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Abstract: As most of the community discovery methods are researched by static thought, some com-
munity discovery algorithms cannot represent the whole dynamic network change process effi-
ciently. This paper proposes a novel dynamic community discovery method (Phylogenetic Planted 
Partition Model, PPPM) for phylogenetic evolution. Firstly, the time dimension is introduced into 
the typical migration partition model, and all states are treated as variables, and the observation 
equation is constructed. Secondly, this paper takes the observation equation of the whole dynamic 
social network as the constraint between variables and the error function. Then, the quadratic form 
of the error function is minimized. Thirdly, the Levenberg–Marquardt (L–M) method is used to 
calculate the gradient of the error function, and the iteration is carried out. Finally, simulation ex-
periments are carried out under the experimental environment of artificial networks and real net-
works. The experimental results show that: compared with FaceNet, SBM + MLE, CLBM, and Pi-
sCES, the proposed PPPM model improves accuracy by 5% and 3%, respectively. It is proven that 
the proposed PPPM method is robust, reasonable, and effective. This method can also be applied to 
the general social networking community discovery field. 

Keywords: temporal networks; community discovery; phylogenetic evolution; planted of partition 
 

1. Introduction 
1.1. Background 

Complex network analysis is an interdisciplinary research field which can be applied 
in a lot of areas such as computer science [1,2] and social, biological and physical sciences 
[3–5], and it is capturing the attention of many scholars. A complex network is a simple 
graph defined as a set of nodes connected by a set of edges. Nodes can represent individ-
uals or organizations. Edges are relational ties between two nodes, e.g., friendship rela-
tionships between two social users. Graphs are one of the most important and powerful 
data structures. Complex network analysis and modeling can be used to reveal patterns 
of social interaction, to study recommendation systems, or protein complexes and protein 
functional modules. By far the most basic tasks in complex networks are node identifica-
tion, link prediction, and information dissemination. These tasks have received extensive 
research and attention. In addition, community structure discovery is also one of the most 
important tasks; it is usually defined as identifying tightly connected subgraphs from a 
complex network. Because communities help to reveal the structure–function relationship 
of the network, it has been studied extensively. For example, communities within cancer 

Citation: Liu, X.; Ding, N.;  

Fiumara, G.; De Meo, P.; Ficara, A. 

Dynamic Community Discovery 

Method Based on Phylogenetic 

Planted Partition in Temporal  

Networks. Appl. Sci. 2022, 12, 3795. 

https://doi.org/10.3390/app12083795 

Academic Editor: Agostino Forest-

iero 

Received: 10 February 2022 

Accepted: 6 April 2022 

Published: 9 April 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2022, 12, 3795 2 of 21 
 

networks mark key pathways associated with cancer progression [6], and the communi-
ties in the multi-layer transportation network correspond to common practices, which 
provides clues for airline management [7]. Therefore, a great deal of work has been carried 
out in the discovery of communities in the network [8–10]. A lot of work has been pro-
posed for community discovery, existing algorithms either optimize predefined quantita-
tive functions or acquire potential feature matrices for community detection. Typical 
methods include modularization-based methods [11], model-based methods [12,13] and 
random-walk-based methods [14–16]. S. Fortunato et al. [17,18] have conducted a com-
prehensive survey. 

However, all these methods assume that the target network is static and ignore the 
timeliness of the network. In reality, many networks from society and nature are dynamic, 
meaning that the network structure changes over time; that is, it performs the dynamic 
network. More specifically, in a dynamic network, nodes may appear or disappear over 
time, and links between two nodes may also appear or disappear. For example, interper-
sonal relations often change due to individual behavior [19]. For another example, tumor 
cell migration leads to metastasis, which is crucial for the diagnosis and treatment of tu-
mors [20]. Therefore, it is worthwhile to track how a community evolves in a dynamic 
network (also known as a dynamic or evolutionary community). 

For dynamic network modeling, the most widely used method is to introduce explicit 
smoothing frameworks, which quantifies the similarity between snapshots in two subse-
quent steps by introducing the Temporal Smoothed Framework (TSF). Various TSF-based 
algorithms have been proposed to evolve the community by extending the static commu-
nity discovery algorithm. For example, for topological connectivity, the Kim-Han algo-
rithm [21] found dynamic communities by optimizing modularity, and the DYNMOGA 
method [22] is presented for the multi-objective genetic algorithm to simultaneously op-
timize clustering accuracy and clustering drift. Regarding matrix decomposition, the 
ESPC method [23] is used with matrix spectrum, the ECKF method [24] is proposed by 
using kernel ENMF, and the Se-NMF method [25] is used by a semi-supervised strategy 
to develop community testing. The Gr-NMF method [26] is adopted by graph-regularized 
NMF for community discovery in evolution. In the probabilistic model: FaceNet method 
[27] is researched by using Maximum a Posteriori (MAP) estimate, DSBM method [28] 
adopted the Bayesian method to obtain the evolving community by extending the random 
block model. According to the existing literature [29], there are six evolutionary events in 
the community (as shown in Figure 1), including birth, death, growth, contraction, merg-
ing, and splitting. Sometimes, a seventh event is added to these, i.e., continuing. Finally, 
an eight event was proposed by Cazabet and Amblard [30] and it is resurgence. A generic 
dynamic community discovery algorithm does not necessarily have to handle all these 
events, which can be differently managed in different works [31]. 
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Constraction
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Birth

Merging

 
Figure 1. 6 evolutionary events in dynamic communities. 
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1.2. Motivation 
While much work has been carried out to address the problem of dynamic commu-

nity discovery, there are still some issues that need to be addressed. 
Firstly, most existing dynamic network models assume that it is a hidden Markov 

structure, in this structure, when the current network state is given, a network snapshot 
at any given time is conditionally independent for all previous snapshots. This approach 
may not be flexible enough to replicate some of the observations in real network data. 

Secondly, the dynamic system is used by filters, even for Gaussian distributions. 
However, after a nonlinear transformation, Gaussian terms are lost. Mean and covariance 
are the only measures computed by the filter. This is the result of a nonlinear transfor-
mation approximated by Gauss, and therefore this approximation may be poor. 

Finally, how to combine the information of the community structure available at the 
previous moment with the information available at the current moment is an important 
question. In the traditional hidden Markov dynamic Bayesian network model, the proba-
bility of an edge appearing in a dynamic network is realized by the estimated state. 

Therefore, this paper proposes a phylogenetic planted partition method, which uses 
the graph optimization strategy to continuously discover the evolving communities. 

1.3. Our Work and Contributes 
The main contributions of this paper can be summarized as follows: 

(1) The time dimension is introduced into the typical stochastic block-model, and all 
states in the whole dynamic network system are treated as variables, and the obser-
vation equation is taken as the constraint between variables to construct an error 
function about the whole dynamic network system. 

(2) By adopting the graph-based optimization strategy, the constraints in the entire mo-
tion trajectory can be considered once. In the linearization process, only the Jacobian 
matrix is calculated, and the calculation process is also relative to the entire motion 
trajectory. Therefore, the entire system evolution process is transformed into the non-
linear system optimization process. 

(3) In natural ecosystems, inspired by the evolutionary thinking of species populations 
and combined with the typical probability model of stochastic block-model in com-
munity discovery, a phylogenetic planted partition method (PPPM) for dynamic 
community discovery is proposed. 

(4) The proposed PPPM method in the two scenarios of artificial network and the real 
network is verified by experiments, which proves that the performance of the novel 
method is better than the four state-of-the-art methods (FaceNet, SBM + MLE, CLBM, 
and PisCES). 

1.4. Organization 
The remainder of this paper is structured as follows: In Section 2, related work is 

discussed; Section 3 introduces the proposed model in detail, describes the proposed 
PPPM method, and gives the derivation process. In Section 4, the experimental results of 
the novel PPPM method in the artificial dynamic network and real dynamic network are 
presented, and then compared with other existing models. Finally, in Section 5, some con-
clusions are given and future directions are discussed. 

2. Related Work 
According to the research of Aynaud et al. [32], the dynamic community discovery 

algorithms can be divided into four categories: coupling network, two-stage algorithm, 
evolutionary clustering, and probability model. However, Hartmann et al. [33] believed 
that all existing dynamic community discovery methods can be identified as online or 
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offline methods. Rossetti and Cazabet [31] proposed a new survey on community detec-
tion in dynamic networks, which proposed the unique functions and challenges of dy-
namic community discovery algorithms. 

The first kind of coupled network-based algorithm firstly builds the network by fus-
ing edges at different times. Then, the classical static community detection algorithm is 
used to find the communities in the coupled network. For example, Agarwal et al. [34] 
discovered the ongoing events in the microblog message flow by adding edges between 
vertex instances at different times to build the coupling network, in which the dynamic 
community corresponds to the community in the built network. Because coupled net-
works cannot fully describe the dynamic characteristics of networks, these algorithms 
have been shown to accurately discover only short-cycle communities. To overcome this 
problem, the second kind of two-stage algorithm separated the community detection from 
the community dynamic, avoiding the coupling of the dynamic network. 

Specifically, these algorithms used static community detection algorithms to find the 
community each time and then connected the community the next two times to extract 
the evolving community. Typical algorithms included GraphScope [35] and TRMMC [36] 
coupled networks and two-stage algorithms that detected dynamic communities in a dy-
namic network by simply extending static community detection methods and detecting 
dynamic communities in each operation dynamic network or static community. In gen-
eral, these algorithms can achieve better performance in the case of weak network dynam-
ics. In this case, the dynamic update method can accurately identify the dynamic commu-
nity without running the community detection algorithm each time, and only need to up-
date the previously discovered community. However, the accuracy of these algorithms is 
low. 

The third type of dynamic community discovery method is related to clustering evo-
lutionary, which is proposed by Chakrabarti et al. [37]. They extracted the implicit com-
munity structure in each snapshot, which is one of the most widely used methods for 
dynamic community discovery. The evolutionary clustering algorithm adopted the as-
sumption of time smoothness. The community structure will not change much over a con-
tinuous-time slice. This time smoothing method can be used to overcome the randomness. 
Compared with other algorithms, the evolutionary community discovery algorithm aims 
to discover a smooth sequence of communities in a series of network snapshots (as can be 
seen in Figure 2). The overall objective function of the evolutionary algorithm can be de-
composed into two parts: Snapshot Cost (CS) and Temporal Cost (CT) [38]. 

   )1(Cost CS CTα α= ⋅ + ⋅−  (1)

Among them, CS measures the adaptability of the community structure and network 
at the time t , while CT measures how similar the two community structures (the com-
munity structure is acquired at the time t  to the structure is obtained at previous time 

-1t ). The parameter α  is for balancing the importance between C S  and CT . By intro-
ducing different object functions based on modularity, normalization of mutual infor-
mation and spectrum clustering et al., this framework has been used in much of the liter-
ature [39,40] to discover communities in dynamic networks. 
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Figure 2. The series of network snapshots. 

Folino and Pizzuti [39] formalized the dynamic community discovery algorithm as a 
multi-objective optimization problem, which maximized the clustering accuracy of the 
current time step and minimized the clustering drift from one time step to one successive 
time step. Ma and Dong [40] proposed two evolutionary non-negative matrix decompo-
sition (ENMF) frameworks and proved the equivalence relation between evolutionary 
module density and evolutionary spectrum clustering. In addition, they introduced a 
semi-supervised approach, which is called sE-NMF, that incorporated prior information 
into the ENMF. 

Chi et al. [23] extended this idea with two frameworks of evolutionary spectral clus-
tering, which are defined as Preserving Cluster Quality (PCQ) and Preserving Cluster 
Membership (PCM). Both frameworks have proposed the optimization and correction 
cost functions, but they differ in how to define the CT. In the PCQ framework, the CT is 
the cost of the clustering results at the time t  applied to the similarity matrix at the time 

1t - . In PCM, the CT is defined as a measure of the distance between the clustering results 
at the time t  and 1t - . In the PCQ: 

a a
´

-

Î
+ - =



1max ( ) (1 ) ( ), .
n k

T t T t T

Z
tr Z W Z tr Z W Z Z Z I  (2)

where 
1tW -
 and 

tW  represent the adjacency matrix at the time 1t -  and t , respec-
tively. 

1   1( ) ttW Wα α− + −  (3)

Finally, the membership of community members can be obtained by calculating the 
eigenvector of Formula (3). 

After the above work, an evolutionary community discovery algorithm is proposed 
to try to optimize the modified cost function in the definition. Since the user definition of 
snapshot and CT of community discovery results varies with community discovery algo-
rithms, the aim of the above work is to solve the problem of how to select the parameter 
a , which can determine how much weight to assign to previous data or community dis-
covery results.  

Xu et al. [41] proposed an adaptive evolutionary clustering algorithm, using the fol-
lowing smooth approximation matrix ˆ tY  to better estimate the network state. 

1ˆ ˆ (1 )t t t t tWa a-Y = Y + -  (4)

where the parameter ta  controls the rate of forgetting past information, so it is also de-
fined as a forgetting factor. 

Ma et al. [26] proposed a non-negative matrix decomposition for co-regularization 
evolution to identify dynamic communities under a time-smoothing framework. 

t t t tO L Q Rb g= + +  (5)

where b  and g  are regularized parameters. 
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In recent years, researchers have proposed some excellent techniques to improve the 
performance of dynamic community discovery algorithms. In the probability model, the 
researchers have put forward an innovative model, and this paper puts forward a new 
dynamic model, which is suitable for dynamic Bayesian networks, namely the system 
evolution partition transplantation model. In this method, the model parameters are 
tracked by using the graph of optimization strategy. Table 1 compares some recent repre-
sentative dynamic social network discovery algorithms based on a probability model. 

Table 1. Comparison of our work with previous model literatures. 

Ref. Year Approach Theory Dataset 
[42] 2015 Maximum Likelihood Estimation Consistency MIT Reality Mining 
[43] 2015 Kalman Filtering + Local Search / Facebook wall posts 

[44] 2016 Expectation Maximization / 
Internet AS graphs, Friend-

ship networks 
[45] 2016 Expectation Maximization Detectability thresholds Synthetic 
[46] 2017 Expectation Maximization Detectability thresholds Synthetic 
[47] 2017 Time-lag corrected Convergence rates Synthetic 

[48] 2018 Aggregating SBM subroutines + MLE Correctness/Stage-wise con-
vergence rates 

Enron emails, Facebook 
friendships 

[49] 2020 Exhaustive grid search Convergence rates Synthetic 

Our work 2022 Graph-based optimization Convergence rates 
MIT Reality Mining, 

Enron emails 

3. Meterials 
3.1. Formal Definition 

In this paper, a novel phylogenetic planted partition model is defined for temporal 
social networks by the following definitions: 

Definition 1. A social network can be represented by a graph, G , on a set of nodes, V , and a set 
of edges, E . Nodes and edges are represented by an adjacency matrix A , where 1ijρ =  repre-

sents the existence of an edge from node i V∈  to node { }j V i∈ − , and 0ijρ =  represents the 

absence of an edge. This paper assumes the network is a directed graph, which is generally ij jiρ ρ≠  

and has no self-loop, namely 0iiρ = . 

Definition 2. The positive integer n  represents the number of nodes, and 1( ,......, )kε ε ε=  is 
the probability vector on [ ] {1,..., }k k=  ( k  is the number of network communities). W  is a sym-
metric matrix whose element is k k×  between [0,1]. ( , )X G  is defined under the Stochastic 
Block-Mode (SBM) ( , , )SBM n Wθ . X  is a n  dimensional random vector; it is independent 
and identically distributed under ε . Let the community set 1( ) ,...,{ }, [ ]r r kC C X C C r k∈= =  
denotes the division of V  into k  communities. In this paper, we use the symbols p  and q  to 
indicate two generic communities, 𝑐  and 𝑐 , where i  and j  are the two nodes of a simple 
graph G  of n  vertices, which respectively belong to 𝑐 (i.e., i p∈ ) and 𝑐 (i.e., j q∈ ) at time 

t . Nodes i  and j  are connected according to a probability t t
i jc c

ε , independently from the other 

node pairs. Therefore, the probability distribution of ( , )X G  [50] is as follows, where ( , )G V E=
. 

| ( )|

1 1
Pr{ } r

i

n k
C x

c ri r
X x ε ε

= =
= = Π = Π  (6)
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1
, ,1

Pr{ | } (1 )ij ij

i j i j

y y
c c c ci j n

E y X x ε ε −

≤ < ≤
= = = Π −  (7)

( , )( , )
, ,1

(1 )
c

pq pqN x yN x y
p q p qp q k

ε ε
≤ < ≤

= Π −  (8)

where ( , )pqN x y  represents the observed value of the number of edges in the partition, which can 

be expressed as ( , )
i j

t
pq ij

c p c q
N x y y

= =

=  ; ( , )
pq

cN x y  represents the probability value of the number 

of edges in the partition, which can be expressed as follows. 

| | (| | 1) / 2 ( , )
( , )

| || | ( , )pq

ppc

pq

p p N x y p q
N x y

p q N x y p q
− − ==  − ≠

 (9)

Equation (8) can be rewritten by: 

, ,
1 1

Pr{ | } exp{ [ ( , ) log ( , ) log(1 )]}
k k

c
pq p q pq p q

p q
E y X x N x y N x yε ε

= =

= = = + −  (10)

Definition 3. Define an evolutionary sequence of discrete time steps for social network (dynamic 
Bayesian network); the nodes and edges may appear or disappear with time. The temporal social 
networks can be expressed as 1 2{ , , , }TG G G , where ( , )t t tG V E= , superscript t  represents the 
time step, tV  and tE , respectively, in the time step are t  collection of nodes and edges. Let 

( )TA  represent the sequence of adjacency matrix on the node-set sequence ( )
1

T T t
tV V== ∪ , and let 

( )Tc  represent the sequence of community member membership vectors of the node. For this dy-
namic social network, the probability distribution of edges can be defined as: 

1 1Pr (1 ) (1 )t t t d t d
pq pq pq pqε ε ε ε− + − += − −  (11)

For any pair of nodes i p∈  and j q∈  at 1t −  and t , s.t. 1 1t
ijρ − = . Namely, there 

is an edge from node i  to the node j  at the time 1t −  and t
ijρ  is Independent Identi-

cally Distributed (IID). The same is true for 1=0t
ijρ − . The mapping process of random sam-

pling and probability allocation is shown in Figure 3. 

w

i j

( , )w i j

( , )G i j

( , )i j
 

Figure 3. Randomly sample ( , )i j  and allocate ε  with probability 1ijρ = , ~ ( )t tij i j

t t
c cBernoulliρ ε . 

Figure 3 shows the hypothesis of this paper. There are only two possibilities for ran-
dom events: existence or non-existence of edges. In this paper, we randomly sample ( , )i j  

and allocate ε , with probability 1ijρ = , ~ ( )t tij i j

t t
c c

Bernoulliρ ε . Each term of the adjacency 
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matrix tA  is independent. Therefore, Equation (10) can be rewritten as the likelihood 
form with parameter tW . 

1 1
( ; ) exp{ [ log log(1 )]}

pq pq pq

k k
t t t t t t

pq
p q

f A W α ε β ε
= =

= + −  (12)

where 
pq

tα  and t
pqβ  are, respectively, denoted as follows: 

| | (| | 1) / 2
    

| || |

pq
i j

t t
ij

c p c q

t
pq

p p p q
p q p q

α ρ

β

∈ ∈

 =

 − = =  ≠ 



 
(13)

3.2. A Migration Partitioning Model for Phylogenetic Evolution 
The proposed dynamic community discovery method can track the status of the tar-

get over time to discover community results. Therefore, this paper constructs an observa-
tion model, which can be described by 

, 0,1,2,...t t tS W Z t= + =  (14)

where tZ  is an independent Gaussian noise matrix with zero mean and variance 
2( ) (1 ) /t t t t

pq pq pq pqσ ε ε β= − . This matrix reflects the transient variations caused by noise. In 

this paper, we assume that 1, ,...t tZ Z −  are independent of each other. 
In the dynamic system model, ( )tS  expresses the set of observed values, and ( )tW  

represents the state of the sequence of observed values that generate noise in the dynamic 
system. This paper refines the final model by modeling the evolution of specified states 
over time. Because tε  is a probability between 0 ~1, and this paper deals with tε  in 
logarithmic form, that is, log( / (1 ))t t t

pq pqy ε ε= − , then a time-series dynamic observation 
model of system evolution can be constructed as follows: 

1t t t ty H y z−= +  (15)

where tH  denotes the state transition model, ty  represents the vector metric represen-
tation of matrix tW , tz  implies the process noise, tz  is a random vector with zero mean 
and tΘ  is the covariance matrix. According to the vectorization expression of tS  and 
observation noise tZ , the observation model (15) can be rewritten as: 

( )t t ts g y z= +  (16)

The logical activation function ( )g ⋅  is handled by the Sigmod function, which is: 

1( )
1 xg x

e−=
+

 (17)

This paper assumes that the initial state of the dynamic system obeys the Gaussian 
distribution, namely, 0 0 0~ ( , )y N μ Θ . The nonlinear optimization problem in the time-
series dynamic observation model of system evolution is constructed in this paper, which 
is the problem of calculating the Maximum a Posteriori (MAP) of tc , while for Gaussian 
distributions, the maximization problem can be translated into the negative logarithm 
problem of minimizing the target probability tc . Therefore, Equation (12) is converted 
into the following logarithmic likelihood: 

1 1

ˆ log ( | )

   { log ( ) log[ (1 )]}
pq pq pq

t t t

k k
t t t t

pq
p q

c f A y

h y h yα β
= =

=

= + −
 (18)

The following error function will be constructed: 
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1( ) ( , ,0)t t t te y y f y v−= −  (19)

Then, minimize the quadratic form of the error function: 

1

1

1min ( ) ( ( ) ( ) ( ))
2

T
t T t t

t
J y e y W e y−

=

=   (20)

Finally, make the first-order expansion of ( )f x : 

( ) ( ) ( )f x x f x J x x+ Δ ≈ + Δ  (21)

where ( )J x  is the derivative of ( )f x  with respect to x , which is actually a matrix of 
m n× , which is also Jacobian. The derivative problem can be turned into a recursive ap-
proximation problem; therefore, L–M method is adopted in this paper to determine the 
step size xΔ , the L–M method avoids the non-singular and morbid state properties of the 
coefficient matrix of linear equations and can provide a more stable and accurate incre-
ment xΔ . In the previous methods, as the approximate second-order Taylor expansion 
adopted in the GaUSs-Newton method could only have a good approximation effect near 
the expansion point, a trust-region is added to xΔ . It should be noted that the trust-region 
should not be so large that the approximation is inaccurate. The approximate value in the 
trust region is considered to be valid; when it is outside of this region, the approximation 
might go wrong. The scope of the trust region is determined by the difference between 
the approximate model and the actual function. Determine rules: if the differences are 
small, let the scope be as large as possible; if the difference is large, narrow the approxi-
mation. Therefore, Equation (22) is used to judge whether the Taylor approximation is 
good enough or not. 

( ) ( )
( )

f x x f x
J x x

ρ + Δ −=
Δ

 (22)

where the numerator ρ  is the decreasing value of the actual function, and the denomi-
nator is the decreasing value of the approximate model. If ρ  is close to 1, then the ap-
proximation is good. If ρ  is too small, meaning that the actual reduced value is far less 
than the approximate reduced value, then the approximate result is considered to be poor 
and the approximate range needs to be narrowed. On the contrary, when ρ  is large, it 
means that the actual decline is larger than expected, and the approximate range can be 
enlarged. 

Because the temporal dynamic observation model of system evolution constructed is 
nonlinear and d / df x  is not easy to obtain, this paper intends to adopt an iterative 
method (if there is an extreme value, then convergence to approximation) to converge the 
approximation. The steps are shown in Algorithm 1. 
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Algorithm 1: Main procedure of the iterative method 

1. Given an initial value 0x , radius r  and parameter k 

2. for the k-th iteration, solving: 

21min || ( ) ( ) ||
2k

k k kx
f x J x x

Δ
+ Δ , s. t. 2|| ||kD x rΔ ≤  

3.   Compute ρ  

4.     if 3 / 4ρ >  

5.        2r r=  

6.     else if 1/ 4ρ <   

7.        0 .5r r=  

8.   1k k kx x x+ = + Δ  

9.   if convergence 
10.    break 
11. end 
where the limiting condition r  is the radius of the trust region. In Equation (21), the in-
cremental range is limited to a sphere of radius r , which is seen as an ellipsoid after 
multiplying by D . D  is taken as a non-negative diagonal matrix, usually with the square 
root of the diagonal element 

TJ J , and it is equivalent to directly constraining xΔ  in the 
ball. 

2 21min || ( ) ( ) || || ||
2 2k

k k kx
f x J x x D xλ

Δ
+ Δ + Δ  (23)

where λ  is the Lagrange multiplier. Finally, this paper needs to obtain the gradient by 
solving the objective function (23). Since it is an optimization problem with inequality 
constraints, the Lagrange multiplier is used in this paper to transform the objective func-
tion into an unconstrained optimization problem. Additionally, then the target function 
is transformed. 

Let us expand out the square of the target function of (23). 

2 2

2
2

1 || ( ) ( ) || || ||
2 2

1 ( ( ) ( ) ) ( ( ) ( ) )
2

   + ( ) ( )
2

1= (|| ( ) || 2 ( ) ( ) ( ) ( ) )
2

  ( )
2

k k k k

T
k k k k k k

T
k k

T T T
k k k k k k k k

T T
k k

f x J x x D x

f x J x x f x J x x

D x D x

f x f x J x x x J x J x x

D x D x

λ

λ

λ

+ Δ + Δ

= + Δ + Δ

Δ Δ

+ Δ + Δ Δ

+ Δ Δ

 (24)

Then, solve the derivative of kxΔ  in Equation (24) and set it to zero: 

2 ( ) ( ) 2 ( ) ( ) 2 0T T T
k k k k kJ x f x J x J x x D D xλ+ Δ + Δ =  (25)

The following equations are obtained: 

( ) ( ) ( ) ( )T T T
k k k k k kJ x J x x D D x J x f xλΔ + Δ = −  (26)

Let ( ) ( )T
k kJ x J x H= , the right-hand side of the equation be defined as g , and the 

equation can be simplified as follows: 
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( )T
kH D D x gλ+ Δ =  (27)

In the initial time step of the algorithm, the proposed PPPM method is initialized 
with the spectral clustering algorithm; that is, the initial estimation of community is gen-
erated at the time 1t = . The advantage of using the spectral clustering algorithm as the 
initialization algorithm here is that it can prevent the local search from falling into tc  
poor local maximum in the initial time step. The main procedure of the proposed PPPM 
method can be shown in Algorithm 2. 

Algorithm 2: The main procedure of PPPM 

Input: 1 2{ , , , }TG G G G=  , k//dynamic networks and the number of communities 

Output:  tc //the community 

1.  at 0t =   

2.    Initialize 0 c  by using spectral clustering applied on 0 W  

3.  at 0t >  

4.    if iteration  ≤  max iteration//hill-climbing algorithm 

5.     0 ̂ tc ← −∞ //negative Log of the best adjacent case till to a constant 

6.      t tc c← //currently being traversing case 

7.    for  1i =  to  tV  do//traverse all adjacent solutions 

8.      for  1j =  to  k ; s.t.  t
ic j≠  do 

9.          t
ic j← //change community of a node 

10.        compute  ty  using Equations (15)–(17) 

11.           compute Log 1̂ tc  using (18) 

12.        if 1 0ˆ ˆ t tc c>  then//current case is the best case 

13.          0 1ˆ ˆ ( , ) ( , )t t t tc c c c←   

14.         t t
i ic c← //refresh community of current node 

15.        if 0ˆ ˆ t tc c>  then//the best adjacent case is better than the current best case 

16.          0ˆ ˆ ( , ) ( , )t t t tc c c c←  

17.        else//achieve a minimum 
18.          break 
19.     end 
20.  end 

21. return  tc  

4. Results 
In order to prove the rationality of the novel proposed method, four algorithms are 

compared, namely FaceNet [27], SBM + MLE [48], CLBM [49], and PisCES [51]. Firstly, 
FaceNet was chosen because it was the first proposed dynamic web community discovery 
algorithm that could be compared as a baseline; secondly, SBM + MLE and CLBM were 
used because they are the latest proposed probabilistic model-based algorithms; finally, 



Appl. Sci. 2022, 12, 3795 12 of 21 
 

PisCES is also a recently proposed non-probabilistic model algorithm. In this paper, the 
indicators of the following two evaluation models are adopted. 
(1) Adjust Rand Index (ARI), [ 1.1]ARI ∈ − , if the value of ARI is closer to 1, it means 

better results. 

E( )
max( ) E( )

RI RIARI
RI RI
-

=
-

 (28)

where E( )RI  represents the expected value of RI  and max( )RI  denotes the maximum 
value of RI . 
(2) Mean-squared errors (MSE), the smaller the value, the smaller the error, that is, the 

better the result. 

2

1

1 ˆ( )
=

= -å
m

i i
i

MSE y y
n

 (29)

where iy  is the real data, ˆiy  expresses the fitting data, and n  implies the number of 
samples. 

Figure 4 can simulate the evolution process of an artificial dynamic network over 
time. The network consists of 156 nodes and 614 edges, and a total of eight time steps are 
set. 

8=t1=t 2=t 3=t 5=t4=t 6=t 7=t
... ... ... ... ... ... ...  

Figure 4. The simulation of the evolution process of an artificial dynamic network. 

In Figure 4, there are eight rhombic blocks, and the whole dynamic social network 
can be represented by the evolution of these eight rhombic blocks over time. The upper 
part represents the dynamic network of a time step, the lower part denotes the community 
where the current time step may exist, and the lower part is composed of the nodes with 
the highest degree of nodes of each color in the network absorbing nearby nodes to form 
larger nodes. (Absorption rule: connected with the node with the greatest degree and with 
the same color). For example, in the lower half 1t = , there are three submodules, each of 
which represents a possible community. More specifically, each submodule can be com-
posed of nodes of different colors and sizes, and each color can represent nodes with the 
same characteristics in the dynamic social network. it can be seen that the community 
structure of dynamic social networks is phylogenetic over time. 

4.1. Synthetic Networks 
The artificial network is generated in this paper, which consists of 128 nodes, initially 

divided into four communities, where each community has 32 nodes. At the initial time 
step, the edge probability of the system evolution migration partition is set as 
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1 0.3109ppε =  and 1 0.0765pqε =  ( 1, 2 4, , 3,p q =  and p q≠ ). The initial covariance 1Θ  is 
set to the identity matrix 0.04I . The state vector G evolves according to the Gaussian 
random walk model, namely tH I=  in Equation (15). This paper generates 25 and 50 
time steps. At each time step, nodes are randomly selected to leave their communities and 
randomly assigned to one of the other three communities. Table 2 statistically compares 
the proposed PPPM method with the average ARI experimental results of multiple pa-
rameters of four representative models in an artificial network environment. 

Table 2. The results of the proposed PPPM and representative model on the Mean ARI (synthetic 
data). 

Time 
Step Random Rate Proposed PPPM PisCES CLBM SBM + MLE FaceNet 

25 10% 
0.65702 0.50409 0.48838 0.56099 0.46667 

50 0.56630 0.38265 0.34544 0.49414 0.34324 
25 

20% 
0.72236 0.57972 0.54694 0.66961 0.50949 

50 0.94401 0.90616 0.89504 0.92753 0.88592 
Mean 0.72242 0.670 0.56895 0.663068 0.55133 

In Table 2, bold font indicates that the result is the best. It can be clearly seen that the 
proposed PPPM method has the best performance under all parameters. It can be calcu-
lated that the average performance of the novel method is improved by 0.05 compared 
with the other four best models. 

Figure 5 shows the comparison of average ARI results between the proposed method 
and four representative models in an artificial network environment. 

(a) (b)

(c) (d)  
Figure 5. Comparison of the proposed model with 4 different models on Mean ARI (synthetic net-
work). (a) indicates that the time step is 25 and the randomly selected parameter is 10%, (b) indicates 
that the time step is 50 and the randomly selected parameter is 10%, (c) indicates that the time step 
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is 25 and the randomly selected parameter is 20%, (d) indicates that the time step is 50 and the 
randomly selected parameter is 20%. 

As shown in Figure 5a, 25 time steps are generated by the artificial network. On each 
time step, the randomly selected parameter is set to 10%. In this experiment, the parame-
ters of the noise item are changed at the 15th time step (the left line) and set back to the 
original state at the 16th time step (the right line). It is evident that in the 15th time step, 
the only two models with SBM and PPPM + MLE line charts show the correct change in 
trend, i.e., a downward trend, and the proposed PPPM method declines faster, and the 
increasing trend of PisPCES, CLBM, and FaceNet are unaffected and keep the previous 
state, after the 16th time step, which also can obviously show that compared with the other 
four kinds of models, the novel method callback trend is more obvious. This indicates that 
the proposed novel method has a more consistent response to noise terms. 

In Figure 5b, the artificial network generates 50 time steps, randomly selects param-
eters and sets them to 10%, changes the parameters of the noise item at the 20th time step 
(the left line), and sets them back to the original state at the 21st time step (the right line). 
It is evident that in the 20th time step, the only two models with PPPM and CLBM line 
charts show the correct change trend, i.e., a downward trend, and PPPM declines faster, 
and PisPCES and FaceNet are on the rise, with SBM CLBM + MLE remaining unaffected 
and they to keep the previous state, after the 16th time step, which also can obviously 
show that compared with the other four kinds of models, PPPM callback trend is more 
apparent in terms of reverting to the previous state, which shows that this paper proposed 
the model of response that is more consistent in noise. 

In Figure 5c, the artificial network generates 25 time steps, randomly selects param-
eters and sets them to 20%, changes the parameters of the noise item at the 15th time step 
(the left line), and sets them back to the original state at the 16th time step (the right line). 
It is obvious that at the 15th time step, the line graph of all models shows the correct trend 
of change, namely the downward trend. It is worth noting that the downward trend of 
PPPM is the most obvious. After the 16th time step, it is also obvious that compared with 
the other four models, the proposed novel method has a more obvious callback trend, 
which also indicates that the novel method has a more consistent response to the noise 
term. 

Figure 5d shows that the artificial network generates 50 time steps, randomly selects 
the parameters and sets them to 20%, changes the parameters of the noise item at the 20th 
time step (the left line), and sets them back to the original state at the 21st time step (the 
right line). It is evident that in the 20th time step, only two models with PPPM and FaceNet 
line charts show the correct change trend downward trend, and PPPM decline faster, 
while the remaining three kinds of model, CLBM, SBM + MLE, PisPCES, are not affected, 
and keep the previous state; after the 16th time step, PPPM and FaceNet all can to go back 
to the previous state, which demonstrates that the proposed method has a more consistent 
response in noise. 

In conclusion, in the artificial network, this paper proposed a dynamic community-
found PPPM method compared with the other four kinds of a typical model. The model 
is tested in the perturbation parameter test (the noise is changed in a particular time step). 
The prediction accuracy of the model index (ARI) increased by 5% on average, and the 
experimental results show that the proposed model is robust. 

4.2. Real-World Networks 
4.2.1. MIT Reality Mining 

This experiment is conducted on the MIT dataset [52]. The dataset is collected by 
recording the mobile phone activity of 94 students and employees over a year. The dataset 
built a dynamic network based on physical distance, which is measured by scanning 
nearby Bluetooth devices every 5 min. Data collected near the beginning and end of ex-
periments with low participation rates are excluded in this experiment. Each time step 
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corresponds to one week, so there are 37 time steps between August 2004 and May 2005. 
Figure 6 shows the mean-variance error results of the proposed novel method and four 
representative models under the artificial network. 

 
Figure 6. Comparison of the proposed method with 4 different models on MSE (synthetic network). 

Figure 6 shows that, under the MSE evaluation index, the smaller the error, the better 
the result; that is, the closer the model image is to the x-axis. Obviously, compared with 
other colors (the other four models), the image with blue color (the proposed method in 
this paper) is closer to the x-axis; that is, the proposed PPPM method has a lower MSE 
value and a smaller error. Table 3 compares the average ARI results of the proposed 
method with those of the four representative models in the real network (MIT reality min-
ing) environment. 

Table 3. The results of the proposed PPPM method and representative model on the Mean ARI (real 
data). 

 FaceNet PPPM SBM + MLE CLBM PisCES 
Max 0.8991 0.9555 0.8678 0.8876 0.9412 
75% 0.7125 0.8005 0.7856 0.6258 0.7811 

Median 0.4902 0.6523 0.6215 0.4981 0.6536 
25% 0.3154 0.5111 0.4992 0.2314 0.4902 
Min 0.1002 0.40 0.2671 0.1487 0.3243 

In Table 3, the bold font shows that the result is the best, you can clearly see that the 
proposed PPPM in all parameters (the maximum value; the first 75% of the value; the 
median; the first 25% of the value; minimum value) cases are the best and clear, the aver-
age performance of PPPM performance (median) than the best model is increased by 3% 
in the other four. Figure 7 shows the comparison of MARI values on the MIT dataset be-
tween the proposed method and four state-of-the-art models. 
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Figure 7. Comparison of the proposed model with 4 different models on MARI (reality network). 

In Figure 7, the upper and lower edges of each box in the boxplot represent 25% and 
75% values, respectively, and the middle red line denotes the median. It is obvious that 
PPPM, SEM + MLE, and the three boxes perform better than the other two model boxes. 
Among the three models with better performance, the PPPM box position is slightly 
higher than that of SEM + MLE and PisCES boxes, and the median value is also slightly 
higher than that of SEM + MLE and PisCES models. In conclusion, compared with the 
other four representative models in the real network, the proposed dynamic community 
PPPM method performs better under the two evaluation indexes of prediction accuracy 
and error. 

4.2.2. Enron Email Data 
The experiment is conducted on the dynamic social network, which is built by Enron 

[53], and it consisted of about 500,000 emails between 184 Enron employees from 1998 to 
2002. The directional edge between the employee and the time point occurs if at least one 
email is sent within the first week. Each time step corresponds to an interval of 1 week. 
This dataset does not distinguish between emails sent to “recipients,” “CC” or “BCC.” In 
addition to email dataset, most employee roles (such as CEO, president, manager, em-
ployee) exist within the company and they are used as known communities. The first 56 
weeks and the last 13 weeks are filtered because only a few emails are sent. Figure 8 com-
pares the estimated community probability between a normal week and an event week. 
The higher the probability, the higher the community activity. Both the x-axis and the y-
axis denote the estimated communities, and the color blocks on the diagonals express the 
activity within each community, and the color blocks of the diagonals imply the activity 
between each community. 
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Figure 8. The comparison of community probability in normal week and event week. (a) indicates 
the normal week(week 59), (b) indicates the event week (the 89 weeks when CEO Jeffrey resigns). 

As shown in Figure 8a, in a normal week (week 59), the president community is the 
most active, followed by managers and employees, and the CEO community is the least 
active. It is also worth noting that from the color block distribution of managers and em-
ployees, the two communities may merge into one large community. This phenomenon 
can be reflected in the fact that communication between department managers and em-
ployees is usually close, and managers and employees are more likely to get along with 
each other. As shown in Figure 8b, in the event week (the 89 weeks when CEO Jeffrey 
resigns), the most active community is that of the managers, followed by president com-
munity, and the brightest color block is the managers to the employee community. This is 
reflected in the fact that in real life when CEOs resign, the discussion is most intense 
among managers because it is directly related to their personal interests. Discussions be-
tween managers and employees also proliferate for the same simple reason that it is indi-
rectly related to the employees’ personal interests. Figure 9 reveals the estimated edge 
connections between communities in Enron’s email network under the proposed dynamic 
community’s discovery approach PPPM and shows a 95% confidence interval (note: the 
lines on the left and right of the figure are for weeks 59 and 89, respectively). 
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Figure 9. Probability of edges between communities on the Enron mail. (a)–(f) are the edge proba-
bilities between different roles. 

As shown in Figure 9a, it is the edge probability of presidents to CEOs; it can be seen 
that the presidents to CEOs edge probability increased slightly at week 59 (normal) and 
89 (Jeffrey CEO resigned), which corresponds to presidents to CEOs activity (increased) 
from Figure 8a,b. Figure 9b shows the side probability within the president community. 
In the 59th and 89th weeks, the side probability inside the community shows a downward 
trend. This also corresponds to the active state (decreased activity) within the president 
community from Figure 8a,b. Figure 9c,d show the side probabilities between managers 
and the manager community and between the managers and the employee community, 
respectively. It can be seen that in the 59th and 89th weeks, the changing trend of the side 
probabilities of these two communities is consistent with that in Figure 9a. 

Similarly, this change also corresponds to the changes in active state between man-
agers and manager community and the employee community (increased activity) from 
Figure 8a,b. Figure 9e shows the edge probability between the employees and the man-
ager community. It is not difficult to see that there is no obvious trend of change in week 
59 and 89. Similarly, this situation also corresponds to the consistent change in the active 
state between the employees and the manager community from Figure 8a,b (there is no 
significant change in the activity). Finally, Figure 9f shows the edge probability between 
employees and the employee community. In week 59 and 89, similarly, the changing trend 
of edge probability of these two communities is consistent with the change in Figure 9b; 
namely, it displays the downward trend. At the same time, it also corresponds to the con-
sistent change in active state between employees and the employee community from Fig-
ure 8a,b (decreased activity). 

To sum up, the proposed PPPM method can well reflect some phenomena existing 
in the real network, and the probability estimated by the novel method can make rela-
tively consistent predictions with the advance of time and the occurrence of specific 
events. 
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5. Conclusions 
The proposed model has practical theoretical and practical significance to mine and 

it also simulates deeper hidden information that is present in dynamic social networks. 
At present, the dynamic social network community discovery method cannot effectively 
represent the entire dynamic network evolution process. Therefore, inspired by the evo-
lution theory of natural biosensors, this paper proposes a community discovery method 
based on phylogenetic planted partition. Firstly, the time dimension is added to the trans-
plant partition model, all states in the whole dynamic network system are treated as var-
iables, the observation equation is used as a constraint between variables, and an error 
function about the whole dynamic network system is constructed. Then, the quadratic 
form of the error function is minimized, which can abstract the observation results of the 
network more realistically. Secondly, a graph optimization strategy is used to consider 
the constraints in the whole motion trajectory at one time, and the Jacobian matrix is cal-
culated during the linearization process. Because the calculation process is relative to the 
whole motion trajectory, the whole system evolution process is transformed into a non-
linear system optimization process. The gradient of the error function is obtained by using 
the L–M method, and then the iteration is carried out according to the direction of the 
gradient; finally, the proposed method is compared with four state-of-the-art representa-
tive models under two scenarios of artificial network and real network. The experimental 
results show that the PPPM method has better performance than the other four repre-
sentative models in building a dynamic network model and mining dynamic network 
hidden information. 

Next, this paper will consider how to integrate the multi-layer model mechanism into 
the proposed model and will study dynamic network hiding information with multi-layer 
information in future research. 
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