
����������
�������

Citation: Mijatovic, G.; Kljajic, D.;

Kasas-Lazetic, K.; Milutinov, M.;

Stivala, S.; Busacca, A.; Cino, A.C.;

Stramaglia, S.; Faes, L. Information

Dynamics of Electric Field Intensity

before and during the COVID-19

Pandemic. Entropy 2022, 24, 726.

https://doi.org/10.3390/e24050726

Academic Editor: Osvaldo Anibal

Rosso

Received: 16 April 2022

Accepted: 17 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Information Dynamics of Electric Field Intensity before and
during the COVID-19 Pandemic
Gorana Mijatovic 1 , Dragan Kljajic 1, Karolina Kasas-Lazetic 1 , Miodrag Milutinov 1 , Salvatore Stivala 2 ,
Alessandro Busacca 2, Alfonso Carmelo Cino 2, Sebastiano Stramaglia 3 and Luca Faes 2,*

1 Faculty of Technical Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; gorana86@uns.ac.rs (G.M.);
dkljajic@uns.ac.rs (D.K.); kkasas@uns.ac.rs (K.K.-L.); miodragm@uns.ac.rs (M.M.)

2 Department of Engineering, University of Palermo, 90128 Palermo, Italy; salvatore.stivala@unipa.it (S.S.);
alessandro.busacca@unipa.it (A.B.); alfonsocarmelo.cino@unipa.it (A.C.C.)

3 Department of Physics, University of Bari, 70121 Bari, Italy; sebastiano.stramaglia@ba.infn.it
* Correspondence: luca.faes@unipa.it

Abstract: This work investigates the temporal statistical structure of time series of electric field (EF)
intensity recorded with the aim of exploring the dynamical patterns associated with periods with
different human activity in urban areas. The analyzed time series were obtained from a sensor of
the EMF RATEL monitoring system installed in the campus area of the University of Novi Sad,
Serbia. The sensor performs wideband cumulative EF intensity monitoring of all active commercial
EF sources, thus including those linked to human utilization of wireless communication systems.
Monitoring was performed continuously during the years 2019 and 2020, allowing us to investigate
the effects on the patterns of EF intensity of varying conditions of human mobility, including regular
teaching and exam activity within the campus, as well as limitations to mobility related to the
COVID-19 pandemic. Time series analysis was performed using both simple statistics (mean and
variance) and combining the information-theoretic measure of information storage (IS) with the
method of surrogate data to quantify the regularity of EF dynamic patterns and detect the presence
of nonlinear dynamics. Moreover, to assess the possible coexistence of dynamic behaviors across
multiple temporal scales, IS analysis was performed over consecutive observation windows lasting
one day, week, month, and year, respectively coarse grained at time scales of 6 min, 30 min, 2 h,
and 1 day. Our results document that the EF intensity patterns of variability are modulated by
the movement of people at daily, weekly, and monthly scales, and are blunted during periods of
restricted mobility related to the COVID-19 pandemic. Mobility restrictions also affected significantly
the regularity of the EF intensity time series, resulting in lower values of IS observed simultaneously
with a loss of nonlinear dynamics. Thus, our analysis can be useful to investigate changes in the
global patterns of human mobility both during pandemics or other types of events, and from this
perspective may serve to implement strategies for safety assessment and for optimizing the design of
networks of EF sensors.

Keywords: dynamical systems; electric field intensity; nonlinear dynamics; predictability; complexity;
human mobility

1. Introduction

The presence of electromagnetic fields (EMFs) arising from both natural and artificial
sources represents a ubiquitous phenomenon in the human environment [1]. The natural
origins of EMFs, such as the Sun, the Earth’s natural electric and magnetic field, cosmic
radiations, and atmospheric discharges, were the only sources during the longest period
of evolutionary development. The 20th century brought a sudden expansion of artificial
(human-made) field sources, which are nowadays mostly due to the wireless transmission
technology (WTT) [2]. Playing a key role in today’s communication, the WTT represents a
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wireless modality for data transfer by means of electromagnetic waves, and has become
of huge practical importance in our daily activities. As such, this modality is central to
emerging technologies over the next years, including 5G/6G cellular systems [3,4], new
medical devices [5], robots and drones [6], self-driving vehicles [7], etc. By increasing
the number of EMF sources, the intensity of EMF also increases. This increase can be
induced by higher power transmitters (radio and TV transmitters, mobile phone base
stations), as well as by the low-power devices that we use every day, such as mobile phones,
microwave ovens, Wi-Fi routers, etc. An unavoidable effect of these phenomena is the
chronic exposure of the population to EMF values, to an extent such that the exposure on
wireless communication networks is often cited as a major cause of public concern about
possible adverse effects of EMFs on health [8]. Accordingly, the scientific studies of EMF
intensity treat this aspect as one of the most crucial, including recommendations by national
and international health/scientific authorities, such as the International Commission on
Non-Ionizing Radiation Protection, ICNIRP [9], for establishing safety limits for exposure
to EMFs.

A relevant aspect in the study of EMFs, besides measuring the average intensity over
a certain period, refers to the temporal variability of the electric field (EF) monitored dur-
ing that period. A relevant question, raised in this work, is how the presence/absence
or temporary gathering of people who use wireless communication services affects the
variability over time of the EF intensity. To address this question, we perform a thorough
analysis of the temporal statistical structure of time series reflecting cumulative intensity of
wideband EFs. The time series are acquired by a sensor placed in the campus area of the
University of Novi Sad, Serbia, during two consecutive years, 2019 and 2020. Analyzing
data from this recording site allows us to investigate the underlying intrinsic dynamics of
EF intensity depending on human mobility and gathering. The analysis of human mobility
as a dynamic phenomenon has been extensively performed in the last two decades by
interdisciplinary studies aimed to understand the intrinsic properties of human movements
and the mechanisms behind the detected patterns [10,11], and to determine the effects
of these patterns on the structure and dynamics of social networks [12,13], on economic
phenomena [14], and recently even on the transmission of the COVID-19 disease [15,16].
While human mobility is typically analyzed by the direct use of cellular phone data through
the global navigation satellite system (GNSS), here we deal with this concept (more pre-
cisely, with people absence/presence or gathering in the location of interest) implicitly, by
observing its overall effects on the time series of EF intensity. Specifically, the availability of
longitudinal data collected continuously over two years in the observed location offers the
possibility to explore the effects of human presence and its extent on the dynamic changes
of the EF intensity. These changes are related to contributions arising from EF sources
linked to human utilization of wireless communication systems and the corresponding
services, and thus have the potential to provide additional and complementary information
to the one which can be gathered by GNSS data.

The dynamic patterns of EF intensity measured by the considered sensor capture
different scenarios of human mobility, including the daily movements of university staff
and students within the campus, the decreased mobility during weekends, the less regular
gathering of people in the periods of university exams, the considerably reduced pres-
ence of university population during holidays and summer break, and—in the analyzed
years—the blocked or restricted mobility of the university population due to the state
of emergency related to the COVID-19 pandemic. To properly investigate this complex
process featuring dynamic patterns deployed across multiple temporal scales, we use
both simple statistics (mean, variance) and information-theoretic measures of dynamical
complexity implemented through a multiscale approach. Specifically, we characterize the
EF intensity time series using the information storage (IS), a measure quantifying the
amount of uncertainty about the present state of a dynamic system that can be resolved by
the knowledge of its past states [17]. Recognized as one of the three key components of
information processing (i.e., information storage, transfer, and modification) [18], IS reflects
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the regularity of the dynamic patterns in a time series, and has been applied with broad rel-
evance in diverse real-world dynamical systems ranging from human–brain networks [19]
and robot motion [20] to cardiorespiratory [21] and cardiovascular [22] dynamics. The
popularity of dynamical information measures like IS stems primarily from their generality
and applicability to short-length and noisy processes, which allow for characterizing the
dynamical nature of the systems generating the observed time series in an efficient and
robust way. Besides studying the temporal variability of the EF intensity and its regularity,
in this work, we combine the estimation of IS [23] with the method of surrogate data [24],
to investigate the presence of nonlinear dynamics in such time series. In addition, to
account for the possible coexistence of oscillatory behaviors at different temporal scales, we
follow a multi-scale approach [25], whereby IS is computed after “rescaling” the observed
process to focus on a specific range of temporal scales; rescaling is performed by filtering
out the fast temporal features from the observed EF time series before the computation of
IS. The resulting time series, mapping the average EF intensity collected at time scales of
6 min, 30 min, 2 h, and one day, and analyzed respectively over epochs lasting one day,
one week, one month, and one year, are investigated to capture the multiscale complexity
and nonlinearity of the dynamic changes of EF exposure before and during the COVID-19
pandemic.

2. Materials and Methods

This section presents the data used in the work and describes the statistical measures
used to analyze them. Our analysis is focused on time series of EF intensity whose temporal
statistical properties are assessed by the information-theoretic measure of information storage
(IS). The IS measure is computed to quantify the regularity of the analyzed EF intensity
time series, i.e., the presence of repetitive (predictable) patterns in the series. Regularity
measures like IS are inversely related to the complexity of the time series intended as its
degree of unpredictability. In addition, the method of surrogate data associated with
the quantification of regularity is employed to investigate the presence of nonlinearity in
the analyzed time series, intended as the existence of nonlinear dynamics: a time series
is regarded as nonlinear if its regularity quantified by the IS measure is significantly
larger than the regularity of surrogate series in which the linear temporal correlations are
preserved, but nonlinear correlations are destroyed. Note that the concepts of complexity
and nonlinearity do not necessarily align: a time series can be very complex (thus barely
predictable) even if it is governed by linear dynamics, or very predictable (thus with small
complexity) even if it is determined by nonlinear relations. Our analyses are focused on
establishing separately, respectively using the IS and the method of surrogate data, the
level of complexity of the EF time series, and the existence of nonlinear dynamics during
different observation windows.

2.1. EMF RATEL Monitoring System and EF Intensity Time Series

The data analyzed in this work originate from the wireless sensors network launched
in 2017 by the Serbian Regulatory Agency for Electronic Communications and Postal
Services (RATEL). The network, called EMF RATEL, performs day-to-day monitoring of EF
intensity and assessment of the overall population exposure to the field values [26]. The
system is designed to operate in heterogeneous network environments, and incorporates
various classes of EMF monitoring sensors which perform frequency-selective or broadband
cumulative measurements of the EF level, collecting signals from all the active EF sources
which surround the sensors placed in a given location [27]. The network currently contains
88 wireless sensors strategically placed in zones of high sensitivity (i.e., where people are
expected to stay for longer periods, such as universities, schools, and hospitals) across
the whole territory of the Republic of Serbia [26]. The field probes of the used sensors
are isotropic, which means that the monitoring is performed by considering all field
components. The average EF intensity measured by the sensors over consecutive periods
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of six minutes is stored in the form of time series data and transferred at a daily basis to the
centralized database of the EMF RATEL system [27].

The time series analyzed in this study were acquired by a sensor providing broadband
cumulative EF intensity measurements in the frequency range 100 kHz–7 GHz [27], located
in the campus area of the University of Novi Sad, Serbia. This location is characterized as a
densely populated area in regular circumstances, i.e., during semesters and exams periods,
and with a considerably reduced circulation of university population during the summer
break in August. The data used in this work were acquired during 2019 and 2020, so as to
cover the activity collected in the campus before and during the pandemic of COVID-19.
These data provided by RATEL, as well as the data from all other locations where sensors
are installed, are available and can be freely downloaded from the Serbian Open Data
Portal [28]; the data set used here can be downloaded from the link [29].

2.2. Time Series Pre-Processing

The EF intensity time series recorded by the sensor described above were treated as
realizations of a discrete-time process mapping the dynamics activity of the EF monitoring
station. In this work, motivated by the knowledge that dynamical systems typically exhibit
a multi-scaled complexity as they operate across multiple spatial and temporal scales,
before performing statistical analyses, we pre-processed the recorded time series according
to the coarse graining procedure described in the following [25].

First, starting from the time series collected with a sampling period of six minutes (sam-
pling frequency fs = 0.167 min−1), we considered portions of the time series covering the
EF intensity over four different observation windows, i.e., at each day (N = 240 samples),
week (N = 1680 samples), month (N = 7200 samples), and year (N = 86,400 samples). The
portion of the time series corresponding to each observation window was coarse-grained
by averaging its values over consecutive non-overlapping sequences of q samples. Different
values of q are used depending on the duration of the observation window, generating dif-
ferent time scales of observation: q = 1 for windows covering 1 day, so as to set a time scale
τday= 6 min which retains the originally measured EF activity; q = 5 for windows covering
1 week, so as to set a time scale τweek= 30 min; q = 20 for windows covering 1 month, so as
to set a time scale τmonth= 2 h; and q = 240 for windows covering the whole year, so as to
set a time scale τyear= 1 day. Using these time scales resulted in observation windows of
similar length, i.e., N(q=1) ≈ 240 samples, N(q=5) ≈ 336 samples, N(q=20) ≈ 360 samples,
and N(q=240) ≈ 365 samples. Since averaging is a form of low-pass filtering, the effect of
the coarse-graining procedure is to cut off from the dynamics the fast temporal scales, i.e.,
those associated with oscillations having frequency > fc =

fs
2q [25,30]; in our case, setting

q = 5, q = 20 and q = 240 means that the one-week windows focus on oscillations with
frequency lower than fc = 0.0167 min−1, the one-month windows focus on oscillations with
frequency lower than fc = 0.0042 min−1, and the one-year windows focus on oscillations
with frequency lower than fc = 0.00034 min−1.

The time series re-scaled as described above were first analyzed using simple statistics
such as the mean and the variance, in order to retrieve information about the average value
and the overall variability within each observation window. Afterwards, the measure of
information storage and the method of surrogate data, described in the following section,
were applied. Before information-theoretic analysis, the re-scaled time series was detrended
to remove slow variations that can have a detrimental effect on the computation of entropy
measures [23]. This step was performed by filtering the coarse-grained time series by a
linear high-pass filter (cutoff frequency at 3 dB: 0.0264 cycle−1[31]).

2.3. Information-Theoretic Analysis

The multiscale regularity of the time series of EF intensity was quantified in the
information-theoretic domain using the measure of information storage. This measure
investigates for the discrete-time stochastic process X describing the EF dynamics rescaled
according to the procedure described in Section 2.2, the statistical dependencies between
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the scalar random variable Xn sampling the process at the present time n and the vector
random variable Xm

n = [Xn−1, . . . , Xn−m] sampling its past collected over m time lags. The
IS is defined as the mutual information (MI) between the present state and the whole past
history of the process X [17,23]:

IS(X) := lim
m→∞

I(Xn; Xm
n ), (1)

where the MI between the present and the past m states is defined as [32]:

I(Xn; Xm
n ) = E

[
log

p(xn, xm
n )

p(xm
n )p(xn)

]
, (2)

where p(xn) and p(xm
n ) are the probabilities that the process X takes the value xn at the

current time n and the values xn−1, . . . , xn−m over the past m time lags, respectively, and
E[·] denotes the expectation operator. The IS measure quantifies the amount of information
about the present state of the process that can be explained by its own past states. As
such, it reflects the regularity of the process dynamics intended as their predictability: if
the process is fully random, the past does not bring any knowledge about the present
and IS = 0; on the contrary, if the process is fully predictable, the present can be entirely
predicted from the past and IS takes its maximum value equal to entropy of the process
states, H(X) := H(Xn) = −E[logp(xn)] [23].

From the point of view of the dynamic update of the system states, the information
storage is complementary to a well-known measure of complexity, quantified in terms
of the conditional entropy (CE) of the present state of the process given its past states,
CE(X) := limm→∞ H(Xn|Xm

n ), where H(Xn|Xm
n ) = −E[logp(xn|xm

n )], with p(xn|xm
n ) =

p(xn, xm
n )/p(xm

n ) being the conditional probability of xn given xm
n ; in fact, it can be easily

seen that the CE and the IS of a process are related to each other by the simple relation
H(X) = IS(X) + CE(X) [23]. Thus, the multiscale analysis of IS performed in this study
evaluates the regularity of the process dynamics across multiple temporal scales [33], and
provides complementary information to the multiscale analysis of CE performed by the
so-called multiscale entropy method [25].

2.4. Estimation of the Information Storage

This section describes the estimation approach used to compute the IS measure
defined in Section 2.3. Dynamic information measures like the IS are typically computed
approximating the past history of the analyzed process with a finite number of lagged
components, i.e., using Equation (2) to estimate Equation (1). In our work, we used
m = 2 samples to cover the past history of the process, as it is usually done for short
datasets [34,35]. Then, an estimator of the MI in Equation (2) is implemented to compute
the IS for each rescaled time series. However, different approaches are available for the
estimation of information dynamic measures [23] and multiscale computation of IS has
been proposed in the context of linear parametric estimation [33]; in this work, we adopt
the nonlinear model-free approach proposed in [21,23], which brings the advantage of
allowing the detection of potentially any form of predictable dynamics within the analyzed
process. This approach makes use of the k-nearest neighbor (knn) estimator of information
measures, which is an asymptotically unbiased and consistent estimator for computing
the entropy of a multidimensional random variable based on the statistics of the distances
between realizations of the variable [36].

Specifically, the knn estimator computes the differential entropy of a generic d-dimensional
variable W as:

Ĥ(W) = −ψ(k) + log(N′ − 1) + log cd,L +
d

N′
N′

∑
n=1

log εn,k, (3)
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where ψ(·) is the digamma function, cd,L is the volume of the d-dimensional unit ball
under a given norm L (cd,L = 1 for the maximum norm used in this work which takes
the maximum distance of the scalar components), εn,k is twice the distance between the
nth observation of W and its kth nearest neighbor, and N′ is the number of observations
available [36]. Note that, once the free parameter k is chosen, the estimation of Ĥ(W) is
performed through a neighbor search around each data point which returns the distances
εn,k to be plugged in Equation (3). This entropy estimator is adopted to compute the three
entropy terms that compose the IS, which is then estimated as:

Î(Xn; Xm
n ) = Ĥ(Xn) + Ĥ(Xm

n )− Ĥ(Xn, Xm
n ). (4)

However, instead of naively applying Equation (3) three times performing neighbor
searches in the spaces spanned by the observations of Xn, Xm

n and (Xn, Xm
n ), in this work,

we adopt the procedure first proposed in Ref. [37], which allows for compensating the
bias arising from the different dimension of the three entropy terms. This procedure is
based on performing a neighbor search in the space spanned by the observations of the
highest-dimensional variable to find the distances between any observation and its kth

neighbor, and then using these distances in the projected lower-dimensional spaces as the
range inside which the neighbors are counted. More specifically, the knn estimate of the
entropy of the highest-dimensional variable is computed through neighbor search:

Ĥ(Xn, Xm
n ) = −ψ(k) + log(N −m− 1) +

m + 1
N −m

N−m

∑
n=1

log εn,k, (5)

where εn,k is twice the distance from nth observation of (Xn, Xm
n ) to its kth neighbor.

Then, knowing the distances εn,k, the entropies of the lower-dimensional variables are
estimated through two separate range searches:

Ĥ(Xm
n ) = −

1
N −m

N−m

∑
n=1

ψ(NXm
n ) + log(N −m− 1) +

m
N −m

N−m

∑
n=1

log εn,k, (6)

Ĥ(Xn) = −
1

N −m

N−m

∑
n=1

ψ(NXn) + log(N −m− 1) +
1

N −m

N−m

∑
n=1

log εn,k, (7)

where NXm
n and NXn are the number of points whose distance from nth observation of Xm

n
and Xn, respectively, is smaller than εn,k/2.

Finally, substituting Equations (5)–(7) into Equation (4) yields the knn estimate of
the IS:

Î(Xn; Xm
n ) = ψ(k) + log(N −m− 1)− 1

N −m

N−m

∑
n=1

(ψ(NXn) + ψ(NXm
n )). (8)

In this work, the estimation of IS was performed by setting the estimation free pa-
rameter at the value k = 10 neighbors, which has been shown to achieve a good trade-off
between bias and variance of the estimates [23].

2.5. Surrogate Data Analysis

In this work, the existence of a statistically significant degree of information storage
and the presence of nonlinear dynamics in the EF intensity time series were tested using
the method of surrogate data [24,38]. This method tests a given property of the data under
analysis first specifying a null hypothesis about some properties of the analyzed data (in
our case that the underlying process is random, or that it possesses linear correlations
only); the null hypothesis can be rejected or accepted by the statistical test. Second, a set
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of surrogate time series which satisfies the null hypothesis but not the property under
evaluation is built. Third, a discriminating statistic (in our case, the information storage)
is computed both on the original time series and over the distribution of the surrogate
series. Finally, a statistical test which compares the discriminating statistic computed on
the original series with its distribution on the surrogates is performed, which allows for
detecting the presence of the investigated property if the null hypothesis is rejected, or
the absence of the property if the null hypothesis is not rejected [24]; in this work, we did
always generate 100 surrogate series for each original analyzed EF time series, and selected
a statistical significance α = 0.01 for the hypothesis test.

To test the presence of a significant amount of information stored in the analyzed
EF time series, we set the null hypothesis that the series is a realization of a serially
uncorrelated process with the same probability distribution of the original process. Then,
the surrogate time series were generated by shuffling randomly the order of the samples
in the original time series, so as to preserve the amplitude distribution and the entropy,
while destroying any temporal relation between the samples (and thus also the information
storage). The selected test was a one-tailed non-parametric test based on percentiles,
whereby the original IS value computed individually for each time series was deemed as
statistically significant if it exceeded the 100(1− α)th percentile of its distribution evaluated
from the surrogate series.

To test the presence of nonlinearity in the dynamics of the analyzed EF time series,
we set the null hypothesis that the series is a realization of a Gaussian stochastic process
fully described by linear temporal correlations. In this case, the surrogate time series were
generated imposing both the autocorrelation structure and the marginal distribution of the
original time series. The autocorrelations in the original time series were maintained pre-
serving the modulus of the power spectral density of the series while destroying the phase,
while the amplitude distribution was preserved exploiting a rank-ordering procedure.
This was achieved through the iteratively refined amplitude adjusted Fourier Transform
(IAAFT) method [39], a procedure that alternatively constrains the surrogate series to have
the same power spectrum (by imposing the squared Fourier amplitudes while randomizing
the Fourier phases) and to have the same amplitude distribution (by rank ordering) of the
original series. The statistical test was again a non-parametric test based on percentiles,
whereby the IS estimated on the original EF intensity time series was compared with the
IS distribution assessed over the surrogate series; the null hypothesis was rejected, thus
detecting the presence of nonlinear dynamics, when the original IS was larger than the
100 · (1− α)th percentile of the distribution of IS computed on the surrogates, while it
was accepted otherwise, thus deeming the observed dynamics as compatible with a linear
Gaussian process [40].

3. Results and Discussion

Figure 1 shows a representative time series of the EF intensity observed during a
representative day (a), week (b), and month (c) of 2019 and 2020, as well as during the
whole year (d). We selected the 79th day, the 15th week, and the fourth month of 2019 and
2020, to compare the EF intensities before and during the COVID-19 pandemic; the series
shown in Figure 1a–c is rescaled according to the coarse-graining procedure described
in Section 2.2, to demonstrate the oscillations dominant in daily, weekly, and monthly
observation windows.

Differences between the behavior of the EF intensity during the same period of the
two years can be noticed immediately through simple visual inspection. The time series
measured in 2019 (orange curves) clearly demonstrate a modulation of the EF intensity
which follows the day-to-night cycle (Figure 1a,b, left) and a reduction in amplitude during
the weekends (Figure 1c, left); we ascribe such modulations to the higher or lower amount
of people present in the University area. When the same periods of 2020 are considered
(green curves), the day-to-night variations are damped (Figure 1a,b, right) and do not differ
anymore between weekdays and weekends (Figure 1c, right). We note that the difference
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between the EF intensities of the same periods of the two years appears evident by looking
at the amplitude of the oscillations, but not at the mean values which are roughly the same.
Moreover, these differences are not straightforward when the whole-year time series are
observed (orange curve vs. green curve in Figure 1d).

79th daya)
E

 [
V

/m
]

15th weekb)

E
 [

V
/m

]

4th monthc)

E
 [

V
/m

]

yearsd)

E
 [

V
/m

]

0.5

1.5

Number of samples Number of samples

1.0

2.0

1.0

2.0

0.6

1.8

2019 2020

10050 150 200 50 100 150 200

50 100 150 200 250 30050 100 150 200 250 300

50 100 150 200 250 300 350 50 100 150 200 250 300 350

50 100 150 200 250 300 350 50 100 150 200 250 300 350

Figure 1. Representative time series of EF intensity monitored during the same day (a), week (b),
and month (c) of 2019 (orange) and 2020 (green), as well as during the whole years 2019 and 2020 (d).
The time series samples are obtained averaging the EF intensity over a time scale that is peculiar of
each observation window: τday = 6 min in (a); τweek = 30 min in (b); τmonth = 2 h in (c); τyear = 1 day
in (d).

To make the observations above quantitative and confirm them in a complete analysis,
we report in Figures 2 and 3 the mean µEF and the variance σ2

EF of the EF intensity observed
at the four time scales and computed for each observation window during the two years.
While the mean values of the EF intensity measured in 2019 and 2020 are quite similar
(Figure 2d: µEF= 1.16 V/m in 2019 and 1.26 V/m in 2020), the dynamic behavior of the
mean EF intensity emerges, analyzing the rescaled time series (Figure 2a–c), which display
values oscillating between ∼0.2 V/m and ∼1.9 V/m. The trends of the mean EF intensity
show oscillatory activity with a period of one week at the finer time scale (Figure 2a), as well
as slower variations demonstrated when the time scale becomes more coarse (Figure 2b,c).
Given that the oscillations with one-week period observed in the two years (green and
orange curves in Figure 2a) exhibit minimum EF intensity during weekends, they can be
related to the amount of people present on the university campus. However, when we
compare 2019 and 2020, the averaged EF intensity is different between periods of the two
years, which are expected to be similar in terms of human presence (e.g., the first three
months where µEF is higher in 2019, the last three months where µEF is higher in 2020,
and the periods of exams in person and summer pause where µEF is again higher in 2020).
This effect is clearly evident observing also the slower trends in Figure 2b,c, thus reflecting
the contributions from all detected EF sources in the proximity of an installed sensor.
Nevertheless, an effect of the pandemic on the mean EF values occurs in correspondence
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with the State of Emergency (SoE) declared by the Government of Serbia on 15 March
2020 [41]: starting from this date, wherein strict movement restrictions were implemented,
a sudden drop of µEF is visible at the daily and weekly observation windows (Figure 2a,b),
and the reduced mean field value of∼1.3 V/m is maintained during the spring and summer
2020, when a clear reduction in the amplitude of oscillations with one-week period is also
observed (light orange, green and grey areas in Figure 2a).
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Figure 2. Mean of the EF intensity time series computed over observation windows lasting one day
at the time scale τday = 6 min (a), one week at the time scale τweek = 30 min (b), one month at the
time scale τmonth = 2 h (c), and one year at the time scale τyear = 1 day (d). The colored areas identify
periods of different activities in the campus area of the University of Novi Sad, occurring before
(2019) and during (2020) the COVID-19 pandemic. The colored areas may differ slightly between the
two analyzed years (±a few days).

The most distinctive feature that differentiates the mean EF intensity measured during
the pandemic and in the preceding year without mobility restrictions is the dampening of
the oscillations with a period of one week (Figure 2a, color-shaded areas). This behavior,
suggesting that reduced mobility decreases the variability of the EF intensity more than
its mean, becomes straightforward when the variance of the EF time series is analyzed
(Figure 3). In fact, the analysis of EF variability documents very clearly that the variance
σ2

EF drops dramatically (from 0.2–0.3 V2/m2 to almost zero) when the SoE is declared, and
remains at very low values for the whole period of mobility restrictions when University
teaching shifted to the online modality (Figure 3a,b). The two periods of University exams
are characterized by very comparable values of σ2

EF in 2019 and 2020, which is in line with
the fact that, in Serbia, the exams were held in person even during the pandemic. During
the summer pause in August, the variance of the EF intensity was comparably very small
in 2019 and 2020, while differences arise again during the fall when teaching was ordinarily
in person in 2019 and again in online modality in 2020. These patterns of variability of the
EF intensity are well-characterized at all time scales, as they are visible over observation
windows of one day (Figure 3a), one week (Figure 3b), and one month (Figure 3c). The
overall result is that the variability estimated on a yearly basis is lower in 2020 compared to
2019 (Figure 3d).
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Figure 3. Variance of the EF intensity time series computed over observation windows lasting one
day at the time scale τday = 6 min (a), one week at the time scale τweek = 30 min (b), one month at the
time scale τmonth = 2 h (c), and one year at the time scale τyear = 1 day (d). The colored areas identify
periods of different activities in the campus area of the University of Novi Sad, occurring before
(2019) and during (2020) the COVID-19 pandemic. The colored areas may differ slightly between the
two analyzed years (±a few days).

The results presented above indicate that the restrictions to mobility imposed by the
COVID-19 pandemic (SoE, 2020) or the substantial absence of University population during
the summer break (during both 2019 and 2020) affected primarily the variability of the
electric fields measured by the sensor of the EMF RATEL system, and only to a lower extent
the average field intensity. Here, it is worth noting that the monitoring sensor is installed on
the roof of the Faculty of Technical Sciences (FTS), placed in the campus area of University
of Novi Sad (the images following the sensor position can be found in the link [42]). Besides
the FTS, the campus area encompasses six faculties more, while the FTS presents the largest
one by the number of students. However, since the substantial reduction in the presence of
people during the pandemic and summer break in such highly-populated area during the
regular university life (teaching and exam periods) affected dominantly the variability of EF
intensity series, to investigate the changes that originate this variability and its modification
in different conditions, we move to study the storage of predictable information within the
EF intensity time series observed at different time scales.

Figure 4 depicts the results the analysis of information storage performed for the
representative time series reported in Figure 1, pre-processed as explained in Section 2.2.
All the estimates of IS resulted n being statistically significant according to the test based
on randomly shuffled surrogate data, meaning that the null hypothesis of a serially uncor-
related process was rejected for all the series in Figure 1 (data not shown). The amount
of information stored in the EF dynamics is always higher for the exemplary time series
measured during 2019 than for the series measured in the same period of 2020, with values
IS2019 = 0.42 nats and IS2020 = 0.2 nats for the 79th day (Figure 4a), IS2019 = 1.45 nats and
IS2020 = 0.62 nats for the 15th week (Figure 4b), IS2019 = 1.33 nats and IS2020 = 0.89 nats
for the 4th month (Figure 4c), and IS2019 = 0.65 nats and IS2020 = 0.44 nats for the whole
year (Figure 4d). The lower values of IS reflect higher complexity of the EF time series,
documenting the presence of less predictable, more erratic EF dynamical patterns when
human mobility was strictly restricted, i.e., during 2020 due to COVID-19 pandemic, in
contrast to one year before when the higher IS values indicate the presence of more regular
patterns of EF intensity. Nonetheless, the analysis based on IAAFT surrogate data reveals



Entropy 2022, 24, 726 11 of 16

for all time scales the presence of nonlinear EF dynamics during 2019 (the original IS
value exceeds the IS surrogate threshold in Figure 4a–d), while, on the contrary, the daily,
weekly, and monthly dynamics observed during the same periods in 2020 can be regarded
as linear (the original IS value is below the surrogate threshold in Figure 4a–c). This
result distinguishes the nature of oscillations during the periods of normal and restricted
mobility, also showing how complexity and nonlinearity are different concepts: in this case,
the less complex dynamics (showing higher IS) are those with a stronger contribution of
nonlinearities (IS is higher than the nonlinearity threshold).

a) b)

c) d)

0.5

1.0

1.5

0.2

0.4

0.6

IS
 [

n
at

s]
IS

 [
n

at
s]

79th day 15th week

4th month years

2019 20192020 2020

nonlinear dynamicslinear dynamicssignificance threshold ISα

0.8
1.0
1.2
1.4

0.0

0.2

0.4

Figure 4. Information storage computed on the representative time series reported in Figure 1 (filled
symbols, positioned left) and on 100 IAAFT surrogates (empty circles, right). The thresholds set
to detect statistically significant nonlinear dynamics are indicated by blue lines; time series with
significant nonlinearity are detected when the original IS exceeds the threshold level (orange or
green circles), while the time series is regarded as linear when the original IS is below the threshold
(black squares).

The complete multiscale analysis was performed to investigate the trends of the in-
formation stored in the time series of EF intensity analyzed separately during 2019 and
2020 over daily, weekly, and monthly observation windows as well as over the whole year.
According to the surrogate data analysis based on random shuffling, the null hypothesis of
white noise process was rejected for all cases, thus assessing statistically the significance
of the IS values in all the analyzed time series (data not shown). The detection of statisti-
cally significant multiscale information storage is in line with the existence of predictable
dynamics in the series measured at different scales, indicating that the EF intensity is a
complex but structured process characterized by regular oscillations across multiple scales
of observation, which reflect an alternating presence of EF sources presumably related to
human utilization of wireless communication services.

The values of information storage measured over observation windows of different
length, each characterized by their peculiar time scale, are reported in Figure 5. The
detailed analysis comparing the two considered years of EF recordings sheds further
light on the nature of these predictable patterns. In fact, as a consequence of the onset
of the COVID-19 pandemic in March 2020 and of the establishment of strict mobility
restrictions, the EF intensity time series displays a significant reduction in the values of IS.
The reduced regularity compared with the same period of the preceding year is visible in
the EF dynamics observed on a daily basis (Figure 5a, light orange areas) as well as when
investigating longer time-scales which cover observation windows of one week (Figure 5b,
light orange areas) or of one month (Figure 5c, months 3, 4, 5). The presence of more erratic
multiscale patterns of EF intensity is associated with the significantly reduced access of
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people to the university campus in this period when teaching lessons were delivered in the
online modality.
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Figure 5. Information storage of the EF intensity time series computed over observation windows
lasting one day at the time scale τday = 6 min (a), one week at the time scale τweek = 30 min (b),
one month at the time scale τmonth = 2 h (c), and one year at the time scale τyear = 1 day (d). The
colored areas identify periods of different activities in the campus area of the University of Novi Sad,
occurring before (2019) and during (2020) the COVID-19 pandemic. The colored areas may differ
slightly between the two analyzed years (±a few days). Black-colored squares indicate the presence
of linear dynamics, while orange (2019) and green (2020) circles the presence of nonlinear dynamics,
detected through the method of surrogate data.

At the highest level of coarse graining, the difference between dynamic behavior of
the EF intensity measured during the two years is documented by the lower regularity
measured during 2020 than in 2019 ( Figure 5d: IS2019 = 0.65 nats and IS2020 = 0.44 nats).
On the other hand, the information stored in the EF intensity time series takes comparable
values in the two years during the periods of university exams and summer pause (light
green and grey areas in Figure 5a,b and months 6–9 in Figure 5c). In this time frame, the IS
values are relatively high during the exam periods and decrease to lower values during
the summer, suggesting that the predictability of the field intensity dynamics arises from
regular movement of people within the area covered by the EF sensor. The similarity
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between the two years can be explained considering that the campus was populated in
a similar way as exams were always delivered in person during the pandemic. Then,
the prosecution of the online teaching modality during the fall/winter semester of 2020
determined lower and less regular EF dynamics compared to the fall/winter of 2019; again,
the phenomenon is visible at all time scales (light yellow area in Figure 5a,b and months
10–12 in Figure 5c).

As regards the nature of the oscillatory patterns underlying the observed dynamics, the
use of IAAFT surrogate time series led us to detect the coexistence of linear and nonlinear
dynamics in the day-by-day EF activity monitored at the finer time scale; this result is
depicted in Figure 5a where the daily dynamics detected as linear are marked with a
black square. When the dynamics are observed on a coarser time scale, we notice that
many of the lower IS values measured during periods of restricted mobility in 2020 are
associated with linear dynamics, while the corresponding periods in 2019 showing higher
IS values also display nonlinear dynamics. This happens for instance comparing the weeks
and months covering the population lockdown in spring 2020 with the same periods in
2019 (Figure 5b,c); the effect is documented clearly for the time series of the 4th month
shown in Figure 1c and characterized by the IS patterns of Figure 4c: the highly predictable
and nonlinear EF dynamics observed in April 2019, resulting from the occurrence of day-
night oscillations modulated in amplitude by a slower rhythm with one-week period, are
destroyed in April 2020, where the regularity as well as the richness of the dynamics are
lost. These findings suggest that both predictability and nonlinearity of the EF intensity
time series are lost as a consequence of the restrictions to mobility caused by the COVID-19
pandemic during April and May 2020. A similar effect is observed in August of both years
when, due to the summer pause, the campus area is characterized by a lower and less
regular presence of university staff and students. Therefore, we conclude that periods
characterized as less populated determine not only a decrease of the EF variability, but
also an increase of the complexity of the EF patterns and a simultaneous loss of nonlinear
dynamics in these patterns.

4. Conclusions and Future Perspectives

The results of this study indicate that the EF intensity measured in an urban area with
significant movements of people gives rise to time series which can be described as the
output of a dynamical system endowed with complex nonlinear and multiscale dynamics.
Moreover, the dynamic behavior of the EF intensity can change its properties depending
on the temporary accumulation, in proximity of the recording sensor, of EMF sources
which can be associated with human utilization of wireless communication systems. Those
sources likely refer to mobile telephony systems, including both mobile phones and their
base stations installed in the campus area [43], which produce radio-frequency radiation as
a means of their communication; these systems integrate phone calls with several features
like the Bluetooth and Wi-Fi, which are used by the university population also through other
devices like tablets, laptops, and desktop computers. Another example refers to modern
vehicles which receive relevant traffic information by using wireless communications from
their peers. We find that, in the periods of significantly reduced circulation of university
staff and students (e.g., due to summer breaks or to the restrictions to mobility related to the
COVID-19 pandemic), not only the amplitude of the oscillations of EF intensity observed at
different time scales varied significantly, but also the EF patterns became simultaneously
more complex and more linear. These findings document on the one hand the importance
of employing non-parametric model-free approaches to fully capture the dynamics of
complex systems like this [23], and on the other hand confirm the evidence proven for other
types of dynamic systems (e.g., the human heart rate [40]) that complexity and nonlinearity
are different, often complementary concepts.

It is worth stressing that the time series of EF variability analyzed here, probing the
cumulative intensity of EFs emitted by sources located in the vicinity of the recording sensor,
can to some extent be regarded as measurements of human mobility patterns. Hence, our
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statistical analysis can describe, at the integrated level, the impact of pandemics on human
mobility on the territory under study. Different forms of lockdown worldwide, introduced
by the Governments to flatten the curve of new infections, affected human mobility both
globally and locally on unprecedented scales; the study of implications found in this
research can also serve as an opportunity to propose strategies for monitoring and stimulate
a more sustainable human mobility. Many recent studies focused on micro-mobility data
and analyze the changes in micro-mobility usage before and during the lockdown period
exploiting high-resolution micro-mobility trip data [44,45]. From this perspective, our
study supports the idea that EF intensity measurements may be complementary to data
collections like those from mobile phones, and might be employed to investigate changes
in the patterns of mobility both during pandemics or other kinds of events.

A limitation in the exploitation of the data analyzed in this work for the analysis of
human mobility may come from the fact these data are recorded in the form of cumulative
EF measurements, covering a broad range of frequencies, thus being influenced by EMF
sources other than those related to people’s presence and their usage of communication
services. This aspect, as well as the possibility of installation of new EMF sources in the
campus area, which are likely the main reasons for the presence of mean EF patterns with
difficult interpretation observed in some periods of the two analyzed years (Figure 2),
have been mitigated in the present study by focusing on measures of variance rather than
mean and by performing multiscale analysis of regularity (Figures 3–5). Nevertheless, the
utilization of frequency-selective measurements may, improve the capability of measures
like those proposed in this work to capture a more tight link between human movements
and the dynamical patterns of EF intensity.

The interpretation of EF data as time series measuring the temporal variability of the
EF intensity can have practical implications also on the assessment of safety related to
the spread of EMF sources, and on the plans for expanding the network of sensors in a
sustainable and strategic direction. In fact, our approach can be exploited as a supportive
tool for the further modeling of network architecture towards more scalable, secure, and
cost-effective solutions, which are the requirements of the smart city concept intended as a
form of intelligent and sustainable urban development [46]. In this context, future work
is envisaged to move towards the study of the joint information shared by multiple EF
time series [22], which would open up the possibility of investigating how sensor networks
implemented within a territory are functionally interconnected, also providing criteria for
the strategic placement/optimization of new sensors both at a local and at a national level.
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