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Abstract

A three-dimensional framework for low-cycle fatigue analysis of polycrystalline aggregates is pro-

posed in this work. First, a cohesive law coupling plasticity and damage is developed for modelling

cycle-by-cycle degradation of material interfaces up to complete de-cohesion and failure. The law

may model both quasi-static degradation under increasing monotonic load and degradation un-

der cyclic loading, through a coupled plasticity-damage model whose activation and flow rules are

formulated in a thermodynamically consistent framework. The proposed interface laws have been

then implemented and coupled with a multi-region boundary element formulation, with the aim of

analysing low-cycle intergranular fatigue in polycrystalline aggregates. The boundary element for-

mulation allows expressing the micro-mechanical problem in terms of grain-boundary displacements

and tractions only, which are the quantities directly entering the cohesive laws, thus simplifying the

coupling of the two tools. After assessing the response of an individual interface, to both quasi-static

and cyclic loads, the coupled framework has been employed for the computational investigation of

low-cycle degradation in fully-3D and pseudo-3D, or 2D columnar, polycrystalline aggregates, as-

suming that the degradation process remains confined in the intergranular regions. The discussed

results show the potential of the developed formulation for multiscale materials modelling, which

may find future application in the multiscale design of engineering structures subjected to complex

loads and degradation processes, and for computational micromechanics, which may find direct

application in the design and analysis of micro-electromechanical systems (MEMS).
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Materials Modelling, Boundary Element method

1. Introduction

In the last decades, several fields of science and engineering have witnessed an increased interest

towards the understanding and manipulation of materials microstructures. Such interest and the

accompanying increase in the number of studies devoted to materials micro-/multi-scale mechanics

have different reasons and aims [1].5

On one hand, besides the purely scientific and inquisitive interest, the need of manufacturing

structures presenting a balance of often contrasting properties, such as stiffness, strength, toughness,

low weight, has motivated industrial and academic communities to investigate about and focus on

the complex interactions between the mechanical component level, where the operational conditions

are specified, and the materials microstructure, with the ambitious aim of developing materials10

with features tailored on the specific application. An example in this sense is provided by the

remarkable development of fibre reinforced composites in the aerospace industry, in which the

width and versatility of the material design space, provided e.g. by the variety of possible matrix-

fibres arrangements, offers a broad array of choices for manufacturing components whose properties

are optimised along selected load paths, consider e.g. the recent emergence of variable angle tow15

composites [2].

On the other hand, the rapid developments in miniaturisation and the widespread employment

of applications involving micro-electro-mechanical devices (MEMS) [3], either sensors, actuators or

other kinds of transducers, in which the application scale is comparable with that of the materials

basic constituents and the separation of scale cannot be a-priori assumed, has justified further20

research into micromechanics itself, irrespective of possible influence on materials properties at

larger scales.

The study of materials micromechanics and of the link between materials microscopic features

and structural performances is particularly challenging and intriguing when the issue of damage is

considered. In such a framework, the analysis of the conditions under which damage initiates and25

evolves at the micro-scale and then coalesces and migrates to the macro-scale, where it may progress

up to inducing component and structural failure, is of special interest [4]. The comprehension of such

damage initiation and evolution mechanisms has direct technological significance and, at different

maturity levels, is at the heart of modern design practices: while its role in the manufacturing
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of MEMS may be immediately apparent, in the aerospace industry, for example, the application30

of fracture mechanics, which is the basis for the development of damage tolerance approaches

to aircraft structural design and maintenance, could noticeably benefit from the development of

enhanced microstructure-based understanding and simulation of crack initiation and propagation

mechanisms.

In recent years, research on materials micromechanics has been boosted by the development35

of high-resolution experimental techniques for materials microstructural characterisation, see e.g.

Ref.[5]. Such methodologies provide a wealth of information that may help elucidate the mecha-

nisms underlying the development of damage in several classes of materials. However, relying on a

complete experimental characterisation for the development of a new material, or the enhancement

of an existing one, may attract remarkable costs, especially when the design space involves a high40

number of different choices. A more effective approach is based on the combined use of essential

experimental information and computational models able to accommodate experimental data in a

consistent representation of the material mechanics. Such combined approach has benefitted from

the progress of high performance computing (HPC), which allows the inclusion and processing of

ever increasing amounts of information provided by the refinement of the mentioned characterisation45

techniques.

In the above background, the present contribution is devoted to the development of a microstruc-

tural model for the analysis of degradation and cracking in polycrystalline materials under cyclic

load, namely to low-cycle fatigue analysis. Polycrystalline materials, either metals, alloys or ce-

ramics, are extensively employed in several fields of engineering. In a modelling perspective, their50

properties, behaviour and performances have beed investigated using either phenomenological ap-

proaches, which form the basis of traditional engineering practices, or more recent physically based

approaches, attempting to understand how macroscopic properties emerge form the microstructural

features.

In the case of polycrystalline materials, aggregate properties are induced by the inherent features55

of the individual grains (morphology, crystallographic nature and orientation, defects, etc.) and by

the physical/chemical character of the intergranular interfaces, which identify discontinuity regions

within the aggregate and are often the seat of damage initiation processes. Models investigating

such materials in a multiscale perspective usually retain more or less refined representations of the

aggregate morphology and its interfaces [6, 7, 8]. Starting from such morphological representations,60
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one of the most popular approaches to polycrystalline materials degradation and cracking is based

on the employment of the finite element method (FEM) in conjunction with cohesive zone modelling

(CZM) [9, 10, 11].

The present framework is based on a different approach and, instead of FEM, boundary integral

equations are employed to model the mechanics of the individual grains. In detail, the framework is65

based on the following key items: a) a Laguerre-Voronoi representation of the aggregate morpholo-

gies, which allows to retain the main statistical features of real polycrystalline materials [12, 13]; b)

a boundary integral model for the mechanics of individual grains, numerically addressed through

the boundary element method (BEM) [14, 15]; c) an original and thermodynamically consistent

cohesive law, able to represent the development and accumulation of intergranular damage under70

either static or cyclic loads, through a hysteretic damage-plasticity approach.

Previously, boundary element models have been developed for polycrystalline two-dimensional

quasi-static or dynamic micro-cracking [16, 17, 18, 19], three-dimensional computational homogeni-

sation and micro-cracking of common and piezoelectric aggregates [20, 21, 22, 23, 24, 25], stress

corrosion cracking [26] and multiscale analysis of degradation and fracture [27, 28, 29]. In Ref.[30]75

a boundary integral formulation for high-cycle fatigue has been proposed: since the simulation of

individual cycles would be unpractical or even unfeasible in high-cycle fatigue problems, typically

featuring N
c

> 105 cycles, especially when the material microstructure is explicitly represented,

the formulation was based on a series of assumptions (damage decomposition and evolution rules)

and strategies (envelope load and cycles jump) addressed at estimating, under some definite condi-80

tions, the development of damage over a large number of cycles without resorting to the accurate

representation of mechanisms within individual cycles.

While such methods may help estimate the fatigue life of engineering components, in some classes

of problems it may be useful to analyse how damage develops on a cycle-by-cycle basis [31, 32].

Example are provided in Ref.[33], where fatigue damage in pure polycrystalline magnesium under85

cyclic tension-compression loading is addressed, and in Refs.[34, 35], devoted to the analysis of

fatigue degradation in polysilicon, a material often employed in MEMS, which present specific

features and complexities, still open to investigation.

In the present work, an original cohesive law is first proposed for modelling intergranular degra-

dation on a cycle-by-cycle basis; such law is subsequently integrated into a Laguerre-Voronoi multi-90

region boundary element framework for the analysis of intergranular degradation and cracking in
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polycrystalline aggregates. A word of caution is necessary for defining the scope of the study

and avoiding inappropriate extensions. Low-cycle fatigue cracking in polycrystalline materials is

generally related to the interaction of several complex mechanisms [36] and no universal initiation

mechanism is easily identifiable. The present study develops an approach that may be useful for the95

analysis of materials in which plasticity is highly restrained within the grains and mainly confined

within the grain boundaries, as suggested for polysilicon e.g. in Ref.[34]. In more general cases,

the present approach may be used in conjunction with other techniques or laws, in the attempt to

capture more complex behaviours, see Section 6.

The outline of the paper is as follows. Section 2 discusses the generation of Laguerre-Voronoi100

tessellations as an artificial digital model of polycrystalline microstructures. Section 3 details the

development of the proposed cohesive law, able to represent damage and plasticity accumulation

under cyclic loading, and discusses its features. Section 4 describes the three-dimensional polycrys-

talline boundary element framework and discusses the integration of the developed cohesive laws.

The set-up and results of the performed computational tests are reported in Section 5, while some105

general discussion follows in Section 6, before the Conclusions.

2. Virtual polycrystalline aggregates

To investigate the mechanics of polycrystalline aggregates, it is necessary to provide a suitable

representation of their morphology. In this work, aggregates of grains with different crystallo-

graphic orientations in the three-dimensional space are considered and their morphology is gener-110

ated through Voronoi-Laguerre tessellations [12, 6, 13]. Such tessellations are generated through

mathematically well defined algorithms and provide space filling subdivisions of the analysis domain,

which may represent suitable approximations of real polycrystalline microstructures, as discussed

e.g. in Ref.[13].

From the operative point of view, given the generic analysis domain V bounded by the fron-115

tier @V , the tessellations can be effectively generated employing open source software packages

such as Voro++ (http://math.lbl.gov/voro++/) [37] or Neper (https://neper.info/#) [12]. In

principle, with such tools, either convex or non-convex domains may be tessellated. However, non-

convex domains, which might be useful to represent actual micro-devices (micro-beams, brackets,

gears, etc.), may require a slightly more sophisticated employment of the tessellation algorithms120

and packages, see e.g. Refs.[38, 30]. From this point of view, it is interesting to mention that Neper
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has recently been endowed with methods easing such task. Additionally, it is possible to generate

periodic non-prismatic tessellations, in which no grain is trimmed by the walls of the bounding box

@V defining the original volume V : such morphologies may be useful to remove boundary artefacts

originating from mesh distortions introduced by cutting operations and mechanical boundary ef-125

fects related to the presence of boundary grains of altered morphology. Such a kind of tessellations

will not be used in the present contribution, as it has been assessed and discussed in Ref.[21], to

which the interested readers are referred.

A remarkable feature of Laguerre-Voronoi tessellations is the fact that each cell g, associated with

a specific crystal in the aggregate, is a convex polyhedron bounded by flat convex polygonal faces.130

As it will be described in Section 4, this aspect, in conjunction with the boundary integral nature

of the proposed formulation, induces well defined and noticeable simplification in the discretisation

and numerical integration procedures.

Fig.(1) illustrates some examples of tessellations that may be considered within the present

framework. In general a generic grain is in contact with a set of neighbouring grains, with which135

it interacts through the shared interfaces. In the present work, the interaction between grains is

modelled through cohesive laws able to represent the initiation and evolution of damage under the

action of either quasi-static monotonic loads or cyclic loads, on a cycle-by-cycle approach. The

formulation of such cohesive laws is described in next Section.

a b c

Figure 1: Different kinds of morphologies can be generated and analysed in the proposed framework: a) example of

1000-grain tessellation of a convex prismatic domain; b) fully-3D tessellation of a non-convex domain; c) example of

pseudo-3D, or 2D columnar tessellation.
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3. Low-cycle fatigue interface140

The theoretical details about the proposed elastic-plastic cohesive-law with damage for interfaces

subjected to the action of cyclic loads are given, after a brief introductory review of models available

in the literature.

Cohesive Zone Modelling is now a well developed framework for the analysis de-cohesion and

fracture phenomena. Different kinds of cohesive interface models with specific features have been145

proposed. Examples are provided by isotropic and orthotropic cohesive laws [39], cohesive laws

coupling damage and plasticity [40], laws capturing different mode I and mode II fracture energies

[41, 42, 43], thermodynamically consistent laws [44, 45, 46], laws focusing on the smooth transi-

tion from cohesive to frictional behaviour [47, 44] and laws able to represent finite displacement

conditions [41, 48].150

Several contributions have been specifically addressed at the analysis of interfaces subjected to

the action of cyclic loads: in Ref.[31], stiffness degradation in the re-loading branch of the loading

cycle is considered, but not developed in a damage framework; in Ref.[32] the CZM developed in

Ref.[49] is modified in a form suitable for cyclic loading; in Ref.[50], damage is assumed to be a

function of the accumulated plastic shear strain; a continuum damage mechanics approach to fatigue155

analysis is developed in Ref.[51], where the threshold damage is function of the cycle number; a

plastic damage model is proposed in Ref.[52] for the analysis of ultra-low-cycle fatigue problems,

where the damage is governed by a strain softening parameter that takes into account the amount

of volumetric fracture energy dissipated by the material; a coupled damage-plasticity model for

the analysis of cyclic behaviour of interfaces under shear loads is defined in Ref.[53], with damage160

evolution only at the unloading plastic process; the fatigue behaviour of brittle materials is modelled

in Ref.[54], in a phase-field approach with a fatigue degradation as function of a cumulated history

variable.

The above references represent a short summary of the interface models available in the liter-

ature. From this survey, it is realised that most of the available formulations for low-cycle fatigue165

analysis are not defined in a consistent thermodynamic framework: several cohesive laws are not

based on a Helmholtz free energy function and the actual dissipation related to the cyclic material

degradation cannot be neither defined nor evaluated. In most low-cycle fatigue formulations, cyclic

degradation is not modelled by specific evolution laws, functions of the state variables in the load-

ing cycle, but they are modelled resorting to Peerling-like laws [55], as function of the stress cycle170
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amplitude, the mean stress in the cycle and the number of loading cycles.

In this work, we propose novel thermodynamically consistent cohesive laws, based on a suitably

defined Helmholtz free energy function, where the material behaviour is governed by a pointwise

set of state variables (plastic deformation, damage, internal variables, etc.). Traction components,

evolution of plastic and damage variables and the relevant constitutive equations are derived by175

following the classical Coleman and Noll procedure [56] and the model satisfies the second thermo-

dynamic law by proving that dissipation is null for any elastic loading step and is non-negative for

any loading path involving plastic or damage increments.

While the present section details the theoretical derivation, the computational use of the devel-

oped interface laws in conjunction with the polycrystalline boundary element framework is described180

in Section 4.4.

3.1. Thermodynamic framework

The present model is developed in the framework of plasticity and damage mechanics, with

non-associative flow rule for damage evolution. Damage mechanics has been widely used for mod-

elling cohesive interfaces [57, 58, 59, 39, 45], as it can properly describe de-cohesion and fracture185

processes. Several effective interface constitutive models [60, 44, 40, 61, 46] are derived starting

from a geometrical definition of the classical scalar damage variable ! as

! :=
dS

c

dS
=

dS � dS
s

dS
(1)

where, in the proximity of a generic point, dS measures the reference pristine interface and dS
c

its

failed or cracked fraction.

Since interfaces are used to drive de-cohesion along pre-determined zero-thickness surfaces, the190

kinematic variable adopted to measure the actual deformation is the displacement jump vector

across the interface, namely

�u = u

+ � u

�, (2)

where u

+ and u

� are the displacements at the upper (+) and lower (�) faces of the opening

interface. Later on, in the framework of polycrystalline modelling, such displacement jumps will

be associated to couples of homologous intergranular nodes belonging to different but contiguous195

crystals, in order to formulate suitable sets of interface equations for the aggregate, see Section 4.4.
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The discussed formulation defines an extrinsic cohesive model, defined as an elastic-plastic dam-

age model with initial rigid behaviour, although also its intrinsic counterpart has been implemented.

Moreover, it assumes the existence of a moving endurance surface in the three-dimensional space of

the traction components {t1, t2, t3}, such that no material degradation under cyclic loading happens200

for traction states within such surface. To comply with thermodynamic principles, a Helmholtz free

energy density function per unit surface, playing the role of a potential with respect to both the

external and internal state variables, is introduced as

 (u
i

,↵
i

,!) :=
1� !

2!

h
K

i

h�u
i

� �up

i

i2
n

+ C
i

↵2
i

i
+

1

2
K

i

h�u
i

� �up

i

i2
c

, (3)

where i = 1, 2, 3, the Einstein’s summation convention holds and, in order to take in to account the

different behaviour under tensile and compressive normal traction, the operators205

hf
i

i
n

:=

8
><

>:

f
i

i = 1, 2

hf3i+
hf

i

i
c

:=

8
><

>:

0 i = 1, 2

hf3i�
(4)

have been employed, with the Macaulay brackets h·i+ and h·i� selecting respectively the positive

or negative part of their argument. In Eq.(3), K
i

denote elastic stiffness components, �u
i

are

displacement jump components, with �u3 = �u
n

, �up

i

identify residual displacement components

at the interface upon complete un-loading, which can be considered as plastic components in the

interface deformation process, C
i

are hardening coefficients and ↵
i

are kinematic hardening variables210

governing the position of the endurance surface.

Thermodynamic consistency, in the form of the second principle, is enforced by the Clausius-

Duhem inequality, which gives an explicit form for the non-negative mechanical energy dissipation

density as

D = t
i

�u̇
i

�  ̇ � 0, (5)

which upon expansion of the term  ̇, considering the specific form given in Eq.(3), yields215

D =

✓
t
i

� @ 

@�u
i

◆
�u̇

i

� @ 

@!
!̇ � @ 

@�up

i

�u̇p

i

� @ 

@↵
i

↵̇
i

� 0. (6)

For any purely elastic process, the lack of damage evolution !̇ = 0, of plastic evolution �̇up

i

=

↵̇
i

= 0 and of dissipation D = 0 imply

t
i

:=
@ 

@�u
i

=
1� !

!
K

i

h�u
i

� �up

i

i
n

+K
i

h�u
i

� �up

i

i
c

(7)
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for i = 1, 2, 3, which define the traction components t
i

as the conjugate of the interface elastic

deformations �ue

i

= �u
i

� �up

i

. Eqs.(7) will provide part of the intergranular interface equations

directly enforced in the polycrystalline aggregate system, as shown in Section 4.4.220

For dissipative processes, on the other hand, thermodynamic consistency requires

D = Y !̇ + t
i

�u̇p

i

� t0
i

↵̇
i

� 0, (8)

obtained from Eq.(6) considering that �@ /@�up

i

= @ /@�u
i

= t
i

and defining the energy release

rate

Y := �@ 
@!

=
1

2!2

h
K

i

h�u
i

� �up

i

i2
n

+ C
i

↵2
i

i
, (9)

and the traction hardening components t0
i

t0
i

:=
@ 

@↵
i

=
1� !

!
C

i

↵
i

, (10)

which complete the set of state equations. For pristine materials, for which ! = 0, the definition of

energy release rate in Eq.(9) is indeterminate. The formal indeterminacy can however be overcome

expressing Y as a function of the traction components as

Y =
1

2(1� !)2

h
K�1

i

ht
i

i2
n

+ C�1
i

t0
i

2
i
. (11)

Eq.(8) states that the total dissipation D is given by the sum of a term Y !̇ energetically related225

to damage increments, a term t
i

�̇up

i

related to the occurrence of plastic mechanisms and a last

term t0
i

↵̇
i

energetically related to interface microstructural re-organisation during kinematic plastic

hardening.

Pure damage evolution and plastic damage evolution are triggered by two different conditions:

the pure damage activation condition, which initiates interface softening when the limit strength230

is attained and the non-associative elasto-plastic damage activation condition, which starts inter-

face degradation under cyclic loading through a coupled plastic-damage activation and evolution

function, able to model the interface stiffness and strength degradation under cyclic loads. Such

activation conditions and the mechanics of the related processes are described in the next sections.

3.2. Damage activation and evolution235

The activation of pure damage at the interfaces is governed by the function

�
d

=
Y

Y0
� 1, (12)
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with Y0 denoting a constant energy threshold given by

Y0 =
1

2
K�1

n

td
n

2
, (13)

where K
n

= K3 denotes an interface stiffness-like normal term and td
n

is the interface cohesive

tensile strength in the case of pure damage, when no plastic processes are activated.

Under increasing monotonic loading the interface behaves elastically as long as �
d

< 0. When240

the threshold condition �
d

= 0 is attained, pure damage evolution is triggered, with the following

associated flow rules

!̇ =
@�

d

@Y
�̇
d

=
�̇
d

Y0
, (14)

and loading/un-loading/re-loading conditions

�̇
d

� 0, �
d

�̇
d

= 0, �̇
d

�̇
d

= 0, (15)

where �̇
d

is the damage multiplier. The dissipation associated with damage evolution can be

computed considering that !̇ > 0 only if �
d

= 0, which yields245

D
d

= Y !̇ = �̇
d

� 0, (16)

showing the unconditioned positiveness of the dissipation rate for any damage increment, being

D
d

= 0 only if �̇
d

= 0.

In the case of pure damage, i.e. with �up

i

= 0, ↵ = 0, the proposed cohesive model results in a

bilinear response. Employing the expression of Y provided by Eq.(11) into Eq.(12) in the case of

pure mode I de-bonding, when t
n

� 0 and t
t

= 0, yields250

�
d

=
1

(1� !)
2

✓
t
n

td
n

◆2

� 1 = 0 ) t
n

= (1� !)td
n

, (17)

which identifies the loading softening branch of the traction-separation relationship and, for a

pristine interface, ! = 0, confirms the value of t
n

= td
n

as the traction threshold value for damage

activation. On the other hand, using Eq.(9) in the activation condition in Eq.(12), gives

�
d

=
1

!2

✓
K

n

�u
n

td
n

◆2

� 1 = 0 ) ! =
K

n

�u
n

td
n

, (18)

which, at complete de-cohesion, i.e. when ! = 1, provides the critical opening displacement jump

ud

n

= td
n

/K
n

.255
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Under pure mode II loading, employing Eq.(11) in the activation condition in Eq.(12) and en-

forcing ! = 0 to identify the onset of damage provides for the tangential strength td
t

= td
n

p
K

t

/K
n

.

Using Eq.(9) in the activation condition and enforcing ! = 1 to identify the failure condition, pro-

vides for the critical sliding displacement jump, i.e. at full mode II de-cohesion, ud

t

= td
n

/
p
K

n

K
t

=

ud

n

p
K

n

/K
t

= td
t

/K
t

.260

Such expressions of the critical opening and sliding displacement jumps allow identifying the

parameters K
n

and K
t

appearing in the extrinsic formulation, which do not express the stiffness

of the pristine interface, exhbiting initial rigid behaviour. The presence of such parameters cannot

be neglected in a thermodynamically consistent formulation, as they allow to consistently define

the energy release rate, i.e. the damage conjugate variable, and the relevant damage activation and265

evolution condition.

Eventually, from the above relationships, it can be shown that

G
I

=
1

2
td
n

ud

n

=
1

2
td
t

ud

t

= G
II

, (19)

i.e. the same fracture toughness is associated to pure mode I and pure mode II failures.

As mentioned, the proposed extrinsic model can reformulated in an intrinsic form, endowing

the pristine interface with an initial elastic behaviour, by assuming for it an initial fictitious small

value of damage !0 > 0. In this case, to preserve the assumed values of strength td
n

and fracture

energy, the energy threshold should to be accordingly re-defined as

Y0 =
K�1

n

td
n

2

2 (1� !0)
2 . (20)

It is highlighted that the damage activation function defined in Eq.(12) governs the evolution of

damage at the interface limit strength, whereas the degradation associated with the cyclic loading

is accounted for by plastic hysteresis, which is governed by a different activation function, as it will270

described in Section 3.3.

3.3. Non-associative elastic-plastic-damage activation condition

To account for interface degradation under cyclic loading, related to complex dissipative mecha-

nisms including crystallographic slip, frictional interactions between asperities, micro-cracking etc.,

a cohesive law with loading/un-loading/re-loading plastic hysteresis and associated damage is pro-275

posed.
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Plastic hysteresis is modelled by introducing, in the space of tractions {t1t2t3}, the endurance

surface

�
p

�
t
i

, t0
i

�
:=

3X

i=1

✓
ht

i

i
n

� t0
i

r
i

◆2

� 1 = 0, (21)

such that neither plastic hysteresis nor damage degradation take place for stress states associated

to point falling within the surface itself, i.e. for which �
p

�
t
i

, t0
i

�
< 0.280

The limit condition �
p

= 0 defines an ellipsoid in the traction components space, whose principal

semi-axes are r1, r2 and r3 and whose centroid is the vector t

0, as represented in Fig.(2). The

use of tensile normal tractions in Eq.(21) prevents the development of plastic deformations under

compressive loading. Often, cohesive laws are assumed as isotropic in the tangential plane {t1t2}

so that r1 = r2 = r
t

, K1 = K2 = K
t

, C1 = C2 = C
t

and r3 = r
n

, K3 = K
n

, C3 = C
n

. On the285

other hand, if the cohesive law is assumed to be fully isotropic, then r
i

= r, K
i

= K, C
i

= C, for

i = 1, 2, 3.

t1
t2

t3

·up

r1

r2r3
t

t0

�p = 0

Figure 2: Graphical representation of the endurance elastic-plastic surface in the traction space {t1t2t3}. Plastic

evolution takes place (u̇p 6= 0) only when the current traction vector t lies over the surface �

p

= 0.

To model cyclic damage evolution, the proposed formulation is defined in the framework of non-

associative damage and plasticity and the following plastic damage potential is assumed to govern

the coupled evolution of the plastic and damage variables290

⌦
p

(t
i

, t0
i

, Y ) :=

3X

i=1

✓
ht

i

i
n

� t0
i

r
i

◆2

+ a

✓
Y

Y0

◆
m

, (22)

where a � 0 is the damage-plasticity coupling parameter, linking the damage evolution with the

hysteresis plastic behaviour and m is the damage evolution parameter, affecting the fatigue life of

13



the interface. The non-associative flow rules are

�u̇p

i

=
@⌦

p

@t
i

�̇
p

= 2
ht

i

i
n

� t0
i

r2
i

�̇
p

,

↵̇
i

= �@⌦p

@t0
i

�̇
p

= 2
ht

i

i
n

� t0
i

r2
i

�̇
p

,

!̇ =
@⌦

p

@Y
�̇
p

=
am

Y0

✓
Y

Y0

◆
m�1

�̇
p

� 0,

(23)

while the loading/un-loading/re-loading conditions read

�̇
p

� 0, �
p

�̇
p

= 0, �̇
p

�̇
p

= 0, (24)

where i = 1, 2, 3 and �̇
p

is the plastic multiplier.295

The damage rate can be written as a function of the traction components by substitution of

Eq.(11) and Eq.(13) into the third of Eqs.(23). For an interface subjected to tensile normal tractions

only, the damage rate assumes the form

!̇ =
am

Y0

"
t2
n

+ t0
n

2
K

n

/C
n

(1� !)
2
td
n

2

#
m�1

�̇
p

(25)

where the hardening component t0
n

can be considered as the mean stress of the loading cycle. The

integration of the damage rate over the loading cycle yields a power expression for the value of the300

damage increment per cycle analogous to expressions used e.g. in Refs.[62, 30] to model fatigue life

in a continuum damage model.

The damage rate defined by the third of Eqs.(23) implies a strong dependence of the damage

increments on the damage evolution parameter m: for relatively high values of m, the damage

increments are negligible at low stress levels, when t
n

⌧ td
n

; on the other hand, for m = 1 the305

damage increment is independent on the stress level.

The dissipation associated with the plasticity-damage activation can be computed from Eq.(8)

by considering that the flow rules give �u̇p

i

= ↵̇
i

6= 0 and !̇ > 0 only if �
p

= 0. Taking into account

such conditions and substituting the other terms in Eqs.(23) into Eq.(8) yields

D
p

=

"
2

3X

i=1

✓
ht

i

i
n

� t0
i

r
i

◆2

+ am

✓
Y

Y0

◆
m

#
�̇
p

=


2 + am

✓
Y

Y0

◆
m

�
�̇
p

� 0, (26)

which shows the unconditioned positiveness of the dissipation rate for any plastic-damage increment,310

being D
p

= 0 only if �̇
p

= 0.
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3.4. Elastic-plastic limit condition

The elastic-plastic endurance surface models the elastic-plastic cyclic behaviour associating to

it some definite damage evolution, i.e. elastic degradation, both in the loading path and in the

unloading one. The softening behaviour at the limit condition is modelled by the activation of both315

the two yielding conditions provided by the damage limit condition �
d

= 0 and the elastic-plastic

activation condition �
p

= 0.

The evolution of plastic deformation and kinematic hardening is still governed by Eqs.(23), while

the evolution of damage is now controlled by the sum of two different terms, namely the damage

limit condition and the elastic-plastic activation condition, i.e.320

!̇ =
@⌦

p

@Y
�̇
p

+
@�

d

@Y
�̇
d

=
am

Y0

✓
Y

Y0

◆
m�1

�̇
p

+
1

Y0
�̇
d

� 0, (27)

while the loading/un-loading/re-loading conditions read

�̇
p

� 0, �
p

�̇
p

= 0, �̇
p

�̇
p

= 0,

�̇
d

� 0, �
d

�̇
d

= 0, �̇
d

�̇
d

= 0.
(28)

It is worth noting that, for high values of the fatigue parameter m in Eq.(22), softening can be

activated without activation of the damage limit condition, that is for �
d

< 0.

3.5. Graphical description

The traction-separation response of the proposed coupled model to monotonic increasing loading325

is qualitatively represented in Fig.(3), where it is also compared with the response of the pure

damage model, both in the case of extrinsic and intrinsic formulation. The monotonic response is

qualitatively the same in pure mode I and pure mode II loading and it may exhibit either initial

rigid behaviour, as in the case of extrinsic implementation, or initial elastic behaviour with finite

stiffness, in the case of intrinsic implementation.330

The condition �
p

= 0 activates an elastic-plastic process at the interface, with an associated dam-

age rate that induces cycle-by-cycle interface degradation, as schematically described in Figs.(4a,b).

In particular, Fig.(4a) represents the first activation of the plastic behaviour of the pristine inter-

face, with the endurance surface centred at the origin of the traction space, and increment of plastic

deformation accompanied by stiffness and strength degradation due to the the small increment of335

damage produced by the coupled plastic-damage model. Fig.(4b) shows the elastic unloading with
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Figure 3: Pure mode I (or II) interface traction-separation response for a monotonic increasing load. The marked

branches, identified by the letters a-f and corresponding to different physical behaviours (elastic; elastic-plastic with

degradation; elastic-plastic-damage with softening; damage with softening; unloading-reloading) are schematically

described/discussed in Fig.(4).
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traction inside the endurance surface and the subsequent plasticity-damage activation in the un-

loading branch.

t0 = 0

�p = 0

tt

tn
tpl
n

tpl
t

rn

rt

t ·t

tn

tt

·t

t0

�d |�>0 = 0 tt

tn

�p = 0

tn

tt

t0
rn

rt

·� � 0

·t
·t

t0

·t

�d |�>0 = 0

tn tn

tt tt

t0
·t

t
t

t
·tt0

·up � 0

�d |�=0 = 0

�d |�=0 = 0

�d |�=0 = 0

a b

c d

e f
�d |�>0 = 0

�d |�=0 = 0·up = 0·� > 0

·up � 0·� � 0

·up � 0·� > 0
·up � 0·� > 0

·up = 0·� = 0

·up = 0·� = 0
·up

Figure 4: Qualitative representation of the interface behaviour in the plane of normal and tangential tractions: a)

first plastic activation of the pristine material with fatigue elastic degradation; b) elastic unloading and subsequent

plastic activation with fatigue degradation; c) plastic and damage activation functions are both attained at the

maximum strength; d) softening branch with plastic and damage increments; e) damage softening with null plastic

increments; f) elastic unloading of the damaged material with traction inside the endurance surface.

The interface elastic-plastic strength tpl
i

is reached when both the threshold conditions �
p

= 0

and �
d

= 0 are attained, see Figs.(4c,d). Under monotonically increasing load, the condition �
p

= 0340

may be reached first; the subsequent attainment of the condition �
d

= 0 then activates material

softening, with the related interface stiffness and strength degradation up to complete de-cohesion.
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However, for high values of the exponent m, the interface may exhibit softening even before the

quasi-static damage activation condition �
d

= 0 is fulfilled, which is the expedient used to model

degradation under cyclic loading.345

In a fatigue test under load control, with traction levels below the maximum strength, the

activation of the plastic limit condition �
p

= 0 induces small damage increments with subsequent

strength degradation, due to the increase of the energy release rate in Eq.(11) and the increase of

the damage limit function in Eq.(12). Eventually, the attainment of the damage limit condition

�
d

= 0 triggers the direct evolution of damage up to interface failure.350

The ultimate strength modelled by the proposed formulation is governed by pure damage soft-

ening, represented by the branch e in Fig.(3), associated to tractions and damage levels internal

to the endurance surface (�
p

< 0) and which attain the damage activation function (�
d

= 0), as

represented in the Fig.(4e). In fact, damage increments induce isotropic softening, corresponding

to the shrinking of the volume enclosed by the damage activation function in the tractions space,355

whereas the plastic activation function, which is not directly influenced by the damage parameter,

can only undergo kinematic hardening. So, for high damage levels, the plastic activation surface

(�
p

= 0) is not contained within the damage activation surface, which shrinks up to degenerating

into a point as the failure damage condition ! = 1 is reached. Pure damage softening is associated

to the pure elastic unloading represented by the branch f in Fig.(3) and with the traction path360

schematically represented in the Fig.(4f).

The elastic-plastic response of the interface is generally path dependent and cannot be analyti-

cally evaluated. Nevertheless, if in monotonic loading the damage developed in the initial elastic-

plastic branch is neglected, the interface strength tpl
i

can be estimated by enforcing the conditions

�
p

= 0, �
d

= 0 and ! = 0. In this case, the interface elastic-plastic strength can be approximated365

as

tpl
n

⇡
r
n

K
n

+

r
r
n

K
n

+ (K
n

+ C
n

)
⇣
td
n

2
C

n

� r2
n

K
n

⌘

K
n

+ C
n

(29)

in pure mode I loading and as

tpl
t

⇡
r
t

K
t

+

r
r
t

K
t

+ (K
t

+ C
t

)
⇣
td
t

2
C

t

� r2
t

K
t

⌘

K
t

+ C
t

(30)

for pure mode II loading.
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In conclusion, considering again that, upon progressive monotonic loading, the energy dissipated

in plastic processes is negligible with respect to the energy dissipated in damaging processes, and370

thus assuming a bilinear response upon monotonic opening loading up to complete de-cohesion, the

mode I critical elastic-plastic opening displacement can be approximated as upl

n

⇡ 2G
I

/tpl
n

, where

Eq.(13) has been employed. Similar considerations apply in mode II.

4. Polycrystalline boundary element framework

In this section, the key aspects of the developed framework for the analysis of polycrystalline375

microstructures are described. The framework is based on the use of boundary integral equations

for the description of the mechanics of individual grains, whose artificial morphology is gener-

ated through Laguerre-Voronoi tessellations, as described in Section 2. The employment of such

boundary integral equations, their suitable discretisation and subsequent numerical treatment pro-

duce a system of equations that can be readily interfaced with the cohesive laws developed above,380

demonstrating the flexibility of the underlying framework in accommodating different degradation

mechanisms.

4.1. Meshing of artificial polycrystalline morphologies

As mentioned in Section 2, polycrystalline morphologies are represented in this work through

Laguerre-Voronoi tessellations, in which each grain g is a convex polyhedron with volume V g en-385

closed by the boundary Bg, given by the union of flat and convex polygonal faces

Bg = @V g =

N

g
f[

n=1

F g

n

, (31)

where F g

n

is the generic n-th face of the grain and Ng

f

denotes the total number of faces of the

grain g. To simplify the expression of boundary and interface conditions, local reference systems

are attached to each grain face: such reference systems vary over the grain boundary and allow to

express the mechanical fields into face normal and tangential components. The morphology of a390

generic grain and the definition of face-local reference systems are illustrated in Fig.(5a).

Since boundary integral equations are employed to represent the mechanics of individual grains,

as it will be shown in next Section, the numerical treatment of the polycrystalline problem requires

the meshing of the grains surfaces only, at least in the case in which non-linear phenomena are
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confined at the intergranular interfaces and may be neglected in the grains interior, as assumed here.395

Considered the statistical nature of polycrystalline tessellations, which implies high variability in the

morphology of individual grains, the possibility of analysing their mechanics employing boundary

meshes only constitutes a relevant simplification of pre-processing and contributes to the robustness

of the scheme.

In the present contribution, the grains surface mesh is generated according to the procedure de-400

veloped in Ref.[21]: each convex polygonal face F g

n

is subdivided into a collection of non-overlapping

triangular and quadrangular, continuous and semi-discontinuous elements e
k

, as shown in Fig.(5b).

Semi-discontinuous elements are employed to avoid some complexities arising in boundary element

formulations when nodes are collocated on edges where the surface normal is not unambiguously

defined [63], as in the case of grains edges where two contiguous faces meet. The mesh size is405

selected so that ⇠
e

⌧ L
cz

[16, 20], where ⇠
e

represents the average element size and L
cz

is the

cohesive zone size at the intergranular interfaces, which can be estimated in terms of the mate-

rial fracture toughness and the interface strength [64, 10, 65]. As discussed and computationally

tested in Refs.[16, 20, 21], such a choice ensures the mesh-independency and reproducibility of the

aggregate macro-response.410

x1 x2

x3

t̃n

t̃s

t̃(x)

x̃1
x̃2

x̃3

a b

Figure 5: Example grain morphology and mesh: a) each grain is a convex polyhedron bounded by flat convex

polygonal faces; each face carries its own local reference system {x̃1x̃2x̃3}, differing from the global reference system

{x1x2x3}, which allows the decomposition of boundary displacements and tractions into normal and tangential

components; b) each grain face is meshed into non-overlapping triangular or quadrangular elements.
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4.2. Boundary integral equations for the individual grains

The polycrystalline boundary element framework is based on the integral representation of the

microstructural displacement field. In particular, considered a generic point x 2 Bg, under the

assumption of linear elastic behaviour of the grains, it is possible to express its displacements

resorting to the integral representation

c̃ g

ij

(x)ũ g

j

(x) +

N

g
fX

n=1

�
Z

F

g
n

T̃ g

ij

(x,y)ũ g

j

(y)dS(y) =

N

g
fX

n=1

Z

F

g
n

Ũ g

ij

(x,y)t̃ g
j

(y)dS(y), (32)

with i, j = 1, 2, 3. Eq.(32) expresses the displacement components ũ g

j

at the generic boundary

collocation point x in terms of the displacements ũ g

j

(y) and tractions t̃ g
j

(y) over the boundary Bg

itself, with y 2 Bg being the generic integration point, spanning the boundary of the considered

grain in the integration procedure. The symbol �
R

denotes the integral Cauchy principal value,415

necessary to identify the value of the improper integral when integration is performed over an

element containing the collocation point; the over-tilde ·̃ denotes vector components expressed

with respect to the local reference systems, attached to each grain face F g

n

and then varying as

the integration point spans the grains boundary, see e.g. Refs.[66, 20] and Fig.(5b). Ũ g

ij

(x,y)

and T̃ g

ij

(x,y) are rotated components of the 3D anisotropic fundamental solutions of the grain420

material, computed as in Ref.[67]. Eventually, c̃ g

ij

(x) are free terms, arising from the boundary

limiting procedure and depend on the smoothness of the boundary Bg at the collocation point x.

For further details about the boundary integral representation of mechanical problems and their

numerical treatment within the framework of the boundary element method, interested readers are

referred to Refs. [14, 15].425

4.3. Numerical integration of the boundary integral equations

Once a suitable artificial tessellation is available, the computational treatment of the polycrys-

talline problem is addressed according to the following scheme:

• Each grain g is discretised by subdividing its faces F g

n

into a collection of non-overlapping

boundary elements e
k

, as recalled in Section 4.1 and explained in Ref.[21];430

• Over each element e
k

, the local geometry is expressed through shape functions N
e

(⌘1, ⌘2) and

the coordinates of the element vertices, while the boundary displacement and traction fields
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are expressed through shape functions and nodal values of boundary displacements Ũg

ek
and

tractions T̃g

ek
, defined with respect to locally defined 2D (surface) coordinate systems (⌘1, ⌘2);

• Eq.(32) is collocated at each grain boundary node and it is numerically integrated, taking435

into account the approximation of the boundary fields in terms of shape functions and nodal

values, as detailed in Ref.[21].

As an example, considering the left-hand side of Eq.(32) and remembering that, after the dis-

cretisation y = y (⌘), u = u (⌘) and t = t (⌘), the above procedure yields for each face F g

n

�
Z

F

g
n

T̃ g

ij

(x,⌘)ũ g

j

(⌘)dS(⌘) =

N

F
eX

k=1


�
Z

ek

T̃ g

ij

(x,⌘)N
e

(⌘)J(⌘)d⌘1d⌘2

�

| {z }
H matrix block

· Ũg

ek
, (33)

where e
k

identifies the element over which the integration is being performed, NF

e

is the number

of boundary elements belonging to the considered face after the subdivision process, J(⌘) is the

Jacobian of the coordinates transformation y = y (⌘) computed at ⌘ and the vector Ũg

ek
groups440

the components of displacements associated with the nodes belonging to the element e
k

. The

integral can be numerically computed employing suitable quadrature rules and produces, after the

integration, a matrix block contributing to the population of a larger matrix Hg, associated with

the considered grain and multiplying the components of nodal boundary displacements associated

with it.445

Analogously, the integration of the terms appearing at the right-hand side of Eq.(32) produces

terms of the form

Z

F

g
n

Ũ g

ij

(x,⌘)t̃ g
j

(⌘)dS(⌘) =

N

F
eX

k=1

Z

ek

Ũ g

ij

(x,⌘)N
e

(⌘)J(⌘)d⌘1d⌘2

�

| {z }
G matrix block

· T̃g

ek
, (34)

i.e. matrix blocks contributing to the population of a larger matrix Gg associated with the consid-

ered grain and multiplying the components of nodal boundary tractions relative to its nodes, whose

terms associated with the element e
k

appear in T̃g

ek
.

It is worth noting that Eq.(32), when collocated at a defined boundary node, allows computing

three rows of the mentioned matrices Hg and Gg: to populate the entire matrices, the equation450

must be sequentially collocated over all the nodes identified during the geometrical discretisation

and meshing procedure. In the integration procedure, here briefly recalled, care must be used in the
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numerical integration of the elements containing the collocation point, as they give rise to singular

integrals. For a deeper consideration of such aspects, interested readers are referred to Refs. [14, 15].

In conclusion, the above scheme leads, for each grain, to the system455

Hg · Ũg = Gg · T̃g, (35)

expressed in terms of the vectors Ũg, T̃g 2 R3Ng
p , collecting the components of boundary displace-

ments and tractions of all the grain nodes, with Hg,Gg 2 R3Ng
p⇥3Ng

p , where Ng

p

is the number of

nodes associated with the grain g.

4.4. Aggregate system and solution

After boundary element discretisation and numerical integration of the boundary integral equa-460

tions collocated at the boundary nodes, a system of the form given in Eq.(35) is associated to each

grain within the aggregate: such systems are expressed in terms of the components of displacements

and tractions of the mesh boundary nodes identified during the meshing procedure recalled in Sec-

tion 4.1. It is important to realise that all the components of displacements and tractions appear in

the vectors Ũg and T̃g and no reference to external boundary conditions and/or interface conditions465

has been made so far. However, restoring the integrity of the aggregate, from the mathematical

point of view, entails precisely the enforcement of boundary and interface conditions.

In order to apply the relevant boundary conditions, it is important to distinguish between

boundary and internal grains: the former have one or more faces lying over the external boundary of

the aggregate B, while the latter are entirely surrounded by other grains. The boundary conditions470

are applied only over the faces of the boundary grains lying on B, following the standard subdivision

into known and unknown components. For the boundary grains, the enforcement of the external

boundary conditions transforms system (35) into

Ag ·Xg = Bg ·Yg (36)

where the vectors Xg and Yg collect respectively unknown and prescribed values of grain-boundary

displacements and tractions, while the matrices Ag and Bg collect columns from Hg and Gg

475

corresponding to the above unknown and prescribed degrees of freedom [15].

Considering an artificial aggregate consisting of N
g

grains, the systems of the form given in
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Eq.(36), associated to each grain, can be collected in a unique aggregate system as
2

6666664

A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · ANg

3

7777775
·

2

6666664

X1

X2

...

XNg

3

7777775
=

2

6666664

B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · BNg

3

7777775
·

2

6666664

Y1

Y2

...

YNg

3

7777775
, (37)

which implements the boundary conditions, but not the interface equations yet.

The interface conditions can be enforced considering that they establish i) an equilibrium rela-480

tionship between the traction components of conformal nodes belonging to contiguous grains and

ii) a relationship between tractions and intergranular displacement jumps (interface opening) of

couples of homologous nodes (interface pairs). To avoid confusion, it is important to realise here

that the geometric point x 2 Iab, where Iab is the interface between the grains a and b, identifies

the location in space where the physical points x

a 2 a and x

b 2 b meet in the initial undeformed485

configuration. As the loading progresses, generally x

a 6= x

b and x

b�x

a = �uab, where �uab defines

the displacement jump associated with the pair identified by the initial location x.

Given this premise, the tractions equilibrium at the generic initial interface point x 2 Iab can

be readily enforced as

t̃ a
i

(x) = t̃ b
i

(x) 8x 2 Iab, (38)

where t̃ g
i

(x) denotes the i-th traction component associated with the node xg 2 g, such that xg ⌘ x490

in the undeformed state, and the signs in the equations are determined by the fact that the traction

components associated to points belonging to contiguous faces of neighbour grains are expressed

in local systems that are opposite to each other. The equilibrium conditions in Eq.(38), three for

each interface node pair, form part of the interface equations: their form never changes during the

aggregate evolution, as the equilibrium holds also for damaged or failed interface regions.495

On the other hand, as detailed in Section 3, interface tractions and displacement jumps are

linked by the cohesive traction-separation laws. At a generic step during the loading process, for

a generic interface pair identified by x 2 Iab the traction-separation link can be expressed as in

Eq.(7), i.e., more generally as

t̃
i

(x) = t
i

(x, �ũ, �ũp,!) , (39)

where the symbols have the meaning discussed in Section 3 and the tilde has been added to indicate500

components expressed in the local reference systems.
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At this point, all the ingredients are in place to write the aggregate equations, which are com-

prised of Eqs.(37-39) and can be recast in the compact form
2

4 A ·X

I (X, �X, �Up,!)

3

5 =

8
<

:
B ·Y(�)

0

9
=

; , (40)

where the matrices A and B are the coefficient matrices defined in Eq.(37); the matrix block I

implements Eqs.(38-39); the vector X contains, as already mentioned, the unknown components505

of grain-boundary nodal displacements ũ
i

and tractions t̃
i

, which are the primary variables of

the formulation, while Y(�) contains the known components of nodal displacements and tractions,

which depend on the load factor � that can also be associated with a time variable, as in the present

study; the vector ! collects the components !
k

expressing the local total interface degradation at the

generic interface node pair k and, eventually, the vector �Up collects all the residual displacements510

at the interface.

4.5. Incremental iterative solution of the polycrystalline system

For its effective solution, system (40) must be considered, within the framework of a consistent

incremental-iterative solver, together with the damage activation and yield conditions, the damage

and plastic flow rules and the loading, unloading/reloading conditions given and discussed in Section515

3. The system can be re-written in compact form as

M (X, �X, �Up,!) = Z (�) , (41)

in which the micro-structural evolution is triggered by the cyclic loading, generally expressed in

terms of the load factor �. The micro-evolution is tracked by solving the boundary value problem

for a discrete set of values �
k

: once the solution X
k

corresponding to �
k

is known, a new load

increment ��
k

is applied and the new solution X
k+1 corresponding to �

k+1 = �
k

+��
k

is sought520

using a Newton-Raphson algorithm for solving system (41).

Since the matrix M (X, �X, �Up,!) is sparse, the iterative solution of Eq.(41) is performed

using the solver PARDISO (http://www.pardiso-project.org/). In the solution of Eq.(41), which

stems from a boundary element collocation procedure, higher computational efficiency could be

attained using Krylov iterative solvers in conjunction with special matrix representations, obtained525

for example using fast multipoles [68] or hierarchical matrices [69, 70, 71].
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5. Computational experiments

In this section, the developed framework is computationally tested. The proposed cohesive

laws are first assessed by analysing the quasi-static and low-cycle behaviour of a single interface

between two quasi-rigid prismatic grains, modelled with the boundary element method. Then, the530

response of few polycrystalline aggregates of elastic grains subjected to different kinds of boundary

conditions is simulated: both fully-3D and pseudo-3D aggregates are considered, to illustrate the

potential of the method both in a multiscale perspective and in micro-mechanical applications, e.g.

in the analysis of MEMS.

All the reported tests have been performed by fulfilling the criteria on the mesh-size mentioned in535

Section 4.1, which ensure mesh-independency and reproducibility of the aggregate macro-response,

which has also been preliminarily assessed and validated.

5.1. Grains and interfaces properties

As mentioned above, both elastic and quasi-rigid grains are considered, for different purposes,

in the performed tests. In the first case, the considered material is polysilicon, often used in the540

manufacturing of MEMS: the individual grains present cubic material symmetry with independent

elastic constants c11 = 166GPa, c12 = 64GPa and c44 = 79.6GPa, according to Ref.[72].

On the other hand, in all the considered tests, the intergranular interfaces are fully defined by

the properties reported in Table 1, estimated as follows. The value of the elastic-plastic mode I

strength tpl
n

is related to the material’s macroscopic static strength �
c

, analogously to what was545

assumed in previous works for the interface cohesive strength, see e.g. Refs.[20, 22]. However, it is

known that the static strength of brittle materials, such as polysilicon, exhibits significant scatter

[73, 74]: in this study it is assumed that tpl
n

= �
c

= 1.1GPa, consistent with the values of �
c

reported in Ref.[75].

The critical mode I displacement jump upl

n

is estimated by considering that G
I

is the work550

of separation per unit surface, i.e. the energy spent per unit surface to take an initially pristine

interface to complete de-cohesion; since, in the limit case of quasi-static monotonic loading, the

proposed law describes an approximately bi-linear path, it is possible to write

G
I

=
1

2
td
n

ud

n

⇡ 1

2
tpl
n

upl

n

, (42)
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from which upl

n

can be approximately estimated. If not readily available, G
I

can be computed as

G
I

=

�
1� ⌫2

�
K2

I

E
, (43)

where K
I

, E and ⌫ are the fracture toughness and Young and Poisson moduli of the the bulk555

material, see e.g. Ref.[76]. With bulk material we refer here to the macro-material considered

as homogeneous, whose properties emerge from the interactions of the grains at the micro-scale

and can be estimated through suitable homogenisation. In this contribution, for polysilicon it is

assumed K
I

= 1.1MPa
p
m, consistently with the values reported in Ref.[77]; on the other hand,

E = 163GPa and ⌫ = 0.22 are the assumed elastic constants of bulk polysilicon, estimated from560

the Hashin–Shtrikman bounds [78] of an untextured aggregate of individual crystals whose elastic

constants c11, c12 and c44 have the values reported above.

The endurance surface diameter d
n

= 2 r
n

can be estimated considering that, in the proposed

cohesive law, no cyclic degradation occurs when the traction vector remains within the endurance

surface itself, see Fig.(2). In this work, such a diameter has been conventionally determined referring565

to the stress amplitude of a cyclic repeated stress corresponding to a fatigue lifetime of N
f

⇡ 109

cycles: for polysilicon Ref.[75] reports, in this sense, an experimental value of �� = 0.7GPa,

which implies that, under cyclic repeated stress ranging in the interval 0  �(t)  �� (only tensile

loading without compression), polysilicon exhibits a fatigue life of N
f

⇡ 109 cycles. This observation

allows setting d
n

= 2 r
n

= �� = 0.7GPa. Some additional considerations may be useful to avoid570

confusion: when the interface is pristine, the endurance surface is centred at the point t

0 = 0;

upon loading, during the first loading cycle, when the traction acting at the interface overcomes

the radius r
n

, it triggers the accumulation of cyclic degradation, as signalled by the change of slope

in the ascending branch of the monotonic plastic-damage curve in Fig.(3), which seems contrasting

the meaning of the selection of d
n

= 2 r
n

. However, it should be considered that such a loading575

also activates kinematic hardening, which translates the endurance surface so that a loading cycle

with an effective traction satisfying the condition 0  t  d
n

will always remain within the surface

itself, after a very limited and negligible initial accumulation of cyclic damage.

Once tpl
n

, upl

n

and r
n

are estimated, the remaining interface parameters can be calibrated as

follows. Remembering that td
n

= K
n

ud

n

and td
n

ud

n

= 2G
I

allows writing td
n

=
p
2K

n

G
I

, where K
n

580

should not be confused with K
I

. Using this expression in Eq.(29), remembering that r
n

has already

been estimated, provides a relationship of the form tpl
n

= tpl
n

(K
n

, C
n

). At this point, assuming
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C
n

= K
n

, for reasons clarified further on, provides a relationship of the form tpl
n

= tpl
n

(K
n

), from

which the value of K
n

ensuring the previously selected value of tpl
n

can be inferred. The hardening

coefficient has been set as C
n

= K
n

so that, in the monotonic plastic-damage curve in Fig.(3),585

the slope of the curve following the linear loading branch is approximately half that of the linear

branch. However, it is underlined that this is an assumption motivated by experimental ignorance:

the constant could and should be calibrated from data about the monotoning loading, whenever

available. As K
n

and C
n

are available, the relationships recalled above allow the straightforward

determination of td abd ud

n

. Moreover, the condition G
I

= G
II

and the assumptions r
t

= r
n

,590

K
t

= K
n

, C
t

= C
n

allow determining tpl
t

, upl

t

, td
t

and ud

t

, as summarised in Table 1. It is underlined

that the coincidence between normal and tangential components, in Table 1, is motivated by the

lack of specific material information and it is not related to a limitation of the cohesive model,

which is able to account for differences between normal and tangential values.

Table 1: Intergranular properties for the simulated polycrystalline components.

Property Component Value

Interface limit tractions and displacement jumps

Elastic-plastic limit strengths tpl
n

, tpl
t

1.1GPa

Elastic-plastic critical displacement jumps upl

n

, upl

t

12.84⇥ 10�3 µm

Pure damage strengths td
n

, td
t

1.54GPa

Pure damage critical displacement jumps ud

n

, ud

t

9.16⇥ 10�3 µm

Interface constitutive parameters

Endurance surface radii r
n

, r
t

0.35GPa

Cohesive elastic stiffnesses K
n

, K
t

16.83Nµm�3

Cohesive hardening coefficients C
n

, C
t

16.83Nµm�3

Damage-plasticity coupling parameter a 15

Damage evolution parameter m 12

The damage evolution parameter m and the coupling parameter a are closely related to the595

fatigue life of the considered material. In fact, by considering Eq.(25) and Eq.(29), for a uniaxial
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tension test the number of cycles to rupture N
f

can be estimated as

N
f

/ a

 
t2
a

+ t2
m

tpl
n

2

!�(m�1)

(44)

where t
a

and t
m

are the amplitude and mean value of the normal traction cycle. In Ref.[75] the

fatigue life of polysilicon tensile specimens was estimated as N
f

=
�
t
a

/tpl
n

��50 (where the symbols

have been adapted for the sake of readability within the present discussion), which appeared to600

accurately reproduce the experimental results available to the authors therein. In the present

study, the values m = 12 and a = 15 have been selected by calibrating the cohesive law so to

numerically reproduce the same fatigue life as that experimentally observed in Ref.[75], for the

values of traction amplitude t
a

= 1.05, 1.0, 0.95, 0.9GPa.

5.2. Individual interface testing605

The proposed interface formulation is first assessed by considering the simple system shown in

Fig.(6), where a single interface lies between two prismatic rigid grains, modelled with the boundary

element method and meshed with the procedure described in Section 4.1. The edge of the cubic

aggregate is l = 1µm and the interface lies on the plane x3 ⌘ z = 0.5 µm.

As mentioned, for this specific test, the two grains are assumed as rigid; this is obtained by set-610

ting their material constants as c̃
ij

= 10⇥c
ij

, with the values c
ij

given in the previous section. This

is done so that the grains may transfer the boundary conditions to the interface as displacements

jumps, allowing to investigate the behaviour of the interface without accounting for effects induced

by the accumulation of elastic energy. Additionally, maintaining the boundary element represen-

tation for the grains, even with this artificially high value of stiffness, allows assessing the correct615

coupling between boundary element and interface equations. On the other hand, the interface is

modelled employing an intrinsic approach, i.e. assuming an initial damage !0 = 0.01; all the other

interface parameters are collected in Table 1 and have been estimated as detailed in Section 5.1.

Initially, pure mode I and mode II debonding tests under increasing monotonic loading in

displacement control are performed. The loads are applied as opening or sliding displacements620

enforced over the top face of the top grain, at x3 = 1 µm, while restraining the displacements of

the bottom surface. The response of the interface is shown in Fig.(7) in terms of t3 = t3(�u3)

for mode I and t1 = t1(�u1) for mode II. The response of the proposed coupled plastic-damage

model is compared to the bilinear response that would be obtained from a pure damage model,
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ui(�) = ūi(�) or ti(�) = t̄i(�)

x1

x2 x3
interface

Figure 6: Schematic configuration adopted for testing the proposed cohesive formulation: an individual interface lies

between two prismatic quasi-rigid domains modelled with the boundary element method.. The edge of the cubic

domain is l = 1µm. The interface lies on the plane x3 = 0.5 µm. Both quadrangular and triangular boundary

elements appear in the mesh, with their functional nodes represented as bold points.

for which only the damage activation function discussed in Section 3.2 would be considered. For625

the coupled model, the set of assumed constitutive parameters, especially the values of m and a,

induce increments of damage in the elastic-plastic branch so that the interface exhibits softening

also without the activation of the specific damage yielding function, i.e. for �
d

< 0. The pure

damage activation condition might only be fulfilled, considering e.g. pure mode I loading, if td
n

would always lie within the endurance surface, in its initial position centred at the origin of the630

reference frame, that is for a value of pure damage strength less than the endurance surface radius,

td
n

< r
n

: in this case the interface would exhibit the pure damage bilinear behaviour with softening

represented by the dashed curve in Fig.(7).

The discussed monotonic loading cases provide useful information about the quasi-static be-

haviour of the interface. However, to highlight the novelty and features of the proposed model,635

which is able to describe damage initiation and evolution under cyclic loading by suitably coupling

damage itself with hysteretic plasticity, loading/un-loading/re-loading cyclic loading is considered

next. For this purpose, the considered two-grain system is analysed when the top surface is loaded

in displacement control, in pure mode I or mode II, with load cycles of increasing amplitude.
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Figure 7: Response of the interface under monotonic increasing loading in displacement control, in pure mode I,

t3 = t3(�u3), and pure mode II, t1 = t1(�u1). The proposed model is compared to the response provided by a pure

damage model, obtained by artificially increasing the diameters of the endurance surface.

The cyclic increasing-amplitude mode I loading produces cycles of the normal traction ranging640

between compressive and tensile values and the response of the interface in terms of normal traction

t3 versus displacement u3(⌧) enforced on the top surface is reported in Fig.(8), where the hysteretic

elastic-plastic behaviour in the un-loading/re-loading cycles can be observed, as well as the pure

elastic response in compression states.

The coupled model links hysteretic plasticity with damage evolution and stiffness degradation645

as the plastic limit condition �
p

= 0 is attained. The hysteretic effect in the coupled model

is shown in Fig.(9) for the two-grain system loaded in pure mode I by an amplitude-increasing

cyclic displacement u3 enforced over the top face. In particular, Fig.(9a) shows the evolution

of damage versus the value of enforced displacement. Damage increases when the plastic-damage

condition �
p

= 0 is attained, mainly during the loading branches, although small damage increments650

also take place during the un-loading phase. Fig.(9b) reports the evolution of plastic deformation

versus the value of enforced displacement, highlighting positive increments of plastic deformation

in the loading and re-loading branches and decrements in the un-loading phases. Decrements of

plastic deformation associated to damage increments take place in the un-loading branches when the

plastic-damage limit condition (�
p

= 0) is attained and they are governed by the non-associative flow655
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Figure 8: Response of the interface under increasing-amplitude mode I load cycles compared with the response under

monotonic opening load.

rules in Eqs.(23). Neither damage nor plastic deformation increments are induced in compression.

The proposed interface model is also tested in pure mode II, simulated by enforcing a dis-

placement u1 at the top face of the two-grain system. Both the quasi-static and cyclic responses

are shown in terms of tangential traction t1 versus tangential displacement u1 in Fig.(10), where

the hysteresis cycles can be easily observed. Fig.(11) reports the evolution of damage and plastic660

deformation versus enforced displacement u1 for increasing-amplitude mode II cycles.

Eventually, the specific features of the coupled model can be discussed by considering the effects

on the interface of cyclic loading tractions, whose values are always lower than the interface strength

t
n

(⌧) < tpl
n

8⌧ . The low-cycle fatigue tests are performed in load control, by enforcing on the top

surface of the two-grains system a tensile pulsating traction, i.e. a cyclic tensile traction ranging665

between zero and a maximum value, 0  t
n

(⌧)  tmax

n

. Four different values of cyclic peak traction

are considered: cyclic 1 with tmax

n

= 1.05GPa ⇡ 0.95 tpl
n

; cyclic 2 with tmax

n

= 1.0GPa ⇡ 0.91 tpl
n

;

cyclic 3 with tmax

n

= 0.95GPa ⇡ 0.86 tpl
n

; cyclic 4 with tmax

n

= 0.9GPa ⇡ 0.82 tpl
n

. Fig.(12) shows

the interface responses in terms of normal traction t3 versus normal displacement u3 for the four

differente cyclic loads, comparing them to the response to monotonic increasing load. It is observed670

that, even when the traction level is always lower than the interface normal strength tpl
n

, the interface

exhibits plastic accumulation and damage evolution after each load cycle. Fig.(12) also shows how,
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a b

Figure 9: Evolution of the interface variables during mode I amplitude-increasing load cycles: a) damage; b) plastic

deformation.

Figure 10: Response of the interface under increasing-amplitude mode II load cycles compared with the response

under monotonic sliding load.
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a b

Figure 11: Evolution of the interface variables during mode II amplitude-increasing load cycles: a) damage; b) plastic

deformation.

when the considered cyclic traction-separation curve reaches the monotonic curve, abrupt rupture

is triggered. In fact, the analyses are performed in loading control and when the maximum applied

traction tmax

n

becomes greater than the interface residual strength, whose envelope is described by675

the monotonic softening branch, the interface suddenly breaks.

Fig.(13) reports the evolution of damage as a function of the number of loading cycles as well

as the interface fatigue life versus the stress amplitude �t
n

= tmax

n

for the four mode I tests,

confirming the expected dependence of the number of cycles to failure on amplitude of the stress

cycle (linear in the logarithmic scale). For the assumed constitutive parameters, the mode II cyclic680

loading condition produces identical results in terms of number of loading cycles at the debonding

condition.

5.3. Polycrystalline aggregates testing

After testing the individual interface, the developed framework is assessed in this section by

analysing a few polycrystalline aggregates. Cubic unit cells containing N
g

= 50 grains are first685

analysed: these tests illustrate the potential employment of the developed framework in a multiscale

perspective, in which the considered unit cells could exemplify representative volume elements

(RVEs) associated to points of a given macro-continuum. It is underlined that no study of material

representativity has been performed here: the tests have been carried out on cubic unit cells with

N
g

grains without claiming that such number of grains is sufficient for identifying an RVE for the690

considered material and loading conditions, but only that the framework could be employed in this
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Figure 12: Response of the interface under pure mode I cyclic tractions, for four different values of peak applied

normal traction: cyclic 1 with t

max

n

⇡ 0.95 tpl
n

; cyclic 2 with t

max

n

⇡ 0.91 tpl
n

; cyclic 3 with t

max

n

⇡ 0.86 tpl
n

; cyclic 4

with t

max

n

⇡ 0.82 tpl
n

.

Figure 13: Evolution of damage as a function of the number of cycles (left axis) and relationship between load

amplitude and number of cycles to failure (right axis) for mode I cyclic loading.
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sense. Eventually, a pseudo-3D (2D columnar) aggregate is analysed: this last test illustrates the

potential use of the framework in the direct analysis of micro-mechanical devices, with well defined

geometries, materials, loading and boundary conditions.

All the tests have been performed on individual 36-core nodes of CINECA’s Galileo supercom-695

puter (each node contains two 18-cores Intel Xeon E5-2697, v4 – Broadwell – at 2.30GHz), see

https://www.hpc.cineca.it/hardware/galileo.

5.3.1. Analysis of fully 3D aggregates

Initially, five different polysilicon aggregates under increasing monotonic loads are investigated,

to assess their quasi-static response. Fig.(14) represents the morphology of one of the considered700

specimens and schematically describes its morphology, mesh and possible boundary conditions.

Each of the considered aggregates counts N
g

= 50 grains of average diameter d
g

= 1.0 µm, with

random crystallographic orientation in space and contained within a cubic volume whose edge length

is l
uc

= 2.97 µm. The polysilicon constants are given in Section 5.1.

t = �(�) � n3u = �(�) � n3
if disp. control if load control

a b
u � n3 = 0

t = 0

x1 x2

x3

Figure 14: Example morphology for a cubic aggregate containing N

g

= 50 grains: a) schematic of the enforced

boundary conditions; b) representative mesh.

The aggregates are initially subjected to increasing monotonic tensile load in displacement705

control up to failure, applied by enforcing the displacements ū (x1, x2, luc) = �(⌧)n3 to all the

points over the top surface and restraining the points of the bottom surface ū (x1, x2, 0) · n3 = 0.
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Fig.(15) shows the averaged stress component

⌃33 =

Z

V

�33 (x) dV (x) =

Z

@V

t3n3 d@V, (45)

see e.g. Ref.[21], as a function of the nominal applied strain �̄33 = 100⇥ū3/luc, for the five different

morphologies. For the considered grain/interface material constants, the analysed morphologies710

exhibit brittle behaviour, which is reflected both macroscopically, in the limited extension of the

post-peak brach of the stress-strain curves, and microscopically, in the very limited accumulation

of intergranular damage up to load levels indefinitely close to the failure load, as shown in Fig.(16),

which reports the deformed configuration and the distribution of intergranular damage for the last

computed step before failure for three of the five considered morphologies. This is due to the715

unstable release of the strain elastic energy stored within the grains upon intergranular damage

initiation.

Figure 15: Average stress component �33 versus applied nominal strain �̄33 for the five considered morphologies

under increasing monotonic load.

In order to further assess the pure intergranular behaviour under monotonic increasing load,

without taking into account the effect of the elastic energy stored in the grains during the loading

process, an aggregate of quasi-rigid grains is then considered: analogously to what has been pre-720

viously done in the test of the individual interface, quasi-rigid grains are simulated by assuming

c̃
ij

= 10 ⇥ c
ij

, where c
ij

are the material constants associated to polysilicon. The first of the five
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Morphology 1

a

b

Morphology 2

Morphology 5

c

d

e

f

Figure 16: Last computed snapshots for the morphologies 1, 2 and 5, whose averaged stress-strain curves are

represented in Fig.(15): deformed configurations (a, b, c) and distribution of intergranular damage (e, f, g). An

amplification factor a

f

= 30 is applied to the computed displacements to obtain the shown deformed configurations.
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analysed morphologies is selected and loaded in displacement control, assuming quasi-rigid grains.

Fig.(17) reports the curve of the average stress component ⌃33 versus the nominal strain �̄33: when

no elastic energy is stored within the grains, as in the case of quasi-rigid behaviour, all the work725

of the external loads is fully transferred to the interfaces, which then absorb energy undergoing

damage and plasticity evolution in a stable process. Fig.(17) shows as, in this case, the cohesive

laws allow tracking the stable evolution of the aggregate up to complete failure. Fig.(18) shows the

deformed configuration and the distribution of intergranular damage for the four points A, B, C, D

marked in Fig.(17): it may be observed how intergranular damage exhibits a more stable evolution.730

Figure 17: Average stress component ⌃33 versus applied nominal strain �̄33 for an aggregate of quasi-rigid grains

(morphology 1).

Eventually, the evolution of the aggregate under cyclic load is analysed. The first morphology is

considered and loaded by restraining the displacements of the bottom surface, ū (x1, x2, 0) ·n3 = 0,

and enforcing the traction t̄ (x1, x2, luc) = �(⌧)n3 on the top surface, with the loading factor

graphically shown in Fig.(19) and defined by

� (⌧) =
� t̄ |max

qs

2

⇢
4

T


⌧ �

✓
⌧ � T

4

◆
H

✓
⌧ � T

4

◆�
+ sin (⌅ ⌧)

�
8⌧ > 0, (46)

where t̄ |max

qs

is the quasi-static failure tensile traction, � is a coefficient using to set the peak load at735

a fraction of t̄ |max

qs

, H is the Heaviside step function and T = 2⇡/⌅. It is worth mentioning that,

since no inertial or frequency effects are considered in the formulation, the variable ⌧ appearing
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A
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Damage

b

c

d

e

f

g

h

B

C

D

Figure 18: Deformed configurations (a, b, c, d) and distribution of intergranular damage (e, f, g, h) corresponding to

the marked points in Fig.(17). An amplification factor a

f

= 30 is applied to the computed displacements to obtain

the shown deformed configurations.
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in Eq.(46) is a pseudo-time playing the role of an ordering parameter; analogously the period T

and angular frequency ⌅ have no real physical or computational role, as the automatic solution

step range is automatically set in relation to T . In particular, the pseudo-time step �⌧ is selected740

within the range �⌧
min

 �⌧  �⌧
max

, where �⌧
max

= T/40 and �⌧
min

= T/4000. After

the successful solution of the system of equations at the pseudo-time step ⌧
k

, the solution at the

pseudo-time step ⌧
k+1 = ⌧

k

+ �⌧
k

is sought selecting the pseudo-time step increment as �⌧
k

=

�⌧
max

+ (�⌧
min

��⌧
max

)Nk

iter

/Nmax

iter

, where Nk

iter

is the number of iterations to convergence for

⌧
k

and Nmax

iter

= 50 is the selected maximum number of iterations to convergence, see also Ref.[20].745

Figure 19: Definition of the loading factor �(⌧).

For the considered morphology, the value of t̄ |max

qs

= t̄3|max

qs

= 1.08GPa was previously com-

puted running a preliminary quasi-static test in loading control, enforcing a uniform monotonically

increasing tensile traction t̄ = ⌧ n3 over the aggregate top surface. For � = 0.95, i.e. when the

cycle peak load is at 95% of the quasi-static failure traction, the considered aggregate underwent

N
f

= 140 cycles before failure. Fig.(20) shows the deformed configurations and the intergranular750

evolution of damage and plastic deformation at the 35-th, 70-th, 105-th and 140-th cycle peaks.

Also in this case the accumulation of intergranular damage before failure appears to be of modest

entity, due to the brittleness of the aggregate.

After considering a cyclic load with peak values at 95% of the quasi-static failure traction,

� = 0.95 in Eq.(46), also cyclic loads with peak loads at 90% and 87.5% of the quasi-static failure755
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35th cycle peak

70th cycle peak

105th cycle peak

140th cycle peak

a e i

b f l

c g m

d h n

Figure 20: Deformed configuration (a, b, c, d), intergranular distribution of damage (e, f, g, h) and plastic deformation

(i, l,m,n) at different peak loads for the analysed morphology (� = 0.95, N
c

= 140).
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traction have been considered, � = {0.90, 0.875}. For � = 0.90 the number of cycles to failure was

N
c

= 1380, while for � = 0.875 the computation of N
c

was not completed in the allocated wall

time (23 h) on the employed HPC system (1813 full cycles were however completed before the job

was killed by the system). Since the number of cycles to failure for the considered morphology was

computed only for 2 load levels, the fatigue life curve is not reported (a fatigue life curve will be760

shown in the next section for a pseudo-3D aggregate).

Eventually, it may be of interest to mention that, on the HPC machines specified above (CINECA’s

Galileo), for � = 0.95, N
c

= 140 cycles were computed in 1 h 50min, for � = 0.90, N
c

= 1380 cycles

were computed in 10 h 28min, while for � = 0.875, 1813 cycles were computed in 23 h. The infor-

mation on computing times is given for informative purposes, as no systematic assessment of the765

computing performance of the implemented framework has been performed.

5.3.2. Pseudo-3D bracket

The present test considers the specimen shown in Fig.(21), where the geometry, tessellation,

mesh and boundary conditions are schematically represented. The bracket size is defined by

H = 19.8 µm, W = 0.4H, h = 0.1H, w = 0.25W , and thickness T = 0.05H, considering that the770

curved walls are parabolic, and it has been determined so that the each grain has average diameter

d
g

= 1.0 µm in the x1x2 plane. The tessellation has been generated by extruding a 2D tessella-

tion along the x3 axis, so to obtain a 2D columnar, or pseudo-3D, morphology, and it comprises

N
g

= 151 grains with random crystallographic orientation in the 3D space. The concave exter-

nal boundaries have been obtained by using the clipping tools available in version 4.1 of Neper775

(http://neper.sourceforge.net) [12].

The bracket is clamped at the bottom end, ū(x1, 0, x3) = 0, and loaded by a uniform cyclic

tensile traction t̄(x1, H, x3) = �(⌧)n2 applied over the other end, so to deliver a repeated tensile

loading. The loading factor �(⌧) is still specified by Fig.(19) and Eq.(46), where t̄ |max

qs

= t̄2|max

qs

=

0.52GPa was preliminarily determined by performing a quasi-static monotonic loading test in load780

control.

In the first test, the bracket has been subjected to a repeated tensile load with peaks at 95%

of the quasi-static failure load, � = 0.95 in Eq.(46). In this condition, the bracket underwent

N
c

= 63 cycles and Fig.(22) shows the deformed configuration and intergranular distribution of

damage and plastic deformation at the last computed peak before failure. Also in this case, the785
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Figure 21: Schematic representation of the analysed pseudo-3D polycrystalline aggregate: a) geometry and size; b)

mesh and boundary conditions.
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failure process shows the hallmarks of brittleness, with very limited accumulation of damage up to

the step immediately preceding the abrupt failure, accompanied by the release of the elastic strain

energy stored within the grains in the deformation process.

a b c

Figure 22: Snapshot at the last (63-th) load peak for the analysed pseudo-3D aggregate, loaded by an alternated

traction with � = 0.95: a) deformed configuration; b) distribution of intergranular damage; c) distribution of

intergranular plastic deformation. An amplification factor a

f

= 10 is applied to the computed displacements to

obtain the shown deformed configuration.

After the cyclic repeated load at � = 0.95, also the cases � = {0.90, 0.875, 0.85} have been

analysed and it has been found that the bracket underwent, respectively, N
c

= {354, 759, 1750}790

cycles before failure. The corresponding fatigue life curve has been reported in Fig.(23), where it

can be noted the liner trend when N
c

is reported in a logarithmic scale.

Fig.(23) also reports an indication of the computational times required by the various tests on

the employed HPC system. It is reiterated that this information is reported only for informative

purposes and should not be considered as a systematic assessment of the framework performances:795

it is noted, for example, that the computation of N
c

= 759 cycles for � = 0.875 requires only few

minutes more that the computation of N
c

= 354 cycles for � = 0.90, probably due to the fact that

the first case the disk record of the microstructural state has been required once every 1000 solution
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steps, instead than at every step, as done for � = 0.90, which motivates the little difference in CPU

time.800

Figure 23: Fatigue life versus � for the considered pseudo-3D bracket under tensile alternate load. The annotations

also reports the computing time in the employed HPC system.

6. Discussion and further developments

In this work, a novel framework for the analysis of polycrystalline aggregates under cyclic loading

has been proposed, developed, implemented and computationally assessed. The tool is based on a

three-dimensional multi-region boundary element formulation enriched with intergranular cohesive

laws coupling damage and plasticity in a thermodynamically consistent approach. The intergran-805

ular laws are able to track the initiation of damage and either its evolution under quasi-static

monotonically increasing loading or its cycle-by-cycle accumulation up to interface failure. The

results presented and discussed have shown the potential of the framework for multiscale materials

modelling as well as for computational micromechanics and analysis and design of micro-mechanical

systems.810

Few considerations about the scope, limitations and further developments are worthwhile. First

of all, it must be highlighted that the framework, in its present implementation, is suitable for

modelling materials in which non-linear processes, namely plasticity and/or damage initiation and
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evolution, are highly confined within the intergranular regions. An example is provided by polysili-

con, e.g. polycrystalline silicon, one of the materials most employed in the manufacturing of MEMS815

[73], for which some authors have proposed the existence of thin amorphous grain-boundary regions

exhibiting non-traditional forms of plastic deformation [34].

However, in general, low-cycle damage and failure emerge from the interaction of several complex

micro-mechanisms [36]. Low cycle fatigue in materials exhibiting crystal plasticity, e.g. nickel-base

alloys, is often initiated by the localisation of plastic slip, under cyclic loading, at persistent slip820

bands, which then evolve in low-cycle crack initiation sites [79]. In its present implementation,

the proposed model is not able to represent such complex phenomena. To investigate and capture

such processes, the framework should be enriched with the capability of modelling crystal plasticity

and transgranular cracking: both mechanisms have been separately modelled within the scope of

the present grain-boundary formulation [80, 22], but their integration within the present low-cycle825

modelling strategy represents a non-trivial task, both from the theoretical and computational points

of view, and could form the object of further investigation. Another limitation of the formulation

is related to the lack of consideration of rate-dependent effects, which may occur in general loading

cases [81]. Indeed, the proposed cohesive laws have been developed in a rate-independent framework:

the inclusion of rate-dependency in the plasticity/damage evolution laws could noticeably extend830

the model capability.

The developed framework provides a tool for the qualitative study of materials whose behaviour

can be framed within the identified scope. To enhance its quantitive predictive capability, the

parameters entering the formulation should be calibrated, either experimentally or resorting to

computational tools addressing the material mechanics at lower scales. In Section 5.1, some heuristic835

estimates of the model parameters have been discussed. However, the experimental calibration of

the proposed framework is an issue deserving systematic assessment and focused investigation.

An interesting direction of further research could be related to the extension of the present

boundary element framework through hybridization with other numerical techniques: the conjoined

employment of BEM and the rapidly emerging virtual element method [82] could extend the scope840

and capability of the framework in a multi-technique optimization perspective [83, 84, 85, 86].

Eventually, the performed tests have highlighted the need of large amounts of storage memory

for the solution of the systems of equations produced by the present formulation, which is here

tackled employing the third party solver PARDISO (https://www.pardiso-project.org). This
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aspect, which could induce potential issues when addressing large aggregates, could be tackled845

tailoring specific iterative solvers in conjunction with special matrix formats, namely fast multipoles

[68] and hierarchical matrices [69, 70, 87, 88], to the analysis of the multi-region polycrystalline

problem. This challenging investigative effort could result in a highly effective and more competitive

computational tool for materials micro-mechanics and for the design and analysis of MEMS.

7. Conclusions850

In this work a three-dimensional model for the analysis of polycrystalline aggregates undergo-

ing low-cycle degradation up to complete failure has been developed. The model is based on the

conjoined use of a three-dimensional Voronoi multi-region boundary element formulation for poly-

crystalline aggregates and of thermo-dynamically consistent cohesive laws, coupling plasticity and

damage, for tracking the accumulation of intergranular damage under the action of cyclic loads.855

The proposed cohesive laws has been implemented and tested on individual interfaces and the com-

plete framework has then been assessed by simulating the behaviour of a few 3D and psudo-3D

aggregates. The obtained results confirm the potential of the methodology for multiscale materials

modelling and for the analysis and design of micro-devices, e.g. MEMS, also highlighting directions

of further investigation.860
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