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Abstract. We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing
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1. Introduction and preliminaries

In this paper we study the third-order nonlinear differential equation of the form{
(a(t)w′′(t))′ + w(t)A(w2(t), t) = 0,

a(t) > 0, a′(t) � 0, A(z, t) > 0, t � t0 > 0, z > 0,
(1)

where the first term means the weighted operator driving the equation, and the second term means
the general form of involved nonlinearity. We need some regularities on coefficient functions, that is
a ∈ C1([t0, ∞),R+), and A ∈ C(R+ × [t0, ∞),R+) is monotone with respect to its first variable.

By a solution of (1) we mean a function w ∈ C2([tw, ∞),R), tw � t0, which has the property
aw′′ ∈ C1([tw, ∞),R), and satisfies (1) on [tw, ∞). As usual, we are interested in those solutions w

of (1) with sup{|w(t)| : t � tw} > 0 (that is, the solutions are non-trivial). So, we say that (1) is
“oscillatory” whenever all its solutions are oscillatory (that is, they have arbitrarily large zeros). On the
other hand, if w ∈ C2([tw, ∞),R) is definitively positive (or negative), then (1) is “non-oscillatory”.

The theory of higher-order differential equations originates by the classical theory of first- and
second-order ordinary differential equations. A comprehensive study is provided by the book of Ladde–
Lakshmikantham–Zhang [12]. For additional mathematical background, we also refer to the books of
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Agarwal–Grace–O’Regan [1] and Hale [7]. The interest for this kind of extended theory is strongly
motivated by its usefulness in dealing with real nonlinear phenomena. Indeed, the higher-order dif-
ferential equations during the last decades provided good models of problems in physics, engineering
and economic processes. We point out the attention of the reader to the papers of Džurina [4], Zhang–
Agarwal–Bohner–Li [17], Zhang–Li–Saker [18] (higher-order equations), and Baculíková–Džurina [3],
Fišnarová–Mařík [5], Kusano–Naito [10] (second-order equations), and Baculíková–Džurina [2], Li–
Rogovchenko [13] (third-order equations).

Here, we continue this study with the motivation to provide precise information on the (non-
)oscillatory behavior of solutions to (1). The main idea is given in the pioneering papers of Nehari
[14] and Philos [15]. In the first one, the author establishes oscillation and non-oscillation criteria for a
second-order differential equation of the form

w′′(t) + q(t)w(t) = 0, q ∈ C
([t0, ∞),R+

)
, t � t0 > 0.

In addition, the author provides asymptotic estimates for the number of zeros. In the second paper, Philos
focuses on non-oscillation criteria for n-th order general retarded differential equations of the form{

(−1)nw(n)(t) − f (t, x(δ1(t)), . . . , x(δk(t))) = 0, f ∈ C([t0, ∞) × [0, ∞)k,R),

δ1, . . . , δk ∈ C((t0, ∞),R), δ1, . . . , δk → +∞ as t → +∞, t � t0 > 0,

with additional regularities on f (that is, f (t, z1, . . . , zk) is increasing in each of z1, . . . , zk, and is
a positive function). In particular, in [15] the existence of a positive solution to the above equation
is obtained starting from positive solutions of suitable differential inequalities. We will also use this
argument in establishing a result of this paper.

Another key-tool in obtaining our results is the comparison technique, where the oscillatory behavior
of solutions to (1) is obtained developing a reasoning process which leads to contradiction with the
known oscillatory behavior of some first-order differential equations. Some nice recent contributions in
this direction are the above cited references [5,13].

Here, we look to a third-order differential equation involving a general form of nonlinearity, and hence
we are aimed to investigate whether the choice of different nonlinearities influences the analysis in [13]
and complement the results in [5]. We use the Philos’ approach to differential inequalities [15], together
with the comparison technique with first-order differential equations to establish an oscillatory criteria.
We also discuss necessary and sufficient criteria describing how the properties of nonlinearity determine
the (non-)oscillatory behavior of equation (1), in the sense of Kusano–Naito [11].

2. Hypotheses and auxiliary results

In this section we collect some relevant facts from the existing literature and auxiliary results. Also,
we fix the notation. In the sequel we will assume the hypothesis:

(H0)
∫ ∞
t

1
a(s)

ds = +∞ for all t � t0 > 0.

A simple function a ∈ C1([t0, ∞),R+) satisfying (H0) is

a(t) = t ln t for all t � t0 > 1.
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We also need that the nonlinearity is as follows:

(H1) wA(w2, t) is continuous in R+ × [t0, ∞).

A particular case of A ∈ C(R+ × [t0, ∞),R+) satisfying (H1) is

A
(
w2(t), t

) = q(t)
(
w2(t)

)β
, for all t � t0 > 0, some β > 0,

where q ∈ C([t0, ∞),R+).
Using a similar reasoning to the one in [2, Lemma 1] we start giving a lemma, about the cases that we

will discuss here (that is, a “classification of positive solutions”).

Lemma 2.1. Let w ∈ C2([t0, ∞),R) be a (eventually) positive solution of (1). Then, we have the
following situations:

(S1) w(t) > 0, w′(t) > 0, w′′(t) > 0, (a(t)w′′(t))′ � 0,
(S2) w(t) > 0, w′(t) < 0, w′′(t) > 0, (a(t)w′′(t))′ � 0,

for t � t1, where t1 � t0 is large enough.

Proof. Let w be a (eventually) positive solution to (1). By (1) and A(z, t) > 0 for all t � t0, z > 0, we
have:(

a(t)w′′(t)
)′ = −w(t)A

(
w2(t), t

)
< 0, for all t � t0,

⇒ aw′′ is decreasing and does not change sign definitively,

⇒ w′′ does not change sign definitively too.

So, we distinguish two cases: w′′ is negative definitively, and w′′ is positive definitively.
If we assume w′′(t) < 0 for t � t1 � t0, then we can find a positive real number K with a(t)w′′(t) �

−K < 0. This leads to

w′′(t) � − K

a(t)
,

⇒
∫ t

t1

w′′(s) ds � −K

∫ t

t1

1

a(s)
ds

(
we integrate over [t1, t]

)
,

⇒ w′(t) � w′(t1) − K

∫ t

t1

1

a(s)
ds

⇒ w′(t) → −∞ (
since the last integral goes to +∞ as t goes to +∞, by (H0)

)
.

We deduce that w′(t) < 0 for t � t2 � t1 (large enough). Now, we observe that w′′(t) < 0 and
w′(t) < 0 for all t � t2, imply w(t) < 0 too. So, we have a contradiction to the fact that w is positive.
We conclude that w′′ must be positive definitively.

Thus, we conclude easily that only the situations (S1) and (S2) may occur. �
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Remark 2.2. In both cases (S1) and (S2), we can find c > 0 and t � t0 such that

w(t) � c

∫ t

t0

t − s

a(s)
ds, t � t . (2)

Since aw′′ is decreasing, from

a(t)w′′(t) � a(t0)w
′′(t0),

⇒ w′′(t) � a(t0)

a(t)
w′′(t0),

we integrate over [t0, t] (two times) to get:

w′(t) � w′(t0) + a(t0)w
′′(t0)

∫ t

t0

1

a(s)
ds (first integration),

⇒ w(t) � w(t0) + w′(t0)[t − t0] + a(t0)w
′′(t0)

∫ t

t0

∫ z

t0

1

a(s)
ds dz

(second integration),

⇒ w(t) �
[
w(t0) − w′(t0)t0

] + w′(t0)t + a(t0)w
′′(t0)

([
z

∫ z

t0

1

a(s)
ds

]t

t0

−
∫ t

t0

s

a(s)
ds

)
(the integration by parts formula is used to compute double integral),

⇒ w(t) �
[
w(t0) − w′(t0)t0

] + w′(t0)t + a(t0)w
′′(t0)

∫ t

t0

t − s

a(s)
ds.

This inequality leads easily to (2) by a suitable choice of positive values c and t � t0.

For the sake of simplicity, we assume here that A is monotone non-increasing, with respect to the first
variable. In view of Lemma 2.1 and (2), we note that an (eventually) positive solution to (1), namely w,
is such that

m � w(t) � Mc(t) := c

∫ t

t0

t − s

a(s)
ds for some m � 0, c > 0 and all t � t large enough.

Adopting the terminology of [11], we can say that those solutions such that w(t) is asymptotic to
Mc(t), as t → +∞, are the “maximal solutions” of (1). We can formalize this asymptotic behavior of
an (eventually) positive solution to (1), by the following property:

(L) limt→+∞ w(t)

M1(t)
= γ > 0 (constant).

We also refer the reader to Kusano–Akio–Hiroyuki [9], for some similar general considerations over a
class of second-order differential equations.



CORRECTED  P
ROOF

C. Vetro and D. Wardowski / Third-order nonlinear differential equations 5

Now, we are ready to introduce the precise hypotheses on the data of (1):

(H2)
∫ ∞
t0

(A(M2
c (t), t)M1(t)) dt < +∞ for some c > 0.

(H3) One of the following conditions holds:

a.
∫ ∞
z

A(κ, s) ds = +∞,

b.
∫ ∞
v

1
a(z)

∫ ∞
z

A(κ, s) ds dz = +∞,

c.
∫ ∞
t0

∫ ∞
v

1
a(z)

∫ ∞
z

A(κ, s) ds dz dv = +∞,

for all κ > 0.

(H4) There exists a function η ∈ C([t0, ∞),R+) such that, for all t1 � t0 (large enough) and some
t∗ � t1, we have that the first-order retarded differential equation

u′(t) + A
(
η(t), t

)(∫ δ(t)

t∗

∫ v

t1

a−1(s) ds dv

)
u
(
δ(t)

) = 0

is oscillatory, where δ ∈ C([t0, ∞),R+) is such that δ(t) < t and δ(t) goes to infinity as t goes to
infinity.

(H5) There exists a function η̃ ∈ C([t0, ∞),R+) such that, for all t1 � t0 (large enough) and some
t∗ � t1, we have that the inequality

u′(t) + A
(
η̃(t), t

)(∫ δ(t)

t∗

∫ v

t1

a−1(s) ds dv

)
u
(
δ(t)

)
� 0,

δ ∈ C
([t0, ∞),R+

)
as given in (H4),

has no positive solutions.

Remark 2.3. Consider the following type version of the first-order general retarded differential equation
in hypothesis (H4):

u′(t) + q̃(t)u
(
δ(t)

) = 0, q̃ ∈ C
([t0, ∞),R+

)
, q̃(t) > 0, t � t0 > 0. (3)

By Ladde–Lakshmikantham–Zhang [12] (Theorem 2.1.1 (iii), p. 16) we know that (3) is oscillatory,
provided that

lim inf
t→+∞

∫ t

δ(t)

q̃(s) ds > e−1.

In the particular case q̃(t) = q0 (constant case) and δ(t) = t − δ0 with δ0 > 0, then

q0δ0 > e−1

is a necessary and sufficient condition for oscillations of solutions to (3) (see [12, Corollary 2.1.1, p. 18]).
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According to Remark 2.3, the first-order retarded differential equation

u′(t) + (2 − sin t)u(t − π) = 0, t � 2π > 0,

is oscillatory, since

lim inf
t→+∞

∫ t

t−π

(2 − sin s) ds > π > e−1.

The last result of this section is a key-proposition establishing the asymptotic behavior of a (eventu-
ally) positive solution of equation (1) provided that (H3) holds true. Precisely, the next result deals with
the following asymptotic property:

(L)′ limt→+∞ w(t) = 0.

Proposition 2.4. If (H3) holds and w ∈ C2([tw, ∞),R+) is a (S2)-type solution of (1), then (L)′ holds
true.

Proof. Since (S2) holds, we know that w(t) > 0 and w′(t) < 0 definitively. So, there exists � � 0
such that w(t) → � as t → +∞. If we assume � > 0, then there exist c > 1 and t̃ � t0 such that
� < w(t) � c� for all t � t̃ . We construct the proof in three steps.

Step 1. Assume that (H3)a holds, that is∫ ∞

z

A(κ, s) ds = +∞, for all κ > 0.

Then, from (1) and from the fact that A is non-increasing with respect to the first variable, we deduce
that (

a(t)w′′(t)
)′ + �A

(
c2�2, t

)
� 0, t � t̃ ,

⇒
∫ y

z

[(
a(s)w′′(s)

)′ + �A
(
c2�2, s

)]
ds � 0, y > z � t̃ ,

⇒ �

∫ y

z

A
(
c2�2, s

)
ds � a(z)w′′(z) − a(y)w′′(y) � a(z)w′′(z),

⇒ a(z)w′′(z) � �

∫ ∞

z

A
(
c2�2, s

)
ds, (4)

which leads to contradiction, by (H3)a .
Step 2. Assuming that

∫ ∞
z

A(κ, s) ds < +∞ for some κ > 0 (that is (H3)a does not hold), we
consider the situation where (H3)b is true. Fixing c > 1 such that c2�2 > κ , and satisfying also the
assumption of step 1, we deduce that the right hand side of (4) is finite. After dividing each side of (4)
by a(z), we integrate over [v, t] to obtain

w′(t) − w′(v) �
∫ t

v

�

a(z)

∫ ∞

z

A
(
c2�2, s

)
ds dz,
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⇒ −w′(v) � �

∫ ∞

v

1

a(z)

∫ ∞

z

A
(
c2�2, s

)
ds dz, (5)

which leads to contradiction, by (H3)b.
Step 3. Assuming that (H3)a and (H3)b do not hold, we have that∫ ∞

z

A(κa, s) ds < +∞ for some κa > 0

and ∫ ∞

v

1

a(z)

∫ ∞

z

A(κb, s) ds dz < +∞ for some κb > 0.

Take c > 1 such that c2�2 > κ := max{κa, κb}. Then, due to the monotonicity of A (non-increasing in
its first variable), we have∫ ∞

z

A
(
c2�2, s

)
ds �

∫ ∞

z

A(κ, s) ds �
∫ ∞

z

A(κa, s) ds < +∞.

Then we can divide (4) by a(z) and integrate over [v, t] to obtain

−w′(v) � �

∫ ∞

v

1

a(z)

∫ ∞

z

A
(
c2�2, s

)
ds dz.

Due to a(z) > 0 and again using monotonicity of A, we get∫ ∞

v

1

a(z)

∫ ∞

z

A
(
c2�2, s

)
ds dz �

∫ ∞

v

1

a(z)

∫ ∞

z

A(κ, s) ds dz

�
∫ ∞

v

1

a(z)

∫ ∞

z

A(κb, s) ds dz < +∞.

Therefore the right hand side of (5) is finite. Then, we integrate each side of (5) over [t∗, t] to obtain

−w(t) + w(t∗) �
∫ t

t∗
�

∫ ∞

v

1

a(z)

∫ ∞

z

A
(
c2�2, s

)
ds dz dv,

⇒ w(t∗) � �

∫ ∞

t∗

∫ ∞

v

1

a(z)

∫ ∞

z

A
(
c2�2, s

)
ds dz dv,

which leads to contradiction, by (H3)c.
We conclude that � = 0, that is w(t) goes to zero as t goes to infinity, and hence (L)′ holds true. �

A particular case of A ∈ C(R+ × [t0, ∞),R+) satisfying immediately the hypothesis (H3)a is as
follows:

A(κ, t) = | sin t |
2 + sin t

for all t � t0 > 0,
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where, for the sake of simplicity, we drop the κ-dependence. We mention it, because the sign-changing
version of this function (that is, without the absolute value above) is used by Travis [16] to construct and
study a second-order retarded differential equation, whose solution is neither oscillatory nor satisfying
the asymptotic property (L)′.

Finally, we point out that, for all t � t0 > 0, the couple of functions{
A(κ, t) = κ+2

κ+1 t
−(1+α) 0 < α < 1,

a(t) = tβ 0 < β � 1 − α,

satisfies (H3)b. On the other hand, for all t � t0 > 0, the couple of functions{
A(κ, t) = κ+2

κ+1 t
−(1+α) 0 < α < 1,

a(t) = tβ 1 − α < β < 2 − α,

satisfies (H3)c.

3. Main results

In this section, we present both the non-oscillatory and oscillatory criteria.
The first theorem establishes the existence of a (eventually) positive solution to (1) with the property

(L).

Theorem 3.1. If (H0)–(H2) hold, then there exists a (eventually) positive solution w ∈ C2([tw, ∞),R+)

of (1) with the property (L).

Proof. By (H2) we can find T > 0 (large enough) satisfying∫ ∞

T

M1(s)A
(
M2

c (s), s
)
ds <

1

4
.

We introduce an integral equation of the form

w(t) = (
w)(t) (6)

by setting the integral operator

(
w)(t) := Mc(t) + M1(t)

∫ ∞

t

w(s)A
(
w2(s), s

)
ds +

∫ t

T

w(s)M1(s)A
(
w2(s), s

)
ds

+
∫ t

T

(∫ s

t0

1

a(v)
dv

)
(t − s)w(s)A

(
w2(s), s

)
ds.

This means that we put the problem of existence of solutions to (1) in an equivalent fixed-point prob-
lem of equation (6) (that is, the solutions of (6) are solutions to (1)).
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Now, we consider the linear space C([T , ∞),R) of all continuous functions w : [T , ∞) → R with

‖w‖ = sup
{
M−2

1 (t)
∣∣w(t)

∣∣ : t � T
}

< +∞.

Clearly, (C([T , ∞),R), ‖ · ‖) is a Banach space. To conclude the proof we have to establish the exis-
tence of a fixed point of 
 by an application of Schauder’s theorem. Let c be the constant of hypothesis
(H2), we look at the set W ⊆ (C([T , ∞),R), ‖ · ‖) given as:

W = {
w ∈ C

([T , ∞),R
) : Mc(t) � w(t) � M2c(t) for t � T

}
.

We show in some steps that W is bounded, convex and closed.
Step 1. 
 maps W into W . Indeed, let w ∈ W , then by the definition of 
 we obtain:

Mc(t) � (
w)(t) � Mc(t) + M1(t)

∫ ∞

t

w(s)A
(
w2(s), s

)
ds + 2M1(t)

∫ t

T

w(s)A
(
w2(s), s

)
ds

� Mc(t) + 2M1(t)

∫ ∞

T

w(s)A
(
w2(s), s

)
ds

� Mc(t) + 2M1(t)

∫ ∞

T

2Mc(t)A
(
w2(s), s

)
ds

� Mc(t) + 4Mc(t)

∫ ∞

T

M1(s)A
(
M2

c (s), s
)
ds � 2Mc(t) for t � T .

Step 2. 
 is continuous. Let {wn} ⊆ W satisfying ‖wn − w‖ → 0 as n → +∞. Since W is closed,
w ∈ W and

∣∣(
wn)(t) − (
w)(t)
∣∣ =

∣∣∣∣M1(t)

∫ ∞

t

(
wn(s)A

(
w2

n(s), s
) − w(s)A

(
w2(s), s

))
ds

+ M1(t)

∫ t

T

(
wn(s)A

(
w2

n(s), s
) − w(s)A

(
w2(s), s

))
ds

+
∫ t

T

(∫ s

t0

dv

a(v)

)
(t − s)

(
wn(s)A

(
w2

n(s), s
) − w(s)A

(
w2(s), s

))
ds

∣∣∣∣
� M1(t)

∫ ∞

t

∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣ ds

+ M1(t)

∫ t

T

∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣ ds

+ M1(t)

∫ t

T

∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣ ds

� 2M1(t)

∫ ∞

T

∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣ ds.
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We note that ‖wn − w‖ → 0 as n → +∞, and so supt�T |(wn(t) − w(t))M−2
1 (t)| → 0 too. Since

M−2
1 (t) > 0 for all t � T , then we have wn(t) → w(t) for all t � T . We deduce that

wn(t)A
(
w2

n(t), t
) → w(t)A

(
w2(t), t

)
as n → +∞, for all t � T .

From∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣
�

∣∣wn(s)A
(
w2

n(s), s
)∣∣ + ∣∣w(s)A

(
w2(s), s

)∣∣
� 4Mc(s)A

(
M2

c (s), s
)

for s � T ,

⇒
∫ ∞

T

∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣ ds → 0.

Now, for all ε > 0 there exists n(ε) such that for all n � n(ε) we have∫ ∞

T

∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣ ds <
ε

2
M1(T )

⇒ sup
n�n(ε)

∣∣(
wn)(t) − (
w)(t)
∣∣M−2

1 (t)

� 2M1(T )−1 sup
n�n(ε)

∫ ∞

T

∣∣wn(s)A
(
w2

n(s), s
) − w(s)A

(
w2(s), s

)∣∣ ds

� 2M1(T )−1M1(T )
ε

2
= ε,

⇒ ∥∥(
wn)(t) − (
w)(t)
∥∥ → 0 as n → +∞ (as ε is arbitrary).

It follows that 
 is continuous.
Step 3. We show that 
W is compact. To this end, we follow the arguments in the proof of [11,

Theorem 1]. Therefore, if w ∈ W , then for t2 > t1 � T we get∣∣(M−2
1 
w

)
(t2) − (

M−2
1 
w

)
(t1)

∣∣
�

∣∣M−1
c (t2) − M−1

c (t1)
∣∣

+
∣∣∣∣M−1

1 (t2)

∫ ∞

t2

w(s)A
(
w2(s), s

)
ds − M−1

1 (t1)

∫ ∞

t1

w(s)A
(
w2(s), s

)
ds

∣∣∣∣
+

∣∣∣∣M−2
1 (t2)

∫ t2

T

M1(s)w(s)A
(
w2(s), s

)
ds − M−2

1 (t1)

∫ t1

T

M1(s)w(s)A
(
w2(s), s

)
ds

∣∣∣∣
+

∣∣∣∣M−2
1 (t2)

∫ t2

T

(∫ s

t0

1

a(v)
dv

)
(t2 − s)w(s)A

(
w2(s), s

)
ds

− M−2
1 (t1)

∫ t1

T

(∫ s

t0

1

a(v)
dv

)
(t1 − s)w(s)A

(
w2(s), s

)
ds

∣∣∣∣
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� 2cM−1
1 (t1) + 2M−1

1 (t1)

∫ ∞

T

w(s)A
(
w2(s), s

)
ds + 2M−1

1 (t1)

∫ ∞

T

w(s)A
(
w2(s), s

)
ds

= 2cM−1
1 (t1) + 4M−1

1 (t1)

∫ ∞

T

w(s)A
(
w2(s), s

)
ds

� 3cM−1
1 (t1)

→ 0 as t1 → +∞.

Now, there exists T ∗ > T such that∣∣(M−2
1 
w

)
(t2) − (

M−2
1 
w

)
(t1)

∣∣ < ε for all t2 > t1 � T ∗.

Also, T ∗ � t2 > t1 � T imply∣∣(M−2
1 
w

)
(t2) − (

M−2
1 
w

)
(t1)

∣∣
�

∣∣M−1
c (t2) − M−1

c (t1)
∣∣

+ ∣∣M−1
1 (t2) − M−1

1 (t1)
∣∣ ∫ ∞

t2

w(s)A
(
w2(s), s

)
ds + M−1

1 (t2)

∫ t2

t1

w(s)A
(
w2(s), s

)
ds

+ ∣∣M−1
1 (t2) − M−1

1 (t1)
∣∣ ∫ t2

T

M1(s)w(s)A
(
w2(s), s

)
ds

+ M−1
1 (t1)

∫ t2

t1

M1(s)w(s)A
(
w2(s), s

)
ds

+ ∣∣t2M−2
1 (t2) − t1M

−2
1 (t1)

∣∣ ∫ t2

T

(∫ s

t0

1

a(v)
dv

)
w(s)A

(
w2(s), s

)
ds

+ t1M
−2
1 (t1)

∫ t2

t1

(∫ s

t0

1

a(v)
dv

)
w(s)A

(
w2(s), s

)
ds

+ ∣∣M−1
1 (t2) − M−1

1 (t1)
∣∣ ∫ t2

T

(∫ s

t0

dσ

a(σ )

)
sw(s)A

(
w2(s), s

)
ds

+ M−2
1 (t1)

∫ t2

t1

(∫ s

t0

dσ

a(σ )

)
sw(s)A

(
w2(s), s

)
ds.

We know that w(t)A(w2(t), t) � M2c(t)A(M2
c (t), t), for t � T .

We deduce easily that there exists δ > 0 such that for all w ∈ W we have∣∣(M−2
1 
w

)
(t2) − (

M−2
1 
w

)
(t1)

∣∣ < ε if |t2 − t1| < δ.

The above calculations assure that the interval [T , ∞) can be decomposed into a finite number of
subintervals with the following property:

• Each function of the form M−2
1 
w, w ∈ W , has oscillations less than ε, on each of the above

subintervals.
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This means that the family {M−2
1 
w : w ∈ W } is equicontinuous on [T , ∞). On the other hand, the

family {M−2
1 
w : w ∈ W } is uniformly bounded too. Therefore, the compactness of 
W is established.

The above steps authorize the use of Schauder’s fixed point theorem so that we can find a fixed point
of 
 in W , namely w ∈ W . Such a point w = w(t) solves the fixed point equation w(t) = (
w)(t) on
the interval [T , ∞), We can use the L’Hopital rule to deduce that

lim
t→+∞

w(t)

M1(t)
= lim

t→+∞
w′(t)
M ′

1(t)
= lim

t→+∞
w′′(t)
M ′′

1 (t)
= lim

t→+∞ a(t)w′′(t).

The last limit exists since the function aw′′ is decreasing and positive. Moreover, w ∈ W implies that

c � lim
t→+∞

w(t)

M1(t)
� 2c.

Thus w is a solution of (1) with the property (L). �

Remark 3.2. Let w(t) > 0 such that the property (L) holds. We show that (H2) necessarily occurs in
such a situation. Indeed, we can find some c1, c2 > 0 and t1 � t0 > 0 such that

Mc1(t) � w(t) � Mc2(t) for t � t1. (7)

We integrate (1) over [t1, t] to have

a(t)w′′(t) − a(t1)w
′′(t1) +

∫ t

t1

w(s)A
(
w2(s), s

)
ds = 0,

⇒
∫ ∞

t1

w(s)A
(
w2(s), s

)
ds < +∞(

recall that a(t)w′′(t) > 0 for all t � t1, see Lemma 2.1
)

⇒
∫ ∞

t1

M1(s)A
(
M2

c2
(s), s

)
ds < +∞ (by (7), recall A is non-increasing),

and so (H2) holds.

Example 3.3. Consider the third-order differential equation(
tw′′(t)

)′ + e−tw(t) = 0, t � t0 > 0.

Applying Theorem 3.1 to this equation, then we deduce that it admits a positive solution w ∈
C2([tw, ∞),R) with the property (L).

Here, using the set of hypotheses (H0), (H1), (H3) and (H4), we establish the following oscillatory
criteria of (1).

Theorem 3.4. If (H0), (H1), (H3) and (H4) hold, then every solution w ∈ C2([tw, ∞),R) of (1) is
either oscillatory or satisfies (L)′.
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Proof. If case (S2) holds, then the proof follows easily by Proposition 2.4. So, we focalize on case (S1).
Since the function a(t)w′′(t) is decreasing, then we deduce that

w′(t) = w′(t1) +
∫ t

t1

w′′(s) ds

= w′(t1) +
∫ t

t1

a(s)w′′(s)
a(s)

ds � a(t)w′′(t)
∫ t

t1

a−1(s) ds,

⇒ w(t) � a(t)w′′(t)
∫ t

t∗

∫ v

t1

a−1(s) ds dv
(
we integrate over [t∗, t]

)
.

Let δ ∈ C([t0, ∞),R+) be the function given in (H4). We observe that

(
a(t)w′′(t)

)′ + w(t)A
(
w2(t), t

) = 0
(
by (1); recall that w′′(t) > 0 for (S1)

)
,

⇒ (
a(t)w′′(t)

)′ + w
(
δ(t)

)
A

(
w2(t), t

)
� 0

(
by δ(t) < t ; recall that w′(t) > 0 for (S1)

)
,

⇒ (
a(t)w′′(t)

)′ + A
(
w2(t), t

)
a
(
δ(t)

)
w′′(δ(t)) ∫ δ(t)

t∗

∫ v

t1

a−1(s) ds dv � 0.

Comparing the last inequality with the retarded differential equation in hypothesis (H4) with η = w2,
we deduce that u = aw′′ is a positive solution of a first-order oscillatory retarded differential inequality,
related to that equation. Now, Corollary 1 of Philos [15] (see also [15, Theorem 1] for the complete
proof) gives us that there exists 0 < u∗ � u such that

u′
∗(t) + u∗

(
δ(t)

)
A

(
w2(t), t

) ∫ δ(t)

t∗

∫ v

t1

a−1(s) ds dv = 0, (8)

which means that u∗ is a positive solution to (8), a contradiction to (H4). �

Example 3.5. The third-order differential equation

(
tw′′(t)

)′ + c0

tα
w(t) = 0, c0 > 0, α ∈ (0, 1), t � t0 > 0,

where A(w2(t), t) = c0
tα

and a(t) = t , satisfies the hypotheses of Theorem 3.4, where in (H4) we assume
δ(t) = t − δ0, with δ0 > 0.

In view of the conclusive part of the proof of Theorem 3.4, we state the following result (more pre-
cisely, we substitute hypothesis (H4) by (H5)), without proof.

Theorem 3.6. If (H0), (H1), (H3) and (H5) hold, then every solution w ∈ C2([tw, ∞),R) of (1) is
either oscillatory or satisfies (L)′.
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4. Complementary results

In this section, we focus on the asymptotic behavior of solutions to the following modification of our
main equation (1):{

(a(t)w′(t))′′ + w(t)A(w2(t), t) = 0,

a(t) > 0, a′(t) � 0, A(z, t) > 0, t � t0 > 0, z > 0,
(9)

imposing the following regularities over (9): a ∈ C1([t0, ∞),R+), A ∈ C(R+ × [t0, ∞),R+) is mono-
tone with respect to its first variable. By a solution of (9) we mean a function w ∈ C1([tw, ∞),R),
tw � t0, which has the property aw′ ∈ C2([tw, ∞),R), and satisfies (9) on [tw, ∞). Our aim here is to
understand how the technical hypotheses (H2) and (H3) change.

About the classification of positive solutions to (9), we adapt Lemma 2.1 as follows.

Lemma 4.1. Let aw′ ∈ C2([t0, ∞),R) be a (eventually) positive solution of (1). Then, we have the
following situations:

(S1) w(t) > 0, w′(t) > 0, (a(t)w′(t))′ > 0, (a(t)w′(t))′′ � 0,
(S2) w(t) > 0, w′(t) < 0, (a(t)w′(t))′ > 0, (a(t)w′(t))′′ � 0,

for t � t1, where t1 � t0 is large enough.

Proof. Let w be a (eventually) positive solution to (1). By (9) and A(z, t) > 0 for all t � t0, z > 0, we
have:(

a(t)w′(t)
)′′ = −w(t)A

(
w2, t

)
< 0, for all t � t0,

⇒ (
aw′)′

is decreasing and does not change sign definitively.

So, we distinguish two cases: (aw′)′ is negative definitively, and (aw′)′ is positive definitively.
If we assume (a(t)w′(t))′ < 0 for t � t1 � t0, then we have:(

a(t)w′(t)
)′

< 0,

⇒ aw′ is decreasing and does not change sign definitively,

⇒ w′ does not change sign definitively too.

So, we distinguish two cases: w′ is negative definitively, and w′ is positive definitively.
If we assume w′(t) < 0 for t � t1 � t0, then we can find a positive real number K with a(t)w′(t) �

−K < 0. This leads to

w′(t) � − K

a(t)
,

⇒
∫ t

t1

w′(s) ds � −K

∫ t

t1

1

a(s)
ds

(
we integrate over [t1, t]

)
,
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⇒ w(t) � w(t1) − K

∫ t

t1

1

a(s)
ds

⇒ w(t) → −∞ (
since the last integral goes to ∞ as t goes to ∞, by (H0)

)
.

So, we have a contradiction to the fact that w is positive. We conclude that w′ must be positive
definitively.

On the other side, we observe that(
a(t)w′(t)

)′′
< 0 and

(
a(t)w′(t)

)′
< 0 implies lim

t→+∞
(
a(t)w′(t)

) = −∞.

It follows that w′(t) < 0 for sufficiently large t , which leads to contradiction. So it remains to examine
the case where (aw′)′ is positive definitively.

If we assume (a(t)w′(t))′ > 0 for t � t1 � t0, then we have:(
a(t)w′(t)

)′
> 0,

⇒ aw′ is increasing and does not change sign definitively,

⇒ w′ does not change sign definitively too.

Thus, we conclude easily that only the situations (S1) and (S2) may occur. �

Remark 4.2. In the case (S2), since aw′ is increasing and does not change sign definitively, then there
exists � � 0 such that a(t)w′(t) → � as t → +∞. Now � = 0 implies w′(t) → 0 as t → +∞, and
w(t) is asymptotic to a finite constant.

Remark 4.3. In both cases (S1) and (S2), we can find c > 0 and t � t0 such that

w(t) � c

∫ t

t0

s

a(s)
ds, t � t . (10)

Keeping in mind Remark 4.2, we consider only the case (S1), where (aw′)′ is decreasing in [t0, ∞).
So, from(

a(t)w′(t)
)′ �

(
a(t0)w

′(t0)
)′
,

we integrate over [t0, t] (two times) to get:

a(t)w′(t) � a(t0)w
′(t0) + (

a(t0)w
′(t0)

)′[t − t0] (first integration),

⇒ w′(t) � a(t0)w
′(t0) − (a(t0)w

′(t0))′t0
a(t)

+ (a(t0)w
′(t0))′t

a(t)
,

⇒ w(t) � w(t0) + [
a(t0)w

′(t0) − (
a(t0)w

′(t0)
)′
t0

] ∫ t

t0

ds

a(s)
+ (

a(t0)w
′(t0)

)′
∫ t

t0

s

a(s)
ds

(second integration).

This inequality leads easily to (10) by a suitable choice of positive values c and t � t0.
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In this section, we assume again that A is monotone non-increasing, with respect to the first variable.
In view of Lemma 4.1 and (10), we note that a (eventually) positive solution to (9), namely again w, is
such that

r � w(t) � Rc(t) := c

∫ t

t0

s

a(s)
ds for some r � 0, c > 0 and all t � t large enough.

Reasoning as in Section 2 we can study the positive solutions to (9) with the asymptotic property:

(L)r limt→+∞ w(t)

R1(t)
= γ > 0 (constant).

Now, we are ready to introduce the precise hypotheses on the data of (9):

(H2)
′ ∫ ∞

t0
(A(R2

c (t), t)R1(t)) dt < +∞ for some c > 0.
(H3)

′ For all κ > 0, one of the following conditions holds:

a.
∫ ∞
z

A(κ, s) ds = +∞.

b.
∫ ∞
v

∫ ∞
z

A(κ, s) ds dz = +∞.

c.
∫ ∞
t0

1
a(v)

∫ ∞
v

∫ ∞
z

A(κ, s) ds dz dv = +∞.

Consequently we have the result:

Theorem 4.4. If (H0), (H1), (H2)
′ hold, then there exists a (eventually) positive solution w ∈

C1([tw, ∞),R+) of (9) with the property (L)r .

Proof. The proof of Theorem 4.4 can be easily obtained, following and adapting the proof of Theo-
rem 3.1. This time, we will use the integral operator

(
w)(t) := Rc(t) + R1(t)

∫ ∞

t

w(s)A
(
w2(s), s

)
ds +

∫ t

T

w(s)R1(s)A
(
w2(s), s

)
ds

+
∫ t

T

1

a(v)

∫ v

t0

sw(s)A
(
w2(s), s

)
ds dv,

to solve (again) the integral equation of the form

w(t) = (
w)(t).

Clearly, we have to consider R1(t) and Rc(t), respectively, instead of M1(t) and Mc(t) in whole the
proof. Consequently the steps 1, 2, and 3 remain the same.

This means that we can apply the Schauder’s fixed point theorem to get a fixed point of 
 in W ,
namely (again) w ∈ W , where this time we have

W = {
w ∈ C

([T , ∞),R
) : Rc(t) � w(t) � R2c(t) for t � T

}
.

Such a point w solves the fixed point equation w(t) = (
w)(t) on the interval [T , ∞). By L’Hopital
rule, we deduce that

lim
t→+∞

w(t)

R1(t)
= lim

t→+∞
w′(t)
R′

1(t)
= lim

t→+∞
a(t)w′(t)

t
= lim

t→+∞
(
a(t)w′(t)

)′
.
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The last limit exists since the function (aw′)′ is decreasing and positive. Moreover, w ∈ W implies that

c � lim
t→+∞

w(t)

R1(t)
� 2c.

Thus w is a solution of (1) with the property (L)r . �

Now, we establish the analogous of Proposition 2.4 in Section 2.

Proposition 4.5. If (H3)
′ holds and w ∈ C1([tw, ∞),R+) is a (S2)-type solution of (9), then (L)′ holds

true.

Proof. Since (S2) holds, we know that w(t) > 0 and w′(t) < 0 for t � t1, where t1 � t0 is large enough.
So, there exists � � 0 such that w(t) → � as t → +∞. If we assume � > 0, then there exist c > 1 and
t̃ � t0 such that � < w(t) � c� for all t � t̃ . We construct the proof in three steps.

Step 1. Assume that (H3)
′
a holds, that is∫ ∞

z

A(κ, s) ds = +∞, for all κ > 0.

Then, from (9) and from the fact that A is non-increasing with respect to the first variable, we deduce
that (

a(t)w′(t)
)′′ + �A

(
c2�2, t

)
� 0, t � t̃ ,

⇒
∫ y

z

[(
a(s)w′(s)

)′′ + �A
(
c2�2, s

)]
ds � 0, y > z � t̃ ,

⇒ �

∫ y

z

A
(
c2�2, s

)
ds �

(
a(z)w′(z)

)′ − (
a(y)w′(y)

)′ �
(
a(z)w′(z)

)′
,

⇒ (
a(z)w′(z)

)′ � �

∫ ∞

z

A
(
c2�2, s

)
ds, (11)

which leads to contradiction, by (H3)
′
a .

Step 2. Assuming that
∫ ∞
z

A(κ, s) ds < +∞ for some κ > 0 (that is (H3)
′
a does not hold), we

consider the situation where (H3)
′
b is true. Fixing c > 1 such that c2�2 > κ , and satisfying also the

assumption of step 1, we deduce that the right hand side of (11) is finite. Thus we integrate each side of
(11) over [v, t] to obtain∫ t

v

(
a(z)w′(z)

)′
dz � �

∫ t

v

∫ ∞

z

A
(
c2�2, s

)
ds dz,

⇒ a(t)w′(t) − a(v)w′(v) � �

∫ t

v

∫ ∞

z

A
(
c2�2, s

)
ds dz,

⇒ −a(v)w′(v) � �

∫ ∞

v

∫ ∞

z

A
(
c2�2, s

)
ds dz, (12)

which leads to contradiction, by (H3)
′
b.
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Step 3. Assuming that (H3)
′
a and (H3)

′
b do not hold, we have that∫ ∞

z

A(κa, s) ds < +∞ for some κa > 0

and ∫ ∞

v

∫ ∞

z

A(κb, s) ds dz < +∞ for some κb > 0.

Take c > 1 such that c2�2 > κ := max{κa, κb}. Then, due to the monotonicity of A (nonincreasing in its
first variable), we have∫ ∞

z

A
(
c2�2, s

)
ds �

∫ ∞

z

A(κ, s) ds �
∫ ∞

z

A(κa, s) ds < +∞.

Then we can integrate (11) over [v, t] to obtain

−a(v)w′(v) � �

∫ ∞

v

∫ ∞

z

A
(
c2�2, s

)
ds dz.

Again using monotonicity of A, we get∫ ∞

v

∫ ∞

z

A
(
c2�2, s

)
ds dz �

∫ ∞

v

∫ ∞

z

A(κ, s) ds dz

�
∫ ∞

v

∫ ∞

z

A(κb, s) ds dz < +∞.

Therefore the right hand side of (12) is finite. After dividing each side of (12) by a(v) > 0, we
integrate over [t∗, t] to obtain

−w(t) + w(t∗) �
∫ t

t∗

�

a(v)

∫ ∞

v

∫ ∞

z

A
(
c2�2, s

)
ds dz dv,

⇒ w(t∗) � �

∫ ∞

t∗

1

a(v)

∫ ∞

v

∫ ∞

z

A
(
c2�2, s

)
ds dz dv,

which leads to contradiction, by (H3)
′
c.

We conclude that � = 0, that is w(t) goes to zero as t goes to infinity, and hence (L)′ holds true. �

5. Conclusions

Our work here starts from a characterization into two classes of (eventually) positive solutions (hence
non-oscillatory solutions) to certain third order nonlinear differential equations. For both the classes, we
provide informations about the asymptotic behavior of solutions. This study leads to establish sufficient
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criteria for the existence of (non-)oscillatory solutions to (1), complementing the existing literature on
the topic. Here, the coefficient function A ∈ C(R+ × [t0, ∞),R+) is of one sign, but it will be in-
teresting to know how an oscillatory coefficient function affects the analysis of the problem (1) (that
is, A ∈ C(R+ × [t0, ∞),R) may change sign as its second variable t goes to infinity). In addition,
Koplatadze–Čanturija [8] and Fukagai–Kusano [6] pointed out the existence of a sort of “duality” be-
tween retarded and advanced differential equations, with related positive, negative and sign changing
coefficient functions. So, a similar duality can be investigated in respect to the equation (1).
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[5] S. Fišnarová and R. Mařík, Oscillation of second order half-linear neutral differential equations with weaker restrictions
on shifted arguments, Math. Slovaca 70(2) (2020), 389–400. doi:10.1515/ms-2017-0358.

[6] N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating arguments,
Ann. Mat. Pura Appl. (4) 136 (1984), 95–117. doi:10.1007/BF01773379.

[7] J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
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