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Simple Summary: Bone metastasis is a common and devastating feature of advanced renal cancer.
Skeletal metastases are very destructive in patients with renal cell carcinoma (RCC), compromising
the bone integrity and leading to fractures, pain, nerve compressions and hypercalcemia, with a
negative impact on patient survival. Cabozantinib is a receptor tyrosine kinase inhibitor approved for
the treatment of advanced RCC patients. Recently, preclinical studies demonstrated that cabozantinib
is able to also modulate bone cell activity. To understand whether and how the antitumor activity of
cabozantinib could be influenced by the bone microenvironment, in vitro co-culture models of renal
cancer cells and osteoblasts (OBs) were developed to reproduce the bidirectional interplay between
tumor cells and bone. The data showed that cabozantinib preserves its efficacy in these coculture
models and exerts an additional indirect antitumor activity mediated by OBs. Indeed, cabozantinib
is able to inhibit specific OB proliferative signals that, in turn, could affect RCC cell growth. To
elucidate how OBs stimulate RCC cell growth could be useful in designing novel and more effective
anticancer strategies to improve the efficacy of the existing treatments.

Abstract: Background: The presence of bone metastases in renal cell carcinoma (RCC) negatively
affects patients’ survival. Data from clinical trials has highlighted a significant benefit of cabozan-
tinib in bone metastatic RCC patients. Here, we evaluated the antitumor effect of cabozantinib in
coculture models of renal cell carcinoma (RCC) and osteoblasts (OBs) to investigate whether and
how its antiproliferative activity is influenced by OBs. Methods: Bone/RCC models were generated,
coculturing green fluorescent protein (GFP)-tagged Caki-1 and 786-O cells with human primary
OBs in a “cell–cell contact” system. RCC proliferation and the OB molecular profile were evaluated
after the cabozantinib treatment. Results: The Caki-1 cell proliferation increased in the presence of
OBs (p < 0.0001), while the 786-O cell growth did not change in the coculture with the OBs. The
cabozantinib treatment reduced the proliferation of both the Caki-1 (p < 0.0001) and 786-O (p = 0.03)
cells cocultured with OBs. Intriguingly, the inhibitory potency of cabozantinib was higher when
Caki-1 cells grew in presence of OBs compared to a monoculture (p < 0.001), and this was similar
in 786-O cells alone or cocultured with OBs. Moreover, the OB pretreatment with cabozantinib
“indirectly” inhibited Caki-1 cell proliferation (p = 0.040) without affecting 786-O cell growth. Finally,
we found that cabozantinib was able to modulate the OB gene and molecular profile inhibiting
specific proliferative signals that, in turn, could affect RCC cell growth. Conclusions: Overall, the
“direct” effect of cabozantinib on OBs “indirectly” increased its antitumor activity in metastatic RCC
Caki-1 cells but not in the primary 786-O model.
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1. Introduction

Renal cell carcinomas (RCC) comprise a heterogeneous group of malignant neoplasms,
including clear cell, papillary and chromophobe histological subtypes. The most common
sites of metastatic involvement are the lung, lymph nodes, bone, liver, adrenal and brain [1].
Moreover, isolated pancreatic metastasis can develop in RCC patients typically a long time
after nephrectomy [2]. Bone metastases occur in 20–35% of RCC patients, leading to mainly
osteolytic lesions that compromise the bone integrity and patient outcomes [3]. In particu-
lar, the presence of bone metastases in RCC patients negatively affects the progression-free
survival (PFS) and overall survival (OS) [3]. Moreover, bone metastases are associated with
skeletal-related events (SREs), including pain, impending fractures, nerve compressions,
hypercalcemia and even pathological fractures, which may require surgical interventions
and other therapy [4,5]. Data about the benefit of tyrosine kinase inhibitors (TKIs), com-
monly used in the treatment of advanced RCC, on the survival of patients with bone
metastasis remain unclear.

A recent phase III trial (METEOR) showed that cabozantinib, an orally bioavailable
receptor tyrosine kinase (RTK) inhibitor with potent activity against multiple RTKs (MET,
RET, VEGFR2, FLT3 and c-KIT) and Tyro3, Axl and Mertk (TAM) RTKs [6] had a signifi-
cant clinical benefit for bone metastatic RCC patients [7]. In particular, in a prespecified
subgroup analysis of RCC patients with bone metastasis, a marked prolongation PFS
was observed in the cabozantinib arm compared to the everolimus group (7.4 months
vs. 2.7 months). In addition, the incidence of subsequent SREs was reported in 16% of
patients treated with cabozantinib vs. 34% in the everolimus arm [7]. However, some
infrequent but serious events have been reported, especially in the later phases of treatment,
including hemorrhagic and thrombotic events. In this regard, the administration of oral
anticoagulants for cabozantinib-associated thrombosis could be useful in clinical practice
to reduce the morbidity and mortality of these patients [8].

Cabozantinib is approved in advanced RCC patients previously treated with VEGF
inhibitors [9] and as the first line in treatment-naïve patients of intermediate or poor
risks [10]. Recently, the USA Food and Drug Administration (US FDA) extended its
indication to all advanced RCC patients.

In the last years, our research group demonstrated that primary osteoclasts and
osteoblasts (OBs) express the specific targets of cabozantinib, and its administration can
inhibit osteoclast differentiation and bone resorption activity [11]. Another study published
by our team demonstrated that cabozantinib could be a new potential treatment against
osteosarcoma, targeting both tumors and their microenvironments [12]. Starting from this
evidence, the aim of the study is to evaluate the antitumor effect of cabozantinib in in vitro
coculture models of RCC cells and OBs that mimic the bone tumor microenvironment. In
particular, we investigated whether the antitumor activity of cabozantinib persists in the
copresence of OBs and whether cabozantinib could directly modulate the OB molecular
profile and indirectly modulate the proliferative activity of cancer cells.

2. Materials and Methods
2.1. Primary Human Osteoblasts

Human primary OBs were obtained from bone marrow samples of healthy patients
undergoing total hip replacement at Policlinico Campus Bio-Medico of Rome, Italy. The
procedure was approved by the Ethical Committee of the Campus Bio-Medico University
of Rome, and informed consent from the patients was collected in accordance with the
Declaration of Helsinki principles (Prot 21/15 OSS). Bone marrow mesenchymal stem cells
(BM-MSCs) were isolated following the protocol described by Cicione et al. [13]. OB differ-
entiation was achieved by culturing BM-MSCs at an initial density of 5 × 104 in 24-well
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plates, adding 10-mM beta-glycerophosphate (Sigma-Aldrich, Milan, Italy), 50-µM ascorbic
acid (Sigma-Aldrich, Milan, Italy) and 1000 nM dexamethasone (Sigma-Aldrich, Milan,
Italy) to the culture medium for 28 days. The OBs were treated or not with cabozantinib at
5 µM from day 21 to day 28.

2.2. RCC Cell Lines

Established human RCC cell lines Caki-1, 786-O, Caki-2 and ACHN were purchased
from the American Type Culture Collection (ATCC, Manassas, VA, USA). Caki-1 and
Caki-2 were grown in McCoy’s 5A medium, 786-O cells in RPMI medium and ACHN
cells in Eagle’s Minimum Essential Medium, supplemented with 100 units/liter of peni-
cillin, 100 µg/mL of streptomycin (Euroclone, Pero, Italy), 2 mM of glutamine (Euroclone,
Pero, Italy) and 10% fetal bovine serum (Gibco, Waltham, MA, USA) (FBS). Green Flu-
orescent Protein (GFP)-tagged RCC cell lines were obtained using MISSION® pLKO.1-puro-
CMV-Turbo GFP™ Positive Control Transduction Particles (cat. no. SHC003, Sigma-Aldrich,
Milan, Italy) with a Multiplicity of Infection (MOI) of 0.5. The transfected cells were then
selected, adding 2 µg/mL of puromycin (Euroclone, Pero, Italy).

2.3. OBs–RCC Cells “Indirect” Coculture

The osteoblast-conditioned media (OCM) was collected after 48 h of starvation (0.5%
of FBS). GFP+ Caki-1 and GFP+ 786-O cells were seeded at 50 × 103 confluency in 24-well
plates and treated with OCM for 7 days. The proliferation rate was calculated, measuring
the ratio between the GFP signal of the RCC cells after 7 days from seeding and GFP signal
after 2 h from the seeding (T0) using Nikon NIS-Elements microscope imaging software.

2.4. OBs–RCC Cells “Direct” Coculture

We used two different OBs/RCC tumor cell coculture models, as showed in Figure 1.
In model 1, GFP+ RCC cells (50 × 103) were plated on an OB layer in 24-well plates and
treated or not with cabozantinib (5 µM) for 7 days (dd); in model 2, GFP+ RCC cells were
cultured with OB pretreated or not with cabozantinib (5 µM) for 7 dd. In both coculture
models, the GFP signal of the RCC cells was measured after 2 h from the seeding (t0)
and after 7 dd using using Nikon NIS-Elements microscope imaging software. The GFP
signal at 7 dd was normalized to a GFP signal at t0 and expressed as the proliferation
rate. The cabozantinib inhibition rate percentage was calculated as follows: (Ctrl sample −
(Cabozantinib/Ctrl)) × 100.

2.5. Gene Expression Assay

The total RNA was extracted from OBs treated or not with cabozantinib (5 µM) at the
end of the differentiation protocol using a Trizol reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s instructions. cDNA was produced using the High-Capacity
cDNA Reverse Transcription kit (Applied Biosystems, Waltham, MA, USA) according to the
manufacturer’s instructions. The mRNA levels were measured by a quantitative real-time
polymerase chain reaction (qRT-PCR) using TaqMan Gene Expression Assays in the 7900
HT Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). The gene expression
levels were normalized to the endogenous housekeeping gene Glucuronidase Beta (GUSβ)
in both untreated and treated samples using ∆CT calculations. Subsequently, the relative
expression levels in the treated samples were normalized to the mRNA levels detected in
the control samples using ∆∆CT calculations.

2.6. Protein Expression Assay

A proteomic profile analysis was performed on the OBs treated or not with cabozan-
tinib (5 µM). A panel of 507 human target proteins was analyzed using the human antibody
Array Membrane Kit (RayBiotech, Peachtree Corners, GA, USA) according to the manu-
facturer’s instructions. The band signals were detected by the ChemiDoc MTP Imaging
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System (Bio-Rad, Hercules, CA, USA), and their intensity was quantified using ImageLab
software (Bio-Rad, Hercules, CA, USA).
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Figure 1. Representative schemes of OBs/RCC tumor cell coculture models. Model (A): 786-O GFP+
cells and GFP+ Caki-1 cells were seeded on an OB layer and treated or not with cabozantinib at 5 µM.
After 7 dd, the GFP signal of the RCC cells was measured. Model (B): The OBs were treated or not
with cabozantinib at 5 µM for 7 dd. GFP+ RCC cells were added, and the GFP signal was measured
after 7 dd.

2.7. Cell Viability Assay

GFP+ 786-O and GFP+ Caki-1 cells were treated or not with cabozantinib at different
doses (10 nM, 100 nM, 500 nM, 1 µM and 5 µM), and after 7 dd, the cell viability was
evaluated by a cell growth determination kit with a MTT-based assay (Sigma-Aldrich,
Milan, Italy) according to the manufacturer’s instructions.

2.8. Statistical Analysis

The data were analyzed using the Student’s t-test and One-Way ANOVA, test followed
by Tukey’s multiple comparison tests. The D’Agostino-Pearson omnibus normality test
was used to check for normal distribution. The graphics processing and statistical tests
were performed using the program GraphPad Prism (San Diego, CA, USA).

3. Results
3.1. Effect of Osteoblasts on Metastatic RCC Cell Proliferation

To evaluate the antiproliferative effects of cabozantinib in a bone microenvironment,
we set up a direct cell–cell contact coculture between the OBs and RCC cells. We tested
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four renal cell lines (786-O and Caki-2 as the primary RCC cells and Caki-1 and ACHN
as the metastatic RCC cells), finding that only Caki-1 cells were responsive to osteoblast
stimuli (Supplementary Figure S1). As coculture models, we selected Caki-1 and 786-O
cells, which represent the most widespread and best-characterized clear cell RCC lines.
These two cell lines showed a different proliferation growth when cocultured with OBs.
In particular, Caki-1 cells increased their proliferation rate 2.6-fold in the presence of OBs
compared to the cells cultured alone (p < 0.0001), while the 786-O cell growth was similar
in both culture conditions (Figure 2). These data suggest that OBs could provide fertile
soil for metastatic Caki-1 cells, which are more prone to proliferating in response to OB
proliferative signals.
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Figure 2. Effects of OBs on metastatic RCC cell proliferation. (A) Representative images of Caki-1 GFP+ (green) and 786-O
GFP+ cells (green) cultured alone or with OBs. Scale bar: 100 µM and magnification 4×. (B) Proliferation rate analysis
of Caki-1 GFP+ and 786-O GFP+ cells in a monoculture or cocultured with OBs. Data are expressed as the mean ± SD;
*** p < 0.001.

To test whether OB cell–cell contact was necessary to stimulate Caki-1 cell growth, we
performed an “indirect” coculture treating cells with OB conditioned media. Intriguingly,
in this model, we did not observe the same increase in the proliferation of Caki-1 cells
observed in the “direct” coculture model (Supplementary Figure S2), suggesting that the
physically interaction with the OBs was needed.

3.2. Antitumor Effect of Cabozantinib in RCC Bone Metastatic Models

We investigated if the inhibitory effect of cabozantinib on RCC cell proliferation also
persisted in a bone microenvironment (coculture model A). We used a dose of 5 µM, which
did not affect the OB viability [12], and it was within the range of the clinical plasma
concentrations [14]. In our RCC cell models, this dose represented the half-maximal
inhibitory concentration (IC50) in the Caki-1 and 786-O RCC cell lines (Caki-1: Ctrl vs.
Cabozantinib 5 µM p = 0.011; 786-O: Ctrl vs. Cabozantinib 5 µM; p = 0.022) (Figure 3).

The data showed that cabozantinib significantly reduced the proliferation of both
Caki-1 (p < 0.0001) and 786-O cells (p = 0.03) cocultured with OBs. Intriguingly, in Caki-1
cells, the inhibition rate of proliferation was higher in the presence of OBs compared to the
monoculture (Figure 4, left panel) (p < 0.001); otherwise, the decrease of 786-O cell growth
by cabozantinib was similar when the cells were cultured with OBs or alone (Figure 4,
right panel).
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Figure 3. Antitumor effect of cabozantinib in RCC cells. Viability assay (MTT) of Caki-1 (A) and
786-O cells (B) after treatments with different doses of cabozantinib (10 nM, 100 nM, 500 nM, 1 µM
and 5 µM). Data are expressed as the mean ± SD; * p ≤ 0.05.
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Figure 4. Antitumor effect of cabozantinib in the RCC bone microenvironment. Proliferation (A)
and inhibition rates (B) of Caki-1 GFP+ (left panels) and 786-O GFP+ (right panels) cells after a
cabozantinib treatment (5 µM) in a monoculture or cocultured with OBs. Data are expressed as the
mean ± SD; * p ≤ 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

These results suggest that cabozantinib could exert an additional “indirect” antitumor
effect mediated by OBs reducing their ability to boost cancer cell proliferation. To test
this hypothesis, Caki-1 and 786-O cells were seeded on OBs previously treated or not
with cabozantinib (coculture model B). The data showed that the OB pretreatment with
cabozantinib reduced Caki-1 cell growth (p = 0.040), confirming its antitumor effect on
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the OB-mediated cells with metastatic features. The same effect was not observed in the
primary 786-O cells (Figure 5).

Biology 2021, 10, x 8 of 12 
 

 

 
Figure 5. The antitumor effect of cabozantinib mediated by OBs. The proliferation rate of Caki-1 

GFP+ (A) and 786-O GFP+ (B) cells cultured with OBs pretreated with cabozantinib (5 μM). Data 

are expressed as the mean ± SD; * p ≤ 0.05. 

3.3. Effect of Cabozantinib on Osteoblast Gene and Protein Expression 

To investigate how cabozantinib modulated the OB molecular profile, we selected a 

panel of genes known to be involved in tumor cell/OB crosstalk. The data showed that a 

cabozantinib (5 μM) OB treatment significantly upregulated the expression of jagged 

canonical notch ligand 1 (JAG1) (p = 0.045) while reducing the mRNA levels of other 

genes, including insulin growth factor (IGF-1) (p = 0.033), WNT16 (p = 0.032), thrombos-

pondin-1 (THBS1) (p = 0.049), secreted protein acidic and cysteine rich (SPARC) (p = 

0.018), plasminogen activator urokinase (PLAU) (p = 0.025) and integrin binding sialo-

protein (IBSP) (p = 0.038) (Figure 6A). 

The reduction of SPARC (p = 0.010), THBS-1 (p = 0.021) and urokinase-type plas-

minogen activator (uPA) (p = 0.010) expression was also confirmed at the protein level 

(Figure 6B). In addition, the proteomic analysis revealed the modulation of other signal-

ing molecules in the OBs treated with cabozantinib (Figure 6C). In particular, we found 

an upregulation of glypican-3 (p = 0.015) and ectodysplasin A2 (EDA-A2) (p = 0.025) and a 

reduction of insulin-like growth factor-binding protein 2 (IGFBP-2) (p = 0.010), IGFBP-7 (p 

= 0.013) (heregulin 1-apha-/neuregulin 1 (HRG1-alpha/NRG1) (p = 0.045), latent TGF-beta 

binding protein 1 (LTBP1) (p = 0.013), monocyte chemoattractant protein-1 (MCP-1) (p = 

0.011), matrix metalloproteinase-20 (MMP-20) (p = 0.046), secreted frizzled-related pro-

tein (SFRP-4) (p = 0.048), thrombopoietin (p = 0.028), tissue inhibitors of metalloprotein-

ase-1 (TIMP-1) (p = 0.039), TIMP-2 (p = 0.030), vascular endothelial growth factor A 

(VEGF) (p = 0.033) and VEGF-C (p = 0.020). All these factors are known to be involved in 

tumor cell proliferation, and their modulation, after the treatment, could explain the ad-

ditional antitumor effect of cabozantinib mediated by OBs. 

Figure 5. The antitumor effect of cabozantinib mediated by OBs. The proliferation rate of Caki-1
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expressed as the mean ± SD; * p ≤ 0.05.

3.3. Effect of Cabozantinib on Osteoblast Gene and Protein Expression

To investigate how cabozantinib modulated the OB molecular profile, we selected a
panel of genes known to be involved in tumor cell/OB crosstalk. The data showed that
a cabozantinib (5 µM) OB treatment significantly upregulated the expression of jagged
canonical notch ligand 1 (JAG1) (p = 0.045) while reducing the mRNA levels of other genes,
including insulin growth factor (IGF-1) (p = 0.033), WNT16 (p = 0.032), thrombospondin-1
(THBS1) (p = 0.049), secreted protein acidic and cysteine rich (SPARC) (p = 0.018), plas-
minogen activator urokinase (PLAU) (p = 0.025) and integrin binding sialoprotein (IBSP)
(p = 0.038) (Figure 6A).

The reduction of SPARC (p = 0.010), THBS-1 (p = 0.021) and urokinase-type plas-
minogen activator (uPA) (p = 0.010) expression was also confirmed at the protein level
(Figure 6B). In addition, the proteomic analysis revealed the modulation of other signaling
molecules in the OBs treated with cabozantinib (Figure 6C). In particular, we found an
upregulation of glypican-3 (p = 0.015) and ectodysplasin A2 (EDA-A2) (p = 0.025) and a
reduction of insulin-like growth factor-binding protein 2 (IGFBP-2) (p = 0.010), IGFBP-7
(p = 0.013) (heregulin 1-apha-/neuregulin 1 (HRG1-alpha/NRG1) (p = 0.045), latent TGF-
beta binding protein 1 (LTBP1) (p = 0.013), monocyte chemoattractant protein-1 (MCP-1)
(p = 0.011), matrix metalloproteinase-20 (MMP-20) (p = 0.046), secreted frizzled-related pro-
tein (SFRP-4) (p = 0.048), thrombopoietin (p = 0.028), tissue inhibitors of metalloproteinase-1
(TIMP-1) (p = 0.039), TIMP-2 (p = 0.030), vascular endothelial growth factor A (VEGF)
(p = 0.033) and VEGF-C (p = 0.020). All these factors are known to be involved in tumor
cell proliferation, and their modulation, after the treatment, could explain the additional
antitumor effect of cabozantinib mediated by OBs.
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4. Discussion

The anticancer efficacy of cabozantinib has been demonstrated in preclinical models
of bone metastases from prostate cancer [15,16], as well as its direct impact on osteoclast
and OB activity [11,12]. To date, it has not yet been clarified if the antitumor effect of
cabozantinib occurs directly on cancer cells and/or indirectly through the modulation of
the bone microenvironment.

Here, we used in vitro RCC bone metastatic models to investigate both the “direct”
antitumor effect of cabozantinib on the RCC cells and/or its potential “indirect” anticancer
activity mediated by OBs.

The choice of two RCC cell lines with different sensitivities to OB stimuli provides
the opportunity to evaluate the “real” contribution of OBs in RCC proliferation after a
cabozantinib treatment. The different sensitivities of the Caki-1 and 786-O cells to OB
signals was, probably, due to their specific molecular and phenotype characteristics. In
particular, the metastatic phenotype of Caki-1 cells confers them an increased tendency to
interact with the bone microenvironment, whereas the primary 786-O cells could be less
responsive to OB factors.

Despite the augmented proliferation of Caki-1 cells on OBs, cabozantinib can com-
pletely abrogate their growth, showing an increased inhibitory potency compared to its
antitumor effect on cells in a monoculture. Concerning 786-0 cells, the inhibition effect of
cabozantinib was similar in both the monoculture and coculture conditions. Intriguingly,
the OB pretreatment with cabozantinib affected Caki-1 cell growth, suggesting that the
increased antitumor effect of cabozantinib on these cells could be due to its direct effect on
OBs. To investigate how a cabozantinib treatment modifies the OB profile, we analyzed the
specific genes potentially involved in tumor growth. At the same time, a proteomic analysis
of 507 molecules was performed to obtain a more clear and exhaustive picture of OB modu-
lation by cabozantinib. We found some factors significantly inhibited by cabozantinib, both
at the gene and protein expression levels, such as Thrombospondin 1, uPA and SPARC.
Thrombospondin 1 is a multifaceted player in cancer proliferation, invasion, migration and
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apoptosis through different interaction networks that are not completely elucidated [17].
uPAR is overexpressed in almost all aggressive malignancies and plays an essential role in
promoting tumor progression and metastasis, and its inhibition results in tumor suppres-
sion [18]. Regarding SPARC, recently, it has been demonstrated that it is a key mediator
of TGF-β-induced renal cancer metastasis and represents a negative prognostic marker of
RCC patient survival [19]. Moreover, the extensive proteomic analysis provided us with
additional factors downregulated by cabozantinib, some of which could be involved in
tumor cell proliferation. Among these, VEGF-A and VEGF-C can directly promote the
growth, survival, migration and invasion of cancer cells through VEGF receptor tyrosine ki-
nases (RTKs) [20–22]. Moreover, the other two secreted proteins, IGFBP2 and IGFBP7, were
reduced in the OBs after the cabozantinib treatment. The evidence showed that the IGFBP2
levels are associated with cancer cell invasion and metastasis [23–25]; instead, IGFBP7
displays an ambiguous activity as an oncogene or suppressor gene in distinct types of
cancers [26]. A pilot study demonstrated that TIMP-1 is a negative prognostic biomarker in
clear cell RCC patients [27]; conversely, EDA-A2 is known to act as tumor suppressor when
it binds its receptor, XEDAR [28,29]. Regarding NRG1, it has been recently demonstrated
that it is released by the tumor microenvironment and promotes antiandrogen resistance in
prostate cancer [30].

Taken together, these data suggest that cabozantinib preserves its efficacy in the
in vitro model of RCC bone metastasis and exerts an additional indirect antitumor activity
mediated by OBs in metastatic Caki-1 cells. Recently, Pan et al. investigated the effect of
cabozantinib in a 3D coculture model of bone metastatic renal cells and a pre-OB cell line
to mimic the tumor/bone interplay. In this model, cabozantinib was able to increase the
OB number and bone volume, reverting the osteoblast inhibition mediated by the RCC
cells [31]. This anabolic effect of cabozantinib reported by the authors could result in the
modulation of OB protein secretion that we observed in our study. Moreover, our data are
in accordance with the results observed in the METEOR study [9] that reported a significant
clinical benefit in the bone metastatic RCC patients subset.

Not identifying a single factor or specific pathway responsible for the antitumor effect
of cabozantinib mediated by OBs seems to be a limitation of the study. However, we think
that the antitumor activity of cabozantinib could be mediated by different OB molecules
rather than a single one. Although this study is an explorative analysis, it could provide
biological information about cabozantinib activity with a potential clinical utility. The
use of RCC in vitro models undoubtedly represents an important limitation, but, on the
other hand, the cell–cell contact coculture system based on primary human OBs could
resemble the in vivo tumor bone microenvironment. The complete elucidation of the OB
contribution in RCC cell proliferation could be useful to design novel and more effective
anticancer combination strategies to improve the efficacy of the existing treatments [32].

5. Conclusions

Although OBs are important components of the bone metastatic niche, their role
in skeletal metastases development has been relatively under-investigated. Our study
identified some specific OB signaling molecules that could support tumor cell proliferation
and survival within bone.

From a clinical perspective, the elucidation of the molecular mechanisms behind
tumor cell/OB interactions may be essential in identifying novel therapeutic strategies
to inhibit cancer progression in bone. In addition, our in vitro cell–cell coculture models
could provide simple but useful systems to investigate the tumor cell/OB crosstalk. Finally,
it could provide a suitable platform to evaluate the direct effect of different anti-cancer
agents on the bone tumor microenvironment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10080781/s1: Figure S1: Effect of OBs on metastatic RCC cell proliferation. Figure S2:
Proliferation rate analysis of Caki-1 GFP+ and 786-O GFP+ cells in monoculture or in presence of OB
conditioned media (OCM).
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