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Abstract. Ground state energies are obtained using the unrestricted Hartree–
Fock (HF) method for up to four interacting electrons parabolically confined in a
quantum dot subject to a magnetic field. Restoring spin and rotational symmetries
we recover Hund’s first rule. With increasing magnetic field, crossovers between
ground states with different quantum numbers are found for fixed electron number
that are not reproduced by the unrestricted HF approximation. These are consistent
with the ones obtained with more refined techniques. We confirm the presence
of a spin blockade due to a spin mismatch in the ground states of three and four
electrons.
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1. Introduction

In recent years, semiconductor quantum dots [1] have been the subject of many experimental
and theoretical investigations. Their electronic properties can be controlled with a high accuracy
by applying external gate voltages and magnetic fields. Circular dots are especially interesting.
At low magnetic field B, the addition energy of a two-dimensional circular dot has been found
to exhibit pronounced peaks for N = 2, 6, 12 electrons [2]. This suggests that levels group
themselves into shells, in analogy with atoms and nuclei and that closed-shell configurations
are particularly stable. The behaviour of open-shell states has been found to be consistent with
Hund’s first rule [3]. At nonzero magnetic field, transitions between ground states involving total
spins and angular momenta have been observed [4]–[6]. These have a profound effect on the
transport properties of a quantum dot. For instance, if the total spins of two ground states with
N and N + 1 electrons differ by more than h̄/2, spin blockade of electron transport is predicted
[7]. This has been recently observed in the conductance of quantum dots [8].

Theoretically, the electronic structure of quantum dots has been studied using many different
techniques (see [9] and references therein). Exact diagonalization (ED) [10]–[18], configuration
interaction (CI) [19, 20], stochastic variational method [21] and the pocket state method [22]
allow ground and excited state energies and their quantum numbers to be calculated with very
good accuracy. Also quantum Monte Carlo (QMC) methods [23]–[27] have been employed: they
provide accurate estimates for ground and excited state energies, although total spin symmetry is
not always preserved [25, 26]. By means of all these techniques, shell structure and Hund’s rule
have been analysed in detail. In addition, ‘magic’ values for the total angular momentum have
been predicted to occur for dot states with a given total spin. They occur if electrons in a quantum
dot strongly interact and arrange themselves in a rotating Wigner molecule [13, 26] [28]–[31].
All the above methods are computationally very expensive and can be used for relatively low
electron numbers N � 13: only with Monte Carlo methods have electron numbers up to N = 24
been reached [24] at zero magnetic field.

Other methods are used for treating systems with larger electron numbers, like the Hartree–
Fock (HF) approach [32]–[38] and density functional theory [39]–[42]. They generally provide
less accurate estimates of the ground state energy and the resulting wavefunctions can have
unphysically broken symmetries. The HF methods are paradigmatic, in that the variational ground
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state wavefunction is a single Slater determinant which does not properly include correlations
and in general is not an eigenfunction of the total spin [43]. In contrast with space restricted
HF (RHF) methods, space unrestricted HF (UHF) methods [32, 34] systematically allow for
symmetry breaking allowing, as a starting point for the calculations, wavefunctions without
rotational invariance even in the case of circularly symmetric dots. While UHF yields a lower
estimate for the ground state energy, it can have severe drawbacks when considering physical
properties of the ground state like the total spin. For instance, UHF calculations sometimes fail
to predict Hund’s rule, in contradiction to experiments, and in contrast to results obtained with
other methods. In addition, wavefunctions with broken symmetries do not allow the total spin
and the angular momentum to be determined. Methods to restore the correct symmetries were
pioneered in the 1950s [44]–[46] and were used in the context of quantum dots, mostly for the
rotational symmetry [47]–[51]. Restoration of the spin symmetry in quantum dots has received
much less attention [47].

In this paper, we apply a systematic projection procedure to restore both the spin and the
rotational symmetries of ground state variational wavefunctions obtained by UHF calculations
for quantum dots with up to four electrons, including a magnetic field. It is our aim to show
that, after all the symmetries are restored, the wavefunctions are considerably improved and
show several physical features which are not reproduced by the straightforwardly applied UHF
method. Restoring symmetries introduces correlations, absent within the single UHF Slater
determinant, leading to better energy estimates.

We demonstrate the efficiency and accuracy of the projection procedure by comparing our
results with those of the methods mentioned above. The main findings are: (i) at zero magnetic
field, Hund’s first rule is recovered for four electrons which has been claimed earlier to be violated
by UHF [32]; (ii) for nonzero magnetic field, many crossovers between ground states with
different total spins and angular momenta of up to four electrons are found that are completely
missed by using the HF method alone.

The paper is organized as follows. In section 2, the UHF procedure is briefly sketched,
emphasizing the role of broken symmetries. In section 3, the projection techniques employed in
the symmetry restoration are discussed. Results for zero and nonzero magnetic field are discussed
in section 4. The paper is concluded by pointing out the perspectives for obtaining results for
higher numbers of electrons that are not accessible by other methods.

2. The unrestricted HF approximation

The Hamiltonian for a system of N interacting electrons, parabolically confined in the x–y-plane
and subject to a perpendicular magnetic field B = Bez (ez is the z-axis unit vector, here and in
the following h̄ = c = 1) is

H =
N∑

i=1

H0(ri, pi, szi) +
∑
i>j

V(ri − rj), (1)

where

H0(r, p, sz) =
[
p + eA(r)

]2

2m∗ +
m∗ω2

0

2
r2 + g∗µBBsz, (2)
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with Coulomb interaction potential V(r) = e2/4πε0ε|r|, B = rotA, effective electron mass
m∗, confinement frequency ω0, effective g-factor g∗ and the Bohr magneton µB. The z

component of the ith spin is szi = ±1/2. Furthermore, −e is the electron charge and ε0 (ε)
the vacuum (relative) dielectric constant. The Hamiltonian (1) commutes with the total angular
momentum L = l1 + · · · + lN (z component in two dimensions), the z-component of the total spin
Sz = sz1 + · · · + szN and the total spin S = s1 + · · · + sN . The single-particle term H0 is exactly
diagonalizable. It yields the Fock–Darwin (FD) spectrum

εn,m,sz = � (2n + |m| + 1) +
ωc

2
m + g∗µBBsz, (3)

with the corresponding harmonic eigenfunctions φn,m,sz(r) [52]. Here, n and m are principal
and angular momentum quantum numbers. Further, we introduced the cyclotron frequency
ωc = eB/m∗, and the effective confinement frequency � = (ω2

0 + ω2
c/4)1/2.

When including interactions, the problem is in general not solvable. Here, we deal with the
electron interactions by using as a starting point the HF approximation. The interacting, many-
body ground state wavefunction is written as a single Slater determinant consisting of N orbitals
of the form ψsz(r), assumed to be eigenfunctions of sz

ψ
sz
i (r) = ai(r)αδsz,+1/2 + bi(r)βδsz,−1/2, (4)

with a, b denoting the spatial parts, and α, β the spinors corresponding to sz = ±1/2, respectively.
Denoting N+ and N− the number of spin up and spin down orbitals, respectively, the Slater
determinant is ∣∣�Sz

〉 = (N!)−1/2det{a1α, . . . , aN+α, b1β, . . . , bN−β}, (5)

the eigenfunction of Sz. Slater determinants are not in general eigenfunctions of S2, unless
|Sz| = N/2 when the HF solution has total spin quantum number S = N/2. Thus, HF solutions
with Sz < N/2 are not consistent with the spin symmetry of the Hamiltonian. This is known
as spin contamination [43]: a single Slater determinant is in general a superposition of many
eigenfunctions with different total spins but with a given Sz.

The determinant is variationally optimized in order to minimize the energy

ESz =
〈
�Sz

∣∣ H ∣∣�Sz
〉

〈
�Sz

∣∣ �Sz

〉 , (6)

giving rise to the well known N coupled integro-differential equations for the orbitals ψ
sz
i (r),[

H0(r) +
∫

dr′ρ(r′)V(r − r′)
]

ψ
sz
i (r)

−
Nsz∑
j=1

[∫
dr′ψsz∗

j (r′)ψsz
i (r′)V(r − r′)

]
ψ

sz
j (r) = E

sz
i ψ

sz
i (r), (7)

where Nsz = N+δsz,1/2 + N−δsz,−1/2 and the electron density is

ρ(r) =
∑

sz=±1/2

Nsz∑
j=1

∣∣ψsz
j (r)

∣∣2
. (8)

New Journal of Physics 9 (2007) 93 (http://www.njp.org/)

http://www.njp.org/


5 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Within a given sector with fixed Sz, equation (7) is solved self-consistently, starting from an
initial guess for the orbitals. Spatially unrestricted initial guesses are used: orbitals are assumed
such that they are not eigenfunctions of the angular momentum [32, 34, 47] (UHF method). With
this, solutions of the HF equations corresponding to non-rotationally invariant electron densities,
are obtained. These symmetry-broken solutions enhance the number of variational degrees of
freedom, thus generally leading to better energy estimates. Therefore, in addition to the lack
of total spin symmetry already present in RHF calculations, UHF solutions do not possess the
spatial symmetry of (1). Their predictive power for total spin and angular momentum of the
ground state is therefore limited. As a consequence, the symmetries of UHF wavefunctions must
be suitably adjusted in order to address these properties.

It is important to note that for given N and Sz, many local minima of the energy surface
can be found depending on the initial guess used for the UHF calculation. In general, one
finds a sequence of states |�Sz

k 〉 (k = 1, 2, . . .) with energies E
Sz

1 < E
Sz

2 < . . .. For a given Sz, one
has to perform extensive scans over the space of initial conditions in order to achieve confidence
that the first state in the above sequence is the best UHF state, with the lowest attainable energy.
The UHF ground state is then defined as the state with the lowest among the energies E

Sz

1 . This
also determines the value of Sz for the UHF ground state.

3. Restoring symmetries

In order to reflect the symmetries of the Hamiltonian in the UHF solutions, projection operators
[44, 45] can be applied to the wavefunctions. To avoid confusion, in this section operators are
denoted by a hat. Consider P̂L and P̂

Sz

S which project the UHF solution onto subspaces with well-
defined L and S. They satisfy the commutation rules [P̂Sz

S , P̂L] = [P̂Sz

S , Ĥ] = [P̂L, Ĥ] = 0. For
a given UHF solution |�Sz〉 we define the projected state with spin and angular momenta by
|�Sz

L,S〉 = P̂LP̂
Sz

S |�Sz〉. The corresponding energy is

E
Sz

L,S = 〈�Sz

L,S|Ĥ |�Sz

L,S〉
〈�Sz

L,S|�Sz

L,S〉
= 〈�Sz|Ĥ |�Sz

L,S〉
〈�Sz|�Sz

L,S〉
, (9)

where we used the commutation rules presented above and the idempotency of projection
operators. The spin projector P̂

Sz

S can be written as [44]

P̂
Sz

S =
N/2∏

k=|Sz|,k �=S

Ŝ2 − k(k + 1)

S(S + 1) − k(k + 1)
. (10)

Its action on the UHF wavefunction is [44, 53]

P̂
Sz

S |�Sz〉 =
N<∑
q=0

Cq(S, Sz, N, N+)|Tq〉 (11)

where N< = min{N+, N−} and Cq(S, Sz, N, N+)

Cq(S, Sz, N, N+) = 2S + 1

1 + N/2 + S

S−Sz∑
k=0

(−1)q+S−Sz−k

(
S−Sz

k

)(
S+Sz

S−Sz−k

)
(

N/2+S

N+−q+k

) (12)
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are the Sanibel coefficients [53, 54]. The term |Tq〉 = |T (1)
q 〉 + · · · + |T (nq)

q 〉 is the sum of all of the

nq =
(

N+

q

)(
N−
q

)
(13)

distinct Slater determinants obtained by interchanging in the initial determinant |�Sz〉 all q spinor
pairs with opposite spins.

The projection operator on the total angular momentum L is [45]

P̂L = (2π)−1

∫ 2π

0
dγ e−iLγeiL̂γ . (14)

Acting on |Tq〉 with exp (iL̂γ) results in |Tq(γ)〉, a determinant where all the orbitals are rotated
by γ around the z-axis. Combining (11) and (14) we have

|�Sz

L,S〉 = (2π)−1
N<∑
q=0

Cq(S, Sz, N, N+)

∫ 2π

0
dγ e−iLγ |Tq(γ)〉 . (15)

The projected state (15) is a sum of many Slater determinants. This indicates that a high degree
of correlation has been introduced by applying the projection technique to the UHF scheme. As
is clear from (15), spin projection implies calculations which involve many Slater determinants.
Therefore the second form of (9) is especially useful from the computational point of view.
A detailed description of the procedure is developed in appendix A for N = 3.

We have implemented numerically the evaluation of (9), using (15) and standard theorems
for the evaluation of the Hamiltonian matrix elements [46]. In this work, we will determine the
projected ground state, defined as the projected state with the lowest energy. This procedure,
labelled ‘projected HF’ (PHF) in the following, is far from being trivial: in particular, it is not
sufficient to project the UHF ground state alone to determine the PHF ground state. If several UHF
minima E

Sz

i are almost degenerate, all the corresponding |�Sz

i 〉 must be projected. For each |�Sz

i 〉,
the projected energies E

Sz

i,L,S attain a minimum Ē
Sz

i,L̄i,S̄i
< E

Sz

i for given L̄i, S̄i. The PHF ground

state is thus the lowest among Ē
Sz

i,L̄i,S̄i
.

For a given UHF solution (corresponding to fixed B and Sz), the spin projection involves
the evaluation of all the overlapping matrix elements 〈T0|Ĥ |T (i)

q (γ)〉 (see appendix A for details).
This constitutes a computational overhead, especially for high particle numbers. For given Sz

and S, the number of matrix elements to be evaluated is given by nSz
= ∑N<

q=0 nq. The worst case
scenario occurs for the minimal values of Sz. As an example, for even N, the number of matrix
elements is

nSz=0 = 2N

√
π

�((1 + N)/2)

�(1 + N/2)

N→∞−→ 2N

√
N

, (16)

(a similar formula with the same asymptotic behaviour holds for odd N). Numerically performing
the angular momentum projection requires the discretization of γ ∈ [0, 2π] in nL points, followed
by a fast Fourier transform (FFT) procedure. The lower bound for the latter is determined by the
maximum angular momentum |L| � Lmax desired, independent of N. We point out that, once
the sampling has been performed, the FFT simultaneously produces all the angular momenta
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projections for |L| � Lmax. We have checked that, in order to achieve good convergence with
Lmax = 20 (much higher than the highest |L| involved in the results discussed below), one
needs nL = 256. Thus, for the case N = 4, Sz = 0, fixed S and |L| � 20, we need to evaluate
nSz

nL = 1536 matrix elements. This compares favourably with respect to more refined methods:
for instance, ED for N = 4, Sz = 0, S = 2, L = 14, needs up to 19 774 Slater determinants [15].
Also for increasing numbers of electrons PHF performs well: in the case N = 6, Sz = 0, S = 0,
L = 0 (not discussed in the present work), CI needs 661 300 configurational state functions (linear
combination of Slater determinants) [20] while our procedure requires 5120 matrix elements to
evaluate not only L = 0 but all |L| � 20. We expect similar performance gains for even larger
numbers of electrons.

In the next section, we will show that the PHF ground state has lower energy than the UHF
one. Most importantly, all quantum numbers of the projected ground state can be determined, in
contrast to UHF.

4. Results

Before presenting our results, we provide some technical details of the numerical method. We
rewrite equations (7) by employing the non-interacting FD-basis and obtain a nonlinear Pople–
Nesbet eigenvalue problem [43]. For each value of B, the 75 lowest-lying FD states per spin
direction have been assumed to represent the basis. This guarantees a fair convergence of the
UHF procedure for N � 4. By comparing results with those obtained with a smaller basis set
(55 elements), the relative uncertainty of ground state energies has been assured to be ∼10−6

in all of the data shown below. For a given number of electrons, many different UHF solutions
for all possible values of Sz have been determined. Subsequently, the projection procedure has
been implemented, taking particular care of the cases with almost degenerate UHF states as
discussed above.

4.1. Zero magnetic field

At zero magnetic field, expressing energies in units ω0 and lengths in units �0 = (m∗ω0)
−1/2, the

Hamiltonian (1) depends only upon the dimensionless parameter

λ = e2

4πε0ε�0ω0
, (17)

which represents the relative strength of the interaction. Table 1 shows ground state energies for
N = 2, 3, 4 electrons with λ = 1.89, chosen in order to compare our results with those obtained
with diffusion Monte Carlo (DMC) [23] (third column). The second column shows the UHF
energy, the third column the PHF ground state energy while the fourth column shows the DMC
data. Since at zero magnetic field the spin multiplets are degenerate with respect to Sz, the latter
is not mentioned in columns 3 and 4.

As already discussed, projection improves the ground state energy. The quantum numbers for
the PHF ground state agree with the ones obtained with DMC. The computed energies differ for
at most about 4% (N = 2 case) and improve with increasing N. Our results also agree with other
published data: for N = 2, a singlet ground state has also been found by means of ED [10, 11, 55].
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Table 1. Comparison of the ground state energies and quantum numbers for a dot
with N = 2, 3, 4 electrons, calculated with three different methods. Column 2:
UHF ground state. Column 3: PHF ground state. Column 4: DMC ground
state, extracted from [23]. In columns 3 and 4 Sz is not indicated since at
zero magnetic field spin multiplets degenerate. Interaction parameter λ = 1.89
(see equation (17)). Energies in units of ω0.

N EUHF EPHF EDMC

2 3.956 (Sz = 0) 3.816 (L = 0, S = 0) 3.649 (L = 0, S = 0)
3 8.236 (Sz = 3/2) 8.155 (L = 1, S = 1/2) 7.978 (L = 1, S = 1/2)
4 13.786 (Sz = 0) 13.554 (L = 0, S = 1) 13.266 (L = 0, S = 1)

For N = 3, 4 electrons, the quantum numbers predicted by PHF agree with those predicted by
the CI method [19, 20] and the path integral Monte Carlo (PIMC) method [25].

The ground state for N = 4 is a triplet, in agreement with Hund’s first rule. Previously
published calculations [32] found that the UHF ground state for four electrons has Sz = 0. Our
UHF calculation, although performed with a confinement energy different from that used in
[32], confirms this result (table 1, column 2). A ground state with Sz = 0 previously has been
interpreted [32] as violating Hund’s first rule. However, the latter deals with the total spin of the
electrons, an undefined quantity in UHF solutions. Projecting the total spin allows us to find that
the ground state has S = 1 which, due to the degeneracy of the spin multiplets, is compatible
with Sz = 0.

To probe the spin properties of the N = 4 case, we study it for increasing λ. For strong
interactions, the UHF method is commonly assumed to favour spin polarized states [55]. Thus,
a crossover of the UHF ground state to Sz = 2 is expected. Table 2 shows a comparison of UHF,
PHF and CI [20] results. The UHF ground state for λ � 4 has Sz = 2. This is not compatible
with a triplet state, and indicates a violation of Hund’s first rule. The violation is striking since
Sz = 2 is an uncontaminated S = 2 state. On the other hand, as shown in column 3, for λ � 2
PHF predicts a triplet ground state, consistent with Hund’s rule and in qualitative agreement with
the CI results (column 4). For λ � 6, the PHF ground state originates from a low lying excited
state (local minimum) of UHF (see below). When increasing the strength of the interaction, it is
expected that correlations, measured by the difference between the energies of the ground state
obtained by the RHF approximation and the exact ground state, become increasingly important
[51]. We observe that the relative difference between ground state energies calculated with
PHF and CI decreases from ≈2% to ≈1% as λ increases from 2 to 8. This can be attributed
to an increasing amount of correlations introduced by the PHF procedure when interactions
grow. This trend was already pointed out for N = 2 when spin and rotational symmetries were
restored [51].

We close this section outlining the determination of the PHF ground state in the case N = 4
with λ = 6. Table 3 shows the lower energies (column 2) of different UHF states (column 1)
found for Sz = 0, 1, 2. The UHF ground state is |�Sz=2

1 〉, with energy E
Sz=2
1 = 24.139 ω0. The

other states shown, however, are very close in energy. This is the typical case where much care
must be taken when performing the PHF procedure: projecting the UHF ground state (first line)
does not give rise to the PHF ground state (see column 3). On the other hand |�Sz=0

2 〉 (fourth
line), with the highest UHF energy among the listed states, yields the PHF ground state. We have
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Table 2. Ground state energies and quantum numbers for the N = 4 case at
different interaction parameter λ (see equation (17)). Column 2: UHF ground
state. Column 3: PHF ground state. Column 4: CI ground state, extracted
from [20]. In columns 3 and 4 Sz is not indicated since for B = 0 spin multiplets
are degenerate. Energies in units of ω0.

λ EUHF EPHF ECI

2 14.140 (Sz = 0) 13.899 (L = 0, S = 1) 13.626 (L = 0, S = 1)
4 19.581 (Sz = 2) 19.330 (L = 0, S = 1) 19.035 (L = 0, S = 1)
6 24.139 (Sz = 2) 23.880 (L = 0, S = 1) 23.598 (L = 0, S = 1)
8 28.272 (Sz = 2) 27.993 (L = 0, S = 1) 27.671 (L = 0, S = 1)

Table 3. Determination of the PHF ground state in the case of N = 4 for λ = 6
(see table 2). The UHF states |�Sz

i 〉 considered are shown in column 1, their energy
is shown in column 2. Column 3 shows the minimum projected energy Ē

Sz

i,L̄i,S̄i
for

each UHF state. Energies in units of ω0.

UHF state E
Sz

i Ē
Sz

i,L̄i,S̄i
(L̄i, S̄i)∣∣�Sz=2

1

〉
24.139 24.022 (L = 2, S = 2)

∣∣�Sz=1
1

〉
24.169 23.891 (L = 0, S = 1)

∣∣�Sz=0
1

〉
24.170 23.884 (L = 0, S = 0)

∣∣�Sz=0
2

〉
24.200 23.880 (L = 0, S = 1)

also checked that UHF states with higher energies (not shown in the table) do not yield a better
PHF ground state energy.

4.2. Magnetic field

For nonzero magnetic field, the projection procedure provides physical features that are
not correctly reproduced by the UHF approximation. In the following, we assume standard
parameters for GaAs: m∗ = 0.067me, ε = 12.4 and g∗ = −0.44. We start with the N = 2
case with ω0 = 3.37 meV as a confinement energy, in order to compare our results with the
available ED data [55]. Figure 1(a) shows the ground state energy of the PHF ground state.
Correspondingly, figure 1(b) shows L (solid) and S (dashed) quantum numbers. With increasing
B, an alternating sequence of singlet and triplet states is observed as L increases with unitary
steps. PHF results compare well with those obtained by means of more accurate methods [10,
11, 55]. They predict both the same sequence of increasing L and of singlet–triplet transitions.
Quantitatively, the crossover fields are not perfectly reproduced. For instance the first singlet–
triplet transition occurs at B ≈ 2 T [55], while we find B = 1.38 T.

The sequence of transitions between states with different total spins shown by the PHF
solution cannot be obtained using the UHF approximation. Figure 1(c) displays the UHF energies
for Sz = 0 (solid) and Sz = 1 (dashed): only the Sz = 0 → 1 transition at B = 0.75 T can be
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(d)
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E/ω0

3.86

7.42

3.73

4.04

0

S = 0

S = 1
S z = 0

S z = 1

Figure 1. PHF and UHF solutions for a quantum dot with N = 2 electrons.
(a) PHF ground state energy E and (b) projected ground state total spin (dashed)
and angular momentum (solid) as a function of the magnetic field B. (c) UHF
energy E for the Sz = 0 (solid) and Sz = 1 (dashed) states as a function of B.
(d) Comparison of PHF (solid) and UHF (dashed line) ground states in the
0 T � B � 2 T field range. Corresponding spin quantum numbers are included.
Parameters: m∗ = 0.067me, ε = 12.4, g∗ = −0.44 and ω0 = 3.37 meV.

found in the whole magnetic field range, in contrast to the PHF data. Figure 1(d) shows a
comparison of the UHF and PHF ground states in the 0 T � B � 2 T region. Clearly, at low
magnetic fields the PHF singlet solution has a better energy. In addition, it is hard to relate the Sz

transition occurring in the UHF calculation with the genuine singlet–triplet transition exhibited
by PHF.

For discussing a quantum dot with four electrons, we choose a confinement energy
ω0 = 6 meV in order to be able to compare our results with the ED calculations reported
earlier [16]. The PHF ground state energy (figure 2(a)), shows kinks associated with spin and
angular momentum transitions (figure 2(b)). We find a sequence of transitions which agrees with
those reported earlier [16]: a low field triplet–singlet transition obtained with PHF occurs at
B ≈ 0.7 T, higher than the value B ≈ 0.5 T predicted by ED [16]. Other PHF transitions are
shifted to smaller values, similarly to the singlet–triplet transitions for N = 2. As a comparison,
we show (figure 2(c)) the UHF ground state energy (solid line) and Sz (dashed line) for N = 4
in the same magnetic field range. Apart from the higher energy estimate provided by UHF, we
observe that the spin transitions scenario is very different w.r.t. the one predicted by PHF. The
UHF ground state has Sz = 0 up to B ≈ 3.8 T, in contrast with the above mentioned triplet–
singlet transition obtained with PHF for B ≈ 0.7 T. Subsequently, a narrow transition to Sz = 1
is found. Then, for B � 4.2 T the UHF ground state is fully polarized. The sharp contrast with
the PHF results confirms that the UHF method is not reliable for qualitatively predicting the spin
properties of the system, as we already observed in the N = 2 case.

One of the important predictions of the results in [16] is a spin blockade [7] that in the ED
calculation occurs at 4.96 T < B < 5.18 T, due to a violation of the total spin selection rules.
In figure 2(d) we have plotted �S = S(4) − S(3) calculated by using the PHF ground states for
N = 4, 3 electrons. For 4.38 T < B < 4.8 T we indeed observe �S = −3/2 in analogy with the
above mentioned results.
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11.83

12.63

E ω0/

(c)

12.11

12.65

0

2

SzE ω0/

Figure 2. Projected solutions for a quantum dot with N = 3, 4 electrons.
(a) Projected ground state energy E (units meV) and (b) projected ground state
total spin (dashed) and angular momentum (solid) for N = 4, as a function of the
magnetic field B. (c) UHF ground state energy (solid) and Sz (dashed) for N = 4
as a function of B. (d) Total spin difference between N = 4 and N = 3 PHF
ground states, �S = S(4) − S(3), as a function of the magnetic field B. Dashed:
� = 0. Parameters: m∗ = 0.067me, ε = 12.4, g∗ = −0.44 and ω0 = 6 meV.

5. Conclusions

We have applied the UHF method to quantum dots with up to four electrons in the presence
of a magnetic field, and for varying strength of the interaction. We have used a systematic
projection approach for simultaneously restoring the total spin and the rotational symmetries
of the UHF wavefunctions. The projected wavefunctions are superpositions of many different
Slater determinants. Thus, they contain important correlations, missed by UHF solutions. We
found that the energies of the ground states obtained by PHF are systematically lower than those
of the UHF ground states, although still higher than the ones found with other methods such
as ED, CI or QMC. The PHF provides ground states with total spins and angular momenta in
qualitative agreement with the ‘exact’ results. The data in table 2 show that by means of PHF,
important correlations are introduced for increasing λ. This is signalled also by the tendency of
the PHF method to reproduce the CI results [20] with increasing accuracy.

We recover Hund’s first rule for four electrons at zero magnetic field. With increasing
magnetic field, crossovers between ground states with different quantum numbers are found for
fixed electron number that are not reproduced by the UHF approximation. These are consistent
with the ones obtained with the ‘exact’ techniques. We have confirmed the presence of a spin
blockade due to a spin mismatch in the ground states of three and four electrons.

We conclude that the PHF approach is an important technique when dealing with ground
state properties like total spin and angular momentum of correlated electrons in quantum dots.
In view of what has been discussed in section 3, we expect that PHF will be very useful to
obtain interesting results for quantum dots with larger electron numbers that, so far, have not
been accessible by other methods, especially in the presence of a magnetic field.
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Such quantum dots have recently been experimentally investigated [56]. In particular, we
expect that the wave function obtained by PHF will be useful to obtain transition matrix elements
that are important for understanding the transport behaviour.
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Appendix A. The projection method for three particles

In order to illustrate the procedure leading to the evaluation of (9), we discuss here the case of
three electrons. The possible UHF solutions have Sz = ±1/2 or Sz = ±3/2. For the latter case
no spin projection is required since it is a pure S = 3/2 state, so that only angular momentum
projection has to be performed. Therefore, we concentrate here on the Sz = 1/2 case. The UHF
wavefunction reads from equation (5)

∣∣�Sz=1/2
〉 = |T0〉 = 1√

6
det{a1α, a2α, b1β} (A.1)

(the case Sz = −1/2 is obtained by interchanging all α and β spinors, without any conceptual
difference with respect to the following discussion). This state does not have defined total spin.
It is a superposition of the doublet S = 1/2 and the quadruplet S = 3/2 states. The spin projection
allows the total spin part we are interested in to be selected. To do so, we generate all the possible
shuffled Slater determinants |Tq〉 starting from |T0〉 and weight them by the corresponding Sanibel
coefficients (12), from equation (11)

P̂
Sz=1/2
S=1/2

∣∣�Sz=1/2
〉 = 2

3 |T0〉 − 1
3 |T1〉, (A.2)

P̂
Sz=1/2
S=3/2

∣∣�Sz=1/2
〉 = 1

3 |T0〉 + 1
3 |T1〉, (A.3)

where

|T1〉 = |T (1)
1 〉 + |T (2)

1 〉 = 1√
6
(det{a1α, a2β, b1α} + det{a1β, a2α, b1α}). (A.4)

In both (A.2) and (A.3), the |T0〉 and |T1〉 terms correspond to all the possible ways to exchange
q = 0 and q = 1 pairs of spinors (α, β) in the UHF determinant. Since states with S = 1/2 and
S = 3/2 constitute the only spin configurations of three electrons with Sz = 1/2, summing up
(A.2) and (A.3) yields the original determinant |�Sz=1/2〉, consistent with the identity satisfied
by the sum of the projection operators.

For simplicity, in the following we consider the S = 1/2 case only. In order to obtain
(15) we apply P̂L on (A.2). The action of the rotation generator exp(iL̂γ) on the determinants
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composing (A.2) affects the spatial part of the orbitals only: ai → ai(γ) and bi → bi(γ). Where
ai(γ), bi(γ) are the UHF orbitals rotated by an angle γ over the z-axis. Employing (9) and (15)
the projected energy can be recast into

E
Sz=1/2
L,S=1/2 = N

Sz=1/2
L,S=1/2

D
Sz=1/2
L,S=1/2

(A.5)

with

N
Sz=1/2
L,S=1/2 =

∫ 2π

0

dγ

2π
e−iLγ

[
2
3〈T0|Ĥ0 + V̂ |T0(γ)〉 − 1

3〈T0|Ĥ0 + V̂ |T1(γ)〉
]
, (A.6)

D
Sz=1/2
L,S=1/2 =

∫ 2π

0

dγ

2π
e−iLγ

[
2
3〈T0|T0(γ)〉 − 1

3〈T0|T1(γ)〉] . (A.7)

The evaluation of (A.6) and (A.7) is done using the standard theorems for many body
wavefunctions [46]. The overlap terms in the denominator are 〈T0|T0(γ)〉 = det{d(0)(γ)} and
〈T0|T1(γ)〉 = 〈T0|T (1)

1 (γ)〉 + 〈T0|T (2)
1 (γ)〉 = det{d(1)(γ)} + det{d(2)(γ)} respectively, with

d(0)(γ) =

〈a1|a1(γ)〉 〈a1|a2(γ)〉 0

〈a2|a1(γ)〉 〈a2|a2(γ)〉 0
0 0 〈b1|b1(γ)〉


, (A.8)

d(1)(γ) =

〈a1|a1(γ)〉 0 〈a1|b1(γ)〉

〈a2|a1(γ)〉 0 〈a2|b1(γ)〉
0 〈b1|a2(γ)〉 0


, (A.9)

d(2)(γ) =

 0 〈a1|a2(γ)〉 〈a1|b1(γ)〉

0 〈a2|a2(γ)〉 〈a2|b1(γ)〉
〈b1|a1(γ)〉 0 0


. (A.10)

The evaluation of the numerator, requiring the calculation of one- and two-body operator matrix
elements, is more involved. The single particle part is

〈T0|Ĥ0|T0(γ)〉 + 〈T0|Ĥ0|T1(γ)〉 =
2∑

i=0

3∑
k,l=1

h
(i)

kl (γ)d
(i)

(k|l)(γ), (A.11)

where d
(i)

(k|l)(γ) is the (k, l) entry of the first-order cofactor of d(i)(γ) and h
(i)

kl (γ) = 〈uk|Ĥ0|ul(γ)〉
M

(i)

kl . To save space in the above expression we have introduced the notation ui ∈ {a1, a2, b1} and
the matrices

M(1) =

1 1 0

1 1 0
0 0 1


, M(2) =


1 0 1

1 0 1
0 1 0


, M(3) =


0 1 1

0 1 1
1 0 0


 . (A.12)
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In a similar way the two body operator matrix element is

〈T0|V̂ |T0(γ)〉 + 〈T0|V̂ |T1(γ)〉 = 1

2

2∑
i=0

3∑
k1,k2,l1,l2=1

v
(i)

k1k2l1l2
(γ)d

(i)

(k1k2|l1l2)(γ), (A.13)

where d
(i)

(k1k2|l1l2)(γ) is the (k1, k2, l1, l2) entry of the second-order cofactor of d(i)(γ) and

v
(i)

k1k2l1l2
(γ) = 〈uk1uk2 |V̂ |ul1(γ)ul2(γ)〉M(i)

k1l1
M

(i)

k2l2
. The evaluation of these terms is lengthy but

straightforward. Finally, the integrals in (A.6) and (A.7) are numerically evaluated by means
of FFT once the spin projection has been performed.
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