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Abstract: Several studies on the genetics of longevity have been reviewed in this paper. The results
show that, despite efforts and new technologies, only two genes, APOE and FOXO3A, involved
in the protection of cardiovascular diseases, have been shown to be associated with longevity in
nearly all studies. This happens because the genetic determinants of longevity are dynamic and
depend on the environmental history of a given population. In fact, population-specific genes are
thought to play a greater role in the attainment of longevity than those shared between different
populations. Hence, it is not surprising that GWAS replicated associations of common variants with
longevity have been few, if any, as these studies pool together different populations. An alternative
way might be the study of long-life families. This type of approach is proving to be an ideal resource
for uncovering protective alleles and associated biological signatures for healthy aging phenotypes
and exceptional longevity.
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1. Introduction

The aging process is driven by the accumulation of molecular damage, resulting in
a gradual increase in the fraction of cells and organs carrying defects. The age-related
increase in damage levels interferes with both the performance and the functional reserves
of tissues and organs, resulting in a disruption of the self-organization system and a
reduced capacity to adapt to the environment. Frailty, disability, age-related diseases, and,
ultimately, death ensue. Maintenance mechanisms slow down the damage accumulation
rate. These mechanisms are positively or negatively modulated by various factors, i.e.,
genetics, epigenetics, sex and gender, socioeconomic and educational status, chance and
circumstances of life, nutrition and physical activity, stress management and social support,
and pathogenic load. Different combinations of these factors create the possibility of
avoiding, delaying, or controlling age-related diseases [1,2].

Longevity should be considered a specific country/population concept, as different
populations/countries, due to different historical, anthropological, socioeconomic, and
environmental factors, show great variability in their life expectancy. In “absolute” terms,
however, the definition of longevity is based on the maximum duration of life of human
beings. The canonical age of 100 is considered the threshold of longevity, although people
over 95 years are called long-lived individuals (LLIs). Supercentenarians are, instead,
people who have reached the age of 110, while semi-supercentenarians are people between
the ages of 105 and 109 [1,3,4].

Demographic evidence shows a continued decrease in mortality in old age as well as
an increase in the maximum age at death, which might gradually extend human longevity.
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This would suggest that no strict constraints exist for human longevity. However, survival
improvements with age tend to decline after age 100 and the age of death of the world’s
oldest person (Jeanne Calment, 21 February 1875–4 August 1997 [4]) has not changed in
the last 30 years. The analysis of the data of all Italians aged 105 or over between 2009 and
2015 (born in 1896–1910) has provided proof of the existence of a plateau of mortality at
extreme age. These studies suggest that the maximum human life span is fixed and subject
to natural constraints, likely linked to the laws of physics [2,5,6].

Longevity is not a matter of genes. A few years ago, this message appeared in all
the newspapers of the world, following the publication of a large study that dissected the
genealogical trees of 400 million individuals, tracing back generations, and including dates
of birth, death, places, and family ties. According to this study, as well as another published
the same year, genes would play a very marginal role in achieving longevity [7,8]. However,
these extensive studies have analyzed the influence of genetics in terms of lifespan, but
not in terms of longevity [9]. Both articles refer, indeed, to a low prediction of descendant
longevity based on the ages reached by their ancestors/parents. Despite that no age cut
off was adopted and all ages were included, it is reasonable that the ages of individuals
used in these studies reflect the average population lifespan, which includes only a small
percentage of centenarians (less than 1 in 5000). This would explain the low heritability
observed of the longevity trait. On the other hand, several years ago, Perls et al. [10,11]
clearly showed a high heritability of the exceptional longevity phenotype that becomes
even higher as the ages of the study participants increase (see also paragraph 4).

There is no doubt that human beings are the result of their genes, but they would not
be the same without the experiences that they have had since leaving the mother’s womb.
As an example, in cohorts of U.S. births between 1918 and 1919, prenatal exposure to the
influenza pandemic (Influenza A, H1N1 subtypes) was shown to be associated with ≥20%
excess of cardiovascular diseases (CVDs) at 60–82 years of age, compared with cohorts
born without exposure to the epidemic. The height of adults at the time of enrolment for
World War II was lower than that of people born in adjacent years, and school performance
was also lower. Therefore, prenatal exposure to maternal flu, even uncomplicated, can have
consequences on future extrauterine life, likely through epigenetics [12]. It cannot be ruled
out that these epigenetic changes might also be due to stress as a result of the consequences
of war. On the other hand, everyone would not be the same if born in another part of the
world as clearly demonstrated by Table 1.

Table 1. Number of centenarians based on the income of the various countries.

1980 2020

per 10,000

High-income countries 0.28 2.60
Middle-income countries 0.06 0.42

Low-income countries 0.01 0.03
Total 0.10 0.74

Similar results are obtained by examining life expectancy. Source: Calculation by Busetta and Bono [13] based on
United Nations, DESA, Population Division. World population prospects: the 2019 revision; https://population.
un.org/wpp/Download/Standard/Population (accessed on 1 December 2020).

Therefore, longevity is reached more easily in “rich” countries. The “Lifepath” re-
search consortium investigated the effects of socioeconomic inequalities on the biology of
successful aging. Results suggest that unfavorable socioeconomic conditions from birth
affect biological systems from molecules to organs. These data have important implications
for policy, suggesting that addressing unfavorable socioeconomic conditions, including
education level, is as important as considering well-known risk factors, such as tobacco
and alcohol use, low fruit and vegetable consumption, obesity, and a sedentary life, and
that the effects of preventive interventions in the first years of life must integrate those
in adulthood [14].

https://population.un.org/wpp/Download/Standard/Population
https://population.un.org/wpp/Download/Standard/Population
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However, this belief is apparently disproved by the case of the Okinawan population,
as pointed out by Cockerham et al. [15]. Okinawa is one of the four classic blue zones, which
are limited regions where the population shares a common lifestyle and environment, and
whose exceptional longevity, superior to that of the rest of the country, has been carefully
verified. It is seemingly paradoxical that the four classic blue zones are economically
slightly underdeveloped compared with the rest of their respective countries. This paradox
disappears if the economic development of these areas is evaluated in relative rather than in
absolute terms. As an example, when, around the middle of the twentieth century, regions
such as Sardinia and Ikaria, two other blue zones, began their economic development, this
involved the transition from extreme poverty to relative material wellbeing, with a reduced
social stratification. The absence of a true class gradient and the consequent absence of
social competition and individual stress could have created individual health conditions
much more favorable than those operating in the most competitive areas of the country [16].

Random events, i.e., chance, also interact with genetic background. Chance can be
defined as the occurrence of events in the absence of any obvious intention or cause.
Therefore, it must be distinguished from life circumstances that are events or facts that
cause or help to cause something to happen, as an example, the accidental death of a
potential centenarian. Both immunological repertoire and the architecture of brain synapses,
which influence survival, are also linked to many small casual events. Many genes are,
indeed, transcribed in minimal amounts of mRNA per cell, which can cause large random
fluctuations in biosynthesis. Genomic instability is another important source of inherent
random variability, as shown in aged mice, which have a mutation rate of up to 104 per
gene per cell. Somatic mutations are random events since they result from mispairing,
originating from the equilibrium that exists in solution between the tautomeric forms of
the purine and pyrimidine bases. Epimutations can also occur through random changes in
DNA methylation patterns, affecting gene expression [1,17,18].

Considering what is discussed above, asking whether longevity depends on envi-
ronment or genetics is legitimate but oversimplified. In fact, it is necessary to consider
everything that is important for longevity: luck (chance and circumstances of life), lifestyle
(nutrition, physical activity, and environmental exposures, which also affect epigenetics),
life experiences (pathogenic load, stress management and social support, and socioeco-
nomic status and education), and biology, with sex and DNA (genetics and epigenetics) at
the fore [1].

2. Study Methodologies

Longevity is a multifactorial trait for which gene–environment interactions as well as the
complex interplay of multiple genes and pathways play a major role [19]. Yashin et al. [20]
showed that longevity also depends on several small effect alleles. Genetic studies could
lead to the identification of mechanisms that protect organisms from age-related diseases.
Some of these mechanisms could be improved by specific environmental factors or lifestyle
as discussed below for Apolipoprotein(APO)E and Forkhead box O3(FOXO3)A.

Over time, different genetic approaches have been adopted based on the available
platforms. It started with a candidate gene approach as part of a case–control study design,
followed by sibling pair linkage analysis, and returned to the case–control study with
single nucleotide polymorphism (SNP) array, imputation, and, lastly, sequencing of the
whole genome.

2.1. Genetic Association Studies

Genetic association studies analyze whether the allele, mostly identified as SNP, of a
genetic variant is found more often than expected in individuals with the phenotype under
study. The case–control study is a retrospective analysis that starts from two different
groups, one with a disease/phenotypic trait and one without it. The aim of the study is to
evaluate the presence of significant differences in the rate of exposure to a given risk factor
(alleles in this case) between the two groups. The candidate gene approach focuses on



Int. J. Mol. Sci. 2022, 23, 5635 4 of 13

associations between genetic variation within pre-selected genes of interest and phenotypes
or disease states. Candidate genes are selected based on their presumed relevance to the
disease or phenotypic trait in question. The fundamental unit for summarizing the size
of associations is the odds ratio (OR). OR is the ratio of two probabilities, which in this
context are the case probabilities for individuals who have a specific allele and the case
probabilities for individuals who do not have the same allele. There are several criticisms
of the candidate gene approach, since it has been shown that the candidate gene approach
produces a high rate of false positive results [21,22].

For several years, genetic linkage analysis in siblings was the only tool available to
highlight chromosomal regions that potentially harbor genetic variants that influence the
phenotype under study. The approach that identifies excess allele sharing was initially
performed using microsatellites as markers. DNA sequences that are close together on a
chromosome, detected by a known marker, are inherited together during the meiosis phase
of sexual reproduction. However, for common diseases and complex traits, the results of
genetic linkage studies have proved difficult to reproduce. While linkage analysis was
successfully used to identify genetic variants that contribute to rare disorders, it did not
perform that well when applied to multifactorial traits such as longevity [21,22].

2.2. Genome-Wide Association Study

A genome-wide association study (GWAS) is an investigation of all, or nearly all,
of the genes of different individuals to determine gene variations between individuals
under consideration. An attempt is made to associate the observed differences with some
traits, in this case longevity. GWAS studies allow researchers to sample one million or
more SNPs from each subject, evenly distributed across the genome. Each of these SNPs
it is then analyzed to understand if the SNP frequency is significantly different between
the case and the control groups. GWAS are necessarily operated without starting from a
hypothesis; the research is carried out on the whole genome rather than focusing on a small
group of candidate genes. The results should be replicated in other samples of the same
population, and many variables may be responsible for failure to replicate results such
as differences in the age, gender, and health status of the participants of the two groups,
younger and LLIs (see also Section 2.5). Furthermore, the GWAS approach is penalized
from a statistical point of view, since the huge number of comparisons requires methods to
correct for multiple testing, which means the adoption of very low p values of significance,
to avoid the association with false positives related to chance. Except for the APOE locus,
the results obtained with GWAS are not always replicable. This underscores the need for
larger studies or an alternative study design to discover common polymorphisms with
minor genetic effects and rare variants with high penetrance that affect longevity. As for
the power to capture true association in GWAS, a cohort of thousands of individuals is
needed to identify a sufficient OR [21,22].

To improve the power of GWAS studies, meta-analysis has become a common tool
in genetic epidemiology to accrue large sample sizes. Sebastiani et al. [23] described how
meta-analysis approaches applied to the study of the genetics of human longevity appear
to have several limitations. An extended definition of LLIs, indeed, understood as subjects
who survived up to 85 years and beyond, used to increase the size of the sample to be
studied through a meta-analysis, inevitably increases the heterogeneity of the phenotypes.
The most important problem is represented by the heterogeneity of the study population
when different cohorts are analyzed in the same study to increase the statistical power that
depends on the sample size (see Section 2.4).

2.3. Next Generation Sequencing

New cheap and fast genome sequencing methods might provide a realistic alternative
to GWA studies. High-throughput sequencing, next generation sequencing (NGS), has,
indeed, the potential to bypass some of the shortcomings of GWAS. The availability of this
huge amount of data does not correspond to a simpler and more efficient way to discover



Int. J. Mol. Sci. 2022, 23, 5635 5 of 13

genetic variants associated with the phenotype. To achieve adequate statistical power, NGS
studies require very large case and control populations, due to the large number of genetic
variants and rare variants [22].

2.4. Other Possible Approaches

Another possible approach is represented by the study of centenarian offspring (CO).
They are typically in their 70s and 80s and display a lower prevalence of all-cause mortality,
cancer, diabetes, and CVDs, suggesting that their resilience against disease and death may
be at least partly genetic [24]. However, the most important information that this model
can offer concerns the role of the immune system in achieving longevity. The potential
role of the immune system in achieving one hundred or more years of age is seemingly
questioned by the fact that even centenarians exhibit the same age-related changes in T and
B lymphocytes observed in older people (however, they show a well-preserved cytotoxic
activity of NK cells) [25]. It must be considered that their acquired immune system has
been subjected to a pathogenic burden for decades not predicted by evolution. To gain
insight into the role of the immune system in longevity, a better model is represented by
the offspring. In fact, the immune systems of offspring have been subjected to an antigenic
load for a shorter time and they have an appropriate control group important for this type
of study, i.e., older people without centenarian parents. Accordingly, both B and T subsets
of CO present an intermediate phenotype between old and younger people, showing a
“younger” immune profile that might play a relevant role in making CO able to continue
fighting off new infections, hence, prolonging their life [24,26].

A further alternative method could be that of the study of long-life families (LLF). This
approach is proving to be an ideal resource for uncovering protective alleles and associ-
ated biological signatures for healthy aging (HAP) and exceptional longevity phenotypes.
Ongoing studies are already showing how HAP LLFs are inheritable, cross-sectionally
and longitudinally, and how these families are heterogeneously protected. They are also
finding evidence that multiple, rare, and protective variants likely drive some HAPs and
longitudinal trajectories [27].

Over the last few years, a lot of GWAS data have accumulated, even using alternative
phenotypes (paternal longevity, health span, or some meta-analysis on these data), as
described below. Six European-ancestry GWAS of human aging traits, i.e., health span,
father and mother lifespan, exceptional longevity, frailty index, and self-rated health, have
been combined in a principal component framework to maximize their shared genetic
architecture [28]. In another study, authors have combined existing genome-wide associa-
tion summary statistics for health span, parental lifespan, and longevity in a multivariate
framework [29]. The challenge of studying aging genetics in humans, low heritability, and
limited samples, can be overcome to some extent by combining large studies of closely
related phenotypes that capture elements of the aging process. In a further study, the DNA
of over 500,000 people was analyzed to reveal the specific “genetic fingerprints” of each
participant and results were related to the parental lifespan [30].

2.5. Limits of These Studies

To pool different populations allows the identification of genes and pathways that
are important for longevity and healthy aging if shared among the different populations
examined. However, the “ecological” dimension of healthy aging and longevity is lost. It
should be borne in mind, indeed, that the genetic determinants of longevity are dynamic
and depend on the environmental history of a given population. Genes specific for a given
population are in fact believed to play a more important role than those shared between
different populations [19,31,32]. This occurs because gene–environment interactions are
specific for a given population, due to the variability of environmental and cultural contexts
such as, among others, food habits and lifestyle (see also Section 3 below). The choice of
controls is another debated point; however, it is sufficient to use unrelated samples of the
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general population matched by geographic origin, as the prevalence in the control group of
individuals who will become LLIs is negligible due to the rarity of the trait.

3. Genes Shown to Be Associated with Longevity

Centenarians are the best example of extreme longevity, representing selected in-
dividuals in which the appearance of major age-related diseases has been consistently
delayed or avoided. There is growing evidence that the genetic component of longevity
becomes higher with survival at the age of over 90 years. Conceptually, longevity should
correlate either with the presence of protective alleles or the absence of detrimental al-
leles [22,33,34]. However, the presence of detrimental alleles does not compromise the
achievement of longevity. Among the various explanations of this fact are: (1) the op-
posing influence of genes on different health traits; (2) the antagonistic change of gene
effect at different ages (antagonistic pleiotropy); (3) the gene–gene interaction (epistasis);
and (4) the gene–environment interaction [20,35–37]. However, there are only two genes
whose variants have been almost consistently associated with longevity: APOE and, to less
extent, FOXO3A [21,22,34].

3.1. APOE

The APOE protein is the principal cholesterol carrier that drives lipid transport and
injury repair in the brain. APOE genetics polymorphisms are determined by three alleles,
ε2, ε3, and ε4, defined by combinations of genotypes of the SNPs rs7412 and rs429358. The
products of the three alleles differ in several functional properties. APOEε3 is the most
frequent allele in all human groups. Total APOE levels in plasma in very old individuals
were found to be associated with lower total cholesterol and LDL cholesterol levels, which,
in turn, were associated with the APOEε2 allele [38,39]. Genetic variations in APOE are
well known to be associated with longevity and lifespan. In the first report more than two
decades ago, in a small candidate gene study, Schachter et al. [40] showed that French
centenarians had a very low frequency of APOε4 allele; in addition, an increased frequency
of the allele APOEε2 in centenarians was observed. Since then, there have been numerous
candidate gene studies and GWAS studies, including individuals of diverse ancestry, which
have confirmed associations of APOE with longevity. The APOE ε2 and ε4 variants have
previously been associated with a decreased (ε2) or increased (ε4) risk for several age-
related diseases, such as CVDs and Alzheimer’s disease (AD), which could explain the
APOE effect on longevity [29,38,39,41,42].

The APOEε4 allele is the ancestral proinflammatory allele, joined by APOEε3 and
then APOEε2 in the human species. Under conditions of several infections, uncertain food,
and shorter life expectancy, APOEε4 may be adaptive for reducing mortality. As evidence
for this hypothesis, APOEε4 carriers have less severe liver damage during hepatitis C
infections. The frequency of the APOEε4 allele remained higher in countries where food
supply is, or was until the recent past, scarce, or sporadically available. In fact, this allele is
linked to elevated cholesterol blood levels [43–45]. It is a “thrifty” allele. The term “thrifty
alleles” was originally coined to indicate alleles that enable individuals to efficiently collect
and process food to deposit fat during periods of food abundance to provide for periods of
food shortage as feast and famine. In this way, the persistence of genes favoring the onset of
type 2 diabetes (T2D) was explained since they would have been advantageous for hunter–
gatherer populations [46]. As human lifespan lengthened and cognitive and cardiovascular
health became more important, the APOEε3 allele spread, while the APOEε4 allele was
maintained in all populations by balancing selection. The exposure of people carrying
APOEε4 to the new affluent environmental conditions (Western diet and longer lifespans)
could have rendered them susceptible to CVDs and AD [47].

In Sicilian LLIs, we did not observe the positive association of APOEε2 nor the negative
one of APOε4 with longevity although this might be due to the small size of the sample [48].
These results are consistent with a recent analysis that shows that in South Italy there is a
weaker protective effect of APOEε2 and no detrimental effect of APOEε4 [38]. In that study,
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the authors provided evidence that the genetic effect of APOE alleles changes based both on
the country of residence and on genetic ancestry, suggesting the presence of environmental
risk factors of a place of residence that modify the genetic effects of APOE. There was
no deleterious effect of APOEε4 in subjects with Southern Italian ancestry living in the
south of Italy; however, there was deleterious effect in those living in the U.S. These results
suggest that factors related to living in the south of Italy may mitigate the deleterious
effect of APOEε4. In particular, the Mediterranean diet (MedDiet) followed in Italy at
a young age by the generations under study [48] should contribute to that difference.
Detrimental effects of APOEε4 may be, indeed, alleviated through diet interventions,
specifically the MedDiet [49,50]. The results are consistent with previous findings showing
that the MedDiet reduces the risk of AD [51].

3.2. FOXO3A

The FOXO3A SNPs, in particular the rs2802292 G-allele (G > T), are other variants
associated with longevity across many populations although gender-specific associations
have been found in males, as in the Southern Italian Centenarian Study [52]. Interestingly,
the FOXO3 rs2802292 G-allele has protective effects on several age-related diseases, in
particular CVDs [53], but also cancer and bone fractures, and it is associated with better
self-rated health, which strongly predicts mortality [54]. A meta-analysis of over 7900 cases
and 9500 controls confirmed the association of the G allele of the SNP rs2802292 with
longevity, especially in men [53]. This datum confirms and extends the results of a previous
one, including the sex-specific differences in the association of a genetic variation with
survival during old age [55]. This is not surprising because it has been claimed that men
and women follow different strategies to attain longevity and several association studies
show positive results only in men [56,57]. The reason is obviously multifactorial, with a
sociocultural component that can be distinguished from biological trait linked to longevity,
although in this specific case a direct effect of estrogen on the modulation of transcription
might be relevant [54].

FOXO3A, which is part of the nutrient sensing pathway linked to insulin and insulin
growth factor(IGF)-1, has an important role as “gatekeeper” by balancing the cell response
to oxidative stress and nutrient availability. FOXO3A acts as a transcription factor on
multiple homeostatic genes in response to decreased insulin/IGF-1 signaling. The SNP
may improve the ability of FOXO3A in fighting oxidative stress by enhancing its intercon-
nections with up- and down-stream molecular partners. Several studies in models have
shown that modifications that impact on these signals are able to postpone aging as this
pathway regulates many aspects of cell homeostasis, from cell survival to proliferation [58].
Therefore, it is conceivable to speculate that hyper or hypo activation of this signaling
pathway, due to genetic variants that lead to different expressions of homeostatic genes.
Finally, an inverse relationship between a healthy life and FOXO3 expression has been
observed; this might reflect the fact that healthy individuals have less oxidative damage
and require less FOXO3 to mitigate this damage [42]. Similarly, this finding could explain
why in some long-lived populations the association with the allele involved in longevity
was not found.

3.3. Other Genes

The GWAS Catalog [59] reports 59 studies showing 676 associations concerning health
span, parental lifespan, or longevity. Overall, the genetic association studies reported as
well as previous ones not carried out by GWAS suggest that the gene variants that contribute
to a long life are involved in the basic maintenance and function of cells, tissues, and organs.
Indeed, genes involved in DNA repair, telomere conservation, heat shock response, and
the management of free radical levels have been found to contribute to longevity or, in
the case of reduced functionality, to accelerate organism aging. Other genes associated
with blood lipid levels, inflammation, and immunity as well as the cardiovascular systems
have also been suggested to contribute to longevity because they reduce the risk of heart
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disease, stroke, and insulin resistance. In addition, as suggested by the studies in mice, the
pathways involved in nutrient-sensing signaling and in regulating transcription have been
shown to be involved in modulating human longevity [28–30,60–62].

In particular, the GWAS Catalog highlights studies with the largest initial sample size
for specific experimental factor ontology as the paper by Timmers et al. [29]. The authors
have combined existing GWA summary statistics for health span, parental lifespan, and
longevity in a multivariate framework, increasing statistical power and identifying 10
genomic loci which influence all three phenotypes, of which five have not been reported
previously at genome-wide significance. The majority of these 10 loci are associated with
cardiovascular disease and some affect the expression of genes known to change their
activity with age. In total, they implicated 78 genes, and found these to be enriched for
aging pathways previously highlighted in model organisms, such as the response to DNA
damage, apoptosis, and homeostasis.

Therefore, accumulation of DNA damage is associated with functional decline in the
aging process. Thus, the maintenance of genomic integrity is a crucial factor for healthy life
and longevity. Genomic instability is, indeed, considered a primary hallmark of aging [63].
Genome instability generally increases with age. DNA repair machinery controls genome
stability [64]. Accordingly, several years ago Vijg and Suh suggested that longevity might
be related to genomic integrity. The relatively low level of chromosomal aberrations
observed in older persons should be a consequence of their genomic stability, and hence,
a contributing factor to their attainment of advanced age [65]. The evidence for this is
largely based on accelerated aging phenotypes of DNA repair in mice mutants and human
progeroid syndromes [66,67].

It is intriguing that several other papers shown below, using different models and
approaches, agree on the role of DNA repair (hence CVD control) in achieving longevity.

In a recent study [68], the results of whole genome sequencing of 81 Italian semi- and
super-centenarians were presented and compared with a group of geographically matched
healthy individuals. The methods used also allowed the analysis of somatic mutations. The
results showed that extreme longevity was characterized by a peculiar genetic background
likely responsible for an efficient DNA repair mechanism, as demonstrated by the low
burden of somatic mutations such as that observed in younger controls. The genetic variants
involved were replicated in a second cohort made of 333 Italian centenarians (>100 years)
geographically matched to 358 controls (mean age: 60.7 ± 7.2). The low burden of somatic
mutations might have contributed to protect them from CVDs. Accordingly, their existing
polygenic risk score is not significantly different from those observed in younger controls.
Thus, these subjects have escaped CVDs not because of a direct genetic protection toward
cardiovascular risk but because they are protected from the burden of somatic mutations
occurring during aging. These data support recent literature [69] that suggests a genetic
signature in DNA repair mechanisms crucial for cellular homeostasis and protection from
CVDs. This genetic background could therefore be at the basis of the extreme longevity of
these subjects.

A very recent study [70], available as a preprint not yet formally peer-reviewed at the
time of writing this paper, has identified a Sirtuin 6 (SIRT6) allele containing two linked
substitutions (N308K/A313S) enriched in Ashkenazi Jewish centenarians as compared
with controls. SIRT6 is an enzyme involved in multiple cellular pathways implicated in the
regulation of aging and metabolism. Characterization of this SIRT6 allele demonstrated it
to enhance stimulation of DNA double strand break repair. Additionally, it displayed a
stronger interaction with Lamin A/C (LMNA), which might aid LMNA to organize/control
nuclear protein–protein and protein–RNA interactions. Aberrant processing of LMNA
results in human premature aging syndrome, Hutchison Gilford Progeria, while LMNA
SNPs have been found to be associated with longevity. In addition, SIRT6 and its ortholog
regulate lifespan in models [71–75].

The whole-genome sequencing of 208 colorectal crypts from 56 individuals provided
insights into the somatic mutational landscape of 16 mammalian species. The somatic mu-
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tation rate per year varied greatly across species and showed a strong inverse relationship
with species lifespan. Therefore, the most remarkable datum of this study is the inverse
scaling of somatic mutation rates with lifespan, suggesting that mutation rates may be a
contributing factor in aging and longevity [76].

Although these data require further study, it is known from both animal models and
clinical data that progeroid syndromes [77] support the key role of improving genome
maintenance in the attainment of longevity.

4. Conclusions

The importance of aging and longevity studies to address the medical, economic,
and social problems associated with the increase in the number of non-autonomous old
people suffering from invalidating diseases is linked to the extraordinary increase in the
older population in the Western world. The increase in life expectancy with the conse-
quent aging of the population is a great achievement of humanity, but it also represents a
challenge that the Western world is currently facing, as aging is associated with increased
susceptibility to many diseases such as CVDs, cancer, T2D, and AD. Therefore, it is nec-
essary to fully understand the mechanisms of successful aging and longevity to prevent
the harmful aspects of aging. Despite the efforts made by the international scientific com-
munity and the use of high-throughput genotyping methodologies, satisfactory results
have not been obtained. The most significant associations have been obtained with the two
genes, APOE and FOXO3A, which had already been identified for some time with simple
case–control studies.

From the evolutionary point of view, longevity depends on the residual maintenance
functions after the end of the reproduction period [78]. Aging depends on stochastic events
and the aging phenotype is the result of the accumulation of cellular damage that cannot be
repaired by the cellular maintenance systems that are running out [79]. Therefore, longevity
depends on the possibility of survival after the end of the reproductive period and the
genes that lead to longevity are “survival genes” rather than “longevity genes” [80].

Several studies of formal genetics strongly suggest the role of genes in achieving
longevity. The comparison between the survival of the siblings of centenarians and that of
their brothers-in-law, who likely shared the same lifestyle for most of their lives, showed
that “the survival advantage” of siblings of long-lived subjects was not fully shared from
their brothers-in-law. This suggested that beyond the family environment, there are genetic
factors that influence survival and, consequently, longevity. This was not true comparing
the survival of sisters with that of sisters-in-law. Interestingly, in this study, the survival
curve of the sisters of long-lived subjects did not differ from the one of sisters-in-law,
suggesting that the genetic component explains longevity in men more than in women [81].
The genetic component of lifespan in humans has also been analyzed by comparing the age
of death of monozygotic and dizygotic twins. This has allowed to estimate that about 25%
of the variation in human longevity can be due to genetic factors and indicated that this
component is higher at older ages and is more important in males than in females [82–84].

It is thought that for the first eight decades of life, a correct lifestyle is a stronger deter-
minant of health and life span than genetics. Genetics then appears to play a progressively
important role in keeping individuals healthy and live as they age into their eighties and
beyond. For centenarians, it reaches up to 33% for women and 48% for men. However, in
general, the effect sizes were not large, suggesting that many genes of small effect play a
role, as indeed in all multifactorial traits [33,53,61,82,85]; however, it needs to be considered
that there is a dynamic interplay between genetic and environmental variations in the
development of individual differences in health [86], and hence, longevity. Therefore, it
is not surprising that GWAS-replicated associations of common variants with longevity
have been few since they pool different populations losing the “ecological” dimension
of longevity.

Overall, the findings discussed in this paper strongly suggest that longevity genetics
are closely associated with protection against age-related diseases, particularly CVDs. The
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association with longevity is not surprising because CVDs are the leading cause of death
globally, with an estimated 17.9 million deaths annually [87].

As previously stated, replicated associations of common variants with longevity have
been few and the size of the effects are relatively modest. LLF studies are uniquely
positioned to discover genetic and other factors related to longevity. It is now clear,
indeed, that rare variants are numerous and that family studies show particular promise in
their discovery [27].
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