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Chapter 1

Introduction

1.1 Overview

Biological systems are complex sources of information. This in-
formation is now being systematically measured and extracted at
unprecedented levels using a plethora of "omics" and intelligent
technologies.
The advent of these approaches to biology and disease presents
both challenges and opportunities for the pharmaceutical indus-
try, whose goal is to identify plausible therapeutic hypotheses from
which to develop drugs. However, recent advances in a number of
factors have led to increased interest in the use of machine learning
(ML) approaches within the pharmaceutical industry.

Coupled with infinitely scalable storage, the large increase in the
types and sizes of data sets that can provide the basis for ML has al-
lowed pharmaceutical companies to access and organize much more
data. Data types can include images, textual information, biomet-
ric and other information from wearables, analytics information,
and high-dimensional data.
In recent years, the field of artificial intelligence (AI) has moved
from largely theoretical studies to real-world applications. Much
of this explosive growth has to do with the wide availability of
new hardware such as graphics processing units (GPUs) that make
parallel processing faster, especially in numerically intensive com-
putations. More recently, advances in new ML algorithms, such as
deep learning (DL), have contributed to a tremendous increase in
ML applications within pharmaceutical companies over the past 2
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years.

My research activity, during the three years of my PhD course,
has been conducted in concert with the team of the Human Com-
puter Interaction Laboratory of the Engineering Department of the
University of Palermo under the supervision of Prof. Roberto Pir-
rone and the Molecular Informatics Group of the Ri.MED Founda-
tion directed by Dr. Ugo Perricone. The research has focused on
the analysis and definition of deep neural networks using different
organizations of molecular fingerprints; this activity has led to the
definition of a new embedding that can be used in virtual screen-
ing (VS) procedures that consist in tasks of classification of small
molecules with respect to their bio-activity on one or more protein
targets.

The general objective of this thesis is the creation of a virtual
screening procedure, aimed at identifying molecules potentially bioac-
tive on one or more proteins belonging to the family of cyclin-
dependent kinases (CDKs). To do this, I started from cyclin-
dependent kinase 1 (CDK1) and then expand the study to other
19 proteins belonging to CDKs with the particularity of having a
similarity of the binding site greater than 80%. The choice of this
target is given by the previous experience of the research group at
Fondazione Ri.MED in CDK1 modulators and activity because of
the high structural similarity between the binding sites of the dif-
ferent kinases. Secondly I chose to start from CDK1 because it is
the main regulator that guides cells through G2 phase and mitosis,
so it is particularly involved in cancer development. Furthermore,
the fact that, unlike other CDKs, loss of CDK1 in the liver confers
complete resistance to tumor formation, revealing its role in cancer
development, demonstrates its importance in carcinogenesis. My
research project was aimed at finding an appropriate molecular de-
scriptor for a convolutional neural classifier. In first phase of the
study, oriented to the identification of the most performing finger-
print, I built networks to classify as active or inactive molecules on
a single target, CDK1. The classification architectures I proposed
are convolutional networks (CNNs) that use input tensors consist-
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ing of combinations of molecular fingerprints.

Molecular fingerprints are vectors of bits of fixed length that are
generated following well-defined rules. They are generated by ana-
lyzing each atom together with its neighborhood up to 6 or 7 bonds
apart. For each atom the so called patterns are analyzed, i.e. type
of atom, bond, presence of aromatic rings and so on. After enumer-
ating all patterns, each of them is used as a seed for the hashing
function that generates 4/5 position indexes where to allocate bits.
The scientific literature reports several types of fingerprint to de-
scribe different aspects of both the structure and local properties of
a molecule. The same fingerprint can also be designed with different
dimensions. Specifically, I used Knime software for the generation
of molecular fingerprints. In the early stages of the work, I selected
the length and type of molecular fingerprints and I tested them us-
ing different classification techniques including shallow techniques
such as Random Forest and Support Vector Machine.

I first tested individual fingerprints at different lengths using one-
dimensional CNNs to identify the best performing length. The re-
sults of this study I presented at the 2019 BITS, Bionformatics
Italian Society bioinformatics conference held in Palermo, Italy.

One of the most frequently asked questions by computational
chemists, is whether it is better to have a model that recovers some
false positives or lose some assets as false negatives. Depending on
the stage of drug discovery, at the beginning of the drug discovery
cascade, it may be beneficial to have some false positives instead of
losing some putative hits. At a more mature screening stage (e.g.,
expansion of hits), it might be better, however, to have a more
precise algorithm that prevents false positive discovery. Based on
these considerations, the best compromise is a virtual screening
model that can adapt to the drug design phase of the campaign.

In this part of the work, I present different CNN architectures
for VS of candidate compounds with respect to their biological ac-
tivity at first on the CDK1 target. The vector representation of the
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candidate compounds is obtained using their molecular fingerprints.
The importance of the target lies in its validation as a pharma-

cological target. It is an archetypal kinase that acts as a central
regulator guiding cells through G2 phase and mitosis. Its impor-
tance in tumorigenesis has been demonstrated by evidence that,
unlike other CDKs, loss of CDK1 in the liver confers complete re-
sistance against tumor formation, demonstrating its role in cancer
development [32]. Initially, there were two very favorable points:

• molecular fingerprints are used as a suitable embedding to de-
scribe molecules;

• a unique neural architecture was designed and trained with
several hyper-parameters to achieve good performance in both
initial and mature screening.

In a second step, I performed tests on all possible combinations
of fingerprints both in number and in type through two-dimensional
CNNs that I trained on appropriate combinations of different fin-
gerprints of equal size for the same compound, to take into account
all the different information coming from these descriptors at once.
Different types of fingerprints with different sizes are reported in the
scientific literature to address different aspects of both the struc-
ture and local properties of a molecule [21]. In my work, I addressed
seven of the most popular types of fingerprints: RDKit, Morgan,
AtomPair, Torsion, Layered, FeatMorgan, ECFP4. A substantial
portion of this work has been devoted to addressing the single fin-
gerprint or combination of fingerprints that achieves the best ac-
curacy in both a highly discriminative task (i.e., mature screening)
and an active-only selection task (i.e., early screening).

A molecular fingerprint represents the corresponding molecule “as
a whole” in a suitable vector form, i.e., it conveys information about
the presence of a particular substructure, but not about its exact
location or its repetition at different sites of the same molecule. Fur-
thermore, I aimed to perform a binary classification between active
and inactive compounds, and biological activity is mostly related
to the presence/absence of particular substructures that in turn are
adapted to bind to the target protein. Consequently, CNNs seem to
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be the best architectural choice to classify molecular fingerprints.
A single fingerprint may not make explicit the particular substruc-
ture that is responsible for binding to the target, and this is due to
both its search strategy and hashing mechanism.

Several types of fingerprints are reported in the scientific liter-
ature to address different aspects of both the structure and local
properties of a molecule. In the chapter 2.4, the comparison be-
tween algorithms and substructures of different fingerprint types
has been reported. The key idea of this work is that many finger-
prints used together to describe the same candidate compound can
make explicit the features responsible for bioactivity. Moreover, a
neural model with adequate capacity can accommodate the redun-
dancy derived from having the same molecular pattern encoded in
different fingerprints. In light of the above considerations, both 1D
and 2D CNNs were trained to test the performance of each descrip-
tor separately, along with all combinations of multiple descriptors
for the same compound. I presented the results of this study at
the 2019 ICIAP, International Conference on Image Analysis and
Processing conference held in Trento, Italy.

Next, I focused my attention on the optimal use of fingerprint
combinations to increase the performance of a neural classifier start-
ing from the assumption that different fingerprints describe the
same molecule as if they were different "spectra" of the molecule
since they are generated following computationally similar proce-
dures, but from information collected differently along the molecu-
lar structure.
The first architecture I proposed, called Tuned MLP-Out, uses a pa-
rameter sharing concept in which several parallel 1D CNN branches
are trained on single fingerprints and then merged into a single net-
work. This study was published in the Q1 computer science journal
BMC Bionformatics.

At the end of my PhD course, I proposed EMBER, a novel em-
bedding for molecular structures that allows for explainability in
a multi-target VS task. EMBER is composed of seven molecular
fingerprints arranged as the different channels of a one-dimensional
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tensor and exploits the Depthwise Separable Convolution operator
to reduce the computational complexity. In this way, the differ-
ent fingerprints immediately act as different features of the input
tensor.

To support the efficacy of the new embedding, I developed an
architecture that performs multi-class multi-label classification of
single molecules against 20 different targets that have been selected
as the most structurally similar kinases to CDK1. More specifically,
this network uses depth-separable layers that benefit from using
channels to see different types of molecular fingerprints as different
spectra of the same molecule.

As it is well known, Explainable AI (XAI) [60] aims to provide a
description of how the model uses features to build its predictions,
and this is a crucial argument to make feasible an extended use of
neural models in the general context of life sciences. In view of the
previous considerations, I focused on the prioritization of actives
and the use of the well-known SHAP XAI framework to provide a
deeper description of how the model uses fingerprints and to analyze
my trained network to provide an explanation of the role of each
fingerprint in my embedding. Moreover, from this study it was
possible to assess which fingerprints affect mostly the classification
either positively or negatively.

This work has been published in the Q1 computer science journal
International Journal of Molecular Sciences.

Lastly, a drug repurposing problem for COVID-19 has also been
treated. Especially I tried to use the same techniques utilized for
virtual screening task. The technique seems to be promising despite
of the shortage of public data (probably even private ones), and
it doesn’t perform very well. Preliminary results are reported in
section 2.3.



Chapter 2

State of the art

Artificial intelligence (AI) is becoming more widely used in differ-
ent sectors of society, including the pharmaceutical industry. In
this chapter, I look at how AI is being used in various areas of the
pharmaceutical industry, such as drug discovery and development,
drug repurposing, increasing pharmaceutical productivity, and clin-
ical trials, to name a few. This use reduces human workload while
also achieving targets in a short amount of time. I also talk about
how AI tools and methodologies interact, as well as current issues
and solutions, and the future of AI in the pharmaceutical business.
Different applications of AI in drug discovery are depicted in Fig-
ure 2.1 that show how AI can be used effectively in different parts
of drug discovery, including drug design, chemical synthesis, drug
screening, polypharmacology, and drug repurposing.

The number of available compound and biomedical activity data
has increased significantly over the past decade [50],[76]. ChEMBL,
a comprehensive life science information resource for public chem-
ical facilities and biological activity databases, is one of the most
commonly used databases. Another is PubChem, which is a pub-
lic database of chemical information and biological activities. Both
give a plethora of information for medication development and med-
ical research.

Many medications have traditionally been discovered by chance;
nevertheless, the development of new computer-assisted enabling
technologies is maturing, and computational performance is getting
more powerful. Computer-Aided Drug Design (CADD) has grown
in importance as a method of drug development. CADD is a drug
discovery technology that uses target structures, functional quali-
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Figure 2.1: Role of artificial intelligence (AI) in drug discovery [77].

ties, and processes to find new drugs [43]. CADD employs in silico
tests to compare the expected and actual activity of a medicine
in a cost-effective and timely manner, with the data being uti-
lized iteratively to improve the compound’s attributes. In the last
decade, several CADDs based on artificial intelligence technologies
have been used to drive classical trials, but they are still costly and
time-consuming. Because there is such a big amount of experiment
data and biomedical data to compare. Deep learning techniques
provide a more powerful and effective way to cope with the vast
amounts of data generated by modern drug discovery methods.

Drug development and drug planning is a time-consuming pro-
cess. It can be thought of as both pure scientific inquiry and indus-
trial development. To acquire knowledge on existing molecules, the
drug planner must visit vast public or private databases at various
phases of the process. These questions can be of various types; for
example, it is required to investigate how two molecules can bond
together based on strictly chemical criteria while also taking into
account biological limits imposed by the molecule’s toxicity to the
human body. From a data standpoint, these searches return a wide
range of information, including the structure of the molecular graph
as well as textual and numerical data.
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Drug discovery is a lengthy and costly process that involves a
number of processes such as drug target selection, target validation,
virtual screening (VS), hit to lead generation, lead optimization,
and so on. Furthermore, the development of a new drug costs more
than 2 billion on average before taxes and takes roughly 10-15 years
[93, 31] . Despite the significant time and financial investment, the
projected success rate of clinical approval of new small compounds
during the drug discovery process is around 13%, implying a rel-
atively high probability of failure. Computational approaches are
used to help with drug design at practically every stage. Yu and
MacKerell [100] present a review of the drug discovery process and
the computational drug design methods that go with it.
Computational approaches do not ensure a thorough examination
of molecular attributes (e.g., bioactivity, ADMET qualities, se-
lectivity, and physicochemical properties), but they do generate
lead molecules with desirable properties in silico. Candidate clin-
ical molecules chosen for drug discovery must have a profile that
fits a number of criteria, including potency of effect, selectivity,
safety, and ADMET characteristics. As a result, designing the best
molecule is a multidisciplinary task encompassing several areas of
chemistry and biology, which is addressed utilizing machine learn-
ing. The ability to access and mine huge data sets with diverse
information is critical for the success of ML techniques in property
prediction. Until recently, the most effective machine learning ap-
proaches were the so-called “shallow” ones, such as support vector
machines (SVMs) and decision trees, particularly ensemble meth-
ods like Random Forest (RF). To improve model dependability and
prediction power, all of these ML models should be iteratively mod-
ified using new experimental data.
The ability to detect compound-target interactions is a critical step
in the drug development process. Predicting the interaction be-
tween chemicals and proteins, for example, can drastically lower
the cost of developing new drugs. As a result, various in silico
strategies for predicting compound-target interaction and facilitat-
ing novel drug development have been presented. VS, in particular,
is a hot issue in chemoinformatics and medicinal chemistry, as well
as a commonly used tool in pharmaceutical research. VS entails
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searching huge databases of small compounds for bioactive chem-
icals that are relevant to the target of interest. By lowering the
number of candidate molecules, the researcher can save money on
the cost of testing thousands of chemicals in the lab. In the recent
decade, as DL has matured as a subject, research in the field of VS
has become increasingly relevant [37] . In this topic, there is a lot
of scientific dispute over how to represent the chemical structures
that the network needs to learn. Classical representations such as
molecular fingerprints were used in the very early architectures [72]
and SMILES notation [97].

Recent research has looked at molecular graphs in conjunction
with neural embeddings, which are essentially a low-dimensional
vector representation for discrete and/or categorical data that may
be used to train a neural network in place of the original samples. In
fact, neural embeddings are a technique of adapting the representa-
tion of input data to the numerical limitations imposed by a neural
model’s training operations. Because the protein kinase family,
which I chose as my study’s family target, is so diverse and con-
tains so many proteins, it provides a plethora of data that is ideally
suited to VS-oriented ML techniques for new kinase inhibitors. In
Martin et al. [64], used a huge but poorly populated data matrix of
over 100,000 chemicals to develop Bayesian models for Quantitative
Structure-Activity Relationship (QSAR) models based on various
kinases.Another case study used Random Forest to estimate kinase
activity on hundreds of kinases using publically available datasets
and in-house data. Random Forest models have shown stronger
prediction reliability than other approaches in certain cases, how-
ever they perform worse than deep neural networks [71]. In most
applications that try to detect patterns from training data and de-
velop models to make predictions, Deep Neural Network (DNN),
also known as Deep Learning (DL), has been proved to be superior
than classic Machine intelligence techniques. Although DNNs have
been employed in drug research to predict QSAR and ligand-based
bioactivity, none of these models have profited from this powerful
convolutional design.
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The CNN (convolutional neural network) is a well-known deep
learning model that uses a deep architecture to extract a set of
spatial hierarchies of information at several levels of abstraction.
Image categorization, object recognition, gene function prediction,
pharmaceutical compound screening, drug discovery, and other ap-
plications have all used it.

A DNN is a learning algorithm that can automatically extract
and learn relevant features from input data due to its “deepness”
i.e., the very large number of layers containing atomic computa-
tional units called neurons as they mimic the computation of bi-
ological neurons. I chose to work with CNNs for several reasons,
mainly because they automatically learn the relevant features and
are therefore particularly suitable for complex classification tasks,
such as mine, where it is not easy to define a priori which features
the classification depends on. Secondly because convolution is a
mathematical operation that handles well the type of data that I
decided to use as input, the molecular fingerprints.

In fact, in recent years DL has been used in all fields of research
related to life sciences: a review of DL techniques in computational
biology is reported in [8], while a comprehensive report on DL for
medical imaging is proposed in [9]. DL solutions have been pro-
posed to support all phases of the drug design workflow [47], and in
general, AI-based techniques such as Decision Support Systems and
robotic platforms are expected to be in synergy with human medical
chemist in the near future to perform drug discovery [85]. Virtual
screening is undoubtedly one of the most investigated topics for
DL applications. We refer in particular to [51] for structure-based
approaches, and to [91] for ligand-based ones. The first DNN for
QSAR prediction was a multi-task classifier presented in [26] where
the same candidate was tested for its bioactivity on different assays.

Wallach in [96] presented AtomNet, which is considered the first
CNN for structure-based screening. In [33] a CNN for learning
circular fingerprints [72] from molecular graphs is proposed, and
some experiments are performed to demonstrate their effectiveness
in both solubility and drug efficacy prediction. In [78] DeepVS is
presented: this CNN makes use of the notion of context of an atom
in the protein-compound complex that is a vector representation of
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the structural properties of its neighborhood. In [41] the SMILES
notation [97] describing the compound is used to create a feature
matrix where each column is a one-hot encoding of the presence
of a particular SMILES symbol at a certain position. This repre-
sentation is fed to a CNN to detect the "chemical motifs" that are
relevant to the binding substructures. In Jimenez-Carretero et. al.
[46] research in 2018, they used a deep convolutional neural network
(CNN) to train the model to predict the toxicity of images of DAPI-
stained cells pretreated with a group of drugs with different toxic
mechanisms. Goh et. al. [36] developed "Chemception", a deep
CNN for predicting chemistry, using only two-dimensional draw-
ings of molecules. Although Chemception is slightly inadequate in
terms of predicting toxicity, there is still room for improvement.

To improve model dependability and prediction power, all of
these ML models should be iteratively modified using new exper-
imental data. Deep learning techniques, particularly CNNs, have
had a growing impact on drug and VS design in recent years as a re-
sult of the significant rise in prediction accuracy at any level of the
process. When utilized on different targets, DNNs have been used
to predict biological activity, ADMET characteristics, and physico-
chemical parameters, displaying reliable and robust prediction skills
with high sensitivity [94, 34].

Several DNN architectures use Simplified Molecular Input Line
Entry System (SMILES) as input data, described in detail in the
2.4.2, which are strings with a given length that are obtained from
the molecular structure of each individual molecule by applying a
few simple rules [18]. SMILES is actually a simple chemical lan-
guage whose rules allow the construction of string descriptors that
can represent both molecular structures and reactions.
The design of a deep architecture is done by combining both the
intuition of the designer and numerous tests to identify the best
architecture. For example, AtomNet was one of the first deep neu-
ral networks designed for drug discovery to predict the bioactivity
of small molecules by applying convolutional [96] technology. This
approach has been used to predict various properties such as the
kinetic energy of hydrocarbons as a function of electron density
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[99].
There are very few recent examples using deep learning and fin-

gerprinting in a VS [81] workflow. An interesting approach is pre-
sented by Hirohara et al. who present a CNN that learns a suitable
fingerprint from SMILES, and use that feature to classify both ac-
tive and inactive compounds [41]. Regarding the proposed applica-
tion, the literature reports very few recent approaches for Virtual
Screening regarding Cyclin-Dependent Kinase proteins that do not
use molecular fingerprints as a descriptor [78, 56]. Finally, DNN-
VS is a very recent network for VS applied to tyrosine kinase using
molecular descriptors [10]. In fact, molecular fingerprints are the
most natural choice to describe compounds as inputs to a neural
network because of their inherent structure of number vectors en-
coding all substructures within a molecule.

2.1 Chemoinformatics

Chemoinformatics is a well-established field that focuses on ex-
tracting, processing, and deriving useful information from chemical
structures. Machine learning literacy has become a vital skill for
medicine contrivers to mine chemical information from vast com-
pound databases to create medicines with important biological fea-
tures, thanks to the rapid expansion of chemical big data from HTS
and combinatorial synthesis.

Machine learning is presently one of the most important and
fleetly evolving motifs in computer-aided drug discovery [94]. Ma-
chine learning approaches use pattern recognition algorithms to
discern fine connections between empirical compliances of small
molecules and decide on them to predict chemical, natural, and
physical properties of new composites, in contrast to physical mod-
els that calculate on unequivocal physical equations like amount
chemistry or molecular dynamics simulations. Furthermore, as
compared to physical models, machine learning methods are more
effective and can easily be applied to large datasets without requir-
ing a large amount of processing resources.
Helping experimenters identify and exploit links between chemi-
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cal structures and their natural conditioning, or SAR (structure-
activity relationship), is one of the key operation areas for machine
learning in medicine discovery [7]. For case, given a hit compound
from a drug screening campaign, we might wish to know how its
chemical structure can be optimized to improve its binding affinity,
natural responses or physiochemical properties. Fifty years ago,
this type of problem could only be addressed through multitudi-
nous expensive, time- consuming, labor-ferocious cycles of medici-
nal chemistry conflation and analysis.

Below I report the main techniques of machine and deep learning
used with a discreet success in chemoinformatics.
Supervised Learning:

• Multiple regression analysis (A statistical procedure for deter-
mining links between dependent and independent variables),[63]

• k-nearest neighbor (A type of instance-based learning in which
an item is classified using the majority rule among its k nearest
neighbors, where k is an integer) [49]

• Naive bayes (A probabilistic technique that assumes feature
independence and employs the probability prior and Bayes rule
to forecast membership) [40]

• Random forest (Multiple decision trees and majority voting
rules are used to create a categorization strategy)[42]

• Neural network and deep learning (Input layers, many hidden
layers (for deep learning), and output layers make up a model-
based learning system that learns from input data using layers
of connected neurons), [13]

• Support vector machine (Using a nonlinear kernel, a statisti-
cal strategy for mapping data into high-dimensional space and
identifying a lower-dimensional hyperplane that maximizes data
separation. This is accomplished by maximizing the support
vectors, which are the margins between hyperplanes),[90]

Unsupervised learning:
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• k-means clustering (The minimization of within-group distances
to the centroid is used to classify data into k groups)[61]

• Hierarchical clustering (A classification approach that uses ag-
glomerative clustering, such as merging smaller clusters, or di-
visive clustering, such as breaking a large cluster into smaller
ones, to create a hierachy of clusters) [61]

• Principal component analysis (Principal components are a sta-
tistical strategy for transforming a group of correlated traits
into new independent variables using an orthogonal procedure)
[6]

• Independent component analysis (A statistical strategy for
separating statistically independent additive components from
a multivariable output)[44]

In the chapter 4 I reported the results of preliminary experiments
comparing my approach with that of classical machine learning
techniques such as RF and SVM. Going to make a more in-depth
study like the one I did in chapters 5 and 6 it is no more possible to
make a real comparison between the models mentioned above and
the approach that I am proposing in this thesis. First of all because
the type of data that is used by combining the different molecular
fingerprints is not usable with classical machine learning techniques,
but I have reported, albeit not in a completely explicit way, com-
parisons with different deep learning techniques. For example using
classic convolutional operators and dept separable ones.

Today, cutting-edge machine learning techniques may be used
to model QSAR, or quantitative structure–property relationships
(QSPR), and create artificial intelligence algorithms that can an-
ticipate in silico how chemical alterations might affect biological
activity. QSAR methods have been used to mimic a variety of phys-
iochemical aspects of drugs, including toxicity, metabolism, drug-
drug interactions, and carcinogenesis. Previously, QSAR models
employed basic multivariate regression models to associate potency
(logIC50) with substructure motifs and chemical parameters like
solubility (logP), hydrophobicity, substituent pattern, and elec-
tronic variables, comparable to Hansch and Free – Wilson analysis.



25 CHAPTER 2. STATE OF THE ART

These approaches, while revolutionary and successful, were eventu-
ally constrained by the lack of experimental data and the linearity
assumption used in modeling. As a result, improved chemoinforma-
tics and machine learning techniques capable of modeling nonlinear
datasets, as well as big data methods capable of adding depth and
complexity, are required. Despite its benefits, AI has substantial
data difficulties, including the data’s scale, growth, diversity, and
ambiguity. Pharmaceutical companies’ drug research data sets can
contain millions of molecules, and typical machine learning algo-
rithms may not be able to handle them. A computational model
based on the quantitative structure-activity relationship (QSAR)
can swiftly predict huge numbers of compounds or simple physico-
chemical characteristics like logP (Repartition coefficient) or logD
(Distribution coefficient).

However, these models are a long way from predicting com-
plicated biological features like chemical efficacy and side effects.
Small training sets, experimental data error in training sets, and
a lack of experimental validations are all issues that QSAR-based
models confront. To address these issues, recently emerging AI
technologies, such as deep learning (DL) and relevant modeling
studies, can be used to evaluate the safety and efficacy of therapeu-
tic compounds using big data modeling and analysis. For ADMET
data sets of drug candidates, DL models exhibited significant pre-
dictivity as compared to traditional ML techniques. By depicting
the distributions of molecules and their attributes, the virtual chem-
ical space provides a geographical map of molecules. The goal of
the chemical space illustration is to gather positional information
about molecules inside the space in order to search for bioactive
compounds, and therefore virtual screening (VS) aids in the selec-
tion of relevant molecules for further testing. ChemBL, PubChem,
ChemBank, DrugBank, and ChemDB are just a few of the chemical
spaces that are open to the public.
Drug development and discovery can take more than a decade and
cost an average of 2.8 billion. Even still, nine out of ten medici-
nal molecules fail Phase II clinical studies and are not approved by
regulators. VSs are developed using algorithms such as Nearest-
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Neighbour classifiers, RFs, extreme learning machines, SVMs, and
DNNs, which may predict in vivo activity and toxicity. Several
biopharmaceutical companies, including Bayer, Roche, and Pfizer,
have teamed up with IT firms to create a platform for medication
discovery in areas including immuno-oncology and cardiovascular
disease.
Physicochemical features of a drug, such as solubility, logP, de-
gree of ionization, and intrinsic permeability, have an indirect im-
pact on its pharmacokinetic qualities and target receptor family,
and must be taken into account while developing a new medicine.
Physicochemical properties can be predicted using a variety of ar-
tificial intelligence-based technologies. To train the software, ML,
for example, employs massive datasets generated during compound
optimization. Molecular descriptors, such as SMILES strings, mea-
surements of potential energy, electron density around the molecule,
and 3D coordinates of atoms, are used in drug design algorithms
to construct viable molecules using DNN and then forecast their
attributes.

In the subject of chemoinformatics, machine learning techniques
have been widely used to find and build novel medications with
improved biological activity. The development of a constellation of
2D or 3D chemical descriptors, which are packed as chemical finger-
prints in a variety of machine learning models and predictive tasks,
is made possible by mathematical mining of chemical graphs. The
combination of big data and machine learning to predict a greater
range of biological events is a prominent area of advancement in
the discipline. For clinical medication safety, traditional drug de-
sign strategies based on simple ligand–protein interactions are no
longer sufficient. Biological mechanisms and systematic reactions
at higher levels are frequently involved in high drug attrition rates
due to severe side effects.

As a result, AI plays a key role in drug development, predicting
not just physicochemical qualities but also desirable bioactivity.
The affinity of drug molecules for the target protein or receptor de-
termines their efficacy. Drug molecules with no contact or affinity
for the target protein will be unable to deliver a therapeutic re-
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sponse. It’s also possible that the medication compounds generated
will interact with undesired proteins or receptors, causing harm. As
a result, predicting drug-target interactions requires knowledge of
drug target binding affinity (DTBA). By taking into account the
qualities or similarities of the drug and its target, AI-based algo-
rithms can calculate the medication’s binding affinity. To determine
carrier vectors, feature-based interactions recognize the chemistries
of the medication and the target. In similarity-based interactions,
on the other hand, the resemblance of the drug and the target is
taken into account, and it is anticipated that comparable medica-
tions would interact with the same targets.

The widespread use of virtual screening for drug development
has been facilitated by technological advancements over the last
two decades. Virtual screening is an in silico method for search-
ing vast databases of small compounds for bioactive chemicals. By
decreasing the number of potential molecules to be tested to rea-
sonable levels, the researcher can avoid the cost of experimentally
testing hundreds or thousands of chemicals[21]. AI applications can
be found in all aspects of drug development, owing to its versatility
to a wide range of activities.

I focused my attention on virtual screening and on drug repur-
posing process. The difference between the two processes is very
subtle. Both are screening of compounds, in the first case the task is
to identify new compounds that can have high probability interac-
tions with the chosen target while in the second case the screening
occur on a already approved drugs for other targets database. In
this second case I focused attention on protein targets responsible
for the infection of SARS-COV-2. The choice of dealing with drug
repurposing was dictated by the emergency situation of the world
because of COVID-19 disease .

2.2 Virtual screening

Drug discovery is the very long and complex process leading to the
development of a new medication, where several steps and loops are
involved. Indeed, one of the most relevant parts in the drug dis-



28 CHAPTER 2. STATE OF THE ART

covery cycle is drug design when one already knows the biological
target the new compound has to bind to. In general, a biological
target is an enzyme or a protein. In a modern drug design setup,
many compounds are screened to assess the best matching ones as
regards their ability of either inhibiting or activating the target as-
sociated to a particular disease. Such a process is also referred to
as Inverse Pharmacology or Target-based Drug Design.

To collect knowledge on existing compounds, the drug designer
must visit big public or private databases as part of his or her
work. Such questions can take many forms; for example, it may
be required to look into how two molecules can bond to each other
based on strictly chemical criteria while also taking into account
biological limits imposed by the molecule’s toxicity to humans. In
terms of data, these queries yield a wide variety of results, ranging
from a full molecular graph representation to textual and numerical
data.

VS is a computational technique used in drug discovery to search
libraries of small molecules in order to identify those structures
which are most likely to bind to a drug target, typically a protein
receptor or enzyme.

VS stands for a computer-assisted process for identifying com-
pounds that are likely to be active on a certain target. These
strategies range from similarity searches to ML methods, and they
all rely on numerical descriptors of the proposed compound’s struc-
ture and its chemical properties.

In the context of machine learning, virtual screening may be
thought of as a classification task; popular algorithms include Sup-
port Vector Machines and Random Forests. Convolutional and Re-
current Neural Networks are utilized for VS and other domains
of pharmacology, including as chemical reaction prediction, in the
Deep Learning era. The reader is referred to [47] for a recent and
thorough review.

VS is a widely used computational approach for drug develop-
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ment. However, due to the intricacy of the algorithms utilized
in the screening effort, several concerns remain unknown, result-
ing in models with varying prediction reliability. Clinical candi-
date molecules chosen by drug detection must have a profile that
responds to a variety of parameters, including effect potency, se-
lectivity, safety, and so called ADMET characteristics. As a result,
designing the best molecule is a multifaceted task combining several
areas of chemistry and biology, which may be tackled with machine
learning.
Computational strategies for virtual screening fall into two cate-
gories: ligand-based drug design (e.g. ligand similarity) and struc-
ture – based drug design (ligand docking). The ligand similarity
methods take advantage of the fact that ligands that are similar
to an active ligand are more likely to be active than random lig-
ands, whereas protein-ligand docking attempts to predict the bind-
ing modes and affinities of ligands to the target protein using the
three-dimensional (3D) protein structure of the target protein.

For both lead discovery and optimization, ligand-based virtual
screening methods rely on the information contained in known ac-
tive ligands rather than the structure of a target protein. When
no 3D structure of the target protein is available, ligand-based ap-
proaches are the sole option. In practice, even if one doesn’t know
the protein structure of the target of interest, usually it is possi-
ble to assess if a group of ligands is active against it. As a result,
ligand-based virtual techniques, such as identifying new ligands by
comparing candidate ligands to known active molecules, can be
used.

The extensive range of QSAR approaches is an excellent example
of ligand-based drug design. Structure-based drug-design methods
are regularly used in the drug development process when there is
sufficient structural knowledge about the target protein, especially
if a crystal structure is available.

Structure-based design is concerned with modelling the interac-
tions between a ligand and a protein. These interactions are stud-
ied using molecular dynamics or Monte Carlo simulation-based free
energy approaches, as well as protein–ligand docking. There are a
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rising number of systems where both ligand and protein structural
data are available, as the number of known protein–ligand crystal
structures grows and more physicochemical and biological data on
ligands is released. As a result, the hybrid technique, which com-
bines ligand-based and structure-based drug creation on the same
protein system, is becoming increasingly popular. These attempts
might be as easy as running QSAR or pharmacophore studies on
the same system and docking them, and there are examples of this
in the literature[73, 58].

An effective similarity measure and a trustworthy scoring system
are two crucial components of a ligand-based computational tech-
nique. Furthermore, the computational technique should be capa-
ble of accurately and quickly screening a large number of candidate
ligands. As a result, the similarity measurements are made up of
geometrical data from arbitrary objects defined on the structures.
The classification of an object varies depending on the approach
used, however it may be divided into three categories: pharma-
cophores, molecular shapes, and molecular fields. Pharmacophore-
based approaches establish patterns of distances between prede-
termined molecular features such as aromatic systems or hydrogen-
bond acceptors/donors, and then compare the patterns to calculate
the similarity value. The goal of molecular shape techniques is to
maximize shape overlap and calculate a similarity value based on
that overlap. A scoring method for ligand-based screening should
effectively discriminate active compounds from the inactive ones
during the ranking phase and can be used to efficiently identify a
small number of active compounds from a library including a large
number of inactive compounds [39].

2.3 Drug repurposing

Drug repurposing (also known as drug repositioning, reprofiling,
or retasking) is a strategy for discovering new uses for authorized
or investigational medications that go beyond the original medical
indication. This approach has several advantages over designing a
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whole new medication for a specific indication. First and foremost,
the risk of failure is lower; because the repurposed medicine has
previously been found to be sufficiently safe in preclinical models
and people if early-stage trials have been completed, it is less likely
to fail in later efficacy trials, at least from a safety standpoint.
Second, because most preclinical testing, safety assessments, and,
in some cases, formulation development will have already been ac-
complished, the time frame for drug development can be decreased.
Third, less investment is required, however this will vary substan-
tially depending on the repurposing candidate’s stage and develop-
ment process.
For example, retrospective clinical experience was used to repur-
pose sildenafil citrate for erectile dysfunction, whereas serendipity
was used to repurpose thalidomide for erythema nodosum leprosum
(ENL) and multiple myeloma. Sildenafil was originally developed
as an antihypertensive medicine, but when Pfizer repurposed it for
the treatment of erectile dysfunction and sold it as Viagra, it had
a market-leading 47 percent share of the erectile dysfunction drug
market in 2012, with global sales totaling 2.05 billion [79].
Finding new therapeutic indications for medications that have al-
ready been approved is required when repurposing them. This is
a growing technique for discovering new drugs, as it capitalizes on
existing investments while reducing the risk of clinical trials. This
method is appealing since we continue to encounter major gaps in
the drug–target interaction matrix, as well as the need to collect
safety and efficacy data throughout clinical trials. Collecting and
making publicly available as much data as possible on medication
target profiles opens the door to drug repurposing, although patent
filings may limit commercial applicability. Because of significant
disparities in side effect tolerance, certain clinical uses may be more
feasible for repurposing than others. Relevance to the condition in
question, as well as the intellectual property landscape, should be
addressed when evaluating drug repurposing potential. These ac-
tivities extend far beyond the discovery of new targets for existing
medicines.

DR is an approach for discovering new applications for autho-
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rized or late-stage medications that aren’t covered by the original
indication. Compared to designing an altogether novel medicine for
a given indication, this technique has significant advantages

These advantages, when combined, have the potential to result
in a less risky and faster return on investment in repurposed drug
development, with lower average associated costs once failures are
taken into account (in fact, the cost of bringing a repurposed drug
to market has been estimated at $300 million on average, com-
pared to an estimate of $2-3 billion for a new chemical entity [74]).
Finally, repurposed drugs may uncover new targets and pathways
that can be explored further [80].
Drug repurposing typically consists of 3 steps, before being able to
identify a drug that can be reused on another disease. The first
and most critical step is to identify a candidate molecule. The sec-
ond step is to evaluate the drug’s efficacy in preclinical models (in
vivo or in vitro tests) which, if successful, lead to step 3, i.e. eval-
uation in phase II clinical trials. Since the first step is the most
important, but also the most expensive, new approaches have been
developed over the years to speed up this phase, and in particular
computational methods, thanks to the possibility of analysing data
of different nature (e.g. gene expression data, chemical structure,
genotypic or proteomic data or EHR) have proved to be the strong
point in the approach to this task.

One of the most popular computational approaches to date is
signature matching, which is based on the comparison of a unique
characteristic between drugs or the comparison of a drug with a
diseased phenotype. The signature can be derived from three dif-
ferent types of data: transcriptomic, proteomic and metabolomic.
Transcriptomic data can be used to perform a drug-disease or drug-
drug comparison, in both cases to identify similarity. For two drugs,
sharing a transcriptomic signature may imply a shared therapeu-
tic application regardless of their structural similarity or sharing of
similar chemical structures. Because of the effectiveness of this ap-
proach, the cMap (Connectivity Map) was created in 2006, which
contains expression profiles generated by dosing more than 1,300
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compounds in a range of cell lines [54].Molecular docking is a fur-
ther computational strategy used for drug repurposing to predict
the complementary binding site between ligands and targets. In
contrast to the traditional approach described in the previous chap-
ter, inverse docking is used in DR, where multiple receptor sites are
interrogated against a specific drug in order to identify new inter-
actions.

A further approach is based on GWAS, which is based on the
search for variations associated with common diseases; this has
been made possible by the technological leap forward that has been
achieved with new genotyping techniques and the completion of the
Human Genome Project [95, 55], the worldwide project for the com-
plete sequencing and mapping of the human genome. The results
obtained from this research are not always easy to interpret, espe-
cially in DD, which is why they are often associated with pathway
analysis or network mapping, which provides information on the
proteins involved in the signal cascade, also clarifying the result
obtained through GWAS.
A further method is the Retrospective clinical analysis which is ba-
sed on a systemic analysis of data that can be obtained from various
sources, including EHR data and clinical trial data. EHRs contain
a considerable amount of structured data such as diagnostic and
pathophysiological data, including data obtained from laboratory
results and unstructured data such as clinical descriptions of pa-
tient signs and symptoms or data imaging. Data belonging to this
category are not always open access, often bound by ethical con-
straints and legal restrictions. In 2016, the EMA [17] started to
give free access to data obtained from clinical trials submitted by
pharmaceutical companies for the free use of the academic commu-
nity.

In addition to computational methods, experimental approaches
are also used in drug repurposing, the two most widely used be-
ing: i) Binding assays to identify target interaction using proteomic
techniques such as chromatographic affinity and mass spectrome-
try. The CETSA technique, for example, has been introduced as
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a method of mapping target engagement in cells using biophysical
principles involving the thermal stabilisation of target proteins by
drug-like ligands with the appropriate cellular affinity; ii) pheno-
typic screening can identify compounds that show disease-relevant
effects in model systems without prior knowledge of the target(s)
involved. In the context of drug repurposing, if the compounds
screened are approved or in the process of being approved, this
may indicate repurposing opportunities that can be readily seized.

A summary of all approaches to Drug Repurposing is shown in
the figure 2.2. Various computational approaches can be used indi-
vidually or in combination to systematically analyse different types
of large-scale data to obtain meaningful interpretations for repur-
posing hypotheses.

2.4 Molecular representations

In this section I report the main molecular representations learned
during the PhD period, focusing on those that contributed primar-
ily to obtaining multi-fingerprint embeddings.

2.4.1 Molecular graph

The graph is the first kind of representation one identifies with
molecules, and it is also the starting point for the building of the
various chemical descriptors outlined below in computational chem-
istry. The molecular graph representation is based on mapping the
atoms and bonds that make up a molecule into a set of nodes and
arcs, often in a 2D structure that can be extended with 3D data
(e.g. atomic coordinates, bond angles and chirality).
A graph is a data structure comprised of two parts: nodes (vertices)
and edges (connections). A graph G can be defined as G = (V,E)
where V is the collection of nodes, and E are the edges between
them. Edges are directed if there are directional dependencies be-
tween nodes. Otherwise, the edges are undirected. A graph is
often represented by A, an adjacency matrix shown in figure 2.3. If
a graph has n nodes, A has a dimension of (n ∗ n). Sometimes the
nodes have a set of features. If the node has f numbers of features,
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Figure 2.2: Approaches used in drug repurposing. Image taken from [80]
.

then the node feature matrix X has a dimension of (n ∗ f).

In a molecular graph, V is intuitively the set of all atoms in a
molecule, and E is the set of all bonds linking the atoms, although
this does not have to be the case. Molecular graphs are generally
undirected, meaning that the pairs in E are unordered. To convert a
graph from an abstract mathematical idea to a tangible representa-
tion that can be handled by a computer, the sets of nodes and edges
must be converted to linear data structures; one popular method
is to use matrices or arrays. To specify the connectedness of the
nodes, linear data structures are required. Even while V and E are
officially sets and the order of elements in sets is immaterial, a ar-
tificial node-ordering must first be created for encoding a molecule
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Figure 2.3: The adjacency matrix (A) and distance matrix (D) for the
hydrogen-suppressed graph (G1) of ethyl acetate [12]

using arrays. How the atoms in the molecule are connected, the
identification of the atoms, and the identity of the bonds are all
examples of information that can be mapped.

The two formats utilized in chemoinformatics field, closely related
to the molecular graph representation are connection tables and the
MDL (now BIOVIA) file format.

In figure 2.4 The MDL family of file formats are collectively
known as CTfiles (chemical table files) as they are built upon con-
nection tables (Ctab), shown at the top of the figure. The connec-
tion table is split into an atom and bond block, describing the
atoms and their corresponding connectivity. The Ctab is built
upon to form the Molfile for the description of single molecules,
RGfile for handling queries, SDfile for structure and associated
data, RXNfile for the description of single reactions, RDfile for ei-
ther a series of molecules/reactions and their associated data, and
the XDfile for the transfer of structure or reaction data based on
the XML format[28]. A molecular graph conveys structural infor-
mation through both categorical and numeric data at each node
or edge: atoms and bonds types, presence of rings, aromaticity,
formal and partial charge, and so on. As a consequence, the use
of embeddings is a common practice when designing a GNN for
molecular analysis. One of the most widely used GNNs belongs to
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Figure 2.4: Example of Structure/Data file, containing both structural infor-
mation and additional property data for any number of molecules.

the family of so-called Message Passing Neural Networks (MPNNs)
that were introduced in depth in [35]. MPNNs perform learning
at each state through a “message function” that passes information
between nodes along the edges, followed by an “update function”
that computes the new state at each node.

Another application of molecular graph are reported in Torng et
al. work [92], where drug-target interaction is investigated through
graph autoencoders. A neural embedding for target pocket features
is learned through a graph variational autoencoder (VAE) that is
a DNN trained to learn a latent representation of the inputs in
an unsupervised way: two mirrored CNNs are coupled, and the
overall network is trained with its inputs. The activations of the
innermost layer form a low dimensional latent representation of the
input space. The weights of the trained encoder in the Graph-VAE
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are used to perform fine tuning in a target Graph-CNN that is
trained in parallel to a ligand Graph-CNN. The two Graph-CNN
are fed in parallel to a fully connected “interaction” layer, and then
to the output binding classifier. In koge et al. work [52] a molecular
embedding is proposed where hypergraph molecular representations
are learned by VAEs based on RNNs along with a regression model
for physical molecular properties so that anchor, positive and neg-
ative molecular samples w.r.t. a particular property have a latent
representation that maintains similarity. Finally, in Ishiguro et al.
work [45] the Weisfeiler-Lehman (WL) embedding of the molecular
graph is proposed as the input for a MPNN. The WL embedding is
a simple algorithm that enumerates the neighbors of each atom so
that the input of the MPNN is formed by the atom label and the
vector of its neighbors’ labels.

2.4.2 SMILES

SMILES (The Simplified Molecular Input Line Entry System),
was developed in 1988 by Weininger et al. [97] and since then it is
the most popular line notation because it can represent molecules
in a simple way.

The SMILES notation system was later incorporated into the
Daylight Chemical Information Systems toolkit [2]; the company
is still maintaining it. The SMILES representation, which is non-
unique and unambiguous, is obtained by assigning a number to each
atom in the molecule and then traversing the molecular graph using
that order as shown in Figure 2.5. The multiple representations of
a molecule created by randomly selecting the starting node in the
graph traversal algorithm, thus varying the order of the nodes trav-
eled in the molecular graph, are referred to as randomized SMILES
(still using depth-first search). The numbers represent the traversal
order of the graph, with 1 being the first node (user defined). If we
consider a to be the conventional representation of aspirin, b depicts
a distinct arrangement of the molecule’s atoms. The final SMILES
is one of the randomized SMILES that can be created. The molec-
ular graph is navigated using green arrows. Both SMILES strings
depict the same molecule, but the generated SMILES strings differ
due to the atom numberings.
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SMILES did not originally encode for stereochemistry. Later on,
a specification known as isomeric SMILES was established, and it
is now the default SMILES in many software applications. SMILES
may therefore encode isomeric specifications, configurations around
double bonds (Z or E), configurations around tetrahedral centres,
and a variety of additional chiral centres that are rarely supported
(e.g. allene-like, octahedral). However, structures that cannot be
easily represented using molecular graphs, such as organometal-
lic compounds and ionic salts, are difficult to characterize using
SMILES notation.

There are many varieties of molecules that the graph model can-
not describe. Any structure with delocalized bonds, such as co-
ordination compounds, as well as any molecule with polycentric
bonds, ionic bonds, or metal–metal bonds, falls under this cate-
gory. Organometallic compounds like metallocenes and metal car-
bonyl complexes, for example, are challenging to characterize using
molecular graphs because their bonding scheme is not explained by
valence bond theory. To put it another way, it would be difficult to
define the bonds using solely atom-to-atom pairwise interactions.

Solutions to the handling of multi-valent bonds have been intro-
duced via the use of hypergraphs; in a hypergraph, edges are sets
of at least two atoms (hyperedges) instead of tuples of atoms [30].
However, the use of hypergraphs is not further discussed here as
they are not currently widespread in the field.

The graph representation may not be useful for molecules whose
atom arrangement is continually changing in 3D space, especially if
pairwise bonds are breaking and forming or if the structure is fre-
quently rearranging. That instance, for applications where a single
static representation for a molecule that is actually rearranging on
the timescale of the problem (e.g. tautomers), a single molecular
graph representation would not be acceptable and could potentially
be harmful to addressing the problem.

In deep learning models, many architectures use SMILES as the
molecular representation [18], which as obtained by assigning a
unique number to each atom in the molecule and then travers-
ing the molecular graph using that order. Commonly, a canonical
SMILES of each molecule, which is obtained by computing a unique
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Figure 2.5: Canonical (a) and randomized (b) SMILES representations of as-
pirin. The original figure can be found in [27]

numbering for the molecules [97]. This representation has served
as a way to uniquely identify molecules. However, most molecules
can have more than one SMILES representation obtained by chang-
ing only the numbering of the atoms, which means that different
SMILES start at different atoms of the molecule and traverse it in
different ways (Figure2.5).

Randomized SMILES for the same compound can then be used
for data augmentation. A major surge of interest in cheminformat-
ics applications of deep learning has occurred in recent years when
NNs have been used to generate molecules represented by SMILES
strings ([75]; [38]; [88]). Recurrent NN (RNN) trained with a set of
SMILES strings can generate molecules that are not present in the
training set but have properties similar to the training samples.

Another deep learning model for chemical classification was cre-
ated by Hirohara et al. They developed a distributed representa-
tion of compounds based on the SMILES notation, which depicts a
compound structure linearly, and used the SMILES-based represen-
tation to a convolutional neural network in this manner. SMILES
enables them to handle a wide range of compounds while combin-
ing a wide range of structure information, and CNN representation
learning develops a low-dimensional representation of input features
automatically.
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Their solution beat conventional fingerprint methods in a bench-
mark experiment using the TOX 21 dataset, and was comparable to
the TOX 21 Challenge winning model. Multivariate study indicated
that the chemical space created by SMILES-based representation
learning appropriately reflected a richer feature space that allowed
for accurate compound classification. Not only key known struc-
tures (motifs) such as protein-binding sites, but also structures of
unknown functional groups were found using motif detection with
learnt filters.[41].

2.4.3 Molecular Fingerprint

The length and complexity of molecular fingerprints range from
simple representations of restricted topological distances or func-
tional group occurrences to complex multi-point 3D pharmacophore
configurations. Surprisingly, in virtual screening studies, more com-
plexity rarely resulted in better performance of fingerprints. De-
spite the fact that three-dimensional fingerprints have been used to
assess compound similarity, two-dimensional (2D) similarities are
still the most common method of recording small molecule proper-
ties in fingerprint bit strings. The speed and ease with which 2D
fingerprints can be calculated is one factor. Figure 2.6 shows how
chemical characteristics are transformed into bit strings in the case
of Daylight fingerprints.

The most often used molecular fingerprints for similarity searches
can be classified into the following categories:

• Topological fingerprints (e.g., Daylight [2], atom pairs [20]);

• Structural keys (e.g., MACCS [48], BCI [11], PubChem [4]);

• Circular fingerprints (e.g., Molprint2D [14], ECFP, ECFP [83]);

• Pharmacophore fingerprints (e.g., CAT descriptors [86], 3pt
[66], [67] and 4pt [65] 3D fingerprints)

• Hybrid fingerprints (e.g., Unity 2D [5])

• Other fingerprints sometimes focusing for coding protein-ligand
interactions (SMIfp [87],SIFFt [29], PLIF (MOE [3])
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Figure 2.6: Generation of topological fingerprint using Daylight fingerprint as
example [72].

Molecular fingerprints are a way of representing molecules as
mathematical objects in fact they are representations of chemical
structures originally designed to assist in the search for substruc-
tures of chemical databases but later used for analysis tasks, such
as similarity searching[21], clustering, and classification [70].

A major principle of medicinal chemistry is that structurally
equivalent molecules have similar biological activities. Molecular
fingerprints are bit string comparisons that encode characteristics
of small molecules and compute their similarity. Virtual screen-
ing is a procedure that uses molecular fingerprint approaches to
identify additional compounds with a better chance of displaying
similar biological activities against the same target based on their
similarity to a biologically active template.

Similarity-search methods based on molecular fingerprints are an
important tool for ligand-based virtual screening. There are a va-
riety of fingerprints, and their effectiveness is mostly dependent by
the validation data sets and similarity metric used. [82]. The major-
ity of techniques generate fingerprints using only the 2D molecular
graph and are referred to as 2D fingerprints, although some gener-
ate pharmacophoric fingerprints that include 3D information. The
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three main strategies are substructure keys-based fingerprinting,
topological or path-based fingerprints, and circular fingerprints.

Molecular fingerprints are created by examining each atom and
its surroundings up to 6 or 7 bonds away. A series of predeter-
mined molecular substructures, known as patterns, are looked for
in such a neighborhood, such as atom types, bond types, the pres-
ence of rings, and so on. After enumerating all of the patterns in
the molecule, each one is used as a seed for a hashing function that
yields 4 to 5 index places in the "pattern fingerprint," with the
associated bits set to 1; this fingerprint is bit-wise OR-ed to the
molecular one. Actually, because the hashing function can induce
a bit collision, we can’t be sure that a pattern is present unless at
least one of its bits is unique. A chemical substructure, on the other
hand, is absent if all of its bits in the fingerprint are set to 0.

In this section were described in detail how are generated the
different fingerprint types used in this study emphasizing the type
of substructure analyzed.

Topological or pathway-based fingerprints work by analyzing all
the fragments of the molecule that follow a pathway (usually linear)
to a certain number of bonds, and then hashing each of these paths
to create the fingerprint figure. 2.7. This means that any molecule
can provide a relevant fingerprint, and the length of the imprint can
be varied. These are hashed fingerprints, meaning that no one bit
can be linked to a specific feature. Bit collision occurs when a single
bit is set by many separate features. The most essential of these
forms of fingerprints is the daylight fingerprint. It has a maximum
length of 2048 bits and encodes all conceivable connection chan-
nels via a molecule up to that length while reducing bit collisions.
A representation of a hypothetical 17-bit topological fingerprint is
shown in the figure 2.7. The corresponding bit in the fingerprint
is displayed for all fragments found from the beginning atom (cir-
cled in red). Only fragments and bits for a single starting atom
are displayed; this process would be repeated for each atom in the
molecule to obtain the whole fingerprint. Circular fingerprints take
a similar strategy, but instead of linear fragments, they construct
fragments within a radius of the initial atom.

The idea under fingerprint generation is to apply a kernel to a
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molecule for generating a bit vector. Typical kernels extract fea-
tures from the molecule, hash them, and use the hash to determine
bits that should be set. Typical fingerprint size range is from 1K
to 4K bits: in the cited work I used the 1024 bit size. As regards
the fingerprint types I selected, they can be grouped in two classes:
pathway-based also known as topological, and circular. Pathway-
based fingerprints encompass RDKit, Atompair, Torsion and Lay-
ered. In this case the kernel is linear, and each fingerprint differs
in atom types and bond types. For example, RDKit’s atom types
are set through atomic number and aromaticity. In Layered, both
atom and bond types contribution are determined by the particular
layers included in the fingerprint.

The process of creating a fingerprint is summarized in the follow-
ing algorithm. The course and length of a fingerprint vary depend-
ing on the type of fingerprint. As you can see, the hashing func-
tion prohibits you from getting the same fingerprint for the same
molecule, and an inverse research, that is, determining the presence
of a certain path in the molecule from a single bit, is impossible.

Algorithm 1
FunctionMakeFingerprint(GraphMolecule, SizeD, IntLength)
1: fingerprint = initializeFingerprint(d)
2: paths = getPaths(molecule, length)
3: for each atom in molecule do
4: for each path from atom do
5: seed = hash(path)
6: indices = random(seed)
7: for each value in indices do
8: index = value mod d
9: fingerprint[index] = TRUE
10: end for
11: end for
12: end for
13: return fingerprint

Four fingerprints used in this study belong to topological family:

• RDKit;

• Topological Torsion;

• Atom Pair;
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Figure 2.7: Fingerprint generation. Simplified fingerprint generation: the
hashing function sets just 1 bit per pattern.

• Layered.

All the fingerprint that I utilize in this work are generated with
the software Knime, more detail are reported in chapter 4.1.

Three types of circular fingerprints were used in this study:

• Morgans;

• ECFPs;

• FCFPs.

Morgan, Featmorgan, and ECFP4 are all circular fingerprints.
In this scenario, the kernel is circular and takes into account each
atom’s neighborhood based on the radius chosen (usually from 1 to
3). Although it has been claimed that Morgan and EFCP finger-
prints are identical, this is not totally true due to a considerable
discrepancy in the aromatic groups. The ECFP algorithm, in par-
ticular, varies from the Morgan algorithm in two ways. First, rather
than stopping when identifier uniqueness is achieved, the ECFP
generation terminates after a predetermined number of iterations.
The extended-connectivity fingerprint is determined by grouping
the original atom IDs, as well as all subsequent identifiers, into a
collection. The ECFP algorithm keeps the intermediate atom iden-
tifiers rather than discarding them. This means that the iterative
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process does not have to go all the way to the end (that is maximum
disambiguation) rather it is carried out for a fixed number of iter-
ations. Second, algorithmic optimizations are available in ECFP
because perfect accuracy is not necessary for disambiguation [83] .

The Extended-Connectivity Fingerprints (ECFPs), which are ba-
sed on the Morgan technique and were specifically created for use
in structural activity modeling, are the de facto standard circular
fingerprints. They depict circular atom neighborhoods and produce
variable-length fingerprints. They’re most typically referred to as
ECFP4 when they have a diameter of four.

Although some benchmarks have demonstrated slight performance
differences between the two, a diameter of 6 (ECFP6) is also rou-
tinely utilized. In addition, there is a variant that keeps track of the
ECFP feature frequency counts by recording each identifier as many
times as it appears in the molecule rather than just once. ECFC is
a common abbreviation for this variant. FCFPs (Functional-Class
Fingerprints) are a version of ECFPs that are more abstracted in
that they index the role of an atom in the environment rather than
the atom itself. As a result, the fingerprint cannot discriminate
between atoms or groups that have the same or comparable func-
tions. They can now be employed as pharmacophoric fingerprints
as a result of this. FeatMorgan is an FCFP that was employed in
this research.

When compared to the others, the FeatMorgan fingerprint with
RDikit and Layered had a significant impact on the prediction find-
ings, as will be discussed in the results section. In FCFP, the
ligand is defined by the functional descriptions of atoms that are
directly related to its binding capabilities (for example, hydrogen
donor/acceptor, polarity, aromaticity, and so on). When compared
to the simple ECFP circular fingerprint, solely relative to atom type
routes, such a ligand description is likely to outperform when used
for such a classification, not just based on the chemical path, but
also on the ligand capability to bind certain protein residues.

The primary problem in employing molecular fingerprints is the
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embedding generation algorithm. It’s impossible to search back-
wards for substituents and structures involved in the protein or
enzyme binding process because of the bit collision and hashing
functions. As a result, this type of descriptor can only be used
for searching for similarities, not for studying binding affinity in
general. These representations are used to evaluate chemical space
coverage, molecular diversity, and similarity searching.

Instead than using traditional molecular descriptors, modern che-
moinformatics approaches have emphasized the use of machine learn-
ing techniques applied to fingerprints. The reason for this is because
fingerprints contain information on chemical groups and pathways,
as well as complete information about molecular complexity, allow-
ing for a more rigorous comparison between two or more structures
than molecular descriptors. SMILES descriptors also transmit in-
formation about molecular structures, but their intrinsic string form
necessitates cutting the cycles, and as no two molecules have the
same description, a "SMILES canonicalization" is also required.

Similarity is a subjective concept that can be tested and the re-
sults interpreted in a variety of ways. The difficulty of the task,
which is dependent on the complexity of the molecular representa-
tion utilized, is one of the most significant issues encountered while
attempting to quantify the similarity between two compounds. Some
level of simplification or abstraction is required to make computa-
tional comparisons between molecular representations easier. Molec-
ular fingerprints are the most widely utilized of these abstractions,
which involve converting a molecule into a sequence of bits that can
then be easily compared between molecules. [22].

After that, the comparison must be expressed in a quantifiable
manner. There are numerous methods for determining the similar-
ity of two vectors. The Tanimoto coefficient, which is the same as
the Jaccard coefficient for molecular fingerprinting, is calculated by
dividing the number of common bits set to 1 in both fingerprints by
the total number of bits set to 1 in both fingerprints. This means
that the Tanimoto/Jaccard coefficient will always have a value be-
tween 1 and 0 as reported in Table 2.1 and that the similarity



48 CHAPTER 2. STATE OF THE ART

between two fingerprints with a given Tanimoto coefficient will ac-
tually depend a lot on the type of fingerprint used, which makes
it impossible to select a universal criterion to determine if two fin-
gerprints are similar or dissimilar. However, the performance of
molecular fingerprints could be improved by combining them with
other similarity coefficients. Several similarity metrics that have
been used with fingerprints are listed in Table 2.1. The presence
or absence of features, then the binary association coefficients or
similarity measures are based on the four terms where, given the
fingerprints of two compounds, A and B, a equals the amount of
bit set to 1 in A, b equals the amount of bits set to 1 in B and c
equals the amount of bits set to 1 in both A and B and d equals
the amount of bits set to 0 in both object A and object B.

VS procedures take advantage of the fact that fingerprints are
not very sparse bit vectors from a computational standpoint. ML
techniques employ well-known similarity measures like Tanimoto,
Cosine, Dice, or Euclid to perform different search tactics. These
measures are generated based on the amount of 1s counted in each
fingerprint and the number of 1s in common between the two finger-
prints. The most commonly used coefficients for similarity search
were reported in table 2.1.

Fingerprints have been also learnt from molecular graphs using
CNNs as reported in [33]. In Duvenaud et al. work, a single convo-
lutional layer with softmax activation is used in place of the hashing
function to produce the bits indexing of a atom neighborhood col-
lected in the same way as circular fingerprints do. Authors report
very good performance in predicting both solubility and toxicity
from two purposely defined data sets, but the approach suffers from
a high computational cost when compared with direct use of circu-
lar fingerprints.

Clustering has been described as "the art of finding groups in
data" and is widely used in the pharmaceutical industry pharma-
ceutical industry to design different representative sets. The most
common uses common of representative sets might be as training
sets in the development of different structure-activity models and
for screening in different biological screens. In both cases, I assume
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that the centroid of the cluster is a good representative member of
the corresponding cluster. It is therefore of great importance to be
able to create homogeneous clusters consistently and to treat both
small and very large sets equally well. In fact, at the beginning
of my study, the K-means algorithm was used to identify activity
thresholds in order to label the dataset. This technique, as as was
explained in detail in section 4.1, was initially used to identify the
correct IC50 thresholds to be used to label the downloaded data.
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Table 2.1: Summary of the most used similarity metrics.

Measure Range Formula

Cosine 0.0, 1.0
c√

(a+ b) ∗ (b+ c)

Dice 0.0, 1.0
2.0 ∗ c

((a+ c) + (b+ c)

Euclid 0.0, 1.0

√
c+ d

a+ b+ c+ d

Forbes 0.0,
c ∗ (a+ b+ c+ d

((a+ c) ∗ (b+ c)

Hamman −1.0, 1.0
(c+ d)− (a+ b)

(a+ b+ c+ d

Jaccard 0.0, 1.0
c

a+ b+ c

Kulczynski 0.0, 1.0 0.5 ∗ (
c

a+ c
+

c

b+ c
)

Manhattan 0.0, 1.0
(a+ b)

a+ b+ c+ d

Matching 0.0, 1.0
c+ d

a+ b+ c+ d

Pearson −1.0, 1.0
(c ∗ d)− (a ∗ b)√

(a+ c) ∗ (b+ c) ∗ (a+ d) ∗ (b+ d)

Rogers-Tanimoto 0.0, 1.0
c+ d

(a+ b) + (a+ b+ c+ d)

Russell-Rao 0.0, 1.0
c

a+ b+ c+ d

Simpson 0.0, 1.0
c

min((a+ c), (b+ c))

Tanimoto 0.0,1.0
c

a+ b+ c

Yule 0.0, 1.0
(c ∗ d)− (a ∗ b)
(c ∗ d) + (a ∗ b)



Chapter 3

Target selection

My study is part of a broader research aimed at screening new com-
pounds with anti-cancer properties. It is well known that protein
kinases are key regulators of cellular function and constitute one of
the largest and most functionally diverse families of proteins.
By adding phosphate groups to the substrate, they regulate the ac-
tivity, localization, and overall function of many proteins, and serve
to orchestrate the activity of nearly all cellular processes. Kinases
are involved in signal transduction and coordination of complex
functions such as the cell cycle. In particular, CDK1 is a central
regulator that guides cells through G2 phase and mitosis.

Diril et al. generated a conditional-knockout mouse model to
study the functions of CDK1 in vivo [32]. From this study, it was
found that the low presence of CDK1 in the liver confers com-
plete resistance against tumorigenesis induced by activated RAS
and P53 (most frequently mutated tumor suppressor gene in hu-
man cancers) silencing. The choice of the target family was also
guided by its importance in genetic mutations. In particular, one
of the most extreme pathways for cancer development and progres-
sion is the mutation of various genes, including kinases. Mutated
kinases can become constitutively active, and thus cause various
cellular abnormalities, leading to the initiation or growth of cancer.
Probably the best-known mutated kinase is BRAF (a human gene
encoding a protein called B-Raf), which is frequently mutated on
Val-600 (p.V600E) and is a driver mutation in several cancers, in-
cluding colorectal cancer, melanoma, and thyroid cancer [25] .

51
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Cyclin-dependent kinases (CDKs) are protein kinases marked by
the need for a separate subunit - a cyclin - that provides essential
domains for enzymatic activity. CDKs play important roles in the
control of cell division and modulate transcription in response to
various extra- and intracellular cues. Evolutionary expansion of
the CDK family in mammals has led to the division of CDKs into
three cell cycle-related subfamilies (CDK1, CDK4, and CDK5) and
five transcriptional subfamilies (CDK7, CDK8, CDK9, CDK11, and
CDK20). Unlike the prototype Cdc28 kinase in budding yeast,
most of these CDKs bind one or a few cyclins, consistent with
functional specialization during evolution. This review summarizes
how, although CDKs are traditionally separated into cell cycle or
transcriptional CDKs, these activities are often combined in many
family members. Not surprisingly, deregulation of this family of
proteins is a hallmark of several diseases, including cancer.

Figure 3.1: CDKs involved in cell cycle. Proposed roles of CDK–cyclin com-
plexes in the mammalian cell cycle [62]

It is evident from the work of Lim et al. that CDKs, cyclins, and
CKIs are more than simple regulators of the cell cycle [57]. They
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are multifaceted proteins with important functions in processes that
are distinct from the major events of cell division. However, rather
than labeling these as "cell cycle-independent roles" one should
appreciate that most of these emerging functions are closely inter-
twined with the cell cycle. For example, cell cycle regulators modify
transcription to achieve differential expression of gene clusters ap-
propriate to the proliferative state of the cell; preselect DNA repair
mechanisms to utilize the most appropriate form of repair in ac-
cordance with the cell cycle period; control degradation to ensure
timely destruction of cell cycle proteins; they activate methyltrans-
ferases to impart epigenetic marks on newly synthesized histones
and DNA; they vary metabolic pathways to provide the level of en-
ergy needed to drive cell cycle events; and they target self-renewal
or differentiation factors to dictate the outcome of cell division in
stem cells.

In systems that are not directly related to the cell cycle, the char-
acteristic fluctuation in the activities of cell cycle regulators can be
reused for different purposes. For example, the changing activities
of CDK/cyclin complexes are valuable for achieving orderly pro-
gression through the Pol II RNA-mediated transcription cycle. In
light of the enormous amount of new information generated in re-
cent years, the study of cell cycle regulators is certainly far from
being a mature field, and the continuing quest toward understand-
ing the full repertoire of their physiological functions is bound to
reveal many more surprises along the way[57].

In the first step of my work, aimed at verifying the feasibility of
the approach, I focused my attention on CDK1 as protein target
for several reasons: first of all for the large amount of available
bioactivity data, necessary to perform a training of a deep neural
network; on the second and for the importance of the target, that
is given by its validation as drug target. It is an archetypal kinase
acting as central regulator that drives cells through G2 phase and
mitosis. Its importance in tumorigenesis has been demonstrated
by the evidence that, unlike other CDKs, loss of CDK1 in the liver
confers complete resistance against tumor formation demonstrating
its role in the cancer development.
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Analysis of human tumor samples has revealed that the expression
of several CDK and cyclins is often upregulated. However, several
studies have indicated that none of the previously tested CDK can
completely prevent tumorigenesis. Therefore, Diril et al. sought to
determine whether loss of CDK1 can prevent cell transformation
and tumor development in vivo.
From experiments performed in vivo, on mouse specimens, in which
in a part of the colony CDK1 was inhibited and in the remaining
part not, they could see that tumor proliferation could not occur in
the absence of CDK1. They also assessed by histological analysis
that the livers of mice in which CDK1 activity was inhibited ap-
peared healthy and completely similar to those of healthy untreated
mice.
Therefore, they concluded that cell proliferation in transformed
cells is dependent on CDK1, and their results indicate that CDK1
is required for the growth of liver tumors in vitro and in vivo.
Validation of these results in vivo demonstrated that liver tumors
do not form in the absence of CDK1. Because CDK1 appears to
be essential for proliferation in every cell type and tissue tested, its
inactivation would prevent tumor formation and propagation. This
result is in contrast to other CDK whose inactivation had little ef-
fect on tumor formation. Thus, their results indicate the potential
of CDK1 inhibitors in cancer therapy if we can prevent harmful side
effects resulting from inadvertent interference with essential CDK1
functions in proliferative tissues[32].

Choosing CDK1 as a starting point, the colleagues at the Fon-
dazione RI.MED, have selected other 19 proteins, reported in figure
3.1, among the most similar to CDK1 belonging to the family of
kinases, with the method explained below. This method consisted
of the IFPs Tanimoto Similarity calculation for protein swith high
similarity to CDK1. The binding site similarity was calculated on
both aminoacid sequence and interaction patterns with known lig-
ands (experimental data of relative crystallography to the ligand-
receptor interaction). I took the top nineteen protein with a simi-
larity coefficient ≥ 0.80 . This was used to verify whether with the
hypothesized embedding the model was able to generalize correctly
and therefore to obtain a precise classification of activity on 20
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different targets but with very similar binding site between them.
Several assumptions and hypotheses, reported in detail in the

chapters of implementation of the datasets, led to the creation of
two key databases that could be used to train machine learning
and deep learning models. The first batch consisted of around 8000
molecules that were merely designated as active or inactive in re-
lation to the CDK1 target. The second one consisted of roughly
90000 molecules that were tagged as active or inactive in relation
to 20 target proteins that were identified as kinases with binding
sites that were more similar to those of CDK1. The pipelines of the
creation of the two datasets are detailed in the following sections,
respectively in Section 5.1 and Section 6.2.
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Table 3.1: Kinases list chosen for the task with tanimoto similarity coefficient
of the pocket.



Chapter 4

1D and 2D CNN for classification
on CDK1

In this chapter, I report the results obtained from the study oriented
to the identification of the best performing molecular fingerprints. I
built networks to classify as active or inactive molecules on a single
target(CDK1). The classification architectures I have proposed are
convolutional networks (CNNs) that use input tensors consisting
of combinations of molecular fingerprints. First, I tested individ-
ual fingerprints at different lengths using one-dimensional CNNs
to identify the best performing length. Then, I tested all possible
combinations of fingerprints as regards both their lengths and types
using two-dimensional CNNs, each trained on a combination of dif-
ferent fingerprints with the same size for the same compound, to
take into account all the different information coming from those
descriptors at once.

In general, different patterns are searched for in each fingerprint
kind, and also the same pattern is searched in different ways. Both
networks consist of 4 convolutional layers with 512, 256, 128, 64
filters respectively with ReLU activation, each followed by a 2x2
Max Pooling, while they differ only in the convolutional kernel di-
mensions. Classification is achieved through a MLP with 1024, 512,
and 256 ReLU units respectively, while the output is a sigmoidal
unit.
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4.1 Dataset implementation

The data used in my experiments where extracted from the well
known CheMBL molecular database [1]. Biological activity of the
tested compunds was measured using the half maximal inhibitory
concentration parameter (IC50) that is the amount of substance
which is needed to inihibit the target protein (i.e. CDK1) by one
half. A molecule has been considered active when IC50 ≤ 9 µM ,
otherwise it is inactive.

Data preparation was accomplished using the KNIME data anal-
ysis platform [16], and a workflow was implemented to prepare both
the training and the test set. Activity data for 1830 compounds on
the CDK1 target were taken from the CHEMBL308 ID were CDK1
is considered as a single protein, and the CHEMBL1907602 ID were
it is considered as a protein complex.

Once all the data were obtained, using the Knime software, I im-
plemented a workflow that was able to read the csv files containing
the ChEMBL IDs and SMILES (Figure 4.1, and that could gener-
ate the seven types of molecular fingerprints used as input for the
network.

Figure 4.1: Knime workflow

In Figure 4.2 were reported in detail how ’Fingerprint generation’
node works and the seven fingerprint generated. The first node on
the left is "Molecule Type cast" that converts all cells of a chosen
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string column into several one of several molecule types, such as
Mol2, PDB, SDF, CML, HELM, SLN, Smiles, Smarts, or Rxn.
This node is connected with "RDKit Fingerprint Molecule" that
generates hashed bit-based fingerprints for an input RDKit Mol
column and appends them to the table. Several fingerprint types are
available, I choose RDKit, Morgan, Layered, Torsion, AtomPair,
FeatMorgan and ECFP4 because in the early stages of the work I
found them to be the best performing for the task . Not all settings
are used for each type. these nodes will modify according to the
selected fingerprint type and settings that are not supported by a
fingerprint type will be disabled/hidden. The settings by which
a fingerprint is generated are made available as column properties
and can be viewed with the RDKit Interactive View node. The last
fingerprint generation node always creates a new column containing
a fingerprint for the molecules but this time the calculations are
based on the CDK toolkit instead of RDKit’s one.

Figure 4.2: Fingerprint generation node

In figure 4.3 I see how in output from the fingerprint generation
methanode I get a table that reports the molecule graph needed for
fingerprint generation.

At first, incomplete data were deleted; yielding a total of 1707
molecules that were partitioned into a training set consisting of 1432
molecules with a perfect balancing between the two class labels (
1 : 1 ratio of active to inactive). Particularly, 716 active samples
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Figure 4.3: Output of fingerprint generation node

and 662 inactive ones were selected from the CHEMBL308 ID,
while 54 inactive samples were selected from the CHEMBL1907602
ID. The test set was made as a whole by 175 inactive molecules
coming from the CHEMBL1907602 ID, and 100 active samples
coming from the CHEMBL308 ID.

Data in the two CheMBL IDs were searched for duplicates that
were removed to avoid repetitions in both the training and the
test set. However it is worth noting that in the same data set
there may be two times the same molecule with very different IC50

value coming from two different biological assays. I have not used
data augmentation because it is not possible to generate molecular
fingerprints and predict whether they are active molecules or not
in a specific biological assay but I have used 5-cross validation.

4.2 Proposed Architectures

The 1D CNNs were trained on single fingerprints; seven networks
were trained, one for each tested fingerprint type. I selected only
1024 bit fingerprints as a good trade-off between compactness and
expressivity. Low size fingerprints are too small to allow the net-
work learning their features properly, while 2048 or 4096 bit fin-
gerprints require models with very high capacity whose training is
difficult. In the 2D CNNs each compound was represented by a
combination of different fingerprints arranged as a bi-dimensional
{1;−1} matrix. The 2D CNNs have been trained on all possible
combinations, ranging from fingerprint couples to a unique 7× 1024
matrix enclosing all the fingerprints in a single descriptor. The in-
tuition behind this architecture is that a fingerprint ensemble repre-
sents in a single tensor all the structural properties of a compound
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that concur to its bioactivity on the target. On the other hand, a
fingerprint combination can attain a high redundancy because the
same pattern is encoded in several rows of the resulting matrix so
I’m not guaranteed that the more fingerprints are present in the
2D descriptor the more accuracy I will obtain after training the
network.

Both 1D and 2D networks consist of 4 convolutional layers with
128/64/32/16 filters per layer, and ReLU activation, each followed
by a 2x2 Max Pooling, while they differ only in the convolutional
kernel dimensions. Such networks have 512/256/128/64 filters re-
spectively for each convolutional layer, while the number of fil-
ters per layer in the 1D CNNs used for direct classification are
128/64/32/16.

Classification is achieved through a MLP with 1024/512/256
ReLU units per layer respectively, while the output is a sigmoidal
unit. The number of filters, kernel size, and number of MLP neu-
rons were obtained by searching for hyperparameters. The 1D CNN
architecture is shown in figure 4.4, while the 2D architecture is de-
picted in figure 4.5.

Figure 4.4: 1D CNN. One-dimensional convolutional architecture used to test
fingerprints of different sizes (256/512/1024)

Molecular fingerprint generation acts as a transform on the molec-
ular structure from the spatial domain to a suitable Vector Space
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Figure 4.5: 2D CNN. Bi-dimensional convolutional architecture used to test
fingerprints arrangement of different sizes (256/512/1024)

Representation. A fingerprint represents the corresponding molecule
“as a whole” that is it conveys information about the presence of a
particular substructure but not on its exact position or its repetition
in different sites of the same molecule. Moreover, I wanted to per-
form a binary classification between active and inactive compounds,
and biological activity is mostly related to the presence/absence of
particular substructures which in turn are well suited to bind to the
target protein. As a consequence, a CNN architecture appeared to
be the best choice to classify molecular fingerprints.

Hyperparameters tuning was performed as a grid search in the
following sets of values; Convolutional filters tested were [1024, 512,
256, 128, 64] in combination with all Keras padding value; learn-
ing rate were multiplied by 10 in the ranges [10−6, 1; 2 · 10−5, 0.2].
Dropout probabilities where in the range [0.2, 0.9] with step 0.1,
all the available optimizers in Keras were tested. Bi-dimensional
tested kernel sizes were [(20,2), (20,1), (15,2), (15,1), (5,2), (5,1),
(4,2), (4,1), (3,2), (3,1)], while 1D tested kernels were {2, 3, 4}.
Batch sizes were doubled in the range [8, 128]. Early sopping was
used to devise training epochs. Table 4.1 shows the best choices for
all the hyperparameters. Due to the low number of samples, small

Table 4.1: Hyperparameters setting, used in all experiments.

Optimizer Learning rate Dropout Kernel size 2D Kernel size 1D Batch size Epochs Padding
Adamax 0.0002 0.5 (5,2), (5,1) 3 64 55 Same

size fingerprints were tested with a number of epochs greater than
55; retraining was performed with 70, 100 and 120 epochs, and the
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minimum loss was achieved with 100 epochs. No overfitting was
encountered with this setup. Hyperparameter optimization took
about 150 hours to be accomplished on a GPU NVIDIA GTX1060
6 GB, 1280 CUDA Cores, while each experiment took about 20 min-
utes. These times are reasonable and acceptable for the proposed
task.

4.3 Results and discussion
The firs set of experiments where devoted to devise the best per-
forming fingerprint type/size in predicting biological activity, and
1D CNN was used. Table 4.2 reports the best test results for each
fingerprint size along with its type. Here and in the following ta-
bles, best results are highlighted in bold. The table reports the
achieved test accuracy, the F1-score, and the AUC value, which is
used commonly when comparing two approaches in the drug design
literature. Both a SVM and a Random Forest model were trained

Table 4.2: Results of 1D CNN on the test set

Length Fingerprint Accuracy Loss F1-score AUC
1024 Layered 0.9100 0.54 0.8700 0.9453
512 Layered 0.9272 0.4447 0.9000 0.9610
256 Torsion 0.8654 0.5456 0.831 0.9481

on my data sets to validate the performance of my model. The
results of such experiment are reported in figure 4.6. As it was
expected, ML approaches have a very poor accuracy performance
(SVM = 0.9081, RF = 0.9081) if compared to ours best architecture
(0.9345), despite the better AUC value shown in figure 4.6.

The second round of experiments was aimed at devising the best
fingerprint combination/size for biological activity prediction using
2D CNN. The idea behind this experiments is that different fin-
gerprints for the same molecule contain many different patterns,
which in turn describe different molecular substructures. Also dif-
ferent sizes correspond to patterns with variable length. As a con-
sequence, a set of fingerprints arranged as a 2D matrix can act as
a better descriptor for molecular substructures than a single one
can do. Table 4.3 reports the overall results for different fingerprint
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Figure 4.6: ROC Curves comparison of the proposed architecture with classical
ML approaches; (a) best performing 1D CNN (L-512); (b) SVM; (c) Random
Forest.

Fingerprints Accuracy Loss F1-score AUC
M,L 0.9200 0.5600 0.8800 0.9563
R,M,A 0.900 0.6800 0.8600 0.9527
M,A,L,F 0.9200 0.6000 0.8877 0.9444
R,M,A,L,F 0.9163 0.6082 0.8820 0.9513
R,M,A,T,L,F 0.8945 0.6280 0.8557 0.9494

(a) 1024 bit fingerprints
Fingerprints Accuracy Loss F1-score AUC
M,F 0.8981 0.4463 0.8679 0.9555
M,T,L 0.9345 0.3900 0.9117 0.9685
R,M,T,F 0.9418 0.4268 0.9001 0.94
R,A,T,L,F 0.9127 0.4052 0.8867 0.963
R,M,A,T,L,F 0.9236 0.3950 0.9004 0.9774

(b) 512 bit fingerprint
Fingerprints Accuracy Loss F1-score AUC
L,F 0.9090 0.4087 0.8792 0.9655
R,L,F 0.9127 0.4734 0.8846 0.9606
R,A,L,F 0.9054 0.4914 0.8749 0.9572
R,M,T,L,F 0.8909 0.5380 0.8623 0.9624
R,M,A,T,L,F 0.8981 0.5982 0.8679 0.9537

(c) 256 bit fingerprint

Table 4.3: Results of the 2D CNN on the test set with different fingerprint
length. Fingerprint types: (R)DKit, (M)organ, (A)tompair, (T)opological Tor-
sion, (L)ayred, and (F)eatMorgan

sizes.
As it is reported in tables 4.2 and 4.3, the best performance is

achieved with the set of Morgan, Topological Torsion and Layered
512 bit fingerprints (MTL-512). Layered fingerprints are always
among the best performing descriptor regardless their size. More-
over, 512 Layered is exactly the best performing descriptor in the
1D CNN architecture. Regarding the 256-bit results, I choose to
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emphasize the RLF model since I want to favor the model that
performs better overall. The highlighted model, in particular, has
the highest F1-score and accuracy, but loss and AUC are close. It
is trivial to say that 512 bit is the input data size that best suits to
the network capacity as it is defined by its architecture. As regards
the fingerprint types, it is difficult to devise an exact explanation
of the results due to the random process involved in the genera-
tion of molecular fingerprints. It is not possible to devise precise
patterns in precise positions that are mainly responsible for the
network performance. Anyway, I can say that Layered fingerprints
have a particular hashing scheme that allows accommodating sub-
structure information with high level of detail so it is reasonable
that 1D CNN achieved its best performance using this kind of fin-
gerprint. As regards the 2D CNN’s performance, it is worth noting
that MTL-512 fingerprints together span all the diverse criteria to
search for patterns so it seems quite reasonable that such a triple
produced the best result.

I further validated my architecture against the DeepVS network,
which is presented in [78], and deals with VS versus CDK proteins
even if there are some differences with my work.

DeepVS was trained on the CDK2 protein only; the authors
tested their network with a subset of the CHEMBL301 data set,
which is extracted from the DUD-E data set (798 active molecules
and 28,329 decoys). At first, the entire CHEMBL301 data set that
consists of 1528 compounds (956 CDK2-active molecules, and 572
inactive ones) was used to test the MTL-512 2D CNN. In this exper-
iment my network achieved AUC=0.8030 that is a very good result
when compared with AUC=0.82 achieved by DeepVS, which was
trained purposely for CDK2. As some compounds in CHEMBL301
are also active on CDK1, I removed explicitly all of them to stress
the network performance. As a result, I obtained AUC=0.678,
which shows an obvious decrease; this still remains a satisfactory
result if related to human performances in VS, and also classical
ML approaches.

The main novelty of this research relies on performing Deep
Learning based VS starting from molecular fingerprints for CDK1
that is a very important biological target for its direct implication
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in the etiology of various cancerous forms. One qualifying point
of my approach is that fingerprints capture molecular structures
according to different criteria and are already accepted as molec-
ular descriptors by the chemoinformatics society. Another novelty
of the approach is the use of fingerprint matrices, in order to keep
direct information from single fingerprint and indirect information
from the combination of the same. Their shape already makes them
an embedding that lends itself perfectly to the intended use. Fine
tuning of hyperparameters has been carried on along with several
experiments with different fingerprint types and sizes.



Chapter 5

Tuned-MLP-Out architecture for
classification on CDK1

The main aim of the research reported in this chapter is to assess a
way to obtain a tight interaction among the molecular fingerprints
used to represent the input ligand. To this aim a multi-branch
architecture has been proposed with parameter sharing regulariza-
tion where seven 1D CNN branches extract features from different
fingerprints, and they are then merged in a unique MLP classifier.

It is very important to emphasize that the training was directed
to obtain a high discriminative power in our model. In fact, I
measured the TP/P ratio that is the number of true actives pre-
dicted, in order of decreasing probability, in a fixed percentage of
the test set. This parameter is very important because, usually,
the screening is performed on very large data sets heavily biased
towards inactive molecules. Maximizing this parameter at the ex-
pense of class-specific sensitivity of active molecules means that
the classifier correctly prioritizes active molecules while incorrectly
classifying several inactive molecules. Early screening needs to en-
sure that all bioactive compounds are ranked in the first positions
despite of the number of false positives, while a second screening
round is aimed at increasing the prediction accuracy. A novel CNN
architecture is presented to this aim, which predicts bioactivity of
candidate compounds on CDK1 using a combination of molecular
fingerprints as their vector representation, and has been trained
suitably to achieve good results as regards both TP/P parame-
ter and accuracy in different screening modes (98.55% accuracy in
active-only selection, and 98.88% in high precision discrimination).

67



68
CHAPTER 5. TUNED-MLP-OUT ARCHITECTURE FOR

CLASSIFICATION ON CDK1

I performed two types of experiments regarding the training pro-
cedure, and several measures were collected to conceive the perfor-
mance in both tasks. The first training procedure (training scheme
1 ) makes use of a classical ML approach for training where the ra-
tio between training, validation and testset is strongly unbalanced
towards the training set, keeping the ratio between the two classes
unaltered in all of them. This is the correct choice if one wants to
maximize the discriminative power of the network. On the other
hand, the second procedure (training scheme 2 ) takes into account
the fact that the general population of a dataset containing candi-
date compounds to be screened is strongly skewed towards inactive
candidates. Consequently, I stressed network performance by using
balanced training with many active compounds, and testing with
a 1 : 50 active/inactive ratio. Both schemes make use of 10-fold
cross-validation in the training phase.

5.1 Dataset implementation

The data used in my experiments were extracted from the well
known CheMBL molecular database [1]. Biological activity of the
tested compounds was measured using the IC50 introduced in 4.1.
The literature does not report a precise threshold to be used for
labeling a compound as active or inactive. A good rule of thumb
is that IC50 < 1.0 µM implies good bioactivity, while IC50 >

10.0 µM indicates definitely no bioactivity. Our task is a binary
classification so I needed a crisp threshold to divide my data in
two classes. As a consequence, I followed a typical ML approach
in this respect, that is I devised the threshold from the data using
K-Means clustering. I didn’t have any knowledge in advance about
the distribution of the IC50 values in my data. At first, the so
called elbow method was applied to assess the correct number of
clusters. This heuristics consists in clustering the data points x
with a variable number of clusters k, while plotting the Within-
Cluster Sum of Squares :

WCSS =
k∑

i=1

∑
x∈Ci

(x− µi)2
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where Ci is the i-th cluster, and µi is its centroid. The plot will
exhibit an “elbow” in correspondence of the optimal value for k. Our
analysis resulted in choosing two clusters (k = 2), as I expected.
Then I ran the K-Means algorithm with two clusters, and I obtained
a threshold value for IC50 = 7.414 µM , so a molecule was labeled
active when IC50 ≤ 7.414 µM . It is worth noticing that this value
was used merely for splitting the data in two classes. There is no
chemical relevance in this threshold. Actually, it is the value of
the two class centroids’ average. The K-Means algorithm reported
also the following results about the shape of the clusters, that are
coherent with the literature:

• Active molecules: centroid at IC50 = 0.91762 µM , upper
bound at IC50 = 0.971 µM

• Inactive molecules: centroid at IC50 = 13.91221 µM , lower
bound at IC50 = 13.338 µM

I used the KNIME data analysis platform [16], to implement a pre-
processing workflow for both the training and the test set. Activity
data for 1830 compounds on the CDK1 target were taken from the
CHEMBL308 ID were CDK1 is considered as a single protein, and
the CHEMBL1907602 ID were it is considered as a protein com-
plex. At first, incomplete data were deleted; the resulting data set
was then made by 1720 samples. The data set was expanded using
some compounds, which are active on some kinases with very differ-
ent structure from CDK1. Also these molecules were extracted from
CheMBL. In particular, I selected 2422 active compounds on TRKA
(Tropomyosin receptor kinase A, CHEMBL2815), 50 active com-
pounds on RIPK1 (Receptor-Interacting Protein 1,
CHEMBL5464), 2825 active compounds on AKT1 (AKT Serine/
Threonine Kinase 1, CHEMBL4282), and 199 active compounds on
LIMk1 (LIM Domain Kinase 1, CHEMBL5932). Duplicates have
been removed from the original 5496 records returned by the queries
thus obtaining 5452 inactive compounds on CDK1.

Two different schemes have been used for training even if 10-fold
cross-validation has been used in both procedures. In the scheme
1, I adopted a classic strategy with an approximate 80%:10%:10%
split for training, validation, and test set respectively with a 1 : 10
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active/inactive ratio. Validation set has been used for hyperparam-
eters grid search while Test set has been used to evaluate the overall
performance. In the scheme 2, the same data set as above has been
divided in two almost equal parts (48% training, and 52% test set).
Moreover the training data were split in training and validation set
with a 90%:10% ratio. In the training data 720 compounds out of
3440 samples were active molecules, while just 80 active molecules
out of 3720 compounds were present on the test set.

Finally I turned each fingerprint’s 0 value in -1 to cope with the
inherent sparsity of such a vector representation. In this way I
maintained the binary information conveyed by each fingerprint,
while avoiding unwanted bias of the output of the convolutional
units when they receive an almost zero input.

5.2 The proposed architectures

The 1D CNNs were trained on single fingerprints; seven networks
were trained, one for each tested fingerprint type. I selected only
1024 bit fingerprints as a good trade-off between compactness and
expressivity. Low size fingerprints are too small to allow the net-
work learning their features properly, while 2048 or 4096 bit fin-
gerprints require models with very high capacity whose training is
difficult. In the 2D CNNs each compound was represented by a
combination of different fingerprints arranged as a bi-dimensional
{1;−1} matrix. The intuition behind this architecture is that a
fingerprint ensemble represents in a single tensor all the structural
properties of a compound that concur to its bioactivity on the tar-
get. On the other hand, a fingerprint combination can attain a
high redundancy because the same pattern is encoded in several
rows of the resulting matrix so I’m not guaranteed that the more
fingerprints are present in the 2D descriptor the more accuracy I
will obtain after training the network.

1D networks consist of 4 convolutional layers with 128/64/32/16
filters per layer and ReLU activation, as already presented in the
previous chapter. Each layr is followed by a 2x2 Max Pooling,
while they differ only in the convolutional kernel dimensions. Such
networks have 512/256/128/64 filters respectively for each convo-
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Figure 5.1: Tuned-MLP-Out. The complex architecture with MLP classifier.

lutional layer, while the number of filters per layer in the 1D CNNs
used for direct classification are 128/64/32/16.

Classification is achieved through a MLP with 1024/512/256
ReLU units per layer respectively, while the output is a sigmoidal
unit as I want binary classification. The number of filters, kernel
size, and number of MLP neurons were obtained by searching for
hyperparameters.

The architecture presented in this chapter are ensemble classi-
fiers using the outputs of the 1D CNNs. Moreover, these networks
exhibit a sort of inertia that is they attain both high sensitivity and
balanced accuracy but it is not possible to stress their performance
towards either mature or early screening task. This is mainly due
to the intrinsic redundancy of the input fingerprints regardless the
best performing combination. On the contrary, 1D CNN are more
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flexible architectures than the 2D ones, reported in 4.2, and are
implemented by low capacity models. Such networks suffer from
the use of a single fingerprint, which might not encode properly
the core bioactivity features of the compound due to its particular
generation algorithm. As a consequence I resorted to two kinds of
ensemble classifiers: the first one, which has been called Voting,
is a pure voting mechanism where the output labels from the best
performing 1D CNN for each fingerprint type are collected, and
the final label is the one provided by the majority of the voting
classifiers. The second scheme (called Voting-MLP) is a more re-
fined version of the pure voting mechanism, where I trained again
from scratch seven 1D CNNs, one for each fingerprint type, with
512/256/128/64 filters per layer, and the same MLP arrangement
as regards their classification stage. All of them are connected in
parallel as inputs of a unique MLP layer through the probability
values associated to the sigmoidal outputs. Just three ReLU units
were needed for the final classification layer. The whole Voting-
MLP architecture is reported in figure 5.1.

Hyperparameters tuning was performed as a grid search in the
following sets of values. Convolutional filters tested were [1024,
512, 256, 128, 64, 32, 16] in combination with all Keras padding
value; learning rate were multiplied by 10 in the ranges [10−6, 1; 2 ·
10−5, 0.2]. Dropout probabilities where in the range [0.2, 0.9] with
step 0.1, all the available optimizers in Keras were tested. Bi-
dimensional tested kernel sizes were [(20,2), (20,1), (15,2), (15,1),
(5,2), (5,1), (4,2), (4,1), (3,2), (3,1)], while 1D tested kernels were
{2, 3, 4}. Batch sizes were doubled in the range [8, 128]. Early
sopping was used to devise training epochs and model checkpoint
to saving best model after each epoch. Hyperparameter optimiza-
tion took about 100 hours to be accomplished on a GPU NVIDIA
TITAN Xp 12 GB, 3840 CUDA Cores, while each Voting-MLP ex-
periment took about 2 hours.

5.3 Results and discussion

The balanced accuracy bACC = (TP/P + TN/N)/2 has been
used for active/inactive discrimination, which is a binary classifi-
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cation task. The bACC value is the mean of sensitivity or true
positive rate that is the ratio between the predicted positives TP
and the labeled positives P , and specificity or true negative rate
that is the ratio between the predicted negatives TN and the la-
beled negatives N . bACC measures the performance in labeling
each sample in the proper class. Also the Matthews correlation co-
efficient (MCC) was used as a discrimination measure. MCC is a
well known index used for binary classification, that returns a value
in [−1; 1]; for a 2× 2 contingency table, that is a binary classifier’s
confusion matrix, MCC is related to the chi-square statistic as
‖MCC‖ =

√
χ2/n where n is the number of observations. MCC

thus measures the dependency of the predictions from the true (i.e.
expected) labels. On the other hand, just sensitivity has been used
in the active only selection task because I want to maximize cor-
rect prediction of active compounds in spite of accepting a relevant
number of false positives.

Our models are compared with two state-of-the-art ML approaches
for Virtual Screening that is Support Vector Machines (SVM), and
Random Forests (RF) which form the baseline for my experiments.
The parameters for both models where devised using a classical
grid search. Particularly, a Radial Basis Function-SVM has been
trained, and the best performing machines have γ = 1 for both
training schemes, while the regularization parameter is C = 5 in
the training scheme 1, while C = 1 and γ = 0.1 in the training
scheme 2. SVM trained on FeatMorgan fingerprint performed the
best in both the training schemes. The best performing RF used
100 estimators, and the Gini index for the training scheme 1 on
the FeatMorgan fingerprint, while in training scheme 2 Gini index
and 2 estimators.

The results of the best performing architecture for each task are
reported in Table 5.1 and Table 5.2. The two tables show clearly
that the reduced number of samples in the training scheme 2 along
with the inherent class unbalancing in the data set reduce the ab-
solute performance of the network due to an increase of false nega-
tives. Even if both bACC and sensitivity are acceptable, the Loss
value doubles with respect to the training scheme 1. This reflects
on all the global measures that are AUC, F1 score, and MCC.
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Table 5.1: Results for the active/inactive discrimination task, and Training
scheme 1

Architecture Bal. accuracy Sensitivity Loss AUC F1-score MCC
Tuned-MLP-Out 0.9880 0.9855 0.0405 0.9979 0.9510 0.9462
Voting 0.9768 0.9710 0.2093 0.9920 0.8965 0.9033
CNN 1D (F) 0.9687 0.9710 0.0688 0.9904 0.8979 0.8813
CNN 2D (R-M-F) 0.9679 0.9565 0.0770 0.9912 0.8918 0.8817
Random Forest (F) 0.9510 0.8985 0.6405 0.9837 0.6065 0.8962
SVM (F) 0.9421 0.8985 0.7883 0.9868 0.8857 0.8731

Fingerprint types: (R)DKIT,(M)organ, (F)eatMorgan, (L)ayered

Table 5.2: Results for the active/inactive discrimination task, and Training
scheme 2

Architecture Bal. Accuracy Sensitivity Loss AUC F1-score MCC
Tuned-MLP-Out 0.9644 0.9625 0.0983 0.9875 0.5519 0.5989
Voting 0.9639 0.9500 0.1523 0.9889 0.6379 0.6694
CNN 1D (F) 0.9579 0.9625 0.1398 0.9854 0.4709 0.5336
CNN 2D (T-L-E) 0.9525 0.9375 0.1054 0.9841 0.5192 0.5920
Random Forest (F) 0.8789 0.7750 0.6221 0.9541 0.6528 0.6540
SVM (F) 0.9208 0.8625 0.6221 0.9682 0.6699 0.6524

Fingerprint types: (F)eatMorgan, (T)orsion, (L)ayered, (E)CFP4

The winning architecture for both tasks is Tuned-MLP-Out be-
cause it takes into account all the fingerprint types, and manages
the possible redundancies by training a shallow MLP classifier. Just
one layer was always sufficient to achieve good classification, even if
I tried different sizes for the hidden layers. Particularly, discrimina-
tion task was performed with 3 units, learning rate equal to 10−3,
and Adam optimizer, while active-only selection was accomplished
using 5 units, learning rate equal to 10−4, and Adamax optimizer.
Active-only selection is achieved with a classifier with both higher
capacity and lower learning rate than in the discrimination case.
These values indicate a network that is more prone to overfitting
than in the balanced case as it is less accurate. Also the 1D CNNs
used by Tuned-MLP-Out have higer capacity than the best per-
forming 1D CNNs alone.

The winning Voting architecture is the same for both tasks be-
cause it uses always the best 1D CNN for each fingerprint type.
This network exhibits always the highest AUC value, which means
that it tends to have a good balanced performance in every case.
In fact, Voting has the lowest sensitivity when used for active-only
selection, and it falls below the baseline, but it is one of the best
ranked networks in terms of the bACC value.
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In Tables 5.3 and 5.4 I report an unconventional metric, which
I used to identify the best models in terms of reliability of asset
prediction. To measure explicitly the classifier’s ability to prior-
itize the ligands, I reported also values of the ratio between the
True Positives (TP) that is the number of correct predictions pri-
oritized at the top x% of the test set, and the Positives (P) that is
the total number of positives in the test set for each target. This
parameter is crucial in VS procedures due to the huge number of
candidates to be evaluated, so the drug designers require that a
good VS procedure assigns the highest probability values to the
very first candidates in the data set, in order to discard the re-
maining ones without further test. I compared my best performing
architecture versus both SVM and RF also as regards the TP/P%
value. Results are reported in table 5.3, and table 5.4 respectively
for each training scheme. In particular, in training scheme 1 I were
able to compute TP/P% from 1% to 10% because both training
and test set were equally balanced. Just TP/P1%, and TP/P2%
were computed in the training scheme 2 because only 80 out of
3270 molecules were truly active that is a percentage of 2.4%. As a
consequence, computing both TP/P5% and TP/P10% would have
resulted in a artificial performance decrease by definition. Results
are satisfactory. Our Tuned-MLP-Out network ranks at 100% in
TP/P1% and TP/P2%, just like RF and SVM. It is worth notic-
ing that drug designers are more interested computing TP/P% for
low percentages that implies screening very few candidates. For
high percentages, the probability of a false positive prediction in-
creases. Even if, my architecture misses just one active compound
with respect to both SVM and RF in the case of TP/P5% both the
shallow models exhibit a low TP/P10% value due to their reduced
accuracy on the whole data set.

Experiments gave us some interesting insights on the use of dif-
ferent fingerprint types. The best performing 2D CNN is the one
using the combination of RDKit, Morgan, and FeatMorgan finger-
prints. Such a network has a good mix of accuracy, sensitivity,
and a high AUC together with a very low Loss value. As already
pointed out in the previous section, the network has a good general
behaviour but it can not be pushed towards extreme performance
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Table 5.3: TP/P parameter computed on the test set 1 (70 active molecules
out of 701 compounds).

Architecture TP/P 1% TP/P 2% TP/P 5% TP/P 10%
Tuned-MLP-Out 7/7 14/14 34/35 65/69
Voting 7/7 14/14 34/35 61/69
CNN 1D (M) 7/7 13/14 33/35 62/69
CNN 2D (R-M-F) 7/7 12/14 32/35 61/69
RF(F) 7/7 14/14 35/35 63/69
SVM(F) 7/7 14/14 35/35 61/69

Fingerprint types: (R)DKIT,(M)organ, (F)eatMorgan,

Table 5.4: TP/P parameter computed on the test set 2 (80 active molecules
out of 3720 compounds).

Architecture(Training 2) TP/P 1% TP/P 2
Tuned-MLP-Out 37/37 65/74
Voting 32/37 57/74
CNN 1D (F) 31/37 52/74
CNN 2D (T-L-E) 31/37 52/74
RF(F) 37/37 62/74
SVM(F) 32/37 55/74

Fingerprint types: (F)eatMorgan, (L)ayered, (T)orsion, (E)CFP4

Table 5.5: Performance of the Tuned-MLP-Out network on three data sets
with 1%, 2%, and 5% active/inactive proportion respectively

Active/inactive Bal.Accuracy Sensitivity Loss AUC F1-score MCC
1% 0.7475 0.5000 0.5116 0.9700 0.5333 0.5289
2% 0.9671 0.9375 0.5114 0.9415 0.9009 0.8226
5% 0.9382 0.8780 0.0565 0.9991 0.9230 0.9196

Table 5.6: TP/P parameter computed on the test set with 1%, 2%, and 5%
active/inactive proportion respectively.

Active/inactive TP/P 1% TP/P 2% TP/P 5%
1% 4/8 - -
2% 7/8 7/16 -
5% 4/8 8/16 20/41

in neither task I addressed in this work. Finally, 1D CNNs differ
only in the fingerprint type used in the training phase. The Lay-
ered network showed the best bACC, while the Morgan one has
the highest sensitivity. The reason for this difference in predictive
ability lies in the different way of interpreting the molecular struc-
ture. The Layered fingerprint, using different layers of structural



77
CHAPTER 5. TUNED-MLP-OUT ARCHITECTURE FOR

CLASSIFICATION ON CDK1

analysis, seems to outperform in discriminating between active and
inactive candidate compounds. The Morgan/FeatMorgan finger-
prints represent a circular approach which uses either connectivity
or feature invariants, and it has been outclassed by modern ECFP
fingerprints as they are more accurate. Nevertheless, both 1D and
2D CNNs have the best performance when such descriptors are used
to represent the candidate compounds. It is worth noting, in this
respect, that in this work, I have tested the ability to recognize
between active and inactive molecules, based on their IC50 value,
and such a task requires a more discriminative power than other
works in the literature in which fingerprints are compared on the
basis of the distinction between actives and decoys.

Our approach has to be regarded as typical ligand-based one,
while decoys are generated to validate docking-based algorithms.
On the other hand, decoys are synthetic molecules whose mere
structure could make them active on the target, and their use to
train an active/inactive classifier could result in a poor discrim-
inative power. Even if it is well known in the literature that a
1 : 10 active/inactive ratio is a common value for in silico screen-
ing, I performed some stress tests on my best architecture that is
Tuned-MLP-Out with training scheme 1. I aimed at devising its
performance in a typical in vivo screening, where several problems
can occur in essays, thus reducing the active/inactive ratio even to
1 : 100. I resampled my data set to obtain three different data
sets with varying active/inactive ratio: 1 : 20, 1 : 50 and 1 : 100
respectively. The Tuned-MLP-Out network was trained using the
scheme 1 on all of them. The results of active/inactive discrimi-
nation with these different proportions are reported in Table 5.5
while TP/P values from 1% to 5% are reported in Table 5.6. As
expected, all the bACC, Sensitivity, and TP/P values decreased
with respect to the results reported in Table 5.1. This is due to the
extreme unbalancing between classes that is a hard issue for what-
ever learning algorithm. Nonetheless, the results are still positive,
and this can be observed in Table 5.6. Apart from the TP/P1% for
the 2% proportion data set that attains a 87.5% value, almost all
the TP/P values drop to values that are close to 50%, but all the
hits in wathever experiment ranked as the very first molecules in
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terms of the output probabilities of the model so they still remain
the first choice for the drug designer. Also in this case I did not
compute TP/P values for test percentages greater than the true
active/inactive proportion to avoid the computation of false low
values due to the absence of active molecules.



Chapter 6

EMBER multi-fingerprint
embedding

In very recent years, the debate in the field of the application of
Deep Learning to Virtual Screening has focused on the use of neu-
ral embeddings w.r.t. classical descriptors to encode both structural
and physical properties of ligands and/or targets. The attention on
embeddings raised with the increasing use of Graph Neural Net-
works aimed at overcoming molecular fingerprints that are short
range embeddings for atomic neighborhoods.
In this chapter, I show a deep convolutional architecture for evalu-
ating the bioactivity of ligands on twenty protein kinases that have
the most comparable binding sites to CDK1. The proposed archi-
tecture makes use of a suitable molecular embedding made by seven
molecular fingerprints arranged as different “spectra” to describe
the same molecule, see section 6.1, and it exploits the Depthwise
Separable Convolution operator to reduce computational complex-
ity. The data set is presented, and the architecture is explained
in detail along with its training procedure. I report experimental
results, and an explainability analysis to assess the contribution of
each fingerprint to the different targets.

The major contributions of the presented work reported in this
chapter can be resumed in the following.

• A suitable embedding is proposed that is made by multiple
molecular fingerprints that have been generated using com-
plementary ways to search for molecular substructures, and
are stacked as the spectra of a sort of “molecular image”; such
an embedding is aimed to exploit the ability of Convolutional

79
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Neural Networks (CNN) in learning the proper features, as
they do for images.

• A multi classifier has been developed to prove the previous
claim, that performs very well in screening ligands on twenty
protein kinases that are the ones with the most similar binding
sites to CDK1; moreover my architectural design lowers the
parameter number.

• A curated data set made by nearly 90000 ligands labeled as
active/inactive against 20 Kinase target selected as the most
similar to CDK1.

6.1 EMBER

A major contribution of my Ph.D. work is the introduction of EM-
BER, an embedding that is obtained using different molecular fin-
gerprints bundled as the “channels” of the input tensor of a 2D CNN.
This section is devoted to explain the motivations of my choice.
In my approach molecular fingerprints are regarded as different
“spectra” of the same molecular image as it is possible to see in
figure 6.1. To clarify, EMBER is the output of an input layer
that arranges the seven fingerprints in tensor form, that is, as a
multidimensional array, resulting in a tensor Tij. In fact, different
fingerprints collect information about atomic neighborhoods using
heterogeneous criteria: moving along bond connected paths, explor-
ing circular regions, encoding atom pairs and their bond distance,
and so on. As a consequence, different fingerprints convey diverse
structural information about the same molecule [69].

Different fingerprints collect information about atomic neighbor-
hoods using heterogeneous criteria: moving along bond connected
paths, exploring circular regions, encoding atom pairs and their
bond distance, and so on. As a consequence, different fingerprints
convey diverse structural information about the same molecule.
In the research reported in the previous chapter I used seven fin-
gerprint: RDKit, Morgan, AtomPair, Torsion, Layered, FeatMor-
gan, ECFP4 as a result I verified that the different fingerprints
are able to interact with each other, and such interaction was ex-
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Figure 6.1: EMBER fingerprint channels of a molecule

ploited through parameter sharing regularization where seven con-
volutional branches are merged in a unique deep classifier, and the
training procedure is in charge of merging the information conveyed
by each single branch.

In this new work I started from the consideration that this kind of
coupling is too loose, so I regarded the input fingerprints as the fea-
tures of my molecular representation and used a CNN that is the
ideal model for multi-channel image classification to perform my
analysis. Molecular fingerprints have been widely used since many
decades as a key technique in Virtual Screening, and they are no
doubt an algorithmic embedding for molecular information with all
the pros and cons of using such an approach. The fingerprint al-
gorithm in two phases where at first information is collected from
an atomic neighborhood, and then hashing is used to set the actual
bits in the binary string, makes a molecular fingerprint “opaque” as
regards direct explanation of the molecular graph, even if it retains
global information about the presence of particular substructures in
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the molecule. On the other hand, this algorithm ensures a similar
computational process for each fingerprint family, and this enforces
my claim about their use as channels of the same input tensor.
Finally, even if very recent research moves fast towards neural
molecular embeddings, I wanted to use a solid reference framework
for assessing the explainabilty of my approach due to the loss of
explicit structural information induced by the use of fingerprints.
In this respect, my multi-target classifier was analysed using well
known frameworks for feature attribution reported in section 7.2,
which is the standard approach in CNNs.

6.2 Dataset implementation

The targets considered in this task, were derived from the sim-
ilarity approach reported below. This method consisted of the
IFPs Tanimoto Similarity calculation for proteins with high sim-
ilarity to CDK1 . The binding site similarity was calculated on
both aminoacid sequence and interaction patterns with known lig-
ands (experimental data of relative crystallography to the ligand-
receptor interaction). I took the top twenty protein with a similarity
coefficient ≥ 0.80 .

At the same time, to enrich inactive molecules library I used
the opposite of the concept of similarity, dissimilarity (similarity
coefficient < 0.1).

Of these twenty protein, I have extracted a portion of the data
from CheMBL molecular database [68] where biological activity of
the compounds was measured mainly using the IC50 described in
4.1. To identify the largest number of molecules I used all the
other parameters available on CheMBL, like inhibition constant
KI(indirectly represents a measure of the affinity of a given sub-
stance with inhibitory activity for a given enzyme), and dissocia-
tion constant KD that is a parameter that expresses the tendency
of a compound to dissociate (i.e., to split to form other compounds
consisting of molecules having a lower molecular weight than the
molecules of the starting compound). A good rule of thumb used for
both IC50 andKI is that values less than 1.0 µM imply good bioac-
tivity, while values greater than 10.0 µM indicate low or negligible
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bioactivity. The literature does not report a precise KD threshold
to be used for labeling a compound as active or inactive. Therefore
I clustered my data using the well known K-means algorithm with
respect to the KD value separately for each target, and devised a
suitable threshold using the well known elbow method calculated
with the Within-Cluster Sum of Squares (see 5.1). In this way, I
obtained k = 2 for each target as it was expected, and I was also
able to evaluate the centroids, and the extent of each cluster. An-
alyzing the clustering results, I obtained the value KD = 7µM as
a good threshold to separate data correctly for each target.

Based on the available data in ChEMBL, inactive compounds
for each protein evaluated in this study were too few to build any
kind of model. Authors preferred not to use Decoys molecules for
the inactives set, because of some known issues about their use,
especially in DL methods. Madhavi Sastry et al. [84] had already
reported a variable performance of decoys based on targets and
method used for virtual screening in 2013. Then, more recent lit-
erature, mainly focused on the use of decoys data sets for DL has
revealed some hidden biases when testing CNN virtual screening
performance evaluation [23] . Moreover, Yang et al in their recent
work [98] have pointed out the importance and at the same time
the lack in publicly available DBs of sufficiently large and unbi-
ased data sets to be used for robust AI models. Besides, the work
enlightened once more how the use of decoys dataset to train the
model presents some critical issues. On the light of these consid-
erations and since this workflow is based on multi-target affinity
approach, authors preferred to create their own dataset starting
from ChEMBL database and exploiting dissimilarity metrics to en-
rich a diversity-based inactives DB. Therefore, in order to enrich
the library of inactive compounds for each kinase, two different ap-
proaches were used. The first one was based on the collection of
selective active ligands on targets presenting different ligand bind-
ing interaction pattern compared to the 20 reference ones in the
study. The second one relied on the search for dissimilar com-
pounds compared to co-crystalised kinase inhibitors.

Molecules retrieved by these two approaches were then evaluated
to avoid the presence of duplicates. The advantage of using these
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two different approaches, allowed the creation of a data set with a
wide chemical space of active and inactive compounds.

Both methods are based on a workflow built with KNIME Ana-
lytics Platform [16] (Knime version 3.7.1).

In the first approach, the idea was to identify the kinases with
less similar binding site compared to the 20 targets under investiga-
tion,for each of them, active and selective compounds were chosen.
To perform this analysis, a workflow was built using the "3D-e-
Chem - KLIFS" nodes, which return information on the entire hu-
man kinome from the "Kinase-Ligand Interaction Fingerprints and
Structures" database [53] (KLIFS - release version 2.4, developed
by the Pharmaceutical Chemistry Division - VU University Ams-
terdam).

In fact, this database contains detailed information about the
structural kinase-ligand interactions relating to all the structures
of the catalytic domains of the human protein kinases deposited in
the Protein Data Bank.

The Structures Overview Retriever node was used to obtain the
structure IDs of each reference kinase and all other human kinases
(total 555). All the kinases data were processed as input by the
Interaction Finger print Retriever node, to generate the protein-
ligand interaction (IFP) fingerprints for subsequent chemoinfor-
matics analysis. Additionally, this node corrects fingerprints for
gaps and missing debris within the binding pockets, thus enabling
free-for-all comparisons. Once the interaction fingerprints for each
protein-ligand complex were obtained, a dissimilarity analysis was
performed between each kinase’s IFP, using the KNIME Similarity
Search node. For this purpose, the Tanimoto coefficient was used as
a method to calculate the distance (or dissimilarity) between each
and all other human kinase IFPs. The results were also filtered,
setting a coefficient range of [0 - 0.15]. For each kinase a list of pro-
teins that satisfy this dissimilarity criterion was obtained and for
each of them the compounds considered as actives in the literature
was collected. In particular, for each kinase that was dissimilar to
a reference one, only compounds with IC50 values < 1.0 µM were
collected using ChEMBL Database v26.

Nevertheless, it was necessary to further expand the number
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of inactive molecules using a second approach. This second ap-
proach consists of ligands dissimilarity search. Specifically, it was
based on structurally different ligands compared to known active
co-crystalised ligands for each protein used in this work.

The ligands in sdf format were downloaded from the Protein Data
Bank[15, 19] (RCSB) for each 3D structure of the twenty proteins
(see ligand code in table 6.1). Actives compounds were downloaded
from crystal structures with resolution less than 2 angstrom.

In order to enlarge my dataset, 601810 small molecules were
downloaded from the entire ChEMBL DB v26 and used for dis-
similarity analysis with ligands obtained from the PDBs. All small
molecules not relevant for classification purposes were removed ac-
cording to the following criteria:

• molecular weight > 100

• number of carbon atoms > 10

• number of nitrogen atoms > 2

• number of oxygen atoms > 2

• at least one aromatic ring

Similarity analysis was conducted by calculating the Tanimoto
coefficient using the ECFP4 fingerprints. Different compounds to
kinase inhibitors previously downloaded were selected from the
ChEMBL database considering a similarity coefficient between [0-
0.1] in order to have a diverse chemotypes.

As result, the use of three different methods to enrich the inactive
dataset allowed us to obtain a diverse set. The inactive set in fact
was in the end mainly composed by the inactives found in ChEMBL
to which other molecules actives on different proteins from the 20
selected and dissimilar from the PDB co-crystalised ligands of the
20 kinase of interest. Such an approach had two advantages. The
first one was the possibility to have a large and diverse chemotypes
space. Moreover, using these three different approaches, that is
using different approaches to select molecules, I minimised the pos-
sibility to have analogue bias and artificial enrichment typical of
the usage of decoys or not curated data sets.
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Table 6.1: A summary of all proteins (active and inactive) obtained from pre-
processing methods.

Target PDB ID Ligand Code∗ Actives Inactives
ACK 5ZXB 9KO 746 159775
ALK 6E0R HKJ 1665 227247
CDK1 6GU2 F9Z 1241 124473
CDK2 6INL AJR 1924 225087
CDK6 5L2S 6ZV 646 256561
INSR 5E1S 5JA 1423 195990
ITK 4RFM 3P6 1001 135007
JAK2 6M9H J9D 5526 577409
JNK3 2B1P AIZ 658 95252
MELK 6GVX TAK 1215 246662
CHK1 6FC8 D4Q 2175 21763
CK2a1 6JWA 5ID 1053 10534
CLK2 6FYL 3NG 671 6800
DYRK1A 4YLK 4E2 1126 11274
EGFR 5GNK 80U 4757 47541
ERK2 6OPH 6QB 3525 35237
GSK3B 5F94 3UO 2578 25768
IRAK4 6EG9 OLI 2131 21282
MAPK2K1 4AN9 ACP; 2P7 1254 12508
PDK1 3NAX MP7 1117 11166
∗ Most affine lingands

The overall data set was built starting from two separate sets.
The first one was made by 64600 compounds that result inactive
for all the targets. The second data set contains all the ligands that
are active at least on one target. In the end, I merged the two data
sets to obtain the final one that has a 1 : 100 active/inactive rate,
referred to the less abundant class (CDK6) (see table 6.1) .

This final data set consisted of 89373 molecules, and was sepa-
rated into training set (68370 molecules), test set (13046 molecules),
and validation set (7597 molecules), respectively.

The molecules were manipulated on Knime platform in order to
generate the seven fingerprints used as the channels of my embed-
ding used as input to the network.

Given the intrinsic sparsity of a molecular fingerprint I chose to
transform the 0 bits in -1 in order to reduce the unwanted output
bias of the convolutional units when they receive a zero input.
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6.3 Proposed architecture

The proposed architecture for multitarget classification is based on
a Depth Separable Convolution (DSC) operation as in GoogleNet
or Inception networks. This kind of convolution consist on two dif-
ferent operation, a depthwise convolution i.e. a spatial convolution
performed independently over each channel of an input, followed
by a pointwise convolution, i.e. a 1x1 convolution, projecting the
channels output by the depth-wise convolution onto a new channel
space [24].

Training was conducted using both with and without 10-cross-
validation in order to observe how the different distribution of data
helped the learning phases in the classification task. I selected the
10-fold cross-validation training scheme, where a classic strategy
was adopted with an approximate 80%:10%:10% split for training,
validation, and test set respectively. A 1 : 100 active/inactive ratio
compared to the less abundant class (646 active compounds) was
maintained in the three data sets.

The networks consist of nine Depth Separable Convolutional lay-
ers with 64/128− /256/512/512/256/128/64/32 filters per layer.
The second and the last DSC layer are followed by a 2x2 Aver-
age Pooling layer. A Parametric ReLU activation has been used.
This activation function adaptively learns the parameters of the
rectifiers, and improves accuracy at negligible extra computational
cost. PReLU (Parametric ReLU, that is ReLU with parameters) in-
troduce a learnable parameter, different neurons can have different
parameters, or a group of neurons can share one parameter.

PReLUi(x) =

{
x if x > 0
αix if x ≤ 0

= max(0, x) + αi min(0, x)

If αi = 0, then PReLU degenerates to ReLU; if αi is a small
fixed value (such as αi = 0.01), then PReLU degenerates to Leaky
ReLU (LReLU). In my work αi has been set constant at 0.25. Clas-
sification is achieved through a MLP with 64/32/32 ReLU units
per layer respectively, while the output is a 20 sigmoidal units be-
cause the probabilities of each class is independent from the other
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class probabilities. The number of filters, kernel size, and number
of MLP neurons were obtained by searching for hyperparameters.
For this reason a binary crossentropy loss function has been used
instead of the usual categorical crossentropy. This choice is rea-
sonable because the network performs a “multi-label" “multi-class"
classification task. The architecture is shown in Figure 6.2 and the
summary of the model with the relative parameters is shown in
Figure 6.3.
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Figure 6.2: Depth Separable Convolutional architecture.

Hyperparameter tuning was performed as a grid search for the
following values. Depth separable convolution filter [1024, 512, 256,
128, 64, 32, 16] with zero padding were tested. The learning rates
tested were in the range [10−5− 10−1] multiplied by 10. The batch
sizes tested were in the range [8 − 64]. Early sopping was used to
identify the optimal number of training epochs and model check-
point was used to save the best model after each epoch. Hyper-
parameter optimization took 64 days and was performed using an
NVIDIA TITAN Xp GPU, 3840 CUDA Cores. Notwithstanding
the complexity of the architecture, each training session took about
6 hours due to the efficiency of the DSC convolution operation.

The architecture of my classifier is a deep CNN with nine layers
using Parametric Rectified Linear Units (PReLU) for feature ex-
traction, and a three-layers fully connected perceptron for actual
classification. The network is trained on 7 × 1024 × 1 input ten-
sors that represent the seven 1024 long fingerprints stacked as the
channels of a 1024×1 image. Multi-target bioactivity prediction is
a multi-class, multi-label classification, that is my classifier has to
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assess also if a ligand is active at the same time on different targets.
As a consequence, the output is a vector label that is a binary vector
where the 1s indicate bioactivity with respect to a particular target.

In line with the most recent CNNs, I implemented the convolu-
tional layers using Depthwise Separable Convolution (DSC) [24] to
reduce the network parameters, and lower the computational load.
The classical convolution operator computes an element of the out-
put tensor Y by applying a kernel K with spatial extent s× s and
depth d to the input tensor X:

Yi,j,k =
s∑

l=1

s∑
m=1

d∑
n=1

Xi−l,j−m,k−nKl,m,n

Here I’m using the proper index notation for convolution with-
out kernel flipping. In DSC, d spatial kernels KS

(h) with s × s size
compute 1-depth convolutions, and a 1 × 1 × d depth kernel KD

gives the final convolution output.

Y
(h)
i,j =

s∑
l=1

s∑
m=1

Xi−l,j−m,hK
S
(h) l,m, h = 1 . . . d

Yi,j,k =
d∑

n=1

Y
(h−n)
i,j KD

n

It can be shown that DSC can reduce the number of parameters
by a factor 1/s2 for each layer: my network was built using just
2,252 million parameters, as it is reported in figure 6.3 where the
overall architecture is detailed.

6.4 Results and discussion

Table 6.2 and Table 6.3 report the results of the proposed multi-
classifier on the test set. In particular, Table 6.2 reports the ac-
curacy and loss values obtained for single target. The overall per-
formance of the network remains high in terms of global accuracy
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Figure 6.3: Architecture summary.

when analysing each single target: this finding is confirmed by the
high AUC values. In general, sensitivity values are low because
the data set is strongly unbalanced to reflect the true operational
screening conditions.

Table 6.2 reports also the values of the Matthews Correlation
Coefficient (MCC) which is a well known index used for binary
classification that returns a value in [−1; 1], and can be related to
the chi-square statistic for a 2 × 2 contingency table, that is a bi-
nary classifier’s confusion matrix. In particular, the relation with
chi-square statistic is expressed by ‖MCC ‖ =

√
χ2/n where n is

the number of observations so it measures the dependency of the
predictions from the true (i.e. expected) labels. The form of this
indicator is related to the results reported in Table 6.3, which is de-
voted to explain the actual screening capabilities of my model, and
contains both the Enrichment Factors (EF) and the True Positives
versus Positives (TP/P) ratio for each target at different percent-
ages.

EF after x% of the focused library were calculated according to
the following formula

EF =
Nexperimental

x%

Nexpected x0
=
Nexperimental

x%

Nactive · x%

where Nexperimental is the number of experimentally found active
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Table 6.2: Accuracy metrics for all the targets. Best/worst values for each
column are in bold/italic

Target Acc. Loss Sensitivity MCC AUC F1-score
ACK 0.9957 0.0226 0.5000 0.6742 0.9834 0.6463
ALK 0.9930 0.0402 0.6575 0.7913 0.9904 0.7804
CDK1 0.9910 0.0314 0.4537 0.6397 0.9850 0.6059
CDK2 0.9859 0.0431 0.5281 0.6338 0.9845 0.6287
CDK6 0.9966 0.0210 0.5865 0.7523 0.9895 0.7305
INSR 0.9893 0.0329 0.3779 0.5830 0.9858 0.5342
ITK 0.9945 0.0232 0.5886 0.7302 0.9905 0.7154
JAK2 0.9898 0.0472 0.8474 0.9090 0.9950 0.9114
JNK3 0.9967 0.0154 0.5905 0.7610 0.9901 0.7381
MELK 0.9957 0.0229 0.7081 0.8270 0.9897 0.8188
CHK1 0.9895 0.0512 0.6385 0.7650 0.9846 0.7565
CK2A1 0.9942 0.0253 0.5166 0.6944 0.9857 0.6667
CLK2 0.9936 0.0259 0.2255 0.4137 0.9771 0.3485
DYRK1A 0.9916 0.0321 0.4080 0.5987 0.9776 0.5591
EGFR 0.9845 0.0604 0.7536 0.8331 0.9874 0.8357
ERK2 0.9881 0.0563 0.7295 0.8292 0.9886 0.8272
GSK3 0.9843 0.0554 0.5827 0.6892 0.9762 0.6856
IRAK4 0.9936 0.0287 0.7611 0.8611 0.9938 0.8571
MAP2K1 0.9931 0.0319 0.5497 0.7184 0.9795 0.6954
PDK1 0.9945 0.0271 0.6310 0.7757 0.9875 0.7613

structures in the top x% of the sorted database, Nexpected is the
number of expected active structures, and Nactive is total number
of active structures in database[14] . The EF computes the number
of predicted true actives, in decreasing probability order, in a fixed
percentage of the test set. Typical percentages are 5% and 10% but
in this study I tested also the performance at 1%. Such a measure
is intended to provide the number of times a particular screening
procedure performs better than a pure random process.

EF values reported in Table 6.3 are considerably high, and drop
to 9 only at 10%. This result is truly remarkable even though no
drug designer takes into account such large test set percentages.
Moreover, all such values are considerably higher than the ones
considered sufficient for a good model[14] .

I calculated TP/P parameter at different percentages of the test
set as described in section 5.3. The use of the TP/P indicator
explains some controversial EF values. The worst EF values (less
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Table 6.3: True Positives versus Positives ratio and Enrichment Factors com-
puted on the entire test set.

Protein TP/P 1%* TP/P 2%* TP/P 5%* TP/P 10%* EF 1% EF 2% EF 5% EF 10%
ACK 72/106 84/106 95/106 101/106 68 40 18 10
ALK 131/254 202/254 229/254 247/254 52 40 18 10
CDK1 111/205 150/205 189/205 196/205 54 37 18 10
CDK2 118/303 194/303 264/303 289/303 39 32 17 10
CDK6 79/104 90/104 98/104 101/104 76 43 19 10
INSR 110/217 145/217 195/217 206/217 51 33 18 9
ITK 107/158 125/158 148/158 155/158 68 40 19 10
JAK2 134/832 268/832 669/832 804/832 16 16 16 10
JNK3 81/105 88/105 95/105 102/105 77 42 18 10
MELK 130/185 157/185 178/185 181/185 70 42 19 10
CHK1 134/343 233/343 300/343 324/343 39 34 17 9
CK2A1 100/151 117/151 141/151 146/151 66 39 19 10
CLK2 59/102 73/102 87/102 96/102 58 36 17 9
DYRK1A 97/174 126/174 152/174 162/174 56 36 17 9
EGFR 134/702 268/702 586/702 664/702 19 19 17 9
ERK2 133/525 267/525 471/525 505/525 25 25 18 10
GSK3 132/393 226/393 327/393 353/393 34 29 17 9
IRAK4 134/339 263/339 320/339 333/339 40 39 19 10
MAP2K1 118/191 142/191 167/191 178/191 62 37 17 9
PDK1 123/187 149/187 170/187 181/187 66 40 18 10
∗ percentage relative to the evaluated test set evaluated (13400 compounds), i.e 1% = 134

molecules

than 20 at every percentage) are obtained for the JAK2 and EGFR
targets respectively. This result comes from the high abundance
of active molecules in the test set that are much higher than the
the number of ligands considered at each percentage. In fact, the
TP/P ratio reported in the same table confirms that the classifier
correctly prioritizes as many active molecules as the considered test
set percentage for both the target proteins.

Finally, MCC values in Table 6.2 are in line with TP/P values
as it was expected due to the very similar form of these indicators.
In fact, the highest MCC is obtained exactly for the JAK2 target.
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Other research activities

In this chapter I report two small activities done during my PhD
period.

7.1 Drug repurposing application

During the PhD program, I collaborated with the CLAIRE (Con-
federation of Laboratories for Artificial Intelligence in Europe) task
force on the covid-19. The task of our team was to use the molecu-
lar fingerprint approach in drug repurposing. However, the problem
was not a simple one because, as is well known, there are no recog-
nized drugs active against covid-19 infection. The work was mainly
focused on the search for data because drug repurposing, as already
mentioned, is based on the reuse of drugs already approved or in
advanced trials. Since SARS-Cov-2 is a virus of new origin, the
identification of drugs that act directly on proteins involved in the
infection was not trivial.

At the beginning a set of 41 proteins, including viral and host
proteins, directly involved in the infection has been identified, se-
lected and used to carry out a bioinformatic investigation. Starting
from the amino acid sequences of each of these proteins was per-
formed a query on Blast (Basic Local Alignment Search Tool), a
tool provided by NCBI (National Center of Biotechnology Informa-
tion) for the search of sequence similarity. The algorithm used is
blastp and the search was performed on the "non-redundant protein
sequence (nr)" database for the organisms: i) human (taxid:9606)
and ii) virus (taxid:10239) excluding SARS-CoV-2 (taxid:2697049).

93



94 CHAPTER 7. OTHER RESEARCH ACTIVITIES

Class Precision(%) Recall(%) F1-Score(%)
0 85 94 89
1 35 33 34

Table 7.1: Average performance measures by class in the DSC network. Class
0 indicates inactive compounds, and class 1 indicates active compounds.

Results were filtered based on Identity values number of identical
AAs shortest sequence length and the Expect value (E value) a pa-
rameter describing the number of random hits that can be found
when searching for a hit within a sequence of variable length.

The data thus obtained were cross-referenced with the DrugBank
database, succeeding in identifying 5 approved drugs and 19 exper-
imental ones. To enlarge the pool of active compounds a further
screening analysis using the protein interaction dataset provided
by the CLAIRE Task Force for COVID19, in which the "human-
computer interaction" laboratory is actively participating, was con-
ducted. This cross-reference analysis allowed the identification of
all protein interactors (positive or negative), expanding the num-
ber of approved and investigational drugs to 100 and 133, respec-
tively. Starting with these active drugs, the final dataset includes
1153 compounds, with an active to inactive ratio of 1:4 (233 ac-
tive and 920 inactive). Despite great effort to identify molecules
active against covid-19 infection, I could not detect enough active
molecules to perform a deep network training.

Class Precision(%) Recall(%) F1-Score(%)
0 91 83 87
1 50 68 58

Table 7.2: Average performance measures by class in the CNN network. Class
0 indicates inactive compounds, and class 1 indicates active compounds.

Despite efforts to obtain an adequate dataset for training the
networks, I was unable to obtain sufficient numbers to carry out
the training satisfactorily. The tables 7.1 and 7.2 show the results
obtained as a result of the training performed with the available
data. An attempt has been made but, as I expected, it did not
lead to good results. In in table 7.1 were reported DSC results and
table 7.2 CNN results.



95 CHAPTER 7. OTHER RESEARCH ACTIVITIES

7.2 SHAP study

An explainability analysis has been performed to assess the most
relevant features for the classification task, and the results of this
analysis confirm some very recent in vitro studies that outline the
relevance of pharmacophore-like description fingerprints when ad-
dressing bioactivity classification for kinase inhibitors. In order to
accomplish my commitment to explain the role of each fingerprint in
my embedding, I used the well-known SHAP framework to analyze
my trained network. SHAP stands for SHapley Additive exPlana-
tions [60] , and it is a game theoretic approach that was proposed
first by Lipovetsky and Conklin [59] . In this work, the relevance
of each predictor in a linear regression model is measured using the
Shapley Value (SV) imputation that is a method to rank the im-
portance of each player in a multi-player game over all the possible
combinations of players. The authors use the SHAP values as the
unique measure for feature relevance in an additive feature attribu-
tion explainability model, that is defined by a linear combination
of the features to be explained zi weighted by some importance
factors φi. The SHAP value for a feature zi is estimated as the
SV φi of a conditional expectation function E[f(z)|zi] describing
the expected prediction over the entire feature set z conditioned
to zi. Both model agnostic linear explanation and model specific
computation of SHAP values is proposed.

In my case, I adopted the so called Deep SHAP explanation
model that is suited for CNN because it combines SHAP values with
the recursive relevance scores computation proposed in DeepLIFT
[89] . The DeepLIFT explainability model assumes that a difference
∆t = t − t0 in an output neuron between the actual activation t
and a reference one t0 is related to the activation difference ∆xi in
whatever contributing neuron by the summation-to-delta property∑

iC∆xi∆t = ∆t that is a constraint on the relevance scores C∆xi∆t.
Deep SHAP applies the DeepLIFT approach to the expectation
function E[f(z)|zi] reference value.

The results of my analysis are reported in figure 7.1; on the left I
reported the SHAP values for each target and for each fingerprint
averaged on the entire test set separately for each target, while on
the right the CDK1 only analysis is reported as an example of the
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(b)(a)

Figure 7.1: Explainability results using SHAP; (a) average SHAP values; (b)
example of single target explainability analysis for CDK1

results obtained target by target. Here, each fingerprint has been
grouped in 64 bins to enhance readability.
As I expected, SHAP values are arranged in a way that some finger-
prints are relevant as a whole for predicting a target, while others
have no contribution that is all the SHAP values are almost zero for
each bit of the fingerprint. All the targets exhibit the same relevant
fingerprints even if the actual SHAP values differ from each other.

FeatMorgan, Layered and RDKIT fingerprints, showed a major
influence on the prediction results when compared to the others. I
tried to rationalize this observation related to the fingerprint com-
position. In detail, FeatMorgan is a kind of FCFP circular finger-
print where the ligand is characterized by the functional description
of atoms directly related to its binding capability (e.g. hydrogen
donor/acceptor, polarity, aromaticity, and so on). Probably, for
such a kind of classification, not merely based on the chemical path,
but on the ligand capability to bind specific protein residues, such a
kind of ligand description outperforms when compared to the sim-
ple ECFP circular fingerprint, only relative to atom type paths.
RDKIT and Layered fingerprint are both based on substructure
decomposition (e.g. aromatic rings). In a very recently published
work by Zhu et al.[101] the authors ran a chemoinformatic anal-
ysis of 2139 Protein kinases inhibitors and found the majority of
these molecules as “flat” with a very low fraction of sp3 carbons
and a high number of aromatic rings. From the study, it was also
demonstrated that the average weighted hydrogen bond count was
inversely proportional to the number of aromatic rings. In detail, it
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seems like in the binding affinity to protein kinases, there is a cor-
related compensation between H-bond interactions and aromatic
and non-bonded interactions. Such an inverse relationship strongly
suggests the importance of the balanced presence of hydrogen bond
donor and acceptors, and aromatic moieties within the ligand for
the molecular recognition of Protein Kinases inhibitors.
In my opinion, the interpretation of the above-described interaction
elements for kinase inhibitors, is better performed by the FCFP,
RDKIT and Layered fingerprints compared to the other fingerprints
mainly based on the mere description of chemical path, and not on
the pharmacophoric role of the molecular elements.
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Conclusions

Summarizing, the work started with the identification of the group
of fingerprints most suitable to be used simultaneously for classifi-
cation using both machine learning and deep learning techniques,
which brought common results. In the second step I tested the dif-
ferent lengths to get the right compromise between sparsity of the
data (so high lengths) and bit collision (fingerprint rather short).
After that I tested all the possible combinations of fingerprints to
take into account all the different information coming from the vari-
ous descriptors. Starting from the assumption that different finger-
prints describe the same molecule as if they were different "spectra",
because they contain the same information but collected in different
ways along the molecular structure, two different approaches have
been thought. In the first one I implemented a first architecture
composed by 7 feature extractors placed in parallel and then merged
in a single classifier that gave very good results. The second ap-
proach makes use of EMBER, an appropriate molecular embedding
composed of 7 fingerprints arranged as the different channels of a
one-dimensional tensor, which is used as input for a network that
uses the operator Depthwise Separable Convolution to reduce com-
putational complexity. The latter approach was initially tested on
10 target proteins, and given the excellent results I have expanded
the number of targets to 20.

In conclusion, I presented a deep neural architecture for ligand
multi classification as regards their bioactivity on twenty protein
kinase targets. The innovation in my approach is the use of a neu-
ral embedding to represent the ligand’s molecular structure made
by several molecular fingerprints stacked as the channels of the
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input tensor. The key idea behind this embedding is that molecu-
lar fingerprints are computed using the same algorithmic process,
but using complementary information collected from the molecu-
lar structure so they can be regarded as the “spectra” of a sort of
molecular image. I achieved very satisfactory results as regards the
classification task, and in general I obtained a very high capacity
model with a very small number of parameters.
Moreover, I presented an explainability analysis by feature attribu-
tion showing that just three molecular fingerprints play an active
role in classification that are FeatMorgan, Layered and RDKIT.
Our findings confirm very recent studies that outline the relevance
of functional description Fingerprints (i.e. Pharmacophore-like)
when addressing bioactivity classification, especially for kinase in-
hibitors.

From the results obtained with the explenability it is possible to
see that the results reported in the table 4.3 have been confirmed.
In fact my preliminary studies to identify the most performing fin-
gerprint combinations have given as a result the same three fin-
gerprints highlighted by SHAP (RDKit, Layered and FeatMorgan).
This result was obtained with fingerprints of length 256 bits because
the loss of chemical information was balanced by the computational
efficiency of embedding.

Moreover, it is worth noting, how the model called Tuned-MLP-
Out, which already obtained good results in terms of EF and TP/P,
led us on the right track to obtain even better results with the use
of fingerprints as different spectra of the same image. In the table
8.1 I show the comparison of the results obtained for CDK1 with
the respective approaches, where I see the clear improvement.

Table 8.1: True Positives versus Positives ratio and Enrichment Factors com-
puted on the entire test set.

Approach TP/P 1% TP/P 2% TP/P 5% TP/P 10% EF 1% EF 2% EF 5% EF 10%
Tuned-MLP-Out 7/83 14/83 35/83 69/83 8 8 8 8
DSC 111/205 150/205 189/205 196/205 54 37 18 10

The enrichment factor represents the number of times the model
predicts better than a random model. As you can see the approach
with DSC at 1% predicts more than 50 times better than a random
model.
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8.1 Interesting future challenges

Among the main goals I set for myself since the start of my PhD
program, and which I believe I have achieved:

• to have deepened as much as possible the influence of each
molecular fingerprint studied, on the prediction of biological
activity and therefore on the accuracy of screening;

• to have designed a descriptor (EMBER) that can be under-
stood also as an input layer, able to transmit relevant infor-
mation in order to establish the bioactivity of a molecule on
20 protein targets;

• to have designed and implemented a multiclassifier to test EM-
BER with very good results.

Having said that, one of the future goals I’d like to achieve is
the development of a bioactivity classifier for the complete kinase
family. The main issues that will almost certainly arise are, first
and foremost, data availability. Because of the way I structured the
network of multiclassifiers, each molecule given as input must have
bioactivity information on all targets chosen, which is understand-
able given the large number of proteins in the kinase family (about
500). To solve this difficulty, we could build a network with layers
that can handle EMBER, as in the multiclassifier, and a descriptor
that can precisely characterize a more or less tightly around the
protein’s pocket. Even here, the issues are diverse; among the most
pressing are the development of a rigorous descriptor for the pro-
tein’s pocket and the standardization of the data’s size, because it
is well known that working with fixed-size input is more convenient.
Another critical point would be to investigate how an EMBER-like
multispectral approach could apply to other vector representations.
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