recognized QTL
regions for milk protein percentage.

3.5. Candidate Genes for SCS

Genomic windows linked to SCS were found in five chromosomes, OAR1, 3, 6, 7,
9 where 37 known genes were associated with the trait (Figure 1F and Table 5). The
proportion of genetic variance for these windows ranged from 0.41 to 0.75%.

The most important windows, OAR3: 161,701,025–162,705,420 bp, and 213,347,420–
214,351,547 bp, contributed to 0.90% of the genetic variance of SCS.

Three genes were previously reported as candidate for immune response, namely,
IL26 [49], IFNG [50], and PEX26 [51].

The protein encoded by IL26 is a member of the IL10 family of cytokines [52], which
has anti-bacterial activity against various bacteria, including Staphylococcus aureus [49],
suggesting a broader role in host defenses.

The critical function of the IFNG gene in the coordination of immunity against bacteria
suggested a potential role of this gene in the bovine paratuberculosis susceptibility [50].
In addition, the IFNG gene was previously associated with host innate immune response
against Brucella in goats [53].
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PEX26 is a peroxisomal membrane protein that acts as a membrane anchor for the
PEX1-PEX6 complex and has been previously reported to be associated with immune
response traits in Canadian Holstein cattle [51].

Additionally, other genes were demonstrated to have mechanisms related to SCS.
Previous significant QTL on chromosome 6 containing candidate genes (LAP3, MED28,
FAM184B, DCAF16, NCAPG, and LCORL) related to milk production traits in cattle [1,13],
were also identified in this study. In this region, MED28 could be a causative gene affecting
SCS in Valle del Belice sheep. The gene MED28 is expressed in the mammary gland during
lactation and is associated to breast cancer [54], whereas LAP3 is a regulator of hormone
and plays a role in maturation, inactivation, and degradation of proteins [55]. In mammals,
LAPs contribute to processing of some bioactive peptides and vesicle trafficking to the
plasma membrane, and they also have a role in MHC I antigen presentation [56].

3.6. Functional Annotation of Enrichment Analysis

In order to better understand the biological processes and pathways, genes surround-
ing the SNPs within each window were searched. Hence, KEGG and GO enrichment
analysis were performed. Five GO terms and one KEGG pathways were enriched for the
analyzed milk production traits and somatic cell score. The enriched GO terms are involved
in positive regulation of protein phosphorylation (GO: 0001934) consisting of ANGPT1 and
PTPN1 genes; positive regulation of protein complex assembly (GO: 0031334) consisting of
ERCC6, RAP1B, and LCP1 genes; lipoprotein metabolic process (GO: 0042157) including
LYPLA1 and SCARB1 genes; regulation of leukocyte proliferation (GO: 0002682) including
DLG1, IL7, LAPTM5, and TFRC genes; regulation of immune system process (GO: 0031334)
consisting of IFNG, IL7, and LAPTM5 genes; and IL-17 signaling pathway (oar: 04657)
consisting of IFNG, IL17RB, and MMP9. The results of GO and KEGG enrichment analyses
further suggests that milk production and somatic cell score are traits in which many genes
are involved.

4. Conclusions

This research conducted a weighted GWAS using a single-step procedure and found
many genomic regions and candidate genes in relation to five milk production traits and
SCS, indicating a polygenic nature of the studied traits. Novel candidate genes implicated
in milk production traits and SCS were also identified. Our findings offer new insights into
the genetic basis of milk production traits and SCS in Valle del Belice sheep, and more in
general in dairy sheep. These results can be used to search for causative mutations and for
breeding through marker-assisted selection to improve the production and quality of milk
yield in Valle del Belice sheep. Further research with more information on animals, records,
and genotypes is required to validate our findings and the practical implications of this for
genomic selection.
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