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Abstract: In a series of paperswehave obtained results for nonlinear heat transportwhen thinwires exchange
heat non-linearly with the surroundings, with particular attention to propagating solitons. Here we obtain
and discuss new results related to the propagation of nonlinear heat fronts and some conceptual aspects
referring to the application of the secondprinciple of thermodynamics to somenonlinear steady states related
to non-propagating solitons.
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1 Introduction

The interest in the transmission of information by means of soliton lightwaves [1] has stimulated an anal-
ogous interest in the transmission of information by means of thermal solitons [2]. Solitons are localized
perturbations of the system, propagating or not, keeping their form along time. Their main peculiarity is the
particle-like behavior,which explains the suffix “on,” as in “photon” or “phonon.” The twomain kinds of soli-
tons are the pulse-like solitons (“sech”-type solitons, also named bright solitons) and the front-like solitons
(“tanh”-type solitons, also named dark solitons).

These waves are the outcome of the combination of dispersive terms and nonlinear terms. This has fos-
tered the interest in nonlinear versions of generalizedheat transport equations such asMaxwell-Cattaneo and
Guyer–Krumhansl equations [3–8], keeping in mind the restrictions required by the extended formulations
of thermodynamics [9–15].

The propagation of solitons for transmitting bits of information has recently suggested to consider ther-
mal waves along thin wires when the heat exchange between the wire and the surroundings is nonlinear
[2, 16, 17]. In [2] the energetic cost for transmission of one bit was especially outlined, because the energy cost
on information transmission and processing is a relevant practical topic. Otherways of having heat solitons is
bymeans of exothermic chemical reactions or phase transitions with latent heat [18–20], but these situations
are not so useful for the transmission of many bits.

We consider that heat exchange between the wires and the environment has nonlinear contributions
in the difference of their respective temperatures [21, 22]. In [2] we proposed a mathematical model for the
thermal exchange between the wire and the environments using the Stefan–Boltzmann equation for the lat-
eral heat exchange. We used the same mathematical model but with a different kind of non-linearity (a flux-
limiter) in [23]. A comparison between the two models of non-linearity was made in [24] assuming two relax-
ation times for the longitudinal heat flux and for the transversal heat exchange. In these papers we obtained
solutions of the kind “sech2,” becausewewere interested in the use of localized propagating solitons to trans-
mit bits of information. There, we were interested in the minimum amount of energy necessary to transmit
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a bit of information. Instead, in propagating fronts the transmission of thermal energy, rather than of infor-
mation, is the main interest. We will be interested in how fast a thermal front propagates along the wire,
transmitting with it an amount of energy. We will deal with two aspects: (a) propagating fronts related to the
function tanh and (b) non-propagating solitons of the form sech2, which raise interesting questions regarding
the second law.

The paper is organized as follows. Section 2 introduces the mathematical model; Section 3 explains the
mathematical method applied to the model for searching traveling wave solutions; Sections 4 and 5 deal
with some nonlinear wave solutions in the radiative heat exchange regime; finally, Section 6 is devoted to the
discussions and conclusions.

2 The mathematical model
The mathematical model proposed in [2] for heat propagation along a heat-conducting wire of radius r with
lateral radiative heat exchange with the environment is

{{{{{{{
{{{{{{{
{

ρcàT
àt
= −∇q − 2πrqt ,

τàq
àt
= −q − λ∇T ,

τàqt
àt
+ qt = rg(T) = 2πr2σSB(T4 − T40),

(1)

namely, the energy balance equation (first equation) and two constitutive equations for the longitudinal (the
second equation, known as Maxwell-Cattaneo equation [19, 20]) and lateral heat flux (third equation). As in
[2, 23, 24], the temperature T depends only on z (the distance along the axis), ρ is the mass density, and c is
the specific heat per unitmass;moreover,q = q(z) ẑ is the longitudinal heat transfer along the cylinder and qt
is the transverse heat per unit area which the cylinder exchanges with the environment. We also assume that
both the second and the third equations in (1) have the same relaxation time τ. The model with two distinct
relaxation times has been considered in [24]. In the second equation λ stands for the thermal conductivity
along the wire. The term g(T) in the third equation is the Stefan–Boltzmann law for radiative transfer across
the lateral walls, with σSB being the Stefan–Boltzmann constant.

Here T is assumed to be the local-equilibrium temperature; more general versions of temperature, in-
cluding nonlinear contributions in the fluxes, could be considered, in the line pointed out in [21]. This would
be an additional source of non-linearity, worthy of future examination and physical discussion.

By differentiating the first equation in (1) with respect to time and using the second equation in (1), we
find

τρcà
2T
àt2
= λà

2T
àz2
− ρcàT
àt
− g(T). (2)

Expression (2) is still valid for T → T − T0, with T0 being the homogeneous temperature of the environ-
ment.

If we write T = T0 + ΔT, expanding the fourth power law coming from the Stefan–Boltzmann law we
obtain a polynomial of fourth order in ΔT for g(T). The dimensionless form of the equation is

à2u
àt21
=
à2u
àz21
−
àu
àt1
− b (4u + 6u2 + 4u3 + u4) , (3)

where

t1 = t/τ, z1 = z√
ρc
λτ
, u = (T − T0)

T0
, g̃(u) = τ

ρcT0
g(T − T0), (4)

with b = 2πr
τσSBT30
ρc

. If there is no lateral heat exchange, the coefficient b will be zero.
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If λ →∞ and τ →∞ but λ/τ is finite, (2) leads to

à2u
àt21
=
à2u
àz21
− b (4u + 6u2 + 4u3 + u4) . (5)

Both (3) and (5) can be summarized by

à2u
àt21
=
à2u
àz21
− a àu
àt1
− b (4u + 6u2 + 4u3 + u4) , (6)

where a = 1 stands for equation (3) and a = 0 for equation (5).
Here, we will explore the possibility of propagation fronts, related to “tanh,” and of steady states related

to “sech2.” However, applying themathematical procedure described in the subsequent sectionwe have seen
that these kinds of solitons are not solutions of equation (6), but the situation changes if we consider the
truncation g̃(u) = b(4u + 6u2), which is valid for small values of the field u, namely ΔT < T0.

3 Auxiliary method for traveling waves
In this section we recall, for the sake of clarity to the reader, the main steps of the auxiliary equation method
used in [2, 23, 24], which have been introduced in [25], [26], [27]. The reader familiar with this method may
pass over this section.

The main peculiarity of this method is to allow to find some exact traveling wave solutions of the 1 + 1
nonlinear equation E(z, t, u, uz , ut , ...) = 0. The first step is transforming the partial differential equation in the
ordinary equation, E(ξ , u, uξ , uξξ , ...) = 0, by means of ξ = kz − ωt.

The second step is to choose for u(ξ ) a polynomial form

u(ξ ) =
n
∑
i=0

uiy(ξ )
i, (7)

where ui are constants to be determined and the functions y(ξ ) are solutions of an auxiliary equation, such
as [25–27]

y(ξ )� = 1 − y(ξ )2, (8)

whose solution is y(ξ ) = tanh(ξ ), mimicking a propagating front, or the equation

y(ξ )� 2 = y(ξ )2(1 − y(ξ )2), (9)

whose solution is y(ξ ) = sech(ξ ), mimicking a propagating pulse.
The third step is determining the coefficients ui in (7), after introducing (7) in E(z, t, u, uz , ut , ...) = 0 and

taking into account the auxiliary equation y(ξ ). The integer n (the exponent of y(ξ ) in (7)) is found by bal-
ancing the higher-order linear term with the higher nonlinear term of the equation. Finally one obtains an
algebraic system of equations for the coefficients ui which may be solved.

4 Traveling fronts associated to the auxiliary equation (8)
According to the first step of the method, we need to consider the moving frame of reference ξ = kz − ωt =
k(z − vt), where v is the speed given by v = ω/k. Then, the second-order truncated form of equation (6) is

(ω2 − k2) à
2u
àξ 2
− aωàu
àξ
+ b (4u + 6u2) = 0. (10)
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In this subsection we use the auxiliary equation y(ξ )� = 1 − y(ξ )2, namely (8), with the solution tanh(ξ ),
and we follow the procedure described in the previous section. Indeed, by balancing the highest nonlinear

term u2 with the highest linear term à
2u
àξ 2

keeping in mind (8), from which we find the value n = 2, the sum (7)

becomesu(ξ ) = u0+u1y(ξ )+u2y(ξ )2. After substituting the latter expressionofu(ξ ) in (10)wefind the following
algebraic system, which allows to find the coefficients u0, u1, and u2

{{{{{{{{{
{{{{{{{{{
{

−aωu1 + 2bu0(3u0 + 2) + 2u2 (ω2 − k2) = 0,
2u1 (6bu0 + 2b + k2 − ω2) − 2aωu2 = 0,
aωu1 + 4u2(3bu0 + b + 2(k − ω)(k + ω)) + 6bu21 = 0,
2 (aωu2 + 6bu1u2 + k2(−u1) + ω2u1) = 0,
6u2 (bu2 − k2 + ω2) = 0.

(11)

Case a = 0
Setting a = 0 in the above system (11), we find solutions obtained in [2] and reported in Section 5, namely (18)
and (20).

Case a = 1
In this case we find u2 = 1/6, u1 = 1/3, and u0 = −1/2, so we have the traveling front solution

u(z1, t1) =
1
6
(tanh2(kz1 − ωt) + 2 tanh(kz1 − ωt) − 3) , (12)

with ω = −5
3
b and k = ±

√b√50b + 3
3√2

, as plotted in Fig. 1.

Solution (12) can also be written in dimensional form:

ΔT(z, t)
T0
=
1
6
(tanh2(kdz − ωdt) + 2 tanh(kdz − ωdt) − 3) , (13)

with ωd = −
5
3
2πrσSBT30

ρc
and kd = ±

√ρcωd(10τωd + 1)
√10λ

.

The propagation velocity vd is given by

vd =
ωd
kd
= ±

ωd√10λ
√ρcωd(10τωd + 1)

. (14)

Figure 1: 3D plot of (12) for ω = 1 (left) and 2D plot of (12) for three different values of the dimensionless time t = 0, t = 3, and
t = 6 (right).
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Another solution found for u2 > 0 is u2 = 1/6, u1 = −1/3, and u0 = −1/2

u(z1, t1) =
1
6
(tanh2(kz1 − ωt) − 2 tanh(kz1 − ωt) − 3) , (15)

with ω = 5
3
b and k = ∓

√b√50b + 3
3√2

.

Twoother soliton solutions, corresponding to u2 = −1/6, u1 = −1/3, and u0 = −1/6 or to u2 = −1/6, u1 = 1/3,
and u0 = −1/6, are

u(z1, t1) = −
1
6
(tanh(kz1 − ωt1) + 1)

2, (16)

with ω = 5
3
b and k = ∓

√b√50b − 3
3√2

, and

u(z1, t1) = −
1
6
(tanh(kz1 − ωt) − 1)

2, (17)

with ω = −5
3
b and k = ∓

√b√50b − 3
3√2

.

Note that in (15) k is always real, whereas in (12) (respectively (17)) it is real for b > 3/50, which in view
of the meaning of b (below (3)) refers to τ > 3

2πr50
ρc

σSBT30
. This comment illustrates that the value of the

relaxation time will be one of the physical factors whose concrete numerical value allows or forbids some
concrete kinds of solutions.

The particular kind of frontwhichwill be observedwill depend on the initial temperature profile imposed
along the wire.

To sustain such a propagation of the energy front, energy must be injected to the system at z1 = −∞ at a
rate ė = ρcΔTvdπr2. Indeed, the advance of the front makes that the volume of the hot part of the system in-
creases with vπr2 per unit time; since the difference in internal energy between the cold part and the hot part
is ρcΔT, thementioned result for ė follows in a direct way. Thus, an operational way of controllingwhich kind
of solution is chosen is related to boundary conditions and to the imposed initial temperature profile. For in-
stance, if the energy is supplied to the system at a rate different than the one calculated here, the solution (12)
will not be physically realizable.

5 Traveling pulses and stationary solutions associated to the
auxiliary equation (9)

In this section we recall the results obtained in [2], where we have applied the auxiliary equation method
by equation (9), namely y(ξ )� 2 = y(ξ )2(1 − y(ξ )2). Following the previous procedure we find the following
solutions.

Case a = 0
The first solution is [2]

u(z1, t1) = sech
2(k(z1 − vt1)) −

2
3
, (18)

with ω2 = k2 + b and v = ω/k, which in dimensional form are ω2
d =

2πrσSBT30 + λk
2
d

τρc
and

v = ωd/kd = √
λ
τρc
√1 +

2πrσSBT30
λk2d
. (19)
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Another solution is [2]

u(z1, t1) = −sech
2(k(z1 − vt)), (20)

with ω2 = k2 − b and v = ω/k, which in dimensional form are ω2
d =

λk2d − 2πrσSBT
3
0

τρc
and

v = ωd/kg = √
λ
τρc
√1 −

2πrσSBT30
λk2d
. (21)

We point out that the speed in (18) is higher than for the high-frequency linear waves, namely√ λ
τρc . The

opposite occurs instead in (20). As already stressed in [2], this is of conceptual interest because the presence of
the relaxation term in the transport equation allows to avoid infinite speed of propagation for thermal pulses.

In this case we also find stationary solutions. The first stationary solution is [2]

u(z1, t1) = −
1
3
(2 − 3sech2(kz1)), (22)

with ω = 0 and k2 = −b, which in dimensional form is

ΔT(z, t)
T0
= −

1
3
(2 − 3sech2(kdz)), (23)

with ωd = 0 and λk2d = −2πrσSBT
3
0. Note that from the latter expression it follows that kd is imaginary and

that “sech” becomes “sec,” which is plotted in Fig. 2. Since sec(hπ/2) = ∞ (h ∈ ℤ), the solution may have a
physical meaning in a restricted interval of ξ .

Another stationary and localized solution is [2]

u(z1, t1) = −sech
2(kz1), (24)

with ω = 0 and k2 = b, or in dimensional form

ΔT(z, t)
T0
= −sech2(kdz), (25)

with ωd = 0 and λk2d = 2πrσSBT
3
0. Solution (25) is plotted in Fig. 2.

Figure 2: Plot of the stationary solution (23) for 2πrσSBT 30 /λ = 1 (left) and plot of (25) for kd = 1, namely for 2πrσSBT 30 /λ = 1
(right).
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Case a = 1
In the case a = 1 we find again the same stationary and localized solutions just written. Note that the system
is not expected to spontaneously reach the states (23) or (25) starting from the homogeneous state, but these
profiles will be the result of imposed initial conditions. Stability of solutions (23) and (25) should be explored
in the future. They are consistent with the first and the second law but they are strongly non-intuitive.

6 Discussion
Wehave considered themathematicalmodel proposed in [2], which, apart from the propagation of bright soli-
tons (“sech”-type solitons), allows the propagation of nonlinear fronts; see (12), (15), (16), and (17), considered
in Section 4. Note that the solutions are not simply proportional to tanh(kdz−ωdt), but are second-order poly-
nomials in tanh(kdz−ωdt). We have pointed out the relevance of the value of the relaxation time τ in allowing
or forbidding some kinds of solitons, as commented below (17).

The entropy production is given by

σ = −qlλ∇T + (2
π
r
) qt(T − T0) > 0 (26)

according to the second law. Thefirst termmaybenegative on the condition that the second term is sufficiently
positive or viceversa, or both terms may be positive. Note indeed that if the lateral heat exchange is taken to
be zero (this would correspond to formally taking σSB = 0 in Stefan–Boltzmann’s law), the kd in (22) or (24)
would be zero, and the profile would be homogeneous.

The entropy production (26) is the local-equilibrium entropy production, concerning longitudinal and
transversal heat transfer. We have used it because the discussion here refers to a steady-state situation. Had
we considered a non-local equilibrium temperature with nonlinear contribution in the fluxes, a more general
expression for the entropy and the entropy production incorporating nonlinear terms in q and qt should be
taken into account [9, 10].

A more general view should also include the heat flow outside the system, because this is a forced state;
in the environment, there will be a heat flow in a direction opposite to the heat flow along the wire, but if the
environment is at a uniform temperature this will not contribute to an entropy production.

Solutions (23) and (25) are far from being intuitively acceptable. We focus on the situation corresponding
to (25), whose temperature profile is plotted in Fig. 2. In Fig. 3(a) we sketch the behavior of the axial and the
lateral heat flows according to temperature profile (25). When this profile is introduced into the Fourier law
and the Stefan–Boltzmann law, the behavior of the heat flux is into the wire (lateral heat flow) and towards
z = 0 (axial heat flux). This makes that heat would accumulate at z = 0, in such a way that this solution
cannot correspond to a steady state.

A possible way of physically interpreting solution (25) as a stationary and localized solution would be
that either longitudinal heat flows in a way opposite to Fourier’s law, as in Fig. 3(b), or that the lateral heat
flows in a way opposite to Stefan–Boltzmann, as in Fig. 3(c). These two situations would be compatible with
a steady state, in contrast to Fig. 3(a). They could also be compatible with the second law, provided that the

Figure 3: Applying the temperature profile (25) along the wire to the Fourier law and the Stefan–Boltzmann law leads to heat
behavior sketched in (a), where heat flows into the system and towards z = 0 along the system. Panels (b) and (c) yield possible
alternatives consistent with a steady state, commented in the text.
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positive entropy production of lateral heat flowing into thewire in Fig. 3(b) compensates the negative entropy
production related to the behavior of longitudinal heat flow in the same figure (and vice versa, in Fig. 3(c)).

Solitons have been observed in many physical systems. In principle, the solitons and fronts considered
here should be observable. In order for lateral effects to be especially relevant, thin wires should be consid-
ered; as a fast and non-invasive way of measuring temperature, observations based on radiation would be
especially convenient.
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