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Abstract

Technological advancement in the field of artificial intelligence has allowed the
world to leverage new technologies to make improvements in the application
world. In particular, one of the areas that has benefited the most is the field
of Cheminformatics and Drug Discovery. Until recently, this field was based
on a "trial-and-error" approach that has now been abandoned in favor of more
accurate and, above all, less time consuming methods. In this dissertation the
molecular descriptors that allow the conversion of chemical information into
machine-readable data are discussed. Virtual Screening and Drug Repurpos-
ing are the domains of Drug Discovery within which the research activity of
this thesis was conducted in order to evaluate the molecular descriptors, on
classification tasks of bioactivity of small molecules on specific protein tar-
gets, through Deep Learning algorithms. Specifically, the CDKs family has
been used as a protein target, for the fundamental role they play in cell cycle
regulation. A first phase of theoretical study on the various cheminformatic
representations (Molecular Graphs, Canonical SMILES, InChI, Fingerprints)
allowed me to identify the Molecular Fingerprints, a vector representation of
fixed length, as the most suitable descriptor for the research task. In fact, the
Fingeprints encode structural information in a hashed bitmap proving to be
the most efficient embedding computationally. Different families of Molecu-
lar Fingeprints ( each one encoding structural information in a different way)
have been tested to identify the best embedding size. Thereafter, each family of
Molecular Fingeprints was examined for the impact of each molecular structure
encoding on bioactivity classification performance. These experimental steps
were fundamental to identify the strengths and especially the weaknesses of
the descriptor, directing the topic of research on the creation of innovative and
efficient molecular descriptors, EMBER and NMR-Like. EMBER (embedding
multiple molecular fingerprints) comes from the observation that the different
families of Fingerprints encode complementary information for the representa-
tion of the molecule, facilitating the task of classification. EMBER is presented
as a 3D pseudo-image that contrary to the parallel use of Molecular Finger-



prints is more efficient, being able to perform multi-class multi-target classifi-
cation with a very low computational cost. The second innovative descriptor
presented in this work is NMR-Like, which aims to overcome the limitations
of Fingeprints while maintaining a computationally efficient numerical embed-
ding. NMR-Like is based on H-NMR spectra of small molecules and is the
first molecular descriptor used in the Virtual Screening domain. Contrary to
Molecular Fingeprints, despite being a numerical embedding of fixed size, it
manages to keep readable the molecular features and structure, allowing the
operator to be able to interpret the distinctive features of each active molecule.
This feature, added to the low computational cost required for the training of
neural networks that use it as input data, makes it an ideal embedding. In
conclusion, the work of the thesis shows an analysis of the descriptors present
at the state of the art, focusing on Molecular Fingeprints that are used as a
starting point to generate two innovative representations able to improve the
efficiency in classification tasks (EMBER) and interpretability (NMR-Like).
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Chapter 1

Introduction

Various Artificial Intelligence (AI) concepts have been successfully used in
recent years for Drug Discovery and chemical-pharmaceutical research more
generally [7]. The expansion and increased accessibility of AI and the vari-
ous related technologies have enabled these sectors of the scientific world to
optimise many processes from the earliest to the most advanced stages of phar-
maceutical research. Specifically, Machine Learning (ML) and Deep Learning
(DL) algorithms are among the technologies that have played a key role in this
technological progress. Specifically, these algorithms are based on the capacity
of an AI system to acquire knowledge through the identification of patterns
from raw data.

Deep Learning resolves this difficulty by breaking the desired complicated
mapping into a series of nested simple mappings, each described by a differ-
ent layer of the model. The input is presented at the visible layer, so named
because it contains the variables that we are able to observe. Then a series
of hidden layers extracts increasingly abstract features from the image. These
layers are called "hidden" because their values are not given in the data; in-
stead the model must determine which concepts are useful for explaining the
relationships in the observed data. This characteristic of deep learning gives
it great flexibility for different tasks, making it more suitable than machine
learning techniques for tackling more complex, real-world problems. Drug
Discovery (DD) is one such complex problem; it is the process of identifying
a chemical entity that has the potential to become a new therapeutic agent
for the treatment of one or more diseases. Traditional pharmaceutical re-
search methodologies require a large investment in terms of both time and
money; indeed, to develop a new drug, the average pre-tax expenditure is ap-
proximately US$2558 billion (for the year 2013) [8] and takes approximately
10-15 years [9, 10]. However, despite the huge investment of time and money,

1



2 CHAPTER 1. INTRODUCTION

the success rate of clinical approval of small molecules is estimated at about
13%, implying a relatively high risk of failure. This rate of risk has prompted
pharmaceutical companies to develop a new approach to research, beginning
to integrate computer-based approaches such as those described above. This
is why chemoinformatics was born, a term coined in 1998 by Frank Brown,
an early founder of chemoinformatics, [11] who defined it as "mixing of in-
formation resources to transform data into information, and information into
knowledge, for the intended purpose of making decisions faster in the arena of
drug lead identification and optimisation" [12]. The latter has the objective
of identifying a lead compound, decreasing production costs by halving the
time to create a new drug using increasingly precise and efficient procedures,
making the most of the great accessibility of data that the Big Data era makes
more and more accessible.

1.1 Drug Discovery and Chemoinformatics

As a result of the many advances that have been made in the field of biotech-
nology, pharmacology has undergone a significant reshaping. There has been a
shift from a trial-and-error approach (known as forward pharmacology) to more
accurate methods, using the latest discoveries in molecular biology to discover
new pharmaceutical molecules (known as reverse pharmacology) [13]. In For-
ward Pharmacology, also known as Phenotypic Drug Discovery (PDD), com-
pounds are screened in cellular or animal disease models to identify molecules
that have a beneficial effect: only after an active drug has been identified is
an attempt made to identify the biological target of the drug [14]. In reverse
pharmacology, also known as Target-based Drug Discovery (TDD), a biological
target is hypothesised to be disease-modifying. A High-Throughput Screening
(HTS) of compound libraries against the protein target is completed, iden-
tifying successful compounds that are then optimised and, unlike in reverse
pharmacology, tested for in vivo efficacy in the final stages of drug discovery
[15]. This new approach, in recent years has been fostered by increased knowl-
edge of biological systems illuminated and new ’omics ’ sciences, which have
increased our ability to link diseases to their causes, leading to an exponen-
tial increase in drug targets. In light of new discoveries and approaches in
pharmacology and molecular biology, biotechnology has become the driving
force behind drug discovery and a major research area for new start-ups and
companies worldwide [16].
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The approaches to DD are therefore very dynamic, favouring the TDD
approach in recent years, reducing lead identification time in the early stages
of research. A schematic of the Drug Discovery process is shown in the figure
below 1.1.

Figure 1.1: Schematic representation of the drug discovery and development
process

As can be seen from the figure, Drug Discovery can be divided into two
main phases: (i) discovery and (ii) development. The pharmaceutical devel-
opment phases include the use of animal models and the first in vivo tests,
to verify the information regarding the Absorption, Distribution, Metabolism,
Excretion and Toxicity (ADMET) properties, each of which can influence the
advancement to the next step of a drug candidate, should it not meet the nec-
essary selection criteria in the in vivo models that present a set of variables
that the computer model does not have. After the animal model phase, the
drug progresses to clinical trials (divided into phase I, phase II and phase III)
in which the drug candidate is tested on volunteers affected by the disease. If
the drug is found to be suitable and succeeds in passing this scrupulous anal-
ysis, it will be further evaluated by a team of experts from the Food and Drug
Administration (FDA) [17] and/or the European Medicines Agency (EMA)
[18], and will eventually be marketed. As can be easily understood, this phase
of pharmaceutical production cannot and must not be subject to reductions
in the timescales that characterise it, so pharmaceutical companies in recent
years have been trying to optimise the Discovery process, encouraging the use
of new technologies provided by chemoinformatics, in an attempt to reduce
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costs and timescales.
The main applications of chemoinformatics in DD, include target selection,

virtual library generation, Virtual High-throughput Screening (V-HTS), data
mining, Quantitative Structure-Activity Relationship (QSAR) and in silico
prediction of ADMET properties [12]. In particular, the phase that has gained
the most benefit has been Virtual screening (VS), more precisely the Ligand-
Based (LB) approach, i.e. screening based on the structural information of
molecules whose biological activity is known on a specific target [19], in con-
trast to the Structure-Based (SB) approach, where reference is made to the 3D
structure of the protein binding site obtained through X-Ray crystallography,
Nuclear Magnetic Resonance (NMR) spectroscopy or homologous models. To
date, SB models are the most accurate approach for identifying compounds in
screening, but also the most computationally intensive. The LB approach is
more efficient in the screening stages, mainly due to the contribution of ML
and DL algorithms, which will be discussed in more detail in the next section.

1.1.1 Virtual Screening

Virtual screening can be used as a low-cost alternative to HTS or as a supple-
ment to the HTS procedure. Virtual screening is used in the latter to screen
vast libraries of compounds for possible actives, lowering the size of the library
before moving on to more expensive HTS. Because virtual screening does not
involve the actual manufacturing of compounds, unlike HTS, it is not con-
strained by the chemical space that can be tested. Virtual screening, on the
other hand, necessitates experimental data, such as a protein structure for
structure-based virtual screening (Docking methods) or a list of known actives
for ligand-based virtual screening. These two are the two major approaches
for virtual screening [20, 21] .

Structure-Based Virtual Screening (SBVS), which focuses on screening the
database of compounds within the boundaries of a target active site, is per-
haps the most dynamic branch of virtual screening. Such methods have the
advantage that searches are no longer limited to the predicted binding modes
of known ligands. Instead, entire receptor sites can be studied, allowing a
wide range of potential receptor-ligand interactions to be sampled. As a re-
sult, new chemotypes can be discovered that bind to the receptor in previously
unknown ways. This advantage comes with a substantial research time prob-
lem. In order to keep up with the ever-increasing speed of biological screening
methods, searches must be fast (no more than 5-10 minutes per compound
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for even the most computationally equipped, substantially less for the least
equipped) [1]. As in most disciplines, accuracy is compromised by speed. For
high-throughput predictions, sophisticated energy functions, such as those us-
ing first-principles approaches for protein-ligand affinity calculations, take too
long. Consequently, protein-ligand interactions have been described using sim-
pler scoring algorithms. To produce a variety of SBVS tools, these are coupled
with a number of rapid docking procedures in binding mode.

Docking is essentially a geometric research problem. In fact, the conforma-
tion of the binding site of a given protein is well known, whereas the confor-
mational structure of its ligand is not. Consequently, most docking techniques
focus on studying the flexibility of the ligand while keeping the structure of
the protein rigid. The main source from which to obtain 3D structures of
proteins is the Protein Data Bank (PDB) [22]; these are obtained mainly by
X-ray crystallography or NMR spectrography, deposited by biologists and bio-
chemists worldwide, are in the public domain and are freely accessible.

There are several SBVS techniques, each focusing on a different aspect of
research and input data. Clique detection [23, 24] is a technique that is used on
small fragments or sets of explicitly generated ligand conformations, which are
well suited to this type of search. These techniques can be used to search for
distance-compatible matches of protein and ligand features, for example com-
plementary hydrogen bonding interactions, distances or volume segments. The
most widely used tool for clique search docking algorithms is the DOCK pro-
gramme [25, 26, 27]. DOCK applies distance-compatible matching searches
that incorporate clique detection algorithms for rigid-body docking (see fig-
ure 1.2). Site points mapping the molecular features of the binding site are
matched to the atomic centres of the ligand. The initial orientations of the
ligand in the receptor site are generated using distance-compatible matches
of user-definable size (usually 3-4). The final position of the ligand is then
determined through optimisation against the selected scoring function.

A further approach for structure-based virtual screening is based on stochas-
tic techniques and in particular one of the most widely used is Monte Carlo
simulation. This, in contrast to the combinatorial technique described above,
starts with a configuration of the initial molecule that will vary towards confor-
mations with a favourable energy. Monte Carlo methods refer, in a very general
sense, to any simulation of an arbitrary system using a computer algorithm
explicitly dependent on a set of (pseudo) random numbers. The name, derived
from the famous casino in Monaco, emphasises the importance of chance in
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Figure 1.2: Clique detection as applied to the receptor site point/ligand atom
paradigm employed in DOCK is depicted in this diagram. To make a match,
distances and, optionally, atom chemistries must match. Furthermore, crucial
sections that must be matched during clique detection can be allocated to
atom clusters. It should be emphasized that, while this diagram focuses on
receptor–ligand site points, it nevertheless serves as a useful graphic illustration
of clique detection in general. Image taken from [1]

.

the method. In a system with D degrees of freedom, for example, the ther-
mal average of a quantity A associated with each microstate of the system in
equilibrium at absolute temperature T is given by

〈A〉 =
1

Z

∫
A(x)e−

E(x)
T dx

where x is a point in D-dimensional space representing the state of the
system, E(x) is the energy of state x, and Z =

∫
e−E(x)/T dx the partition

function (units set so that the Boltzmann constant (KB), which establishes
the correspondence between quantities of statistical mechanics and quantities
of thermodynamics, is set to 1).

Monte Carlo simulations choose conformations in such a way that the se-
lection is biased towards conformations that are significantly populated at
equilibrium. This is typically achieved by weighing the probability of occur-
rence of a given conformation to its Boltzmann factor through the application
of the Metropolis criterion [28]. If the difference between the energy of the
resulting conformation and the energy of the current conformation, ∆E, is
negative (i.e., the energy of the resulting conformation is less than the energy
of the current conformation), then the resulting conformation is accepted and
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becomes the new conformation in the chain. If ∆E is positive, on the other
hand, a (pseudo) random number R with a value between 0 and 1 is generated.
The resulting conformation is only accepted if e−∆E/T > R. If the resulting
conformation from the move attempt is rejected, then the current conformation
becomes the new conformation of the chain.

Abayagan et al. combined efficient internal coordinate representations of
the protein and ligand with a Monte Carlo optimisation protocol in their ICM
program [29], software that uses the Monte Carlo algorithm to minimise en-
ergy functions in torsional space. A similar approach is used by the QXP
software by applying it to small molecule superimposition [30]. An alternative
search technique called ’tabu search’ is used in the PRO-LEADS programme
[31]. Starting from a random structure, new structures are created by random
moves. A tabu list is maintained containing the best and most recent bind-
ing configurations found. New configurations generated that resemble those in
the tabu list are rejected unless they show higher scores than the configura-
tions in the tabu region. Consequently, sampling performance is improved as
previously sampled configurations are avoided. AUTODOCK [32, 33] uses a
variant of the Monte Carlo approach called simulated annealing to identify lig-
and docking poses. An alternative to the stochastic approach in AUTODOCK
and GOLD [34] is provided by genetic algorithms. In GOLD two bit strings
are used to represent the docking configuration. The first contains information
about the conformation of the ligand by defining the twist of each corner of
each of the freely rotating bonds, while the second contains information about
the map of the relevant hydrogens and atoms in the molecule. A fitness func-
tion is used to provide the scoring function taking into account the evaluation
of the hydrogen bonds, the internal energy of the ligand and the vdW energy
of the protein-ligand complex.

Other approaches to SBVS are based on algorithms that exploit ligand and
protein flexibility, respectively. Lorber and Shoichet [35] introduced the DOCK
approach, based on protein flexibility, in which a database of 300 conforma-
tions with predefined substructures are tested each time, generating a rank-
ing with rapid results compared to single-molecule docking. Thomas et al.
[36] introduced a variant of this approach in which substructures are filtered
according to similarity calculated on predetermined pharmacophoric finger-
prints. Cavasotto and Abagyan created an IFREDA programme [37] that uses
the flexibility protein in virtual screening. By docking flexible ligands to a
flexible receptor, IFREDA generates a discrete set of receptor conformations,
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which are then used to perform subsequent docking and scoring of flexible lig-
ands and rigid receptors. This is followed by a fusion and shrinkage step, in
which the results of multiple virtual screenings are condensed to improve the
enrichment factor. Techniques based on protein flexibility are computationally
expensive, especially considering the large number of molecules to be tested in
the screening steps. In fact, rigid protein-based approaches have been favoured
over the years. Structure-based techniques are certainly the most reliable for
the characterisation of a ligand, but as can be deduced from the techniques
described above, they are not efficient for research on large datasets, in con-
trast to ligand-based approaches which have proved to be less expensive and
faster in screening large datasets.

Ligand-Based Virtual Screening abandons knowledge of the structure of
the target protein, focusing exclusively on the similarity of structure of the
ligands. The initial phase of LBVS requires converting chemical structures
into a machine-readable format. The three-dimensional molecular structure
must be converted into an embedding that is able to retain all structural
information. Over the years, several ways have been proposed to represent
the structure of molecules but connection tables have emerged as the most
important representation for two-dimensional (2D) information. The structure
data (SD) file is probably the most widely used of these. This file was created
to allow a huge number of molecules and their accompanying data to be moved
through databases. A connection table stores the x and y coordinates of the
atoms according to bond length (z coordinates can be included when three-
dimensional (3D) data is to be saved), as well as the associated atom type,
chirality and bond connection data. This file format has proved excellent for
transporting chemical information, but has proved inflexible for the various
screening algorithms developed over the years, so other representations such as
SMILES and Molecular Fingerprints have been created. Simplified Molecular
Input Line Entry System (SMILES), is a line notation (a typographical method
using printable characters) for entering and representing molecules. While
a SMILES string contains the same information as an extended connection
table, it is in essence a chemical language with a vocabulary (symbols for
atoms and bonds) and grammatical rules (e.g. for recognising substitution
patterns). SMILES representations of structure can in turn be used as ’words’
in the vocabulary of other languages designed for chemical storage. Molecular
Fingerprints are another linear representation of molecules that does not use
letters to describe the atoms within the molecule, but uses the 0 and 1 bits
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to indicate the presence or absence of a specific chemical group within the
molecule.

These descriptors form the basis of all LBVS methodologies, starting with
chemical substructure searching (SS), which has been successfully applied with
2D and 3D data. 2D substructure analysis (or subgraph isomorph matching;
see Figure 1) is still perhaps the most routinely used of all screening tech-
niques with a history dating back to the 1950s with the development of the
backtracking algorithm [38, 39]. Backtracking, also known as atom-by-atom
searching, operates by matching an initial substructure query node with a
database structure, before exploring nodes outside it. The algorithm moves
from atom to atom until the last node is successfully matched, or until a mis-
match is found, in which case it returns to the last correct choice point. To
speed up the backtracking process, refinements have been devised such as the
early pruning of unfruitful branches [40, 41]. Even with these modifications,
the size of the search space of the recursive matching algorithm can prove to
be very large. However, the technique is one of the few that can guarantee
finding the answer for any query-target combination, so much so that it is a
common fallback for difficult searches.

The search for 3D substructures abandons backtracking and is dominated
almost entirely by pharmacophore mapping [42, 43, 44]. A pharmacophore is
commonly defined as a 3D geometric arrangement of molecular features or frag-
ments that form a necessary but not sufficient condition for biological activity.
These features most typically represent functional groups (donor, acceptor,
hydrophobic, etc.), but may also include larger 2D substructures, planes, vec-
tors, exclusion volumes and other features. The use of pharmacophore for
substructure search was first investigated by van Drie et al. using ALADDIN
[45], the first 3D substructure search programme. Marriott et al. employed
the DISCO program [46, 47] together with 3D conformation models of known
M3 muscarinic antagonists to determine the necessary pharmacophore model.
DISCO takes a set of low-energy conformations for each active molecule as
input, and for each conformation, the likely locations of the pharmacophore
site are automatically generated. DISCO’s ability to define the positions of the
protein’s likely hydrogen bond donors and acceptors is a useful feature. This
is significant because ligands may approach the same polar site location from
different directions, which is difficult to account for when using simple atomic
superposition. The search for substructures, both two- and three-dimensional,
brings significant complexity to the VS process. One way in which this has
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been mitigated is through the application of whole-molecule similarity compar-
isons that remove the need for specific feature selection, introducing new 1D
descriptors such as Fingerprints that have nowadays proven to be among the
best embeddings for LBVS applications, especially with the advent of new ar-
tificial intelligence-based methodologies, which will be discussed in subsequent
chapters.

1.1.2 Drug Repurposing

Drug Repurposing (DR) (also called Drug Repositioning, Reprofiling or Re-
tasking) is a strategy used to identify new uses for approved or late-stage drugs
that are outside the scope of the original indication. This approach has sev-
eral advantages over developing an entirely new drug for a specific indication.
Firstly, and perhaps most importantly, the risk of failure is reduced; since the
repurposed drug has already been shown to be sufficiently safe in preclinical
models and in humans, if preliminary studies have been completed, it is less
likely to fail in subsequent efficacy studies, at least from a safety perspective.
Secondly, since most of the preclinical testing, safety evaluation and, in some
cases, formulation development will already have been completed, the drug de-
velopment time can be reduced. Thirdly, less investment is required, although
this will vary considerably depending on the stage and process of development
of the repurposing candidate. Regulatory and phase III costs for a repurposed
drug may be similar to those for a new drug in the same indication, but there
may be significant savings in preclinical and phase I and II costs. These ad-
vantages, when combined, have the potential to result in a less risky and faster
return on investment in repurposed drug development, with lower average as-
sociated costs once failures are taken into account (in fact, the cost of bringing
a repurposed drug to market has been estimated at $300 million on average,
compared to an estimate of $2-3 billion for a new chemical entity [48]). Finally,
repurposed drugs may uncover new targets and pathways that can be explored
further [2]. Drug repurposing typically consists of 3 steps, before being able
to identify a drug that can be reused on another disease. The first and most
critical step is to identify a candidate molecule. The second step is to evaluate
the drug’s efficacy in preclinical models (in vivo or in vitro tests) which, if
successful, lead to step 3, i.e. evaluation in phase II clinical trials. Since the
first step is the most important, but also the most expensive, new approaches
have been developed over the years to speed up this phase, and in particular
computational methods, thanks to the possibility of analysing data of different
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nature (e.g. gene expression data, chemical structure, genotypic or proteomic
data or Eletronic Health Records (EHR)) have proved to be the strong point
in the approach to this task. One of the most popular computational ap-
proaches to date is signature matching, which is based on the comparison of
a unique characteristic between drugs or the comparison of a drug with a dis-
eased phenotype. The signature can be derived from three different types of
data: transcriptomic, proteomic and metabolomic. Transcriptomic data can
be used to perform a drug-disease or drug-drug comparison, in both cases to
identify similarity. For two drugs, sharing a transcriptomic signature may im-
ply a shared therapeutic application regardless of their structural similarity
or sharing of similar chemical structures. Because of the effectiveness of this
approach, the cMap (Connectivity Map) was created in 2006, which contains
expression profiles generated by dosing more than 1,300 compounds in a range
of cell lines [49].Molecular docking is a further computational strategy used for
drug repurposing to predict the complementary binding site between ligands
and targets. In contrast to the traditional approach described in the previous
chapter, inverse docking is used in DR, where multiple receptor sites are inter-
rogated against a specific drug in order to identify new interactions. A further
approach is based on Genome-Wide Association Studies (GWAS), which is
based on the search for variations associated with common diseases; this has
been made possible by the technological leap forward that has been achieved
with new genotyping techniques and the completion of the Human Genome
Project [50, 51], the worldwide project for the complete sequencing and map-
ping of the human genome. The results obtained from this research are not
always easy to interpret, especially in DD, which is why they are often associ-
ated with pathway analysis or network mapping, which provides information
on the proteins involved in the signal cascade, also clarifying the result ob-
tained through GWAS. A further method is the Retrospective clinical analysis
which is based on a systemic analysis of data that can be obtained from various
sources, including EHR data and clinical trial data. EHRs contain a consid-
erable amount of structured data such as diagnostic and pathophysiological
data, including data obtained from laboratory results and unstructured data
such as clinical descriptions of patient signs and symptoms or data imaging.
Data belonging to this category are not always open access, often bound by
ethical constraints and legal restrictions. In 2016, the EMA [18] started to give
free access to data obtained from clinical trials submitted by pharmaceutical
companies for the free use of the academic community.
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In addition to computational methods, experimental approaches are also
used in drug repurposing, the two most widely used being: i) Binding assays
to identify target interaction using proteomic techniques such as chromato-
graphic affinity and mass spectrometry. The Cellular ThermoStability Assay
(CETSA) technique, for example, has been introduced as a method of map-
ping target engagement in cells using biophysical principles involving the ther-
mal stabilisation of target proteins by drug-like ligands with the appropriate
cellular affinity; ii) phenotypic screening can identify compounds that show
disease-relevant effects in model systems without prior knowledge of the tar-
get(s) involved. In the context of drug repurposing, if the compounds screened
are approved or in the process of being approved, this may indicate repurposing
opportunities that can be readily seized.

A summary of all approaches to Drug Repurposing is shown in the figure
1.3.

The heterogeneity of the data used in the various approaches described
above fits well with the advent of new artificial intelligence technologies such
as machine learning and deep learning. Within my research activity, I have
focused on the application of the latter technologies for Drug Repurposing for a
current task such as SARS-Cov-2 infection within the CLAIRE (Confederation
of Laboratories for Artificial Intelligence in Europe) Task Force, testing the
chemical descriptors developed over the last 3 years.

1.2 Machine Learning and Deep Learning appli-
cations in Drug Discovery

In recent years, the field of Artificial Intelligence (AI) has moved from largely
theoretical studies to real-world applications. Credit for this explosive growth
has come with the increased availability of increasingly high-performance com-
puter hardware such as new GPUs that make parallel processing faster, espe-
cially in numerically intensive computations [52]. The goal of a good ML
model is to generalize well from the training data to the available test data.
Generalisation refers to how well the concepts learned by the model apply to
data not seen by the model during the training phases. There are several
algorithms available today, but they are typically grouped into two broad cat-
egories: Supervised and Unsupervised algorithms. These models vary in their
prediction accuracy, training speed and the number of variables they can han-
dle. Algorithms must be chosen carefully to ensure that they are suitable for
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Figure 1.3: Approaches used in drug repurposing. Various computational ap-
proaches can be used individually or in combination to systematically analyse
different types of large-scale data to obtain meaningful interpretations for re-
purposing hypotheses. Challenges for such analyses are discussed in BOX 5.
Experimental approaches can also be used to identify repurposing opportuni-
ties. EHR, electronic health record. Image taken from [2]

.

the problem at hand and the amount and type of data available. A summary
of the main known state-of-the-art algorithms and models is shown in figure
1.4.

The initiation of a drug development programme requires the identification
of a target with a plausible therapeutic hypothesis. The selection of this target
on the basis of the available evidence is called target identification and priori-
tisation. Having made this preliminary choice, the next step is to validate
the role of the chosen target in the disease using physiologically relevant ex
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Figure 1.4: Machine learning tools and their use in drug discovery The machine
learning techniques that have been employed to answer the drug discovery
questions mentioned in this Review are depicted in this diagram. Unsupervised
techniques are used to construct models that enable data grouping, whereas
supervised learning techniques (regression and classifier methods) are used to
solve queries that demand prediction of data categories or continuous variables.

vivo and in vivo models (target validation). This approach, however, requires a
considerable amount of time. Modern biology is increasingly rich in data. This
includes human genetic information in large populations, transcriptomic, pro-
teomic and metabolomic profiles of healthy individuals and those with specific
diseases, and highly clinical images. The ability to capture these large data sets
and reuse them through public databases presents new opportunities for early
target identification and validation. However, these multidimensional datasets
require appropriate analytical methods to produce statistically valid models
that can make predictions for target identification, and this is where ML can
be exploited [52]. For example, Costa et al. [53] constructed a Random Forest
based meta-classifier to identify candidate genes as targets, using topological
networks of protein-protein interaction, and transcriptional and metabolic in-
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teraction. A further example of the application of ML models can be found in
the work of Ament et al. [54] where a regression model and LASSO regulariza-
tion was used to identify Transcription Factors (TFs) involved in Huntington’s
disorder, resulting in a set of TFs to be used as a starting point for disease
therapies.

The prediction of the bioactivity of new ligands is another aspect of drug re-
search where machine learning is routinely applied. Carpenter and Huang [55]
propose several uses of machine learning techniques for virtual screening to find
compounds with a possible key role against proteins implicated in Alzheimer’s
disease. In order to evaluate the toxicity of 3486 Per- and Polyfluoroalkyl Sub-
stances, Cheng and Carla A. Ng [56] employed Machine Learning techniques
to categorize their bioactivity. As can be seen, Machine Learning algorithms
have proven to be very versatile in the early stages of drug discovery, with
Support Vector Machine (SVM) and Random Forest (RF) being the two best
performing algorithms in the state of the art [57, 58, 59, 60, 61].

In spite of the flexibility demonstrated, ML models present a great limitation
when the operator is not able to consciously isolate the set of features to be
used for training. This limitation has been overcome by the advent of deep
neural architectures that have proved capable of using complex data (such as,
for example, images) whose peculiar features will be extracted directly from
the network. In terms of performance, DNNs have proved to be outperforming
’shallow’ machine learning models on many of the Drug Discovery tasks and
in particular LBVS. To date, DL has been employed in all areas of life science
research: Angermueller et al. [62] report on DL approaches in computational
biology, while Anwar et al. [63] present an in-depth report on DL for medical
imaging. Deep Learning solutions have been proposed for all stages of the drug
design workflow [64], and AI-based techniques such as decision support systems
and robotic platforms are likely to work in tandem with human medicinal
chemists to undertake drug discovery in the near future [65]. In the area of
Drug Discovery the applications are manifold, for example,

Wallach in [66] presented AtomNet, which is considered the first CNN for
structure-based screening. In [67] a CNN for learning circular fingerprints [68]
from molecular graphs is proposed, and some experiments are performed to
demonstrate their effectiveness in both solubility and drug efficacy prediction.
In [69] DeepVS is presented: this CNN makes use of the notion of context of an
atom in the protein-compound complex that is a vector representation of the
structural properties of its neighborhood. In [70] the SMILES notation [71]
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describing the compound is used to create a feature matrix where each column
is a one-hot encoding of the presence of a particular SMILES symbol at a
certain position. This representation is fed to a CNN to detect the "chemical
motifs" that are relevant to the binding substructures. In Jimenez-Carretero
et. al. [72] research in 2018, they used a deep Convolutional Neural Network
(CNN) to train the model to predict the toxicity of images of DAPI-stained
cells pretreated with a group of drugs with different toxic mechanisms. Goh
et. al. [73] developed "Chemception", a deep CNN for predicting chemistry,
using only two-dimensional drawings of molecules. Although Chemception
is slightly inadequate in terms of predicting toxicity, there is still room for
improvement. All these DL models should be iteratively refined with new
experimental data to increase model reliability and predictive power. In recent
years, deep learning techniques, and in particular CNNs have gained increasing
impact on drug and VS design due to the tremendous increase in prediction
accuracy at any stage of this process [64, 66]. DNNs have also been used
to predict biological activity, ADMET characteristics, and physicochemical
factors, displaying consistent and robust prediction skills with high sensitivity
when applied to a variety of targets [74, 75]. CNNs have also been used
to predict features like hydrocarbon kinetic energy as a function of electron
density[76].

In spite of everything, Virtual Screening remains, without doubt, one of the
most studied topics in the field of DL applications. The reader is referred in
particular to the work of Kimber et al. [77] for structure-based approaches,
and to the paper by Sydow et al [78] for ligand-based ones.

1.3 Motivation and goals

In recent years, the pharmaceutical industry has been investing resources and
time in the search for innovative methodologies capable of raising the success
rate in the field of Drug Discovery. As described in the previous sections,
the DD domain is very complex and is continuously evolving following the
technological advancement that has been taking place in recent years. The
approaches and input data available to the scientific community are manifold
and it is the task of researchers to try to improve the efficiency of the process.
In my research activity, I have been engaged in studying the most commonly
used molecular descriptors in the state of the art, in order to fully understand
their structure and be able to create new, more efficient ones.
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The state of the art approaches that provide advantageous results are based
on computational methods; in particular those based on Machine Learning
(ML) and Deep Learning (DL) [79], have shown great potential, thanks to the
greater accessibility to large data sets each containing chemical information.
The latter are very heterogeneous and need to be converted into suitable input
data for the training phases of neural networks. The variety of chemical data
requires the researcher to know its origin, structure and properties in order to
maximise its effectiveness for the task to be solved, in the different application
domains. In fact, Drug Discovery is composed of different phases with problems
that require different information and technologies in continuous evolution.
The objective of this work focuses on one of the first phases of DD, namely
Virtual screening (VS), and in particular on the descriptors that are used in
this domain at the state of the art. Indeed, in VS, structural descriptors
referring in some way to the potential biological activity on a specific target
are used to identify a set of compounds eligible as lead compounds [1] from
various online databases such as ChEMBL [80, 81]. The main goal of my
research is to extend the knowledge of molecular descriptors present in the
state of the art in the above mentioned field, trying to provide a contribution
not only theoretical but above all concrete, integrating knowledge of biological,
chemical and computer science developed during this research path, providing
two new embeddings usable in the field of VS:

• EMBER - embedding multiple molecular fingerprints: a 3D em-
bedding consisting of 7 molecular fingerprints, RDKit, Morgan, Atom-
Pair, Torsion, Layered, FeatMorgan and ECFP4, each of which contains
different structural information for each molecule [82].

• NMR-Like: an innovative descriptor based on H-NMR spectra that
is proposed as a tool capable of both screening and characterising the
chemical groups directly involved in the interaction with the protein.

Both presented descriptors were compared with molecular fingerprints, in
terms of performance, using Deep Neural Network (DNN) and Machine Learn-
ing (ML) algorithms in the target-specific bioactivity classification task. To
further deepen the level of understanding, Explainability experiments were
conducted, starting with the architectures with the best classification perfor-
mance, in order to obtain the contributions of the molecular features within
each descriptor. Thanks to this possibility, NMR-Like, is proposed not only
as embedding for the classification of bioactivity but also as a tool for the pre-
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diction of the chemical groups directly involved in the interaction between the
active molecule and the protein, further decreasing the time needed to identify
the lead compound, assisting the studies of molecular docking necessary to
study the correct key-lock coupling between the molecule and the protein.

1.4 Dissertation outlines

The remainder of the dissertation is organized as follows. Chapter 2 con-
tains a detailed description of the molecular descriptors used at the state of
the art in drug discovery applications. Chapter 3 deals with the selection
of the biological target used in the study and describes in detail the prepro-
cessing performed in order to obtain the various datasets used in the various
phases of experimentation. In Chapter 4, the approach based on molecular
fingerprints is described in detail, starting from the dimensional exploration
up to the creation of EMBER. Chapter 5 shows in detail the potentialities of
the NMR-Like descriptor in the bioactivity classification task and the possible
applications in conjunction with molecular docking. In Chapter 6 we show
the applications of EMBER and NMR-Like in the Drug Repurposing domain.
In Chapter 7 some conclusions are drawn.



Chapter 2

Molecular Descriptors

This chapter provides a detailed description of the molecular descriptors that
are used in ML and DL approaches in virtual screening and drug repurpos-
ing. Converting experimentally obtained chemical information into data that
can be used as input in chemoinformatics is a complex and important pro-
cess. Over the years, several forms of machine-readable data have been de-
veloped, but today the most widely used are: Graph representation (such as
MolFiles, Structure Data Format (SDF)), SMILES (Simplified Molecular In-
put Line Entry System), InChI (and InChIKey) and Fingerprints, which are
the most widely used molecular representation in the domains I have explored
during my research activity. Each type of data will be treated and described
in detail in this chapter.

2.1 Graph representation

The graph is the first form of representation one associates with molecules,
and in the world of computational chemistry it is also the starting point for
the construction of the other chemical descriptors discussed below. The idea
behind the molecular graph representation lies in mapping the atoms and
bonds that make up the molecule into a set of nodes and arcs, typically in
a 2D structure which can be extended using 3D information (e.g. atomic
coordinates, bond angles and chirality).

A graph is formally defined as a tuple G = (V,E) of a set of nodes V and
a set of arcs E, where each of the arcs e ∈ E links a pair of nodes in V . In a
molecule intuitively the nodes represent the atoms while the arcs represent the
bonds which in this case are undirected. This information has to be described
in a way that can be handled by the computer while retaining fundamental
chemical information such as how the atoms are connected to each other, the

19



20 CHAPTER 2. MOLECULAR DESCRIPTORS

identity of each atom and the identity of each bond. Adjacency matrices A
are typically used to describe the connection between atoms; since aij is an
element of A, aij = 1 indicates that there is a bond between nodes vi and vj in
the molecular graph G, while aij = 0 indicates the absence of a bond between
these two nodes [4]. The identity of each atom, on the other hand, can be
represented as a node features matrix X¸where each row of X corresponds to
node vi (i.e. an atom of the molecule) in G which also refers to a node feature
vector xi whose length corresponds to the number of features of the atom that
are represented. The identity of the bonds is presented in the form of an edge
feature matrix E, where each row of E corresponds to an arc eij = (vi, vj) in
G, and refers to an edge feature vector eij for that specific arc, representing
the features assigned to that bond. An example of the graph representation is
shown in figure 2.1.

Figure 2.1: Example graph representation for acetic acid. a Graph representa-
tion of acetic acid with nodes numbered from one to four. b Example adjacency
matrix, A, for an acetic acid graph with the corresponding node ordering on
the left. c Example node features matrix, X, which one-hot encodes a few se-
lected properties. d Example edge features matrix, E, where each edge feature
vector is a one-hot encoding of single, double, or triple bonds. “Implicit Hs”
stands for the number of implicit hydrogens on a given node

Two of the closest forms to the graph representation just described are
connection tables and MDL file formats.

2.2 Connection tables

Connection tables (Ctab) are the basic element for all chemical tables files (CT-
file) [83] and contain information describing the structural relationships and
properties of a set of atoms. The latter may be totally or partially connected
by bonds. Each collection of atoms can for example describe molecules, molec-
ular fragments, substructures, substituent groups and polymers. Typically a
Ctab consists of 6 different parts:
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• Counts line: this is typically the first line in the table and gives an
overview of the structure by specifying the atoms and bonds present.

• Atom block: This block describes the identity of all atoms present, such
as atomic symbol, charge, stereochemistry and associated hydrogens as
a list with arbitrary indices.

• Bond block: This block contains information on the bonds character-
ising the molecule or, in the case of molecular fragments or disconnected
atoms, contains information on how to identify them. The order of the
bonds is represented by an additional column. Together with the Atom
block, it forms the core of Ctab.

• Atom list block: This is a list containing information about atoms,
such as their atomic number, the number of bonds each one makes and
the space they occupy.

• Stext block: This is a block that is used by desktop programmes and
describes structural information in the form of text.

• Properties block: This is the block that describes a set of additional
properties of the molecule. For example, the charge, radicals, isotopes,
number of rings, count of substituents present, unsaturated atoms, the
attachment point of each atom and the order in which they are reported
are all reported in this block.

An example of Ctab is shown in the figure 2.2.
Ctab have been used as a core to develop other representations of chemical

molecules, both 2D and 3D. An example of this is the Molfile format, which
was developed by MDL and is commonly known as CTfiles (Chemical Table
files). In addition to the Ctab features, Molfiles are very extensible formats
and are for this reason widely used for the transfer of chemical information.
Molfiles can then be structured into the most common Structure Data Format
(SDF) files, which are currently widely used to describe macromolecules such
as proteins.

As can be seen from the structure of the CTab shown in the figure and
the description of the various blocks, this class of descriptors has a complex
structure that varies according to the information contained within it. The
extensibility that characterises them is useful in the transfer of chemical in-
formation, much less so in applications in the VS and DR domains. For this
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Figure 2.2: An example of the organisation of a CTab using Alanine.

reason, different linear representations have been developed from these graph
representations, whose embedding is more suitable for the task. These linear
descriptors will be discussed in the following sections.

2.3 SMILES

SMILES (The SimplifiedMolecular Input Line Entry System), was developed
in 1988 by Weininger et al. [71]. It has since become the most popular linear
notation because it can represent molecules in a simple way. To explain how
SMILES was generated, it is necessary to introduce the concept of a molecular
graph. The idea that guides the representation of the molecular graph is to
map the atoms and bonds that make up a molecule into sets of nodes and
arcs, imagining to treat the atoms of a molecule as nodes and the bonds as
arcs. In typical graph representations, nodes are represented using circles or
spheres, and edges using lines. In the case of molecular graphs, the nodes are
often represented using letters indicating the type of atom (as on the periodic
table), or simply using points where the bonds meet (for carbon atoms). The
representation of a molecular graph is formally a 2D object which can be
expanded to represent 3D information (e.g. atomic coordinates, bond angles,
chirality). However, any spatial relationships between nodes must be encoded
as node and/or arc attributes, since nodes in a graph do not formally have
spatial positions but only pairwise relationships. The SMILES notation system



23 CHAPTER 2. MOLECULAR DESCRIPTORS

was later incorporated into the Daylight Chemical Information Systems [84]
toolkit; the company is still maintaining it. The SMILES representation, which
is non-unique and unambiguous, is obtained by assigning a number to each
atom of the molecule that will represent the crossing order of the graph, where
1 is the initial node (user defined). The assignment of the initial node and
the differential analysis of the graph can generate canonical and randomized
SMILES as shown in Figure 2.3.

Initially, SMILES did not encode for stereochemistry, but an isomeric SMILES
was later introduced, capable of describing it, and is now the default SMILES
in many software programs. SMILES can therefore encode isomeric specifica-
tions, configurations around double bonds (Z or E), and configurations around
tetrahedral centres as well as many other types of chiral centres that are rarely
supported (e.g. allene, octahedral). However, a problematic set of structures
to describe using SMILES notation are those that cannot be easily described
using molecular graphs, such as organometallic compounds and ionic salts.
There are many types of molecules that cannot be described by the graph
model. These are any structure that contains any form of delocalised bonds,
such as coordination compounds, as well as any molecule that contains one of
the following: polycentric bonds, ionic bonds or and ionic salts. For example,
organometallic compounds such as metallocenes or metal carbonyl complexes
are difficult to describe using molecular graphs because their bonding pattern
cannot be explained by valence bond theory. In other words, it would be
difficult to describe bonds using only pairwise relationships between atoms.
Solutions for dealing with plurivalent bonds have been introduced through the
use of hypergraphs; in a hypergraph, the edges are sets of at least two atoms
(hyperedges) instead of tuples of [85] atoms. However, the use of hypergraphs
is not further discussed here as they are not currently popular in the field.
For molecules in which the arrangement of atoms is constantly changing in 3D
space, the graphical representation may not be meaningful, especially if pair
bonds are broken and formed or if the structure is frequently reorganised. That
is, for applications where one is limited to using a single static representation
for a molecule that is in fact reorganising on the time scale of the problem
(e.g. tautomers), then a single molecular graph representation would not be
appropriate and may even be detrimental to solving the problem.

At the state of the art, despite being among the first molecular descrip-
tors, SMILES are widely used with DL techniques in both the VS and general
chemoinformatics domains [86]. For example, another deep learning model for
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Figure 2.3: Canonical (a) and randomized (b) SMILES representations of as-
pirin. Both SMILES strings shown represent the same molecule but, as the
atom numberings are different, the generated SMILES strings are, too. The
original figure can be found in [3]

compound classification was developed by Hirohara et al. They created a dis-
tributed representation of compounds based on the SMILES notation, which
linearly represents the structure of a compound, and applied the SMILES-
based representation to a convolutional neural network in this method (CNN).
They can process all types of compounds by incorporating a wide range of
structure information thanks to SMILES, and learning the CNN represen-
tation automatically acquires a two-dimensional representation of the input
features. The obtained model was tested on the TOX21 dataset, turning out
to be better than the one that had won the TOX21 challenge [70]. Yadav
and Jujjavarapu in 2021 presented a neural network-based methodology for
classifying lipopeptides based on SMILES [87], while in 2021 Habib et al. [88]
presented TarDict, a Random Forest-based classifier for predicting drug-target
interaction, again using SMILES as input data.

2.4 InChI (and InChIKey)

InChI is the open source International Chemical Identifier introduced in 2006
and developed at the request of IUPAC. [89], the International Union of Pure
and Applied Chemistry, with main contributions from NIST [90] and the InChI
Trust [91]. The descriptor was constructed by trying to meet several require-
ments that are fully met by InChI:
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• Structure-Based Approach: Anyone should be able to produce InChI
from the structural formula of a chemical alone.

• Strict uniqueness of the descriptor: The same label indicates the
same compound, so there can be no differently labelled compounds. This
is achieved by following a well-defined canonical procedure of numbering
the atoms.

• Free accessibility of the descriptor: It must be available to anyone
wishing to develop a programme or new code using the identifier.

• Applicability to the entire domain of organic chemistry: this
concept can be extended to inorganic chemistry.

• Hierarchical approach: Approach that allows the encoding of molecu-
lar structure with different levels allowing the inclusion of stereochemical,
isotopic and tautomeric information.

• Interoperability between large amounts of data: Ability to pro-
duce a descriptor that can be used with large amounts of data.

InChI is based on the "classical chemical structure model" with some signif-
icant modifications and additions. The following principles form the basis of
the InChI approach, or the "InChI model of chemical structure". A molecule is
composed of atoms. Atoms are either skeletal (non-hydrogen atoms, as well as
bridging hydrogen, as in diborane) or terminal hydrogen atoms (simply called
"hydrogens"). Skeleton atoms are connected two by two by bonds and are
characterised by their chemical element, whole formal charge, radical state,
isotopic mass, associated implicit hydrogens and bonds with other skeleton
atoms. The hydrogens may be linked to skeletal atoms or shared by a group
of skeletal atoms (such groups may also share a negative charge). All bonds
are simple bonds (connections). That is, they have no double, triple or other
attributes. Bonds are formed in pairs; therefore, no bond can involve three
or more atoms (except hydrogen(i) shared by a group of skeletal atoms). A
molecule is without co-ordinates. However, the identifier represents the con-
figuration of the stereogenic elements, as captured by the amplified structural
source data with 2-D or 3-D coordinates. The most important aspect of InChI
is its hierarchical nature and in particular it is linked to the concept of core
parent structure, a common archetype for source structures and other related
structures such as tautomers and stereoisomers. In fact, the descriptor pro-
vides a layer organisation that allows feature blocks to be added. Each layer
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is a sequence of characters starting with ”/” followed by a letter denoting the
identity of the layer (e.g. the molecular skeleton connection layer is preceded
by ”/c”, the hydrogen layer by ”/h”, the charge layer is preceded by ”/q”

and the protonation/deprotonation layer by ”/p”, etc.). See figure 2.4 for an
example of InChI annotation.

Figure 2.4: InChI notation of aspirin. Red letters are the standard beginning
of the notation. The following 1 corresponds to the InChI version number, and
S states that the notation is a standard InChI. Slashes (blue) are delimiters.
Image taken from [4].

The presence of layers, although convenient from a descriptive point of view,
creates very long strings and above all of variable length, which make their
management in databases and various computer applications complex. For this
reason, an encoded form of InChI has been developed, called InChIKey, which
has a fixed length of 27 characters, making internet searches and database
indexing easier (an example of a molecular representation with InChI and
InChIKey is shown in the figure 2.5).

The encoding with which InChIKey is generated is based on a hashing al-
gorithm that is typically used in computer science to generate a fixed-length
string from a larger source string, creating a highly compacted version of the
string, which makes it inevitable to obtain the same hash code for two different
inputs (collision), causing the uniqueness of the identifier to be lost. InChIKey
has a hierarchical structure like that of InChI. The first block of 14 characters
encodes the constituent core of the molecule as described by the sub-layers of
formula, connectivity, hydrogen position and charge in InChI and is very often
the same for the same molecular structures. All other chemical characteristics
such as isotopic substitution, changes in stereoconfiguration, tautomeric state
and bond coordination are described in the second character block. An exam-
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Figure 2.5: Structure, IUPAC name and InChIKey for palytoxin

ple of an InChIKey obtained from the InChI source for the cafferine molecule
is shown in figure 2.6.

This chemical representation, however detailed it may appear, especially
in its extended version, has many shortcomings, both structural and applica-
tive. Indeed, InChI only distinguishes certain types of stereochemistry (e.g.
cis/trans-platinum structures have the same InChI), it does not handle mix-
tures such as positional isomers or polymers with variable bonds very well.
Moreover, it is not a file format, which is why the conversion of structures
into this descriptor may sometimes not take place as desired. In spite of these
shortcomings, they are still a young chemical descriptor that has proved to be,
thanks to the features described above, a very useful tool for linking different
chemical information, even if nowadays they are not a good embedding for the
Virtual screening and Drug Repurposing phases.
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Figure 2.6: InChIKey layout explained (using caffeine as an example)

2.5 Molecular Fingerprint

The last descriptor that will be discussed in this section is the Molecular Fin-
gerprint, which is the most widely used state-of-the-art molecular descriptor
for VS. This embedding stems from the evolution of Structural Keys (SK)
[4], the first descriptor created for high throughput screening on large data
sets. Structural keys are typically represented as Boolean arrays, where each
element is TRUE or FALSE and represents the presence or absence of a chem-
ical structure (pattern), respectively. SKs vary widely in size, ranging from a
few tens to thousands of bits, which means that the larger they are, the greater
the possibility of detecting a chemical substructure. Unfortunately, over the
years, it has been observed that the Structural keys, due to the search for
predefined patterns for the creation of the Boolean array, suffered from a lack
of generality which made them not very versatile in the VS [84]. Molecular
fingerprints were developed to overcome this limitation by eliminating the idea
of a predefined pattern assigned to each bit while remaining a Boolean array
or bitmap. The Molecular Fingerprints bitmap is created from the molecular
graph from which pattern information is extracted and converted into bits us-
ing various kernels and algorithms. Since the number of patterns, including
the type of atom, bond or the possible presence of aromatic rings, is very large,
a bit is not assigned to each pattern, as is the case with structural keys, but
hashing, is used to create an encoded version. After enumerating all of the
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patterns in the molecule, each one is used as a seed for a hashing function that
outputs 4 to 5 index positions with their corresponding bits in the "pattern
fingerprint" set to 1; this fingerprint is bit-wise OR-end to the molecular one.
Because the hashing function can cause a bit collision, we can’t be sure a pat-
tern exists unless at least one of its bits is unique. A molecular substructure,
on the other hand, is missing if all of its fingerprint bits are set to 0. An
example of fingerprint generation is shown in figure 2.7.

Figure 2.7: Simplified fingerprint generation: the hashing function sets just 1
bit per pattern.

Although the difference between the meaning of the bits belonging to the
Fingerprint and those belonging to the structural key is evident, they share
an important characteristic, in fact in both descriptors if a bit is set to 1 it
indicates the presence of a certain pattern within the molecular structure. For
this reason, both lend themselves to the search for substructures and the study
of similarities between two molecules through the use of simple Boolean opera-
tions [84]. The study of similarity, in fact, is a widely used task even outside the
field of Virtual Screening and Drug Discovery and can be calculated in differ-
ent ways, the complexity of which varies according to the molecular descriptor
used. In fact, the advent of Molecular Fingerprints has made it possible to
optimise research methodologies by reducing computational difficulties thanks
to the condensed encoding of information typical of this representation. The
methodologies used for the study of similarity based on the Fingerprints are
numerous and many of these are developed to quantify in a range of values
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the similarity between two bit vectors. In the chemoinformatics community
the standard is represented by the Tanimoto Coefficient [92, 93, 94] which is
calculated according to the equation

SAB =
c

(a+ b+ c)

Where c is the number of equal bits 1 for both vectors, where a is the
number of bits 1 in vector A and b is the number of bits 1 in vector B. The
Tanimoto coefficient is only one of the similarity metrics used in the world of
chemoinformatics, other famous coefficients are given in table 2.1

The use of fingerprints in similarity studies has revealed to the chemoinfor-
matics community their enormous potential to contain structural information
in a sparse vector. This characteristic makes them the most widely used molec-
ular descriptor in the domain of Virtual screening, especially in LBVS which
is mainly based on the study of structural similarity between active molecules
as described in detail in the section 1.1.1. Their increasing use over the years
has allowed their development, reaching a great variety in the state of the art,
both in terms of length and complexity of the chemical information they are
able to carry. The most popular molecular fingerprints can be grouped into
the following classes:

1. Pattern Fingerprints (e.g. RDKit, Layered [82])

2. Topological Fingeprints (e.g. Daylight [84], AtomPair[95], Torsion [96]

3. Circular Fingeprints (e.g. Morgan [97], FCFP, ECFP[97], FCFP)

4. Structural Keys (e.g. MACCS [98], BCI [99])

5. Pharmacophore fingerprints (e.g., CAT descriptors [100], 3D fingerprints)

Each of these fingerprints is a bitmap, the structure of which varies in length
and complexity. Each of these fingerprints is generated using different kernels,
so they contain different chemical information for having the same structure.
Pattern and topological fingeprints are generated by analysing all the frag-
ments of the molecule that follow a path (usually linear) for a number of
bonds, and then hashing each of these paths to create the fingerprint as shown
in the figure 2.7. This means that any molecule can produce a meaningful fin-
gerprint, and its length can be adjusted. These are hashed fingerprints, which
means that a single bit cannot be traced back to a given feature, although
as described above, because the number of bits is limited, a bit collision can
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Table 2.1: Summary of the most used similarity metrics.
Measure Formula∗ Range

Cosine
c√

(a+ b) ∗ (b+ c)
0.0, 1.0

Dice
2.0 ∗ c

((a+ c) + (b+ c))
0.0, 1.0

Euclid
√

c+ d

a+ b+ c+ d
0.0, 1.0

Forbes
c ∗ (a+ b+ c+ d

((a+ c) ∗ (b+ c)
0.0,

Hamman
(c+ d)− (a+ b)

(a+ b+ c+ d)
−1.0, 1.0

Jaccard
c

(a+ b+ c)
0.0, 1.0

Kulczynski 0.5 ∗ (
c

a+ c
+

c

b+ c
) 0.0, 1.0

Manhattan
(a+ b

a+ b+ c+ d
1.0, 0.0

Matching
c+ d

a+ b+ c+ d
0.0, 1.0

Pearson
(c ∗ d)− (a ∗ b)√

(a+ c) ∗ (b+ c) ∗ (a+ d) ∗ (b+ d)
−1.0, 1.0

Rogers-Tanimoto
c+ d

(a+ b) + (a+ b+ c+ d)
0.0, 1.0

Russell-Rao
c

(a+ b+ c+ d)
0.0, 1.0

Simpson
c

min((a+ c), (b+ c))
0.0, 1.0

Yule
(c ∗ d)− (a ∗ b)
(c ∗ d) + (a ∗ b)

0.0, 1.0

occur causing an overlap of the chemical information that bit 1 contains. The
main difference between these two classes of fingerprints lies in the pattern and
chemical information that is identified as 1. RDKit fingerprints have been de-
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signed to be used in substructure screening. The algorithm that generates them
specifically searches for substructures, numbering them with a relatively small
number identifier, in order to facilitate the search. These substructures are
then hashed using atomic number for the atom, bond type and aromaticity for
aromatic bonds. Layered fingerprints are another type of RDKit fingerprints
and are based on a generation algorithm very similar to the one described
above. They are also fingerprints designed to search for substructures, but un-
like RDKit fingerprints, they organise the chemical information into layers that
will then be hashed. Once a substructure has been found, it can be inserted
into one of the following layers:

• Pure topology

• Bond order

• Atom types (atomic number)

• Presence of rings

• Ring sizes

• Aromaticity

Daylight fingerprints: This is the best known of the topological fingerprints.
It consists of up to 2048 bits and encodes all possible connectivity paths
through a molecule up to a given length, minimising bit collision. A repre-
sentation of a hypothetical 17-bit topological fingerprint is shown in the figure
2.7. All fragments found from the starting atom (circled in red) are shown and
the corresponding bit in the fingerprint is indicated. Only fragments and bits
for a single starting atom are shown; for the complete fingerprint, this process
would be performed for every atom in the molecule.

Circular fingerprints are generated using a similar approach, but construct-
ing fragments within a radius of the starting atom instead of linear fragments.
This type of fingerprint overcomes the problem of isomorphic molecules, i.e.
when two molecules have different atom numbering but the same structure.
The algorithm is based on a circular kernel that iterates the operation by vary-
ing the radius and increasing the number of patterns detected (An example of
the application of the kernel just mentioned is found in figure 2.8).

The main algorithm for this class of fingerprints is Morgan’s, which is based
on an iterative process in which numerical identifiers are assigned to each atom,
initially using a rule that encodes an invariant numbering to each atom starting
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Figure 2.8: An example of the application of the circular kernel.

with the atom identifier at the centre of the kernel, and then proceeding to
the next step using the identifiers from the previous iteration. Thus, the
identifiers generated are independent of the original numbering of the atoms.
The iterative process continues until the numerical identifier of each atom is
unique. To safeguard unambiguity, the standard Morgan process is carefully
recoded after each iteration to avoid mathematical overflows and possible bit
collisions [97].

The algorithm for generating ECFPs is very similar to the Morgan algo-
rithm, but applies several variations that make them different in terms of the
chemical information they contain. In fact, ECFPs terminate after a pre-
determined number of iterations regardless of whether a unique identifier is
obtained or not. The initial identifier, and all other numerical identifiers rep-
resenting the other atoms in the chemical environment, are collected within a
set, which will be referred to as an extended-connectivity fingerprint. ECFPs
follow a much faster hashing scheme than the strict addition of bits used in
Morgan, decreasing the computational cost necessary for their generation [97].
An example of ECFP generation is shown in figure 2.9.

FCFPs (Functional-Class Fingerprints) are a variation of ECFPs, which are
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(a)

(b)

Figure 2.9: ECFP generation process. Generation of the fixed-length bit string
("folding").
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further abstracted in that instead of indexing a particular atom in the environ-
ment, they index the role of that atom. Thus, several atoms or groups with the
same or similar function are not distinguished by fingeprints. This also allows
them to be used as pharmacophoric fingerprints. FeatMorgan is an example of
FCFP and is the most widely used type in this class. Molecular Fingeprints are
a very powerful tool available to the chemoinformatics community, especially
for researchers working in the VS and similarity search domain. At present,
there are many studies that use them as descriptors in these application fields.
Modern approaches in chemoinformatics have focused on the use of ML and
DL techniques applied to Fingeprints instead of classical molecular descrip-
tors. The reason is that the latter contain information on chemical groups and
pathways; they provide comprehensive information on molecular complexity,
thus allowing a more robust comparison between two or more structures than
molecular descriptors.

There are several state-of-the-art works using fingeprints, e.g. convolu-
tional neural networks have been used to learn fingerprints directly from two-
dimensional graphs of the molecule [67]. In the work of Duvenaud et al. a
single convolutional layer with softmax activation is used instead of a hashing
function to produce bit indexing of a neighbourhood of atoms collected in the
same way as circular fingerprints. The fingerprints created were used to make
classification and the authors report excellent performance in predicting both
solubility and toxicity from two specially defined datasets. The approach was
found to be very innovative, although it suffers from a high computational
cost when compared to fingerprints generated using hashing functions. Yang
et al. used an Extreme Gradient Boosting (XGBoost) approach to identify
JAK2 kinase inhibitors using fingeprints as input data [101]. Zhong et al in
2020 combined a DNN with Molecular fingeprints to predict the degree of OH+

radicals of 593 contaminants [102]. In the paper of Zagidullin et al. [103] 11
different fingerprints are compared in order to predict the sensitivity of drug
combinations and synergy scores, evaluating their relationship through the
use of clustering approaches and fingerprints similarity studies based on CKA
(Centered Kernel Alignment). In the paper by Abbasi et al. [104], molecular
Fingerprints or combinations thereof are used in combination with primary
protein sequences to predict Drug-Target interaction.

As can be guessed, their main strength lies in their ability to store chemical
information within a highly condensed structure. Their generation algorithm is
very fast, despite the different kernels of chemical structure analysis, thanks to
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the use of hashing algorithms. The typical size of hashed fingerprints ranges
from 1K to 4K bits, where 1024 is the most used size despite having the
highest incidence of bit collision. These characteristics added together have
motivated me to deepen the capacities, the potentialities and the deficiencies
of the Molecular Fingeprints in the LBVS through the use of algorithms of ML
and DL. These approaches will be discussed in detail in the next sections.



Chapter 3

Target selection

My research activity was based on the study of molecular descriptors, in par-
ticular Molecular Fingeprints and the descriptor proposed in this thesis, NMR-
Like, in two distinct phases of Drug Discovery: Virtual screening and Drug
Repurposing, following in both cases a Ligand-Based approach that, as already
described in the section 1.1.1, does not require knowledge on the structural se-
quence of the target, but focuses on the similarity of structure shared by the
ligands.

In a VS study, the selection of the target is a crucial step for the proper
progress of the research. Indeed, it should not be forgotten that these pre-
liminary stages aim to identify a molecule that has the potential to become a
drug, which will be used to treat a pathology. The know-how of the researcher
in the pharmaceutical field also includes knowledge of the biology underlying
the processes that manifest the pathological phenotype, making it possible to
select an appropriate target for chemoinformatics research.

In my research activity, the target selected was a protein from the Cycline-
Dependent Kinases (CDK) family, namely CDK1, a protein directly involved
in the regulation of the cell cycle. The correct functioning of this biological
process is essential for the maintenance of regular tissue organisation, allowing
cells that have ended their life to be replaced by healthy, differentiated cells,
by means of mitosis from a mother cell. Failure of the delicate interlocking
of biological interactions, regulated by the CDK family in cooperation with
many other co-protagonists, leads to a cancer phenotype.

Cancer has been described by many scientists as the disease of the century,
and occurs when cells begin to proliferate uncontrollably and their number
exceeds the amount physiologically required. The disease is not hereditary, but
is a disease with a strong genetic component can be affected by one or more
genetic mutations that change the structure of the proteins involved [105, 106].

37



38 CHAPTER 3. TARGET SELECTION

The proteins that are mutated can be multiple and often many of them are
regulators or effectors that interact directly with CDK family proteins, so
intervening in their targeted regulation can prevent the uncontrolled evolution
of the cancer phenotype.

Nowadays, one of the major limitations encountered is the lack of good
labeled datasets to use as benchmarks for descriptor testing. In the following
sections, the target family is described in detail and most importantly, the
pipelines that led me to the creation of the labeled datasets used in the different
experimental phases are exposed.

3.1 CDK family

Members of the Cycline-Dependent Kinases (CDK) family were originally char-
acterised by all serine/threonine-specific kinase proteins activated by interac-
tion with cyclins in order to regulate the cell cycle of eukaryotic cells. With
the advent of the CMGC (Cyclin-dependent kinase [CDK],Mitogen-activated
protein kinase [MAPK], Glycogen synthase kinase [GSK3], CDC-like kinase
[CLK]) division of the kinome [107] only 20 proteins are now considered to be
part of the CDK family, and can be grouped in turn into various subsections.
The first branch of kinases is represented by the kinases ’CDKs 1, 2, 4 and 6’
which are directly involved in cell cycle regulation. A second branch is rep-
resented by ’CDKs 7, 8, 9, 12 and 13’, which regulate transcriptional events
through the phosphorylation of heptad repeat residues in the C-terminal tail of
RNA polymerase II (CTD). CDK7 is an unusual protein because it indirectly
regulates the cell cycle by mediating the activity of CDKs 1, 2, 4 and 6, while
CDK3 has the Retinoblastoma protein (pRB) as a substrate to promote the
end of quiescence and the transition from G0 to G1 phase in the cell cycle.
Other proteins belonging to the CDK family, such as CDK5, 10, 11, 14-18
and 20 have various and tissue-specific functions. For example, CDK5 plays a
crucial role in regulating microtubule activity during the developmental stages
of the neuron and is one of the few kinases that does not require the presence
of cyclins for its activation.

As the name of the family suggests, the kinases belonging to this class are
bound to the presence of a cofactor, the cyclin, in order to be activated. A
representation of the CDK and CDK − Like (CDKL) family of proteins is
shown in figure 3.1.

CDK1 is a protein that plays a key role in maintaining the wild-type pheno-



39 CHAPTER 3. TARGET SELECTION

Figure 3.1: Human CDK e CDKL (CDK-Like) proteins [5].

type, because it is involved in the regulation of the G2 phase and the M [108]
phase (as can be seen in figure 3.2) the mitotic phase of the cycle, i.e. the phase
in which division signals are sent to the mother cell leading to the formation
of the two daughter cells. Deficiencies in CDK1 activity have been associated
with the onset of several forms of cancer in humans [109, 110, 111, 112], and it
is therefore clear why I chose this protein as the target for my research activity.

It is important to remember that although the role of CDK1 is crucial for
the G2/M transition [113], its inhibition is not able to completely terminate
the onset of cancer, because tumorigenesis is a multifactorial process involving
several proteins.
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Figure 3.2: A diagram of the cell cycle. It is characterised by 4 different phases:
G1 (gap phase 1), S (DNA synthesis), G2 (gap phase 2), and M (mitosis).
CDK1 regulates the transition from G2 to M phase. Figure taken from My
Cancer Genome [6].

3.2 Data preparation

The datasets used during my research activity were different and will be de-
scribed in detail below. All datasets used to test the Molecular Fingerprint
and the NMR-Like descriptor in LBVS applications, were created starting from
CDK1 as a target, while for applications in the Drug Repurposing domain, a
set of proteins involved in the infection of SARS-CoV-2 were selected.

Dataset 1. Single protein research. Phase I.

The following dataset was selected starting with the CDK1 protein. The well-
known ChEMBL molecule database [80] was used to succeed in generating
it. Specifically, two sets with known bioactivity on both the single protein,
CDK1, from CHEMBL308 ID and the CDK1-Cyclin B1 protein complex from
CHEMBL1907602 ID were downloaded for a total of 1830 molecules. Incom-
plete data were removed, yielding a total of 1707 molecules that were parti-
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tioned into a training set consisting of 1432 molecules with a 1 : 1 ratio of
active to inactive, equaling 716 molecules. The test set was created using the
remaining molecules, for a total of 275 samples, 175 inactive and 100 active
specifically.

The classification of the biological activity of the compounds was obtained
through the use of the half maximal inhibitory concentration parameter (IC50),
which is the amount of substance required to inhibit the target protein (in
the specific case CDK1) by half [114]. The threshold used for labeling this
dataset states that a molecule is considered active when its IC50 value ≤ 9µM ,
alternatively it is considered inactive.

3.2.1 Dataset 2. Single protein research. Phase II.

This second dataset was generated to expand the number of molecules tested,
especially considering the increase in performance that Machine Learning al-
gorithms and in particular Deep Learning algorithms have when the number
of data used increases. In order to optimize the performance of the networks,
to obtain the most accurate information on the reliability of the descriptors,
the dataset 3.2 was expanded. Specifically, to the 1707 compounds of the
starting dataset, 13 compounds obtained from an update of the information
present on ChEMBL for IDs CHEMBL308 and CHEMBL1907602 were added
and then 2422 compounds active on TRKA (Tropomysion receptor kinase A,
CHEMBL2815 ) were selected, 2825 compounds active on AKT1 (AKT Ser-
ine/Threonine Kinase 1, CHEMBL4282 ), 199 compounds active on LIMK1
(LIM Domani Kinase 1, CHEMBL5932 ) and 50 compounds active on RIPK1
(Receptor-Interacting Protein 1, CHEMBL4282 ) for a total of 5496 molecules
that following removal of duplicates were reduced to a total of 5452. The
molecules were divided into training, validation and test set according to a
scheme 80% : 10% : 10% and with a ratio between active and inactive of 1 : 10

for each of them.
Labels for molecules active and inactive against CDK1 were defined using

the IC50 value. In contrast to what was performed for the dataset 3.2, the
threshold used was not set at 9µM , but I redefined a new threshold based
on the distribution of the data. In the literature, the IC50 values used are
IC50 ≤ 1µM for strongly active molecules and IC50 ≥ 9− 10µM for definitely
inactive molecules. These two limits, however, cannot be considered universal
and usable for all molecules, which is why in the preparation of this dataset,
I took care to study the distribution of IC50 values for all selected molecules,
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using a clustering algorithm, the K-Means [115]. Initially, the method called
elbow method was applied.This heuristics consists in clustering the data points
x with a variable number of clusters k, while plotting the Within-Cluster Sum
of Squares :

WCSS =
k∑

i=1

∑
x∈Ci

(x− µi)
2 (3.1)

where Ci is the i-th cluster, and µi is its centroid. The plot will exhibit an
“elbow” in correspondence of the optimal value for k. In this way, we obtained
k = 2 for each target as it was expected, and we were also able to evaluate the
centroids, and the extent of each cluster. Analyzing the clustering results, we
obtained the value KD = 7µM as a good threshold to separate data correctly
for each target.

The plot of the elbow method is shown in figure 3.3.

Figure 3.3: Graphical representation of the result obtained through the elbow
method. Inside the red circle the number of clusters is highlighted.

In the next step, the K-Means algorithm was applied on the two clusters
identified through the elbow method determining the two centroids in which
the data were distributed and which were consistent with the values reported
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in the literature:

• Centroid 1 for active molecules at IC50 = 0.91762 µM , upper bound at
IC50 = 0.971µM

• Centroid 2 for inactive molecules at IC50 = 13.91221 µM , lower bound
at IC50 = 13.338µM

This approach allowed me to redefine a new threshold of activity equal to
the average value of centroids with IC50 value = 7.414 µM , so all molecules
with IC50 ≤ 7.414 µ M were considered active. Also in this dataset, despite
the increase in the number of molecules used the bioactivity refers to CDK1.
The final dataset consisted of 7147 molecules (869 active and 6278 inactive).

3.2.2 Dataset 3. Multi-Class Multi-Target Search.

Deep Learning algorithms, and in particular deep neural networks have ex-
tended the ability to classify the bioactivity of a molecule to more than a
single target at the same experimental stage, thus allowing the researcher to
know if a molecule is active or inactive on more than one protein at the same
time. It was precisely on the basis of this axiom that I based the creation of
the third dataset to test the molecular descriptors. In collaboration with the
group of computational chemistry of Fondazione Ri.MED, starting from CDK1
as a protein target, I was involved in performing a study of similarity between
binding site, ie the site of binding/interaction between the molecule and the
protein that induces the conformational change through which biological ac-
tivity is manifested. Specifically, I made use of the Interaction Fingerprint
Pattern (IFP) [116], a type of fingerprint that contains chemical information
inherent to the patterns involved in the interaction between the molecule and
the binding site. This type of Molecular Fingerprints is used to perform sim-
ilarity studies between the binding sites of proteins, which, according to the
amino acid residues of which they are composed, can bind only molecules with
a specific chemical structure. The similarity coefficient used to identify these
proteins was the Tanimoto coefficient with a threshold ≥ 0.80, which allowed
me to identify a total of 20 other target proteins.

For each of the selected targets, all molecules with known bioactivity were
downloaded from ChEMBL, not using IC50 as the only parameter, but also
using the inhibition constant Ki and the dissociation constant Kd. Kd mea-
sures the equilibrium between the ligand-protein complex and the dissociated
components as shown in the chemical equation below
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PL ⇀↽
Kd

P + L

Kd =
[P ][L]

[PL]
=
k−1

k1

Where [P ] is the free protein concentration, [L] is the free ligand concentra-
tion, [PL] is the protein-ligand complex, k−1 is the dissociation rate constant
for the complex and k1 is the association rate constant. The Ki inhibition
constant also represents a dissociation constant, but more narrowly for the
binding of an inhibitor to an enzyme. That is, a ligand whose binding reduces
the catalytic activity of the enzyme. The binding equilibrium described by the
Ki value depends on the kinetic mechanism of inhibition.

As described in the previous section, the IC50 threshold for defining a
strongly active molecule is ≤ 1µM , a threshold that also applies canonically
for Ki. Kd, in contrast, does not have a defined threshold in the literature
and it was necessary to use the K-Means cluster again to be able to define a
threshold that fit the data. Clustering was calculated on the individual data
sets for each of the proteins, in order to first identify the ideal number of clus-
ters for each set using the elbow method, allowing me to calculate the WCSS
(see equation 3.1) which returned a value of k = 2 common to all proteins. Fol-
lowing evaluation of the 40 centroids identified (2 for each protein) a threshold
of Kd = 7µM was identified.

Once the thresholds for active and inactive classes were defined, the sets
downloaded from ChEMBL were labeled. The distribution between active and
inactive molecules was unbalanced towards the active molecules, therefore a
further phase of data processing was conducted. This phase has been developed
following two different approaches, creating workflows with KNIME Analysis
Platform [117]. The first method, exploits IFP to identify a new set of pro-
teins, with a binding site dissimilar to that of CDK1. This assumption is based
on the fact that being the protein-ligand interaction very specific all molecules
active on proteins with a binding site different from that of the target, are in-
active on the latter. To perform this analysis was used the node "3D-e-Chem -
KLIFS" (KLIFS - release version 2.4, developed by the Pharmaceutical Chem-
istry Division - VU University Amsterdam) that returns information on all
human kinoma from the "Kinase-Ligand Interaction Fingerprints and Struc-
tures" database [118] that in fact contains all the information regarding the
site of interaction of protein kinases and the catalytic domain deposited in the
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Protein Data Bank [22] . All kinases were used as input to generate the IFPs,
used the similarity search that specifically was performed using the "Similarity
Search" node of KNIME, in order to select proteins with a Tanimoto coefficient
in the range [0− 0.15] and therefore very dissimilar from the selected targets.
These proteins were used to search for new inactive on ChEMBL, selecting
all proteins with IC50 ≤ 1/muM . Despite this first approach, the number of
inactive was still unbalanced towards the active so with the group of founda-
tion Ri.MED we thought it was necessary to deepen the research following a
different approach, no longer related to dissimilarities between proteins, but
to dissimilarities between ligands strongly active on the selected proteins.

The ligands were downloaded in SDF format (Ctab-based data structure
that is used to deposit information in databases) from the Protein Data Bank
(PDB) [22] (see ligands code in the table 3.1). Once the crystallized structures
of these small molecules were obtained 601810 molecules were downloaded from
ChEMBL DB v26 and used for a dissimilarity study using the following values
as thresholds:

• molecular weight > 100

• number of carbon atoms > 10

• number of nitrogen atoms > 2

• number of oxygen atoms > 2

• at least one aromatic ring

The similarity study was conducted using ECFP4 fingeprints, a type of fin-
gerprints suitable for comparison between small molecules, always using the
Tanimoto coefficient in the range [0-0.1] as an evaluation parameter. By using
these different approaches to select molecules, we minimized the possibility of
analogues bias and artificial enrichment, typical of using uncurated datasets
and Decoys [119, 120], artificially generated compounds for which the bioactiv-
ity is unknown, but which are arbitrarily labeled as inactive by the researcher
using them. The general analyses allowed us to obtain a very large number of
compounds for each target protein and a summary is shown in the table 3.1.

As can be seen from the table 3.1, the number of inactives for each kinase
is very high compared to the number of actives. In order to obtain a balanced
dataset with a ratio of 1:100 between active (of the less abundant class, CDK6)
and inactive, a combined search between the various datasets was performed
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Table 3.1: A summary of all proteins (active and inactive) obtained from pre-processing
methods.
Target PDB ID Ligand Code∗ Actives Inactives

ACK 5ZXB 9KO 746 159775
ALK 6E0R HKJ 1665 227247
CDK1 6GU2 F9Z 1241 124473
CDK2 6INL AJR 1924 225087
CDK6 5L2S 6ZV 646 256561
INSR 5E1S 5JA 1423 195990
ITK 4RFM 3P6 1001 135007
JAK2 6M9H J9D 5526 577409
JNK3 2B1P AIZ 658 95252
MELK 6GVX TAK 1215 246662
CHK1 6FC8 D4Q 2175 21763
CK2a1 6JWA 5ID 1053 10534
CLK2 6FYL 3NG 671 6800
DYRK1A 4YLK 4E2 1126 11274
EGFR 5GNK 80U 4757 47541
ERK2 6OPH 6QB 3525 35237
GSK3B 5F94 3UO 2578 25768
IRAK4 6EG9 OLI 2131 21282
MAPK2K1 4AN9 ACP; 2P7 1254 12508
PDK1 3NAX MP7 1117 11166
∗ Most affine lingands

to rank the inactive that were more common among the proteins, creating a
ranking of presence. Once the ranking of inactives was obtained, the 64600
collectively most present were selected. The final dataset consists of 89373
molecules that were separated with the classical 80% : 10% : 10% ratio into
Training (68370 molecules), Test (13046 molecules) and Validation set (7597
molecules).

A summary pipeline of the steps followed for the creation of each dataset is
shown in the figure 3.4.

3.2.3 Dataset 4. Drug Repurposing Research

The dataset described in this section is the result of the activity carried out
within the Task Force CLAIRE (Confederation of Laboratories for Artificial
Intelligence in Europe) against COVID-19, Topic Bioinformatics (protein and
molecular data analysis) to which the Human-Computer Interaction Labora-
tory has joined on a voluntary basis, and was also conducted in collaboration
with researchers of Fondazione Ri.MED.
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Figure 3.4: Pipeline used for the generation of datasets 1, 2 and 3.

The first phases of the study were based on the creation of a dataset com-
posed of viral and Host (human) proteins, directly involved in the infection
or with similar sequence, and drugs, approved or in advanced trials, active or
inactive with respect to these proteins. These first steps were crucial, since,
given the topical nature of the research, there are no data regarding drugs
that act directly on proteins implicated in the infection of COVID-19. The
first phase of the study was based on a query, through the use of BLAST (Ba-
sic Local Alignment Search Tool) [121] the tool provided by National Center
of Biotechnology Information (NCBI), to search for sequence similarity be-
tween a set of 41 proteins including host (human) and viral (SARS-CoV-2)
proteins selected in collaboration with the group of Fondazione Ri.MED. The
algorithm used is blastp and the search was performed on the database "nonre-
dundant protein sequence (nr)" for the organisms: i) human (taxid:9606) and
ii) virus (taxid:10239) excluding SARS-CoV-2 (taxid:2697049). The results
of the alignment queries were filtered using the Expect value (E value) [122],
a parameter that describes the number of random hits that can be detected
when searching for hits within sequences of varying length. All alignments that
had an E value < 0.01 were selected and sorted according to the percentage of
Identity (see equation 3.2), allowing for two lists with the highest identity pro-
teins with Host High Identity Protein (HHIP) and Virus High Identity Protein
(VHIP).

Identity =
number of identical Aminoacids

shortest sequence length
(3.2)

BLAST query results had different IDs (e.g., GeneBank, RefSeq, PBD, etc.)
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Table 3.2: Cross-reference DrugBank database with the two high identity pro-
tein lists.

Drugs HHIP VHIP

Approved 5 0
Sperimenta 7 12

Table 3.3: DrugBank database cross-reference with interacting proteins.
Approved Sperimental

Drugs 85 128

reasoning that the NCBI Retrieve/ID mapping tool was used to obtain Unipro-
tKB IDs. The filtered data were cross-referenced with approved and late-stage
drugs in the DrugBank database (Wishart et al 2018) in order to identify com-
pounds with proven activity on selected proteins. The results of this initial
cross-reference are shown in table 3.2

As can be seen from the table 3.2, the number of active drugs is not sufficient
to be able to efficiently train a neural network, reason for which a further cross-
reference was performed, using data provided by the CLAIRE Task Force.
Specifically, all proteins that interact directly with proteins on the HHIP list,
i.e. Host proteins, were identified. This allowed me to expand the number
of proteins that upon re-intersection with the DrugBank database returned a
higher number of active drugs, as shown in Table 3.3.

The identified molecules were labeled as active. The final dataset included
1153 molecules a ratio of 1:4 between active and inactive, which were extrap-
olated by selecting drugs that act on strongly dissimilar proteins not involved
in the biological mechanisms of SARS-CoV-2 infection.

A summary pipeline of the steps followed for the creation of dataset 3.2.3
is shown in the figure 3.5.

Figure 3.5: Pipeline used for the generation of datasets 4.
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Summary

The table 3.4 shows a summary of the active and inactive used for each dataset

Table 3.4: Summary of the active and inactive used for each dataset
Dataset Molecules

Actives Inactives

Dataset 1 716 716
Dataset 2 869 6278
Dataset 3 24773 64600
Dataset 4 213 940



Chapter 4

Molecular Fingerprints

This chapter discusses the studies performed on Molecular Fingerprints. The
study started from the selection of 7 Molecular Fingerprints each of which
presented a different information of the molecule, due to its generation algo-
rithm. The first exploratory analysis was focused on the single fingerprints,
to analyze the best version in terms of size (256, 512, 1024, 2048bit), followed
by the analysis of the best combination of fingerprints, up to the creation of
EMBER (EMBedding multiplE molecular fingeRprints) the multispectral
representation that included them all together.

4.1 Fingerprints generation

The Molecular Fingerprints used for my research activity, can be grouped into
two major groups: the pattern-based fingerprints specifically RDKit, Atom-
pair, Torsion and Layered generated through a linear kernel and the circular
fingerprints, specifically, Morgan and FeatMorgan and ECFP, generated with
a circular kernel. Within the same group, each of the fingerprints encodes
the molecular structure differently, and it is because of this characteristic that
they were selected. The generation of the various Molecular Fingerprints was
performed using the same workflow for all experiments conducted, namely the
KNIME framework ([117]), an open-source platform under GPLv3 license for
data analysis, reporting and integration. The modules integrated within it
are different, such as the "chemistry development kit" or R (software), allow-
ing the user to manipulate the structure of the nodes that will constitute the
workflow. The nodes used for the generation of fingerprints, are respectively
"RDKit Fingerprint" which is part of the extension "RDKit Nodes Feature"
and the node "Fingerprint" which is part of the extension KNIME-CDK. Both
nodes, combined with each other, allow to generate all known state of the art

50
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Figure 4.1: The KNIME workflow used for the generation of Molecular Fin-
geprints

Fingerprints. A graphical representation of the KNIME workflow is shown in
figure 4.1.

The choice of this framework is also related to the efficiency of the generation
process. In fact, for the Virtual Screening the number of molecules to be tested
is very high, so the ability of KNIME to use computational operations on GPU
instead of CPU has been found to be advantageous. The pipeline was run for
each of the datasets described in chapter 3.

4.2 Dimensional Exploration of Molecular Fin-
gerprints

Molecular Fingerprints are bitmaps whose size varies from 256 to 8192bits,
and can be determined during their generation. For the same fingerprints,
the generation algorithm is the same each time it is created, but if the size
of the defined bitmap is changed it will not contain the same chemical infor-
mation. As described in the [insert label section], bits 1 are added through a
hashing function in "bit wise OR" developing bit collision phenomena. The
probability of these events grows inversely proportional to the size of the fin-
gerprints. At most, the fingerprints too large, have a low probability of bit
collision, but are very scattered, making more complex mathematical opera-
tions applied to them. In order to find the right compromise between the size
of the fingerprints, to obtain a computationally efficient embedding and with
sufficient chemical information contained in them, I conducted experiments
using a convolutional neural network (CNN) in order to identify the version
best suited to the needs of the domain. The Molecular Fingerprints tested
were: the pattern-based fingerprints specifically RDKit, Atompair, Torsion
and Layered and the circular fingerprints Morgan and FeatMorgan. Each of
them encodes the information of the molecular structure in a different way, so
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Figure 4.2: Bi-dimensional architecture of the network

in this first phase of the study I wanted to examine whether the performance
in a classification task varied with the size of the fingerprints both when used
individually and in combination with each other. Experiments were conducted
using Dataset 1 (716 active molecules and 716 inactive molecules) described in
section 3.2 to perform a binary classification task between active and inactive
molecules on CDK1. Given the nature of the task and the numerical embed-
ding that the fingerprints present, the use of a CNN appeared to be the best
choice. The fingerprints were tested, individually and in various combinations
for various dimensionality (256, 512 and 1024bit). Bitmaps of larger size were
not used because of their high sparsity. Two different convolutional neural ar-
chitectures were trained from scratch; the first is a 1D CNN trained on single
fingerprints and the second is a 2D CNN trained on various combinations of
fingerprints arranged as a two-dimensional matrix. This second representation
was intended to fill in the chemical information gaps presented by the individ-
ual fingerprints. Both networks have the same structure for feature extraction
formed by 4 convolutional layers with 512, 256, 128, 64 filters, respectively
with ReLU activation, each followed by a 2x2 Max Pooling, differing only for
the dimensionality of the convolutional kernel. The classification is achieved
through MLPs (MultiLayer Perceptron) with 1024, 512 and 256 ReLUs, while
the output of the architecture was represented by a single sigmoidal neuron
to perform the binary classification. A schematic representation of the 2D
architecture is shown in figure 4.2.

For both architectures an intensive tuning of the hyperparameters was con-
ducted by performing a grid search with the following values; convolutional
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filters tested [1024, 512, 256, 128, 64] in combination with all available padding
values of the keras framework; the 2D kernels tested were (20,2), (20,1), (15,2),
(15,1), (5,2), (5,1), (4,2), (4,1), (3,2), (3,1) while the 1D ones 2, 3, 4. The learn-
ing rate was multiplied by 10 in the range [10−6, 1; 2 ∗ 10−5, 0.2]. the Dropout
probabilities were in the range [0.2, 0.9] with steps of 0.1. The results ob-
tained in this first phase of the experimentation are shown in tables 4.1 and
4.2, in which are reported, respectively, the best values obtained using single
fingerprints and the best results obtained from the combination of the various
fingerprints for all the various dimensions sampled. The metrics used to verify
the performance of the model were the global accuracy of the model, the loss,
the F1-score and the Area Under the Curve (AUC).

Table 4.1: Results of 1D CNN on the test set. Best/worst values for each
column are in bold/italic

Length Fingerprint Accuracy Loss F1-score AUC

1024 Layered 0.9100 0.54 0.8700 0.9453
512 Layered 0.9272 0.4447 0.9000 0.9610
256 Torsion 0.8654 0.5456 0.8310 0.9481

As shown in table 4.1 and 4.2 the best overall performance is achieved by
the two-dimensional representation consisting of Morgan, Torsion and Layered
at 512 bits (MTL-512, table 4.2). The Layered fingerprints is the fingerprints
that reported the best results, both individually and in all combinations of fin-
gerprints for the various dimensions. These results gave me an important food
for thought, confirming the initial idea that the information contained within
the fingerprints are complementary, because they take into account different
aspects of the same molecule. The combined use of the various Molecular Fin-
gerprints is therefore an important aspect that will be explored in the following
sections. Once the results were obtained, I studied the characteristics of the
individual embeddings, delving into the literature information shared by the
cheminformatics community, which allowed me to identify the best embedding
to use as input data for deep neural networks. Although the results obtained
show better performance for 1D or 2D fingerprints with 512 bits, the final
choice fell on the embedding of 1024bit. The 512bit fingerprints have a higher
probability of bit collision, wasting much of the chemical information contained
within the molecular structure. Consequently, considering the satisfactory re-
sults obtained by the fingerprints with 1024bit and evaluating a reduction of
bit collision of almost 50% I selected this representation for the continuation
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Table 4.2: Results of the 2D CNN on the test set with different fingerprint
length. Fingerprint types: (R)DKit, (M)organ, (A)tompair, (T)opological Tor-
sion, (L)ayred, and (F)eatMorgan. Best/worst values for each column are in
bold/italic

(a) 1024 bit fingerprints

Fingerprints Accuracy Loss F1-score AUC

M,L 0.9200 0.5600 0.8800 0.9563
R,M,A 0.9000 0.6800 0.8600 0.9527
M,A,L,F 0.9200 0.6000 0.8877 0.9444
R,M,A,L,F 0.9163 0.6082 0.8820 0.9513
R,M,A,T,L,F 0.8945 0.6280 0.8557 0.9494

(b) 512 bit fingerprints

Fingerprints Accuracy Loss F1-score AUC

M,F 0.8981 0.4463 0.8679 0.9555
M,T,L 0.9345 0.3900 0.9117 0.9685
R,M,T,F 0.9418 0.4268 0.9001 0.9400
R,A,T,L,F 0.9127 0.4052 0.8867 0.9630
R,M,A,T,L,F 0.9236 0.3950 0.9004 0.9774

(c) 256 bit fingerprints

Fingerprints Accuracy Loss F1-score AUC

L,F 0.9090 0.4087 0.8792 0.9655
R,L,F 0.9127 0.4734 0.8846 0.9606
R,A,L,F 0.9054 0.4914 0.8749 0.9572
R,M,T,L,F 0.8909 0.5380 0.8623 0.9624
R,M,A,T,L,F 0.8981 0.5982 0.8679 0.9537

of my research activity, defining it as the best compromise between the char-
acteristics required for a descriptor to be used in Drug Discovery. All the
results obtained during this phase have been published as a contribution to a
conference [123].

4.3 Combination of fingerprints

After defining the best embedding dimension, based on the results obtained
from the two-dimensional representations, I hypothesized a combined use of
the fingerprints testing them on a larger dataset, through the use of convo-
lutional neural networks. The fingerprints used in this phase are 7 (RDKit,
Morgan, AtomPair, Torsion, Layered, FeatMorgan, ECFP4), to describe from
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multiple points of view the candidate molecule. As regards of fingerprints
types we selected, they can be grouped into two classes: pathway-based, also
known as topological, and circular. Pathway-based fingerprints include RD-
Kit, Atompair, Torsion, and Layered. In this case, the kernel is linear, and
each fingerprint differs in the types of atoms and bonds. Circular fingerprints
include Morgan, Featmorgan, and ECFP4.In this case the kernel is circular
and takes into account the neighborhood of each atom based on the selected
radius (usually 1 to 3). The algorithm for generating each of these fingerprints
is described in detail in 2.5. The choice of these 7 fingerprints is related to the
intention to represent all characteristic of the molecule in a complementary
way, integrating all structural information.

Translated with www.DeepL.com/Translator (free version) The experiments
were conducted using Dataset 2 (545 active molecules, 4907 inactive molecules,
see section 3.2.1), deep neural networks and shallow Machine Learning algo-
rithms were used in order to evaluate the overall performance on the task.
To better study the performance of the tested models two training schemes
were used. In Training scheme 1, a classical ML approach was followed for
the training, where the number of molecules between training, validation and
test set is strongly unbalanced towards the training, maintaining a constant
ratio of 1 : 10 between active and inactive among the 3 sets obtained. The
second training procedure (Training scheme 2) was developed taking into ac-
count the general distribution of the population of molecules, which is strongly
unbalanced towards the inactive. For this reason, the dataset was divided into
a training set, with a balanced ratio of active/inactive and a test set with
a ratio of 1 : 50 active/inactive. All the models obtained were trained and
tested on both training schemes. The most widely used state-of-the-art Ma-
chine Learning algorithms, specifically Support Vector Machine (SVM) and
Random Forest (RF) were used as baselines for the experiments conducted
with DNNs. The parameters selected for both models were obtained through
a classical grid search. Particularly, a Radial Basis Function-SVM was trained
and the best performances were obtained with a value of γ = 1 while regular-
ization C = 5 for training scheme 1 and γ = 0.1 and C = 1 for training scheme
2. A grid search was also performed for the Random Forest model, obtaining
two algorithms that performed better on training scheme 1 with 100 estimators
and the Gini index, while for training scheme 2 the estimators were 2 again
with the Gini index. CNN1D and 2D architectures have the same structure,
consisting of 4 convolutional layers with 128, 64, 32, 16 filters followed by 2x2
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Figure 4.3: One-dimensional convolutional architecture.

Max Pooling and ReLU activation. Each network achieved classification using
MLP with 1024, 512, 256 ReLUs per layer, while the output was sigmoidal in
order to achieve binary classification. A schematic representation of the 1D
architecture is shown in figure 4.3.

Two other architectures have been created, to allow a different approach to
those tested so far. The idea behind these two new ensemble architectures is
to use all the individual fingerprints simultaneously during the training phase,
extracting features by integrating all the downstream information to perform
the classification. The two architectures were formed by 7 1D CNN networks
working in parallel on the 7 fingerprints with respectively 4 convolutional layers
with 512, 256, 128, 64 filters, followed by a 2x2 Max Pooling. The classification
block of each individual network was identical to that of CNN1D and CNN2D
described above, with a sigmoidal unit output to all networks. The two NN
Ensembles differed in the region that integrated the feature maps obtained from
the individual 1D CNNs. The Voting architecture, in fact, used a classification
based on the voting of the single networks, going to evaluate if the largest
number of predicted labels was consistent with the expected one. The second
ensemble architecture, Tuned-MLP-Out was a much more refined version that
did not simply analyze the result obtained from the individual networks, but
used an MLP layer of 3 ReLUs to integrate the various probabilities obtained
from the sigmoids of each individual network. Classification was obtained
with an additional sigmoidal neuron. The entire Tuned-MLP-Out architecture
is shown in figure 4.4.

Also for these 4 architectures a tuning of the hyperparameters was per-
formed, using the grid search approach, testing all possible configurations
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Figure 4.4: Tuned-MLP-Out. The complex architecture with MLP Classifier.



58 CHAPTER 4. MOLECULAR FINGERPRINTS

between convolutional filters, kernel sizes, optimizers and learning rate. All
training procedures were conducted using K-Fold cross validation to compare
and select only the models that performed best. In order to reduce the pos-
sibility of incurring in overfitting also the Early stopping procedure was used,
with a patience of 50 training epochs.

Model performance was evaluated using several metrics. Balanced accuracy
bACC (TP/P + TN/N)/2, or the average of Sensitivity, the number of true
positives predicted over the total number of positives, and True Negative, or
the ratio of predicted negatives to negatives in the entire test set, was used to
evaluate active/inactive discrimination for both training schemes. On account
of the application domain, Sensitivity was used as the main evaluation metric
for model performance. In fact, being able to correctly detect the highest num-
ber of true positives is the basis of the screening experiments that are being
carried out. Also the Matthews correlation coefficient (MCC) was used as a
discrimination measure. MCC is a well known index used for binary classifi-
cation, that returns a value in [−1; 1]; for a 2× 2 contingency table, that is a
binary classifier’s confusion matrix, MCC is related to the chi-square statistic
as ‖MCC‖ =

√
χ2/n where n is the number of observations. MCC thus mea-

sures the dependency of the predictions from the true (i.e. expected) labels.
On the other hand, just sensitivity has been used in the active only selection
task because we want to maximize correct prediction of active compounds in
spite of accepting a relevant number of false positives.

The other metrics shown in the table are Loss, F1-score, and AUC. The
results obtained are shown in table 4.3 and 4.4.

Table 4.3: Results for the active/inactive discrimination task, and Training
scheme 1. Best/worst values for each column are in bold/italic.
Architecture Bal. accuracy Sensitivity Loss AUC F1-score MCC

Tuned-MLP-Out 0.9880 0.9855 0.0405 0.9979 0.9510 0.9462
Voting 0.9768 0.9710 0.2093 0.9920 0.8965 0.9033
CNN 1D (F) 0.9687 0.9710 0.0688 0.9904 0.8979 0.8813
CNN 2D (R-M-F) 0.9679 0.9565 0.0770 0.9912 0.8918 0.8817
Random Forest (F) 0.9510 0.8985 0.6405 0.9837 0.6065 0.8962
SVM (F) 0.9421 0.8985 0.7883 0.9868 0.8857 0.8731

Fingerprint types: (R)DKIT,(M)organ, (F)eatMorgan, (L)ayered

As can be seen, the best performances are achieved by the Voting-MLP-
Out ensemble architecture for both training schemes. Specifically, the best
results are obtained with the classical training approach (Training Scheme
1, table 4.3), where the model outperforms all other models for all metrics
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Table 4.4: Results for the active/inactive discrimination task, and Training
scheme 2
Architecture Bal. Accuracy Sensitivity Loss AUC F1-score MCC

Tuned-MLP-Out 0.9644 0.9625 0.0983 0.9875 0.5519 0.5989
Voting 0.9639 0.9500 0.1523 0.9889 0.6379 0.6694
CNN 1D (F) 0.9579 0.9625 0.1398 0.9854 0.4709 0.5336
CNN 2D (T-L-E) 0.9525 0.9375 0.1054 0.9841 0.5192 0.5920
Random Forest (F) 0.8789 0.7750 0.6221 0.9541 0.6528 0.6540
SVM (F) 0.9208 0.8625 0.6221 0.9682 0.6699 0.6524

Fingerprint types: (F)eatMorgan, (T)orsion, (L)ayered, (E)CFP4

considered. Of note is the Sensitivity value that demonstrates the excellent
ability to discriminate TP molecules within the test set. To demonstrate the
classificatory capabilities of our models a further study using the TP/P value
was conducted. In contrast to the Total Sensitivity, in this case a different
percentage of the test was used to demonstrate that the molecules prioritized
by the model were indeed active. For the two training schemes, the calculated
TP/P percentages were different due to the number of actives present in the
two test sets. For Training Scheme 1 a TP/P was calculated using 1%, 2%,
5% and 10% of the test set. For Training Scheme 2 only a TP/P value was
calculated at 1% and 2% due to the small number of actives present. The
results obtained are shown in table 4.5 and 4.6.

Table 4.5: True Positives versus Positives ratio computed on the test set 1 (70
active molecules out of 701 compounds).
Architecture TP/P 1% TP/P 2% TP/P 5% TP/P 10%

Tuned-MLP-Out 7/7 14/14 34/35 65/69
Voting 7/7 14/14 34/35 61/69
CNN 1D (M) 7/7 13/14 33/35 62/69
CNN 2D (R-M-F) 7/7 12/14 32/35 61/69
RF(F) 7/7 14/14 35/35 63/69
SVM(F) 7/7 14/14 35/35 61/69

Fingerprint types: (R)DKIT,(M)organ, (F)eatMorgan,

As can be seen from your tables, the Tuned-MLP-OUT architecture turns
out to be the best for both training schemes managing to correctly prioritize
all 1 and 2% active molecules with both training schemes.

The excellent performance achieved by Tuned-MLP-OUT on the training
scheme 1 shows how with a classical approach the network is able to correctly
prioritize the active compounds, satisfying the requirements of a classifier. In
order to stress further the architecture, a further experimentation has been
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Table 4.6: True Positives versus Positives ratio on the test set 2 (80 active
molecules out of 3720 compounds).

Architecture(Training 2) TP/P 1% TP/P 2

Tuned-MLP-Out 37/37 65/74
Voting 32/37 57/74
CNN 1D (F) 31/37 52/74
CNN 2D (T-L-E) 31/37 52/74
RF(F) 37/37 62/74
SVM(F) 32/37 55/74

Fingerprint types: (F)eatMorgan, (L)ayered, (T)orsion, (E)CFP4

carried out in order to demonstrate the effectiveness of the approach using
all the fingeprints in a complementary way. The dataset used in the Training
scheme 1 has been resampled increasing the ratio between active and inactive
in the training, validation and test set, to 1:20, 1:50 and 1:100. The idea
behind this consideration is related to a use in Virtual screening experiments
in vivo, where the ratio between active and inactive is not fixed at 1:10. The
results obtained with the 3 active/inactive ratios are shown in Table 4.7 and
4.8 and use the same metrics as used for classification.

Table 4.7: Performance of the Tuned-MLP-Out network on three data sets with
1%, 2%, and 5% active/inactive proportion respectively. Best/worst values for
each column are in bold/italic

A/I* Bal.Accuracy Sensitivity Loss AUC F1-score MCC

1% 0.7475 0.5000 0.5116 0.9700 0.5333 0.5289
2% 0.9671 0.9375 0.5114 0.9415 0.9009 0.8226
5% 0.9382 0.8780 0.0565 0.9991 0.9230 0.9196

* Active/inactive proportion

Table 4.8: True Positives versus Positives ratio computed on the test set with
1%, 2%, and 5% active/inactive proportion respectively.

A/I* TP/P 1% TP/P 2% TP/P 5

1% 4/8 - -
2% 7/8 7/16 -
5% 4/8 8/16 20/41

*Active/inactive proportion. 1% = 8 active molecules; 2% = 16 active molecules; 5% = 41 active molecules.

As expected, the bACC and Sensitivity values decreased from the results
shown in Table 4.3. This is due to the extreme imbalance between the two
classes that were assayed. Nevertheless, the results are positive if we ana-
lyze the discriminative abilities of the actives in Table 4.8 where it is shown
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that the model is able to prioritize the most active molecules even at a ratio
of 1:100. Ultimately, the results obtained in the research phase have shown
us the true potential in the task of classification of Molecular Fingeprints,
but even more they have shown us how the information contained therein, al-
though generated by the same molecule, are encoded differently. Consequently,
their simultaneous use allows the neural architecture to extract all the most
important features to correctly classify active molecules from inactive ones, in-
tegrating the various chemical information. Nevertheless, problems have been
encountered with the use of this approach based on the Tuned-MLP-OUT en-
semble architecture, especially from a computational point of view. The neural
network as described above consists of 7 1D CNNs working in parallel with
each other and subsequently connected by an MLP layer before classification
for a total of 51, 449, 735 parameters leading to a very high computational cost
even for a relatively small dataset like the one used. For this reason, given
the proven effectiveness of using the 7 Molecular Fingeprints simultaneously,
and not being able to use further ensemble approaches given the high number
of parameters, I assumed that creating a new descriptor representation was
the best solution. From these results comes the idea of EMBER - embed-
ding multiple molecular fingerprints, a multispectral descriptor based on the
7 Molecular Fingeprints that aims to preserve the chemical information of the
different descriptors, greatly reducing the computational cost required for the
training of the neural network.

4.4 EMBER - embedding multiple molecular fin-
gerprints

In this last phase of the study is exposed the EMBER descriptor (embedding
multiple molecular fingerprints), a representation of 7 Molecular Fingeprints
(RDKit, Morgan, AtomPair, Torsion, Layered, FeatMorgan, ECFP4) stacked
as a spectrum or rather as a "molecular image". This embedding, aims to
provide all the characteristic information of each fingerprints without the need
to build neural network ensembles such as Tuned-MLP-Out. The proposed
molecular embedding is designed to exploit the ability of convolution opera-
tions to extract features as if they were real images.

EMBER was tested on multi-class multi-target classification tasks on Dataset
3 (see section 3.2.2), the largest dataset used during these 3 years of research.
The dataset consists of 83373 molecules with known bioactivity on 20 different
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target proteins, obtained through similarity studies on CDK1. The dataset was
divided into traning, validation and test set with a ratio of 1 : 100 between ac-
tive and inactive with reference to the least abundant protein, namely CDK6.
In addition to classification performance evaluations, explainability analyses
were conducted to identify features relevant to classification, and the results of
this analysis confirm some very recent in vitro studies that outline the relevance
of pharmacofore-like fingerprints when addressing bioactivity classification for
kinase inhibitors.

The classifier architecture is a deep CNN with 9 Parametric ReLU (PReLU)
layers for feature extraction and 3 MLP layers for classification. The layout of
the architecture is shown in Figure 4.5(a).

PReLUi(x) =

{
x if x > 0

αix if x ≤ 0

= max(0, x) + αi min(0, x)

(4.1)

If αi = 0, then PReLU degenerates to ReLU; if αi is a small fixed value
(such as αi = 0.01), then PReLU degenerates to Leaky ReLU (LReLU). In our
work αi has been set constant at 0.25.

The network is trained on 7×1024×1 input tensors that represent the seven
1024 long fingerprints stacked as the channels of a 1024×1 image. Multi-target
bioactivity prediction is amulti-class, multi-label classification, that is our clas-
sifier has to assess also if a ligand is active at the same time on different targets.
As a consequence, the output is a vector label that is a binary vector where
the 1s indicate bioactivity with respect to a particular target.
In line with the most recent CNNs, we implemented the convolutional lay-
ers using Depthwise Separable Convolution (DSC) [124] to reduce the network
parameters, and lower the computational load. The classical convolution oper-
ator computes an element of the output tensor Y by applying a kernel K with
spatial extent s× s and depth d to the input tensor X:

Yi,j,k =
s∑

l=1

s∑
m=1

d∑
n=1

Xi−l,j−m,k−nKl,m,n (4.2)

Here we are using the proper index notation for convolution without ker-
nel flipping. In DSC, d spatial kernels KS

(h) with s × s size compute 1-depth
convolutions, and a 1×1×d depth kernel KD gives the final convolution output.
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Y
(h)
i,j =

s∑
l=1

s∑
m=1

Xi−l,j−m,hK
S
(h) l,m, h = 1 . . . d

Yi,j,k =
d∑

n=1

Y
(h−n)
i,j KD

n

(4.3)

It can be shown that DSC can reduce the number of parameters by a factor
1/s2 for each layer: our network was built using just 2, 252, 959 parameters,
that is about a 1 : 25 ratio with the size of the CDK1 only classifier proposed
in previous section. Figure 4.5(b) reports the detail of the implemented model.
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(a) Network layout.

(b) Model summary.

Figure 4.5: The proposed architecture
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Classification is achieved through a MLP with 64/32/32 ReLU units per
layer respectively, while the output consists of 20 sigmoidal units because the
probabilities of each class is independent from the other class probabilities. For
this reason a binary crossentropy loss function has been used instead of the
usual categorical crossentropy. This choice is reasonable because the network
performs a "multi-label" "multi-class" classification task.

The results obtained are shown in Table 4.9 and report the best results with
respect to Accuracy, Loss, Sensitivity, MCC, AUC, and F1-Score.

Table 4.9: Accuracy metrics for all the targets. Best/worst values for each
column are in bold/italic
Target Acc. Loss Sensitivity MCC AUC F1-score

ACK 0.9957 0.0226 0.5000 0.6742 0.9834 0.6463
ALK 0.9930 0.0402 0.6575 0.7913 0.9904 0.7804
CDK1 0.9910 0.0314 0.4537 0.6397 0.9850 0.6059
CDK2 0.9859 0.0431 0.5281 0.6338 0.9845 0.6287
CDK6 0.9966 0.0210 0.5865 0.7523 0.9895 0.7305
INSR 0.9893 0.0329 0.3779 0.5830 0.9858 0.5342
ITK 0.9945 0.0232 0.5886 0.7302 0.9905 0.7154
JAK2 0.9898 0.0472 0.8474 0.9090 0.9950 0.9114
JNK3 0.9967 0.0154 0.5905 0.7610 0.9901 0.7381
MELK 0.9957 0.0229 0.7081 0.8270 0.9897 0.8188
CHK1 0.9895 0.0512 0.6385 0.7650 0.9846 0.7565
CK2A1 0.9942 0.0253 0.5166 0.6944 0.9857 0.6667
CLK2 0.9936 0.0259 0.2255 0.4137 0.9771 0.3485
DYRK1A 0.9916 0.0321 0.4080 0.5987 0.9776 0.5591
EGFR 0.9845 0.0604 0.7536 0.8331 0.9874 0.8357
ERK2 0.9881 0.0563 0.7295 0.8292 0.9886 0.8272
GSK3 0.9843 0.0554 0.5827 0.6892 0.9762 0.6856
IRAK4 0.9936 0.0287 0.7611 0.8611 0.9938 0.8571
MAP2K1 0.9931 0.0319 0.5497 0.7184 0.9795 0.6954
PDK1 0.9945 0.0271 0.6310 0.7757 0.9875 0.7613

As can be seen, the overall performance of the classifier on a single target
is very good, in terms of overall Accuracy, with particular reference to JNK3
which has the highest Accuracy and Loss value. In the other metrics, the
target on which the classifier performs best is JAK2, the protein with the
highest number of molecules.

The screening capabilities of the model are highlighted by the results in Ta-
ble 4.10 which contains True Positive/Positive (TP/P) and Enrichment factor
(EF) values at different percentages of the test set for each target. EF after
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x% of the focused library were calculated according to the following formula

EF =
Nexperimental

x%

Nexpected
x%

=
Nexperimental

x%

Nactive · x%
(4.4)

where Nexperimental is the number of experimentally found active structures in
the top x% of the sorted database, Nexpected is the number of expected active
structures, and Nactive is total number of active structures in database[125] .
The EF computes the number of predicted true actives, in decreasing prob-
ability order, in a fixed percentage of the test set. Typical percentages are
5% and 10% but in this study we tested also the performance at 1%. Such
a measure is intended to provide the number of times a particular screening
procedure performs better than a pure random process.

Table 4.10: True Positives versus Positives ratio and Enrichment Factors com-
puted on the entire test set.
Protein TP/P 1%* TP/P 2%* TP/P 5%* TP/P 10%* EF 1% EF 2% EF 5% EF 10%

ACK 72/106 84/106 95/106 101/106 68 40 18 10
ALK 131/254 202/254 229/254 247/254 52 40 18 10
CDK1 111/205 150/205 189/205 196/205 54 37 18 10
CDK2 118/303 194/303 264/303 289/303 39 32 17 10
CDK6 79/104 90/104 98/104 101/104 76 43 19 10
INSR 110/217 145/217 195/217 206/217 51 33 18 9
ITK 107/158 125/158 148/158 155/158 68 40 19 10
JAK2 134/832 268/832 669/832 804/832 16 16 16 10
JNK3 81/105 88/105 95/105 102/105 77 42 18 10
MELK 130/185 157/185 178/185 181/185 70 42 19 10
CHK1 134/343 233/343 300/343 324/343 39 34 17 9
CK2A1 100/151 117/151 141/151 146/151 66 39 19 10
CLK2 59/102 73/102 87/102 96/102 58 36 17 9
DYRK1A 97/174 126/174 152/174 162/174 56 36 17 9
EGFR 134/702 268/702 586/702 664/702 19 19 17 9
ERK2 133/525 267/525 471/525 505/525 25 25 18 10
GSK3 132/393 226/393 327/393 353/393 34 29 17 9
IRAK4 134/339 263/339 320/339 333/339 40 39 19 10
MAP2K1 118/191 142/191 167/191 178/191 62 37 17 9
PDK1 123/187 149/187 170/187 181/187 66 40 18 10
∗ percentage relative to the evaluated test set evaluated (13400 compounds), i.e 1% = 134

molecules

EF results are considerably high considering the size of the test set and drop
to 9 only at 10%. The prioritization capabilities of the model using EMBER
are highlighted by the value of TP / P that also manages to validate the EF
values of some proteins such as JAK2 and EGFR that despite having an EF
below 20 even at 1% are correctly prioritized at all percentages.

In order to prove the practical effectiveness of our approach we conducted
a simple experiment on the ligands prioritized by our classifier for the CDK1
target. We explicitly extracted the ChEMBLIDs of the top five molecules
prioritized by our system in the test set, and inspected both their chemical
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structure and their activity parameters. Table 4.11 reports the results, and it
can be seen that all of them are strongly active against the target.

Table 4.11: The top five test set molecules prioritized by our classifier as the
most active on the CDK1 target.
Molecule
ChEMBLID Chemical structure IC50

CHEMBL192216 2 nM

CHEMBL3644025 82 nM

CHEMBL445125 500 nM

CHEMBL2403087 183 nM

CHEMBL2403084 148 nM

EMBER presents itself as an excellent embedding for classification, greatly
improving the impact that individual fingerprints have on virtual screening.
Given the great efficiency, the final phase of the study of Molecular Fingeprints
I have performed studies of explainability with the well-known framework
SHAP, in order to identify the features that contribute most to the classi-
fication. SHAP stands for SHapley Additive exPlanations [126] , and it is a
game theoretic approach that was proposed first by Lipovetsky and Conklin
[127] . In this work, the relevance of each predictor in a linear regression
model is measured using the Shapley Value (SV) imputation that is a method
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to rank the importance of each player in a multi-player game over all the pos-
sible combinations of players. The authors use the SHAP values as the unique
measure for feature relevance in an additive feature attribution explainability
model, that is defined by a linear combination of the features to be explained
zi weighted by some importance factors φi. The SHAP value for a feature
zi is estimated as the SV φi of a conditional expectation function E[f(z)|zi]
describing the expected prediction over the entire feature set z conditioned to
zi. Both model agnostic linear explanation and model specific computation
of SHAP values is proposed. In my case, I adopted the so called Deep SHAP
explanation model that is suited for CNN because it combines SHAP values
with the recursive relevance scores computation proposed in DeepLIFT [128]
. The DeepLIFT explainability model assumes that a difference ∆t = t − t0
in an output neuron between the actual activation t and a reference one t0
is related to the activation difference ∆xi in whatever contributing neuron by
the summation-to-delta property

∑
iC∆xi∆t = ∆t that is a constraint on the

relevance scores C∆xi∆t. Deep SHAP applies the DeepLIFT approach to the
expectation function E[f(z)|zi] reference value.

The results of this analysis are shown in Figures 4.6; on the left are SHAP
values for each target and fingerprints averaged over the entire test set, and
on the right are CDK1 values, as an example. Here, each fingerprints was
grouped into bins of 64 to improve readability.

(b)(a)

Figure 4.6: Explainability results using SHAP; (a) average SHAP values for
each fingerprint computed on the entire test set separately for each target; (b)
example of single target explainability analysis for CDK1: SHAP values are
reported for each fingerprint, and each row has been grouped in 64 bins to
enhance readability

As shown in the figure 4.6, not all fingerprints contribute equally to the
classification but we can identify 3 Molecular Fingeprints that show a greater
influence on all, consistent with the different information they encode. In fact,
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(a) (b)

Figure 4.7: Shap values calculated on CDK1. (a) Summary Plot listing the
20 most relevant features in order. (b) Plot of the 20 most positively and
negatively relevant features for the 7 Molecular Fingerprin.

RDKit and Layered are two Pattern fingeprints [insert label of the chapter
molecular descriptor] generated with a kernel that searches for substructures
but that store information in a different way, in fact Layered organizes informa-
tion in layers. FeatMorgan is instead the third fingeprints that affects more the
classification and differs from the other two for being a Circular Fingeprints of
the FCFP family generated through the use of a circular kernel. Plausibly with
the different encoding of structural information contained in them the neural
network has extracted these features to improve the discrimination between
active and inactive molecules further confirming the use of this approach.

To deepen the understanding of the impact of individual fingerprints I per-
formed a study on the entire spectrum of SHAP Value for each fingerprints to
be able to identify the most relevant bits. The analysis was performed on all
the molecules of the test set on each target. The results obtained are shown
in figure 4.7.

As shown in Figure 4.7(b) for each individual Molecular Fingeprints one can
identify all the bits that actively participate in classification. This information
could be very important for the purpose of understanding the classification
mechanisms of the network, but due to the hashing function and the bit colli-
sion that can occur between bits 1 when bits are added, it cannot be translated
back into chemical language.

This is the biggest limitation found in Molecular Fingeprints. Molecular
Fingeprints are excellent embeddings for performing classification, but they
encode information irreversibly, preventing the researcher from expanding the
search domain in order to identify the characteristic chemical structures of a
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molecule. In light of these observations, being able to identify a numerical
embedding that had the same discriminative capabilities as EMBER, allowing
the researcher using it to know the chemical groups involved in the classifi-
cation, was the second goal of my research activity. At the state of the art,
a numerical embedding with these characteristics is not present, and for this
reason I created the NMR-Like descriptor that will be described in detail in
the following chapter.



Chapter 5

NMR-Like

NMR-Like is the real innovation in my research activity. It is a molecular
descriptor that aims to innovate VS approaches while maintaining computa-
tionally efficient numerical embedding and preserving chemical information
clearly. NMR-Like stems from the idea of using the output obtained from nu-
clear magnetic resonance (NMR) spectroscopy experiments of Hydrogen (H)
atoms as input data for a neural network. In this chapter will be described in
detail the workflow that led me to the current version of NMR-Like.

5.1 Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) is a technique of investigation of matter
with a considerable number of applications, starting from synthetic chemistry
for the characterization of newly synthesized compounds, up to applications in
the medical field. It is based on the measurement of spin precession of protons
(H) or other nuclei with magnetic moment, when they are subjected to a
magnetic field. Atoms with an odd number of protons and neutrons possess a
non-zero spin magnetic moment which is defined by the spin quantum number
for the values 1

2
and −1

2
. One of these two states corresponds to the orientation

that the nuclei assume parallel when subjected to a magnetic field, while the
other will describe the antiparallel orientation. These two spin states have
different energy. Typically nuclei subjected to a static magnetic field tend to
assume the state with the lower energy.

This orientation of the nuclear magnetic moments in the static magnetic
field B0 gives rise to a macroscopic magnetization M obtained from the vector
sum of the individual nuclear magnetic moments. At equilibrium, the mag-
netization M0 is aligned with the direction of the static magnetic field. The
magnetization is a vector quantity, which obeys the rules of classical electro-

70
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dynamics [129]. Thus, the interaction of magnetic fields with magnetization
can be described by the equation of classical physics:

dM/dt = −γM ×B = −M × ω (5.1)

where γ is the gyromagnetic constant defined by the ratio of the nuclear
magnetic moment to the angular momentum. According to equation [in-
sert reference], if the magnetization vector is aligned with the magnetic field
B0 (typically aligned with the Z axis) the vector product M x B0 is equal
to 0 and M is static. However, if M and B0 are not parallel, M under-
goes a magnetic precession towards B0 with an angular frequency ω | (ω =

2πv,where v is the frequency in Hz). The magnitude of B0 is several Tesla
(T) and the Larmor frequency typically hovers in the range of 50 to 900MHz.
The magnetization M can be detected only when it is not static and therefore
with the same orientation as B0. It has been observed that by using a second
low amplitude radio frequency (RF) magnetic field, B1, produced by an RF
electric current in the coil with the axis perpendicular to B0 it is possible to
rotate the magnetization. The rotation occurs around the Z axis with the
Larmor frequency ω. Therefore, by turning on B1 field for a few milliseconds,
M is tilted towards the x’y’ plane. The application of the B1 field for a short
time, t, is called the RF pulse. After switching off B1, the tilted magnetization
precesses around B0 and induces a decaying electromotive force in the coil, ac-
cording to a mechanism called relaxation which is a first-order process called
Free Induction Decay (FID) or NMR signal [129]. The FID, a time domain
signal, is difficult to read and is translated into the frequency spectrum of the
NMR signal through the use of a Fourier transform, as shown in Figure 5.1.

Figure 5.1: On the right we observe the spectrum obtained through the Fourier
Transform (FT). The x-axis represents the scale of δ with values ranging from
0 (right) to 10 (left) expressed in ppm, while the y-axis represents the intensity
of the resonance signal
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It has been observed that nuclei of the same chemical species (e.g., H) within
molecules can have slightly different resonant frequencies. This difference arises
from the fact that the nuclei are surrounded by electrons that locally produce
a magnetic field oriented opposite to the external magnetic field, reducing the
current magnetic moment of the nuclei. This phenomenon is called electron
screen effect that decreases the resonance frequency of nuclei that is influenced
by chemical enviroment and it is characteristic for each chemical group. As the
electron shield effect is proportional to the intensity of the external magnetic
field B0, it has been defined a scale expressed in ppm (parts per million)
called chemical shift that is independent of the intensity of B0 and allows
a standardization of the values obtained with magnetic resonance equipment
with different intensity. The chemical shift is defined as follows:

δ = (v − vref ) /vref (5.2)

Where v is the resonance frequency in Hz of the spectroscope and vref is
the resonant frequency of a reference compound (typically tetramethylsilane
is used for H-NMR). Another phenomenon that characterizes NMR spectra is
spin-spin coupling or J-coupling. This effect is responsible for the splitting of
signal lines into multiplets. The coupling between nuclei or pairs of nuclei is
mediated by the polarization of electrons or chemical bonds connecting these
nuclei. This effect is mutual, meaning that it is the same for pairs of nuclei
or groups of nuclei. The magnitude of these interactions is called the coupling
constant J and is expressed in Hz. As can be seen in figure 5.1 the signal on
the right is divided into many smaller signals due to the coupling constant J
between groups of nuclei close to each other.

The most important spectroscopic parameter is the intensity of the inte-
gral of the spectroscopy line. The intensity of the line is proportional to the
molar concentration of the nuclei represented by this line. This parameter is
very important to measure the amount of a given compound within a tissue,
to determine metabolic profiles in the medical field. The NMR spectrum is
therefore a very complex representation of the molecule, because it takes into
account the interaction between the nuclei and electrons within the molecule,
describing the arrangement they have in three-dimensional space.
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5.2 Spectra generation

The goal of VS approaches, as abundantly described in previous sections, is to
be able to discriminate active compounds among a large library of compounds.
Consequently, in order to be able to test the capabilities of the NMR-Like
descriptor in this domain it was necessary to obtain the highest number of
target-specific representations. Unfortunately, at the state of the art, there
are no public databases of H-NMR spectra and it was necessary to identify
reliable simulators to accumulate a sufficient number of molecules to train a
DNN.

The first simulator tested was the online tool "predict 1H NMR" [130, 131,
132] available at nmrdb.org and presenting the interface shown in Figure 5.2.

Figure 5.2: Web user interface of the nmrdb tool.

The tool also presented web services that made it easier to produce H-
NMR spectra. Unfortunately, the simulated spectrum showed irregularities, in
particular chemical groups containing very electronegative atoms (e.g., −OH,
−NH2), were not predicted thus losing fundamental chemical information.

The second choice fell on the ChemAxon tool [133], an advanced chemical
editor, with API for all operating systems and which can also be used from the
command line. The latter feature greatly speeded up the prediction of spec-
tra allowing to iterate the predictive procedure, managing to obtain ∼1000
spectra/h on Single-Core operations. The predicted spectra have been care-
fully checked and validated by experts of the chemistry computation group of
"Fondazione Ri.MED". The simulator is very accurate so as to consider the
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diasterotopic protons differentiated and the pairs H −H, H − F and C − F
are represented with an approximation of the first order.

The tool uses canonical SMILES, from which it reconstructs the two-dimensional
graph that will be used for H-NMR prediction and has been set with the fol-
lowing parameters:

• Spin-Spin Coupling: On

• Implicit Hydrogen Mode: On

• NMR Prediction Frequency: 500 MHz

• Spectrum Display: Realistic Spectrum

• Spectrum Labels: Chemical Shifts

• Measurement Unit: ppm

• Integral Curve: On

The chemical shifts are estimated by a mixed HOSE- and linear model based
on a topological description scheme and are in relation to the chemical shift of
tetramethylsilane. The aforementioned spectrum is saved in the JDX-CAMP
format, a standard for NMR data analysis, recommended by the IUPAC [134].
The JDX-CAMP file consists of two sections, the CORE and NOTES, which
will respectively contain Global information (e.g. Power in MHz of the ma-
chinery, compound used for the standardization in the chemical shift δ, etc.)
and the information NMR Datatype specific, that is the spectrum, which will
be represented as a vector of 8192 bit [135].

An example of a predicted H-NMR spectrum is shown in Figure 5.3.

5.3 Dimensional Exploration of NMR-Like

Having defined and validated the predictor to generate in silico H-NMR spec-
tra, I set about studying the structure of each one. The spectra are presented
as 8192bit vectors with a sparsity that varies from molecule to molecule in a
range of 40-80%. This feature of the data can give problems during the train-
ing phases of neural networks, for example, increasing the bias of convolutional
operations. At this stage of the study I was concerned with finding a version
of the spectrum that would retain the chemical information while reducing the
overall sparsity of the representation. To be able to do this, knowledge of the
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Figure 5.3: H-NMR predicted by ChemAxon’s MarvinSketch simulator.

data was critical. The peaks of the H-NMR spectrum represent the various
chemical groups that make up the molecule, especially the shape and intensity
of the peak also give us information on the three-dimensional arrangement that
the nuclei have in space. We can therefore assume that each peak in the scale
is influenced by the peak that precedes it in the scale and the whole spectrum
can be idealized as a time series. Based on this assumption, I furthered my
study of data reduction algorithms applied to data mining [136].

The first that has been tested is the Piecewise Aggregate Approximation
(PAA). This method divides the time-series into intervals of size k (bin) de-
noted by [t1, tk], [tk+1, t2k], etc. The bins will be of the same size and each of
them will contain the same number of points. Then the new binned value will
be y′i+1 where (5.3) [136].

y′i+1 =

∑k
r=1 yi·k+r

k
(5.3)

The use of this technique will provide a compressed representation of the
H-NMR spectrum that as can be seen in Figure 2 does not lose any information
despite the reduction to 1024 bin. Further reductions deform excessively the
shape of the spectrum, making lose important structural information, as can
be in figure 5.4.

It is also possible to use the median rather than the mean of the values for
each bin. Typically, the median provides a more robust estimate because the
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a)

b)

c)

Figure 5.4: Plot of H-NMR spectra after manipulation with PAA. a) Original
H-NMR spectrum (8192bit), b) 2048bit H-NMR spectrum, c) 512bit H-NMR
spectrumt.

outlier points do not disproportionately affect the median. For this reason the
spectra were also tested after compression using PAA based on the median.

A further data compression algorithm tested was the Wavelet Transform,
a preprocessing method that converts a signal or a time series into a multidi-
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mensional data set in which temporal continuity is ignored. In the wavelet,
the coefficients describe the contiguous time regions of the series, providing
a coefficient that is equal to half the difference in mean value between a pair
of contiguous, carefully chosen segments of the series. Also, as the number of
coefficients retained is much smaller than the length of the time series itself,
a reduction in dimensionality is still achieved [136]. The wavelet transforms
used are part of the Discrete Wavelet Transform (DWT) family which use
a discrete subset of all possible values. Specifically, the wavelets used are
Daubechies wavelets, based on the work of Ingrid Daubechies, a family of
orthogonal wavelets that define a discrete wavelet transform and are charac-
terised by a maximum number of escape moments for a given medium. With
each type of wavelet in this class, there is a scaling function (called the parent
wavelet) that generates an orthogonal multiresolution analysis.

Today, wavelet transforms are used in the analysis and encoding of a large
number of different types of data, such as images, heartbeat and ECG analysis,
DNA analysis and protein analysis. Given the nature of the data obtained with
the ChemAxon simulator [133] the transform appears to be ideal for testing
an additional compressed structure.

The experiments conducted in this phase were performed using dataset 2
(545 active molecules, 4907 inactive on CDK1, see 3.2.1) in order to identify the
ideal embedding size. The assays were conducted using different types of deep
neural networks. Architectures with Depth Separable Convolution layer, with
Convolutional layers, with GRU recurrent layers specifically have been tested.
The common factor of all architectures was the low number of parameters
needed for training and the small number of layers needed to extract features.
A schematic representation of two of the neural architectures used is shown in
Figure 5.5.

Once the most suitable architectures were identified, all combinations of
PAA (length, binning type) and DWT were tested using all DNNs. This step
was important to be able to isolate the most performing embedding in the
classification of molecules active on CDK1. The results obtained from this
research are reported in Table 5.1. The table reports information regarding
the type of architecture used, the type of data compression applied and the
metrics of Accuracy, Loss, bACC, Sensitivity, F1-Score and AUC.

Sensitivity was the main evaluation criterion, because it is the metric that
shows the ability to correctly discriminate active molecules from inactive ones,
assisted by the value of bACC. NMR-Like obtained with the Piecewise Aggre-
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Figure 5.5: Schematic representation of the CNN (a) and GRU (b) architec-
tures used.

Table 5.1: Results of exploratory NMR-Like dimension analysis. Results of
exploratory NMR-Like dimension analysis. The best result is shown in bold.
NN* Data Compression Accuracy Loss Bal. accuracy Sensitivity F1-score AUC

DSC Wavelet DB1 0.7018 1.0885 0.7527 0.8193 0.3942 0.8323
CNN Wavelet DB1 0.9087 0.2562 0.7761 0.6024 0.6098 0.8861
RNN PAA median 2048bin 0.8630 0.5460 0.7868 0.6867 0.5428 0.8548
DSC PAA median 1024bin 0.7590 0.9113 0.8215 0.9036 0.4702 0.9018
CNN PAA media 1024bin 0.9400 0.1943 0.8043 0.6265 0.7246 0.9245

*Neural Network

gate Approximation with 1024bin calculated using the median, presents itself
as the best representation among those tested, in combo with the DSC archi-
tecture and was used as embedding of NMR-Like for the experiments reported
in the next sections.

5.4 Classification on multiple targets

The next step aims to analyze the performance of NMR-Like. This step aims
to validate the new descriptor in a real application domain. The sets of com-
pounds used in this step of the study are 4: the dataset 2 [insert ref dataset
2] and three subdatasets extrapolated from dataset 3 [insert ref dataset 3]. A
summary of the active molecules is shown in Table 5.2.

Table 5.2: Summary of actives and inactives used in the four datasets tested
Protein Dataset Tanimoto similarity Active Inactive

CDK1 Dataset 2 1 869 6278
JAK2 Dataset 3 0.87 5526 55260
INSR Dataset 3 0.86 1423 14230
CLK2 Dataset 3 0.82 671 7040
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Figure 5.6: Model summary

A DSC architecture with 5-layer Depth Separable Convolution PReLU with
256, 128, 64, 32, 16 filters for feature extraction with two Average Pooling
(One after the second DSC layer and one before the classification block) and
a classification block consisting of 4 MLP layers with 64, 128, 64 ReLU units.
The architecture is not very deep and has only 380.818 parameters, as shown
in Figure 5.6.

All datasets used were divided into Training, Validation, and Test sets with
an 80:10:10 ratio, and an active to inactive ratio of 1:10 for each. The Vali-
dation set was used to perform hyperparameter tuning for each of the DNNs.
The results for each of the targets are shown in Table 5.3. The metrics used
are global accuracy, Loss, Sensitivity, MCC, AUC ROC-curve, F1-score.

Table 5.3: Results for the active/inactive discrimination task, and Training
scheme 1. Best/worst values for each column are in bold/italic.

Protein Accuracy Loss Sensitivity MCC AUC F1-score

CDK1 0.7846 0.5831 0.8795 0.4570 0.9058 0.4916
CLK2 0.8031 0.6842 0.9254 0.4542 0.9223 0.4493
INSR 0.9284 0.2068 0.7324 0.6155 0.9268 0.6500
JAK2 0.9447 0.1833 0.7848 0.6933 0.9473 0.7209

The results shown in Table 5.3 are very encouraging in terms of Sensitivity
and demonstrate how the overall performance increases proportionally to the
number of samples assayed. In fact, JAK2, the protein with the most abun-
dant dataset, is the target on which the best values are recorded, except for
Sensitivity. This result comes from the high number of active molecules that
are tested. It is enough to look at the TP/P value shown in Table 5.4 to ob-
serve how despite the Sensitivity dataset is low, the JAK2 classifier manages
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to prioritize the actives well. Table 5.4 shows the results of the ratio of True
Positive over Positive (TP/P) and Enrichment Factor (EF, see equation 4.4)
for all 4 targets.

Table 5.4: True Positives versus Positives ratio and Enrichment Factors com-
puted on the entire test set.
Protein TP/P 1% TP/P 2% TP/P 5% TP/P 10% EF 1% EF 2% EF 5% EF 10%

CDK11 7/83 13/83 27/83 47/83 8 8 7 6
CLK22 6/67 10/67 23/67 41/67 9 7 7 6
INSR3 16/142 30/142 61/142 98/142 11 11 9 7
JAK24 61/553 120/553 277/553 417/553 11 11 10 8
Percentage relative to the evaluated test set evaluated (13400 compounds), 1 1% = 7

molecules, 2 1% = 8 molecules, 3 1% = 16 molecules, 4 1% = 61 molecules.

The EF values, although not as high as found with the classifier that used
EMBER, are still satisfactory. Typically, an algorithm used in the VS is called
good when its EF value > 5, which is the case for all 4 models [125].

In conclusion, NMR-Like proves to be a high-performance numerical em-
bedding for bioactivity classification, capable of highly accurate prioritization
of highly active molecules, while keeping the chemical information it carries
accessible. This is the aspect that I went to study in the final stages of NMR
Like analysis through Explainable AI approaches.

5.5 Explainable AI

After determining the efficiency of descriptor classification, to increase knowl-
edge about the features that determine classification I conducted explainability
experiments on each of the best trained models for each of the targets in or-
der to identify the canonical feature pattern for the active molecules. The
DeepLIFT-based approach of the well-known SHAP framework was used to
perform the analysis. In order to perform a useful analysis from the applica-
tion point of view, the SHAP values were not calculated on the whole test set
but only on the molecules that were prioritized as most active by the neural
network. In this way, I hypothesized to be able to isolate all the characteristic
features of these active molecules, describing the canonical pattern of active
molecules. Below, the summary plot of the shap value obtained from the
molecules prioritized on CDK1 is shown (Figure 5.7).

In Figure 5.7, each value associated with the "Feature" represents the posi-
tion in the 1024bin NMR-Like vector, allowing us to isolate the most relevant
regions of the spectrum by identifying the chemical groups characterizing the
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Figure 5.7: Representative image of the most impactful features on classifica-
tion, calculated on 1% of the test set for CDK1 protein.

active molecule. This global representation provides us with a view of the pat-
tern common to all the prioritized molecules but the analysis can be deepened
on each of the molecules, isolating the SHAP values most relevant for the clas-
sification (see Figure 5.8) in order to map the peaks of the H-NMR spectrum
as shown in Figure 5.9.

The opportunity to analyze also from a purely chemical point of view the
results obtained from the classification, makes the NMR-Like embedding an
innovative tool for the screening phases. The scope of the descriptor could
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Figure 5.8: Example of how the most relevant SHAP values were calculated
for each individual molecule.

Figure 5.9: Assignment of substituent groups identified through the most rel-
evant SHAP values. In red we find the values that promote the classification,
while in blue those that worsen the performance. a) the original H-NMR spec-
trum, b) the H-NMR spectrum in its compressed form at 1024 bin, c) heatmap
of SHAP values.

also be extended to Structure-Based VS applications, as a supporting element
to Molecular Docking approaches both in the HTVS phase and in the high
priority screening phase.
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5.6 Drug Repurposing application

The experiments that will be described in this section were conducted within
the CLAIRE (Confederation of Laboratories for Artificial Intelligence in Eu-
rope) Task Force against COVID-19, in the context of Drug Repurposing
[insert reference 7 Year II report](i.e. the search for existing drugs for new
therapeutic purposes). The use of Artificial Intelligence approaches in Drug
Repurposing, could contribute in the identification phases of new drugs for
the treatment of SARS-CoV-2 infection. The speed with which the pandemic
swept the world and the virulence that the strain presented, necessitated a
prompt response that unfortunately could not be achieved with traditional ap-
proaches. Computational chemistry approaches and techniques such as Deep
Learning were key tools to try to counteract the rate at which the virus was
killing victims around the world. The CLAIRE Task Force has tried to make
its contribution in this battle against the virus. With the Human-Computer
Interaction Lab, we have been working on the use of chemical descriptors such
as Molecular Fingerprints and NMR-Like descriptors, to be able to build a
classifier able to identify active drugs against the infection.

The experiments were conducted using Dataset 4 (see 3.2.3), consisting of
213 active and 940 inactive drugs against SARS-CoV-2 infection. In Drug
Repositioning studies, the number of compounds available to the researcher is
not comparable to those in Virtual Screening studies, unfortunately hindering
Deep Learning and Machine Learning algorithms from expressing their full
potential.

NMR-Like and Molecular Fingeprints, were used as inputs to the deep neu-
ral networks used. Specifically CNN and DSC architectures, both one and
two dimensional were used. The Molecular Fingeprints, used are RDKit, Mor-
gan, AtomPair, Torsion, Layered, FeatMorgan, ECFP4 and were tested both
individually and as EMBER. During the time we were addressing this issue,
EMBER was still in the early stages of its testing, and was tested both in its
final configuration (7 x 1024 x 1), and in several variants formed by a chang-
ing number of Fingerprints. Finally, the 7-channel version was tested, using
a dual-input Depth Separable Convolution architecture, in combination with
NMR-Like with the intention of integrating the information of the multispec-
tral representation with that of the H-NMR spectrum.

The results obtained from the study are shown in Table 5.5.
As can be seen, the best results were provided by EMBER even if they

are not satisfactory to define the study of Drug Repurposing as complete.
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Table 5.5: Results obtained by DrugBank’s approved drug classifier.
Molecular Descriptor Accuracy Loss Bal. Accuracy Sentivity Roc-Curve

DSC 1D(E) 0.7241 0.4670 0.5825 0.3478 0.7295
EMBER 0.7192 0.5303 0.7105 0.6956 0.7345
NMR-Like 0.6930 0.6480 0.6452 0.5652 0.6490
EMBER-NMR-Like 0.7105 0.4771 0.6562 0.5652 0.7618
DSC 2D (T-E) 0.7672 0.4796 0.6912 0.5652 0.7480
DSC 2D (R-T-F) 0.7672 0.4591 0.7076 0.6087 0.7492
DSC 2D (A-T-F-E) 0.7576 0.4974 0.7021 0.6087 0.7359
DSC 2D (R-M-A-T-F) 0.7500 0.4950 0.6968 0.6067 0.7802

Fingerprint types: RDKit, Morgan, AtomPair,(T)orsion, (L)ayered, (F)eatMorgan, (E)CFP4

Unfortunately, the low number of positive samples (approved drugs), does not
allow the neural network to identify the feature pattern to classify efficiently the
known drugs. This degree of uncertainty did not allow us to test the classifier
obtained on the entire set of approved drugs downloaded from DrugBank.
During the writing phases of this dissertation, further experiments are carried
out, in order to increase the number of drugs available in the training phases
and to obtain a high performance classifier to be tested on the complete test
set obtained from DrugBank.
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Conclusion

The creation of a new drug is a very complex process that requires a con-
siderable amount of time and money. The Development phases include in
vivo experiments and clinical trials that must follow a rigorous process and
cannot be rushed. The research community is investing time and resources
to revolutionize the Discovery approach of the lead compound, thanks to the
technologies provided by computer science. The phase that is mainly bene-
fiting from all this is Virtual Screening, the domain within which my activity
took place. The research activity conducted during this PhD course aims to
understand and test the impact of molecular descriptors in the domain of in-
terest. The thesis is presented as a theoretical and applicative description of
the most used numerical descriptors in the state of the art, the Molecular Fin-
gerprints. The latter are vectors of fixed length that describe the molecular
structure in a different way as the kernel with which they are generated varies.
In the proposed study we examine 7 of them (RDKit, Morgan, AtomPair, Tor-
sion, Layered, FeatMorgan and ECFP4), selected for the different encoding of
chemical information within them.

In accordance with the initial proposal, a first experimental evaluation al-
lowed us to identify the most suitable fingerprint size for the classification task,
showing the 1024bit embedding as the most efficient one. The complementar-
ity of the chemical information present in each of the fingerprints correlated to
the computational efficiency that they presented has allowed us to create the
first embedding proposed as a final result of this work, EMBER (embedding
multiple molecular fingerprints) which integrates the information expressed by
the individual fingerprints in a multispectral representation of the molecule.
As has been shown, it allows multi-class multi-target classification to be per-
formed on a large number of small compounds using a deep neural network
with a relatively small number of parameters. Explainability experiments have
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shown that embedding is not fixed and that not all Molecular Fingeprints are
needed to transfer chemical information. As shown in the figure 4.6, FeatMor-
gan, Layered and RDKit show more influence when compared to the others. I
tried to rationalize this observation based on their composition.

FeatMorgan is an FCFP circular fingerprint where the molecule is char-
acterized by the functional description of the atoms directly involved in the
interaction with the binding site (e.g., acceptor and hydrogen donor groups,
polarity, aromaticity and so on). Probably, such a type of classification, not
based simply on the chemical pathway, but on the ability of the ligand to
bind specific protein residues, performs better than the simple ECFP circular
fingerprint, only with respect to atomic type pathways. RDKIT and Lay-
ered fingerprint are both based on substructure decomposition (e.g., aromatic
rings). In a recently published work by Zhu et al. [137] the authors performed
a chemoinformatics analysis of 2139 protein kinase inhibitors and found most
of these molecules to be "flat" with a very low fraction of sp3 carbons and a
high number of aromatic rings. From the study, it was also shown that the
weighted average number of hydrogen bonds was inversely proportional to the
number of aromatic rings. In detail, it appears that in the binding affinity
to protein kinases, there is a correlated offset between H-bond interactions
and aromatic and non-bond interactions. This inverse relationship strongly
suggests the importance of the balanced presence of donors and acceptors of
hydrogen bonds and aromatic moieties within the ligand for the molecular
recognition of protein kinase inhibitors.

From this study it emerges that FCFP, RDKIT and Layered that fingeprints
containing information on the pharmacophoric role of individual chemical
groups, perform better than the others in this specific task. The use of Ex-
plainability allows then to perform a tuning of the descriptor, reducing the size
of the Tensor, allowing to use a combination of Fingerprints that best suits
the type of classification that you want to pursue.

Despite its excellent performance in classification, EMBER, as well as the
structural units of which it is composed, showed its greatest limitation during
the Explainability phases, in which the impossibility of interpreting the chem-
ical information that influences the bioactivity classification was highlighted.
This is due to the hashing algorithm that is used for their generation and
that in communion with the collision bit events prevents the technician from
tracing the chemical group that each bit 1 represents. Based on these observa-
tions, my research activity has evolved towards the creation of a new molecular



87 CHAPTER 6. CONCLUSION

descriptor. NMR-Like aims to integrate the VS Structure-based steps with a
Ligand-based approach, allowing the user to have complete control of the most
influential features in the classification. This feature overcomes the limit of
Molecular Fingeprints allowing the cheminformatic operator to instantly rec-
ognize the chemical groups common to all active molecules, providing a tool of
immediate application for the synthetic chemist, who during the characteriza-
tion phases of the new molecule, performed with nuclear magnetic resonance
spectroscopy, could know in addition to the structure, also the target on which
the new molecule is active. The ability to classify bioactivity, with the use of
very small DNN is a further strength of the proposed descriptor. It succeeds
in classifying with satisfactory Enrichment Factor and TP/P values.

The lack of a centralized database of target-specific H-NMR spectra made
the development of this new embedding and approach complex, which at the
state of the art remains unique for classification tasks in the VS. The overall
performance and reliability of the descriptor could be increased by using real
H-NMR spectra, an issue mainly encountered during the training phases of the
neural network. With the computational chemistry and medicinal chemistry
group of Ri.MED foundation, work is continuing to succeed in definitively
validating the simulated spectra.
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