UNIVERSITY OF PALERMO
PHD JOINT PROGRAM:

UNIVERSITY OF CATANIA - UNIVERSITY OF MESSINA
XXXIV CYCLE

DOCTORAL THESIS

A Tour of Learned Static Sorted Sets
Dictionaries: From Specific to Generic
with an Experimental Performance
Analysis

Author: Supervisor:
Domenico Amato Prof. Giosueé Lo Bosco

Co-Supervisor:
Prof. Raffaele Giancarlo

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

n

Mathematics and Computational Sciences

http://www.unipa.it
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com

ii

May 5, 2022

Signed:

Date:

iii

“Predicting the future isn't magic, it’s Artificial Intelligence”

Dave Waters

vii

UNIVERSITY OF PALERMO

Abstract

Department of Mathematics and Computer Sciences
Doctor of Philosophy

A Tour of Learned Static Sorted Sets Dictionaries: From Specific to Generic with
an Experimental Performance Analysis

by Domenico Amato

In recent years, in the era of Big Data, studying new methods to improve the per-
formance of well-known procedures, such as searching in a Sorted Set, has become
crucial in many fields. A new trend emerging in this scenario combines Machine
Learning models with Data Structures, generating the so-called Learned Data Struc-
tures. In this thesis, we provide an in-depth experimental study of the use of these
models, starting from some evidence known to experts in the field but not exper-
imentally investigated concerning the use of very complex models such as Neural
Networks. Then, we document a time/space trade-off scenario that is very impor-
tant for practitioners and designers users. Furthermore, we investigate a comparison
well known in the Literature, i.e., Branchy procedures versus Branch-free ones, and
we place it in the context of Learned Data Structures. Finally, considering that the
Learned Data Structures currently defined in the Literature only fit with specific Dic-
tionaries and procedures, e.g., Binary Search, we have defined a new type of generic
Learned Data Structure that can use a wide range of Dictionaries.

HTTP://WWW.UNIPA.IT
http://department.university.com

iX

Acknowledgements

I would like to thank my Supervisor Prof. Giosué Lo Bosco as well as my Co-
Supervisor Prof. Raffaele Giancarlo for their support, patience and guidance. Part
of this work has been funded by MIUR Project of National Relevance 2017WR7SHH
“Multicriteria Data Structures and Algorithms: from compressed to learned indexes,
and beyond”. I would like to thank all the participants in this project for the produc-
tive exchange of ideas during meetings. I also acknowledge an NVIDIA Higher
Education and Research Grant (donation of a Titan V GPU) essential for the experi-
mental phase of this work.

xi

Contents

Abstract vii
Acknowledgements ix
Introduction XXix
0.1 Stateofthe Art. e XXix
0.2 OuwurContributions e XXix

1 Learned Data Structures 1
1.1 Static Dictionary Data Structures over Sorted Sets 1
1.1.1 Predecessor Search Problem 2

1.2 Standard Algorithmic Tools for PSP: Arrays and Trees 2
1.21 Sorted TableSearch 2
BinarySearch o L. 2
InterpolationSearch 0L, 2

K-arySearch 4

1.2.2 Array Layouts Other Than Sorted 4
Eytzinger Layout 6

B-TreeLayout 6

Van Emde Boas Layout 6

123 SearchTrees i ittt 9
Self-adjusting Binary Trees 9

Bt-Trees o o i i e 9

CSS-Trees v o v i i e e e e e e 11

1.3 Linear Regression 12

14 LearnedIndexModels, 13
141 A simple view of Learned Search in Sorted Set 13

142 Model Classes Characterizing Model Space 14

Atomic Models: One Level and no Branching Factor 14

Two-Level RMIs with Parametric Branching Factor 14

Multi-Level Models with Various Parameters 14

CDF Approximation-Controlled Models 15

15 Conclusions e e 15

2 On the Suitability of Neural Network as a Learned Index Model 19

2.1 The Perceived Potential of the Neural Networks with the use of the
Modern Computer Architectures 19
2.1.1 From Motivation to Design and Implementation: The Case of

Learned Bloom Filters 20

Classic Bloom Filter 20

Learned Bloom Filter 21

2.2 Experimental Methodology 21

221 Datasets e 21

Xii

222 Hardware
223 Models, Trainingand Query
2.3 Experiments, Results and Discussion
231 Training: GPUvsCPU
232 Query: GPUonlyforNNs
233 Query:CPUonly
24 Conclusions e e e

Learned Sorted Table Search and Static Indexes in Small Space: A Com-
prehensive Experimental Analysis
3.1 Classic and Learned Sorted Table Search
3.2 Experimental Methodologies
321 Hardware e
322 Datasets e
3.2.3 Software Systems for Learned Indexes Training
Atomic Models: Linear Regression
Two-Level RMIs with Parametric Branching Factor: CDFShop .
CDF Approximation-Controlled Models: SOSD Platform
3.3 Constant and Small SpaceIndexes
3.3.1 A Two-Level Hybrid Model, with Constant Branching Factor
332 SynopticRMIs.
Mining SODS Output for the SynopticRMI
333 BiCriteriaPGM
3.4 Experiments, Results and Discussion
3.4.1 Learning the CDF of a Sorted Table
Atomic and Hybrid Models
TwolLevel RMIs.
CDF Approximation-Controlled Models
3.4.2 Constant Space Models: Query Experiments
AtomicModels L oL o
Two Level Hybrid Model
3.4.3 Parametric Space Models: Query Experiments
SOSD Models with at Most 10% of Additional Space
Small SpaceModels
35 Conclusions

Standard Vs Uniform Binary Search and their Variants in Learned Static
Indexing: The Case of the SOSD Benchmarking Software
4.1 Uniform and Standard Binary Search on Modern Computer Architec-
tures . . . L e e e
4.2 Experimental Methodology
421 Hardware e
422 Datasets
423 Binary Searchand Its Variant
424 Index Model ClassesinSOSD
4.3 Experiments, Results and Discussion
43.1 Computational Experiments
432 Analysis
Coherence of Literature Results withinSOSD
The Relevance of Branch-free vs Branchy in Learned Indexing
in SOSD: Search Time

41

xiii

The Relevance of Branch-free vs Branchy in Learned Indexing

inSOSD: Space. 45
44 Conclusions e e e e e 45
Generic Learned Static Sorted Sets Dictionaries 49
5.1 From Specific to Generic Learned Dictionaries 49
5.1.1 Models Specific for Binary and Interpolation Search 50
5.1.2 Models for Generic Dictionaries 50
5.2 Learned Dictionaries: The Case of Equal Length Intervals - Binning . . 51
52.1 Construction e 51
522 WorstCaseSearchTime 51
5.3 Learned Dictionaries: The Case of Variable Length Intervals - The PGM 52
53.1 Construction e 52
532 WorstCaseSearchTime 53
5.4 Experimental Methodologies 53
541 Hardware e 53
542 Datasets e 53
543 Dictionaries e e e 53
5.5 Experiments, Results and Discussion 53
551 Boosting o 54
Binning. 00 54
PGM . . e 55

5.5.2 Competitiveness of Generic Learned Dictionaries with respect
toSpecificones L oL oo 55
Query Time: NoBoundonSpace 55
Query Time: BoundsonSpace 55
56 Conclusions e e e 56
Conclusions and Future Directions 63
6.1 Advantage of Simple Models over Neural Networks 63
6.2 Learned IndexesinSmallSpace 63
6.3 On the Branchfreeness of Learned Indexes 64
6.4 Generic Learned Dictionary 64
6.5 FutureDirection e 64
Datasets 65
A.1 Kolmogorov-Smirnov Test and KL Divergence Computation 66

Learned Sorted Table Search and Static Indexes in Small Space: Supple-

mentary Results 67
B.1 Learning the CDF of a Sorted Table: Full Set of Experiments 67
B.2 Constant Space Models: Full Set of Query Experiments 67
B.3 Parametric Space Models: Full Set of Query Experiments 67
Standard Vs Uniform Binary Search and Their Variants in Learned Static

Indexing: Supplementary Results 79
C.1 ExperimentswithSOSD 79

Generic Learned Static Sorted Sets Dictionaries: Supplementary Results 85
D.1 Boosting 85
D.2 Comparison with the Stateof the Art 85

Xiv

Bibliography

95

XV

List of Figures

1.1 An Example of Eytzinger Layouts (see also Khuong and Morin, 2017).

The sorted table is seen as stored a balanced Binary Search Tree. Then,

such a tree is laid out in Breadth-First Search order in the array. 6
1.2 An Example of B-Tree Layout (see also Khuong and Morin, 2017).

The sorted table is thought as stored in a B-Tree with B = 2. Then,

such a Tree is laid out in Breath-First Search order in the array. 7
1.3 An Example of Van emde Boas Layout (see also Khuong and Morin,

2017). The table is seen as a complete Binary Search Tree. Then, start-

ing from the root, the layout is constructed recursively. 9
14 AnExample of B*-Tree. The table A = [2,3,5,7,11,15,17,19,23,29,31,37,41,43,47]

is stored in a B™-Tree with B = 4. All table keys are stored in the

leaves, connected in a linked list. Even, the internal node contains

only the indexing structures 11
1.5 An Example of an internal B"-Tree Node wit B=4. The internal node

contains (a) keys k; that represent different data sub-interval, and (b)

pointers to the nodes of the lower level, corresponding to the selected

sub-interval. L L Lo 11
1.6 An example of a CSS-Tree (see also Rao and Ross, 1999). Starting

from a Table in a k-ary Search Tree with k = 4, it is possible laid it

out in an array with two section: (a) an initial part with only indexing

structures,i.e. the internal nodes of the tree, and (b) an ending part

with the leaves, containing the keys of the Table. 12
1.7 A general paradigm of Learned Searching in a Sorted Set (see also

Marcus20). The model is trained on the data in the table. Then, given

a query element, it is used to predict the interval in the table where to

search (included in brackets in the figure). 13
1.8 The Process of Learning a Simple Model via Linear Regression. Let

A be [47,105, 140, 289, 316, 358, 386, 398, 819,939]. (a) The CDF of A.

In the diagram, the abscissa indicates the value of an element in the

table, while the ordinate is its rank. (b) The straight line F(x) = ax + b

is obtained by determining a and b via Linear Regression, with Mean

Square Error Minimization. (c) The maximum error € one can incur

is using F also important. In this case, it is € = 3, i.e., accounting for

rounding it is the maximum distance between the rank of a point in

the table and its rank as predicted by F. In this case, the interval to

search into, for a given query element x, is given by [F(x) — ¢, F(x) +

XVi

1.9

3.1

3.2

3.3

Examples of various Learned Indexes. (a) an Atomic Model, where
the box linear means that the CDF of the entire dataset is estimated
by a linear function via Regression, as exemplified in Figure 1.8. (b)
An example of an RMI with two layers and branching factor equal
to b. The top box indicates that the lower models are selected via a
linear function. As for the leaf boxes, each indicates which Atomic
Model is used for prediction on the relevant portion of the table. (c)
An Example of the structure of a NN’s Neuron. The inputs are binary
vector (x!, ..., x%) and the weight parameter (w', ..., w") are a vector of
floating points. The final output is y = max(0, %, wix'). (d) An ex-
ample of a PGM Index. At the bottom, the table is divided into three
parts. A new table is so constructed and the process is iterated. (e)
An example of an RS Index. At the top, the buckets where elements
fall, based on their three most significant digits. At the bottom, a lin-
ear spline approximating the CDF of the data, with suitably chosen
spline points. Each bucket points to a spline point so that, if a query
element falls in a bucket (say six), the search interval is limited by the
spline points pointed to by that bucket and the one preceding it (five
IMOUF CASE). « v v o e e e e e e e e e e e e e e

An example of a KO-BFS, with k = 3. The top part divides the table
into three segments, and it is used to determine the model to pick at
the second stage. Each box indicates which Atomic Model is used for
prediction on the relevant portion of the table.
Time and UB for the identification of SY-RMlIs. For each memory
level, only the top layer of the various models is indicated in the ab-
scissa, while the ordinate indicates the number of times, in percent-
age, the given model is the best in terms of query performance on a
table. The branching factor per unit of space as well as the time it
took to identify the proper SY-RMI (average time per element, over
all RMIs returned by CDFShop) are reported on top of each figure.
For comparison, we also report the same time for the output of CDF-

Query times for the amzn64 dataset on Sorted Table Search Proce-
dures. The methods are the ones in the legend (middle of the four
panels, the notation is as in the main text and each method has a dis-
tinct colour). For each memory level, the abscissa reports methods are
grouped by model. From left to right, no model, linear, quadratic, cu-
bic and KO-, with k = 15, and with BFS and BBS as search methods.
K-BFS is reported with k = 6. For each model, the Reduction Factor
corresponding to the table is also reported on the abscissa. On the or-
dinate, it is reported the average query time, in seconds. For memory
level L4, IBS, L-IBS and Q-IBS have been excluded, since inclusion
of their query time values (3.1e — 06, 2.1e — 06, 1.2e — 06, respectively)
would make the histograms poorly legible.

34

34

3.5

3.6

3.7

4.1

4.2

51

Query times for the osm dataset on Sorted Table Search Procedures.
The figure legend is as in Figure 3.3. For the last three memory levels,
IBS has been excluded, since inclusion of its query time values (2.2e —
06, 6.5¢ — 06, 6.4¢ — 05, respectively) would make the histograms poorly
legible. Its regression-based Learned versions have been excluded for
the same reason (data not shown). However, they have better query
time performance with respect to IBS, in particular Qand C.
Query times for TIP and its Learned Variants on the amzn32 dataset.
For each memory level, the abscissa reports models with TIP as search
methods. From left to right, no model, linear, quadratic and cubic. On
the ordinate, it is reported the average query time, in seconds. On the
fourth memory level the procedures were stopped due to their poor
executiontimes. Lo oo
Query times for the amzn64 dataset on Learned Indexes in Small
Space. The methods are the ones in the legend (middle of the four
panels, the notation is as in the main text and each method has a dis-
tinct colour). For each memory level, the abscissa reports methods
grouped by space occupancy, as specified in the main text. When no
model in a class output by SOSD takes at most 10% of additional
space, that class is absent. The ordinate reports the average query
time, with BBS and BFS executed in SOSD as baseline (horizontal

Query times for the osm dataset on Learned Indexes in Small Space.
The figure legend is as in Figure3.6.

Branch-free vs Branchy on the wiki dataset. From left to right, RMI,
RS and PGM, highest rank first. For each, and according to rank, the
bar height indicates the ratio of Branch-free/Branchy Binary Search
average query times for the three best models, reported by memory
level. The following blue bar shows the same ratio for the two ver-
sions of Binary Search (indicated as BS). Next, we have analogous bar
heights for k-ary instead of Binary Search (KRMI, KRS and KPGM).
In magenta, the ratio of the two versions of k-ary alone (indicated
as KARY). The last two bars are the average query times ratios of
BFE/BBS and BFE/BFS respectively. y. The last two bars report the
homologous ratios for k-ary Search. A bar height below one indicates
that Branch-free indexing is better than its Branchy counterpart.
Model size ratios of all the models: The model size ratios Branch-
free/Branchy of the fastest (query times) RMI, RS, PGM, KRMI KRS,
KPGM computed on each dataset, for each memory level. The y
scale is logarithmic (base 10). Negative values indicate the case when,
for each Learned Index, the fastest one using Branch-free Search rou-
tines has a model size less than the corresponding fastest one using
Branchy routines, with zero values indicating equal model sizes.

Examples of a PGM Index. At the bottom, the table is divided into
three parts, according the maximum error €. A new table is so con-
structed and the process is iterated. The keys in the last level give
a partition of the Universe U. In this example, the partition P is

{[1,57],[58,96],[97,101]}

xvii

47

XVviii

52

53

54

55

5.6

57

5.8

Binning boosting property on wiki dataset. For each memory level,
we report in the abscissa axis the number of bins in percentage with
respect of the number of elements in the Table. In the ordinate, we
indicate the ratio between the mean query time of Binning and SD
alone. For the sake of clarity, a ratio under one indicates that the Bin-
ning performs better than the simpleones.
PGM boosting property on wiki dataset. For each memory level, we
report in the abscissa axis the chosen € for the PGM construction. In
the ordinate, we indicate the ratio between the mean query time of
the PGM and the SD alone. For the sake of clarity, a ratio under one
indicates that the PGM performs better than the simple ones.
PGM Query Time on osm_L4 dataset. We report in the abscissa axis
the chosen ¢ for the PGM construction, in the ordinate axis the mean
query time expressed in seconds. The blue bars indicate the total time
to execute a query using the PGM Dictionary. The orange bars show
the time taken to navigate the PGM structure. The green bars report
the time to search in the found interval using BBS. Finally, the blue
line is the BBS stand-alone mean query time.
Binning Query Time on osm_L4 dataset. We report in the abscissa
axis the chosen percentage for the Binning construction, in the ordi-
nate axis the mean query time expressed in seconds. The blue bars
indicate the total time to execute a query using the Binning Dictio-
nary. The orange bars shows the time taken to calculate the bin index.
The green bar reports the time to search in the found interval using
BBS. Finally, the blue line is the BBS stand-alone mean query time. . .
Learned Indexes Query Time Without Bound on Space. For each
memory level and dataset, we report the mean query time of the best
Learned Indexes including the Generic Learned Dictionary denoted
with BIN. Above each bar we report the space in addition to the table
in percentage. Indeed, we report the best search method in the BIN
finalstage.
Learned Indexes Query Time With Bounds on Space on osm dataset.
For each memory level, we choose three space bounds as in Chapter
3. For each space bound, from left to right, we report the mean query
time of the best RMI, PGM and RS that satisfies the imposed bound.
Next bar indicates the mean query time for the SY-RMI as in Chapter
3. The last bar is the mean query time for the best Generic Learned
Dictionary with space inside thebound.
Tables CDF. For each dataset, we report the empirical Cumulative Dis-
tribution Fuction of the element in the Tables.

59

60

B.1

B.2

B.3

B4

B.5

B.6

B.7

B.8

B.9

Xix

Query times for the amzn32 dataset on Sorted Table Search Proce-
dures. The methods are the ones in the legend. For each memory
level, the abscissa reports methods grouped by model. From left to
right, no model, linear, quadratic, cubic and KO-, with k = 15, and
with BFS and BBS as search methods. K-BFS is reported with k = 6.
For those latter, the Reduction Factor corresponding to the table is
also reported. On the ordinate, it is reported the average query time,
in seconds. For memory levels L4, IBS, L-IBS, Q-IBS and C-IBS have
been excluded, since the inclusion of their query time values (1.4e-
05, 1.6e-05, 1.6e-05, 1.4e-05, respectively) would make the histograms
poorlylegible. 69
Query times for the amzn64 dataset on Sorted Table Search Proce-
dures. The figure legend is as in Figure B.1. For memory level L4,
IBS, L-IBS and Q-IBS have been excluded, since the inclusion of their
query time values (3.1e-06, 2.1e-06, 1.2e-06, respectively) would make
the histograms poorly legible. 70
Query times for the face dataset on Sorted Table Search Procedures.
The figure legend is as in Figure B.1. For memory levels L4, IBS and
its Learned versions have been excluded because of their poor perfor-
mance (data not shown and available upon request). 71
Query times for the osm dataset on Sorted Table Search Procedures.
The figure legend is as in Figure B.1. For all memory levels, IBS
has been excluded, since the inclusion of its query time values (1.2e-
06, 2.2e-06, 6.5e-06, 6.4e-05, respectively) would make the histograms
poorly legible. Its regression-based Learned versions have been ex-
cluded for the same reason (data not shown and available upon re-
quest). However, they have better query time performance with re-
spect to IBS, in particular Qand C. 72
Query times for the wiki dataset on Sorted Table Search Procedures.
The figure legend is as in Figure B.1. For all memory levels, IBS
has been excluded, since the inclusion of its query time values (3.1e-
07, 5.1e-07, 9.5e-07, 5.1e-06, respectively) would make the histograms
poorly legible. Its regression-based Learned versions have been ex-
cluded for the same reason (data not shown and available upon re-
quest). However, they have better query time performance with re-
spect to IBS, in particular Qand C. 73
Query times for the amzn32 dataset on Learned Indexes in Small
Space. The methods are the ones in the legend (middle of the four
panels, the notation is as in the main text and each method has a dis-
tinct colour). For each memory level, the abscissa reports methods
grouped by space occupancy, as specified in the main text. When no
model in a class output by SOSD takes at most 10% of additional
space, that class is absent. The ordinate reports the average query
time, with BBS and BFS executed in SOSD as baseline (horizontal

lines). . . . 75
Query times for the amzn64 dataset on Learned Indexes in Small
Space. The figure legend is as in Figure B6. 76
Query times for the face dataset on Learned Indexes in Small Space.
The figure legend is as in Figure B.6. 76

Query times for the osm dataset on Learned Indexes in Small Space.
The figure legend is as in Figure B.6. 77

XX

B.10 Query times for the wiki dataset on Learned Indexes in Small Space.

C1

C2

C3

C4

C5

D.1

D.2
D.3
D4
D.5
D.6

D.7

The figure legend is as in FigureB.6. 77

Branch-free vs Branchy on the amzn32 dataset. From left to right,
RMI, RS and PGM, highest rank first. For each, and according to
rank, the bar height indicates the ratio of Branch-free/Branchy Binary
Search average query times for the three best models, reported by
memory level. The following blue bar shows the same ratio for the
two versions of Binary Search (indicated as BS). Next, we have analo-
gous bar heights for k-ary instead of Binary Search (KRMI, KRS and
KPGM). In magenta, the ratio of the two versions of k-ary alone (indi-
cated as KARY). The last two bars are the average query times ratios
of BFE/BBS and BFE/BFS respectively. The last two bars report the
homologous ratios for k-ary Search. A bar height below one indicates
that Branch-free indexing is better than its Branchy counterpart. 80
Branch-free vs Branchy on the amzn64 dataset. The figure legend is
asinFigure C.1. L 81
Branch-free vs Branchy on the face dataset. The figure legend is as
inFigureCl.. L 81
Branch-free vs Branchy on the osm dataset. The figure legend is as
inFigureC.1.. 82
Branch-free vs Branchy on the wiki dataset. The figure legend is as
inFigureC.1. L 82

Binning boosting property on amzn32 dataset. For each memory
level, we report in the abscissa axis the number of bins in percentage
with respect of the number of elements in the Table. In the ordinate,
we indicate the ratio between the mean query time of Generic Learned
Dictionaries and SD alone. For the sake of clarity, a ratio under one
indicates that the Generic Learned Dictionary performs better than
thesimpleones. L o 86
Binning boosting property on amzn64 dataset. The legend is as in D.1. 86
Binning boosting property on face dataset. The legend isasin D.1.. . 87
Binning boosting property on osm dataset. The legend isasin D.1. . 87
Binning boosting property on wiki dataset. The legend isasin D.1. . 88
PGM boosting property on amzn32 dataset. For each memory level,
we report in the abscissa axis the choosen € for the PGM construction.
In the ordinate, we indicate the ratio between the mean query time of
the PGM and the SD alone. For the sake of clarity, a ratio under one
indicates that the PGM performs better than the simple ones. 88
PGM boosting property on amzn64 dataset. The legend isasin D.6. . 89

D.8 PGM boosting property on face dataset. The legend is as in D.6.

D.9 PGM boosting property on osm dataset. The legend is as in D.6. .

D.10 PGM boosting property on wiki dataset. The legend isasin D.6. . . .

D.11 Learned Indexes Query Time With Bounds on Space on amzn32
dataset. For each memory level, we choose three space bounds as
in Chapter 3. For each space bound, from left to right, we report the
mean query time of the best RMI, PGM and RS that satisfies the im-
posed bound. Next bar indicates the mean query time for the SY-
RMI as in Chapter 3, The last bar is the mean query time for the best
Generic Learned Dictionary with space inside the bound.

89
90
90

xxi

D.12 Learned Indexes Query Time With Bounds on Space on amzné64

dataset. The legend is asin Figure D.11. 92
D.13 Learned Indexes Query Time With Bounds on Space on face dataset.

The legend isasin Figure D.11. 92
D.14 Learned Indexes Query Time With Bounds on Space on osm dataset.

The legend isasin Figure D.11. 93

D.15 Learned Indexes Query Time With Bounds on Space on wiki dataset.
Thelegend isasin Figure D.11. 93

List of Tables

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

A summary of the Datasets. For each dataset in the collection, it is
shown: the name used (column Name), its size in Kilobyte (column
Size (KB)), the number of elements in it (column Items), and the type
of its elements (final column Type).
NN training with the use of Tensorflow on GPU. For each dataset
and each model, it is shown: the training time per element expressed
in seconds (column Training Time (s)) and the percentage of the table
reduction (column % Reduction Factor), as described in Section 1.4.1. .
Linear (L), Quadratic (Q) and Cubic (C) Models Training. The Leg-
endisasinTable2.2.
Query Time on GPUs. NNO0-BBS refers to Binary Search with NNO as
the prediction step, while BBS is the Binary Search executed on GPU
without a previous prediction. For each of these methods executed on
GPU, we report: the time for CPU-GPU, and vice versa, copy opera-
tions (column Copy (s)), the time for maths operation (column Op.
(s)), the time to search into the interval (column Search (s)) and the
total time to complete the query process (column Query (s)). Every
time in the Table is per element and is expressed in seconds.
CPU Prediction Effectiveness-Neural Networks Models. NNO-BFS
refers to Binary Search with NNO as the prediction step, while the
other two columns refer to the time taken by NN1 and NN2 to predict
the search interval only. The time is reported as time per query in
second. When the model and the queries are too big to fit in the main
memory, a space errorisreported. oL
CPU Prediction Effectiveness-Atomic Models. The Table reports re-
sults with Linear, Quadratic and Cubic models. The Legend is as in
Table 2.5. e

A summary of the Datasets. For each dataset in the collection, it is
shown: the name used (column Name), its size in Kilobyte (column
Size (KB)), the number of elements in it (column Items), and the type
of its elements (final column Type).
Training time for L4 tables, in seconds and per element. The first
column indicated the datasets. The remaining columns indicate the
model used for the learning phase. The SOSD columns refer to the
entire output of that library, averaged over a number of models and
elementsineachtable.,

xxiii

24

24

25

25

XXiv

4.1

Al

B.1

B.2

B.3

B.4

B.5

C1

C2

C3

C4
C5

Search Range for the wiki dataset. The columns of table report the
model classes. Each model class is divided into Branchy (BBS) and
Branch-free (BFS) versions of Binary and k-ary Searches (in this latter
case K-BBS and K-BFS). In each class, we consider the best perform-
ing models.The rows report the memory levels. Each memory level
corresponds to a row in the table. For those rows, each entry con-
tains the pair Reduction Factors in percentage - number of elements
to search after a predictionismade.. L.

The results of the Kolmogorov-Smirnov Test and of the KL diver-
gence computation. oL o Lo

Training time for L1 tables, in seconds and per element. The first
column indicated the datasets. The remaining columns indicate the
model used for the learning phase. Abbreviations are as in the main
text. The SOSD columns refer to the entire output of that library,
averaged over a number of models and elements in each table.
Training time for L2 tables, in seconds and per element. The table
legendisasinTableB.1
Training time for L3 tables, in seconds and per element. The table
legendisasinTableB.1
Training time for L4 tables, in seconds and per element. The table
legendisasinTableB.1
A Synoptic Table of Space, Time and Accuracy of Models For each
memory level, the models are listed on the rows. The first one pro-
vides the best performing method for that memory level, on each of
the datasets used in this research. The columns indicate average query
time in seconds, average additional space used by the model and the
average of the empirical Reduction Factor. The remaining column en-
tries report analogous parameters, for each model, normalized with
respect to the best one. For each parameter, we take the ratio Mod-
el/bestmodel. L

Search Range for the amazon32 dataset. The columns of table report
the model classes. Each model class is divided into Branchy (BBS) and
Branch-free (BFS) versions of Binary and k-ary Searches (in this latter
case K-BBS and K-BFS). In each class, we consider the best perform-
ing models.The rows report the memory levels. Each memory level
corresponds to a row in the table. For those rows, each entry con-
tains the pair Reduction Factors in percentage - number of elements
to search after a predictionismade.. oL
Search Range for the amazon64 dataset. The table legend is as in
Table C.1. o
Search Range for the facebook dataset. The table legend is as in Table
Cl o e
Search Range for the osm dataset. The table legend is as in Table C.1.
Search Range for the wiki dataset. The table legend is as in Table C.1.

83

83
84
84

List of Abbreviations

BBS
BFE
BFS
BFT
BFV

CDF
IBS

LR
MSE
MLR
MLR
NN
PGM
PR
PSP

RF

RMI

RS

SD
SOSD
SY-RMI
SLR
TIP

Binary Search Branchy on Sorted Layout
Binary Search Branch-Free on Eytzeinger Layout
Binary Search Branch-Free on Sorted Layout
Binary Search Branch-Free on B-Tree Layout
Binary Search Branch-Free on Van emde Boas Layout
Cubic Model

Cumulative Distribution Function
Interpolation Search Branchy on Sorted Layout
K-ary Search

Linear Model

Linear Regression Model

Mean Square Error

Machine Learning

Multiple Linear Regression

Neural Network

Picewise Geometric Model

Polynomial Regression

Predecessor Search Problem

Quadratic Model

Reduction Factor

Recursive Model Index

Radix Spline

Static Dictionary

Search On Sorted Data

SYnoptic Recursive Model Index

Simple Linear Regression

Three Points Interpolation Search

XXV

XXVii

To those who will always be here
even without being present. ..

XX1x

Introduction

Searching for elements in a sorted set is a well-known problem in the Literature. It
has been studied widely over the years, and it is considered one of the classic prob-
lems for the introduction to Data Structures. However, in recent years, the study of
classic Data Structures with the aim of achieving time/space improvements has be-
come increasingly important. For example, in the era of Big Data, a growing number
of applications, such as Search Engines (Khuong and Morin, 2017), Decision Support
System in Main Memory (Rao and Ross, 1999) or Bidding Systems for advertising
(Khuong and Morin, 2017), require efficient search algorithms to be applied to a
wide variety of data.

0.1 State of the Art

Starting from the work of Kraska et al., 2018, extending the one by Ao et al., 2011,
a new trend has emerged that combines Machine Learning techniques with ones
proper of Data Structures. This approach involves using the former to automati-
cally exploit particular patterns in the data simulating an Index Structure that ad-
mits some errors in its prediction to improve the performance of classic search pro-
cedures. This new area goes under the name of Learned Data Structures and it has
been growling very quickly (as illustrated in Ferragina and Vinciguerra, 2020a). this
approach is applied to a variety of Data Structures and Algorithms, e.g. Learned
Bloom Filter initially described by Mitzenmacher, 2018.

One motivation behind their rapid development may lie, as outlined by Kraska et
al., 2018, in a perceived paradigm shift away from the so far used CPU and towards
the use of GPUs and TPUs, pushing the use of advanced machine learning tech-
niques, such as Neural Networks (Goodfellow, Bengio, and Courville, 2016a), and
highly engineered platforms (Abadi et al., 2015). In fact, these architectures make
it possible to parallelise the mathematical operations of Machine Learning models,
reinforcing the paradigm’s shift from if-then-else constructs, characteristic of classic
algorithms, to one based on simple arithmetic operations.

0.2 Owur Contributions

In this Thesis, we focus on searching in a Static Dictionary over Sorted Set using
Learned Data Structure. In particular, in Chapter 1, we start by providing a defini-
tion of Static Dictionary Data Structures over Sorted Sets and describing the well-
know Predecessor Search Problem. Then, we illustrate the main classic algorithms
used in this Thesis to solve it. Finally, we reduce this problem to a Learning-Prediction
one, introducing Learned Indexes. In particular, in this Thesis, our contributions are
organized in the next Chapters as follow.

* In Chapter 2, starting from the consideration made by Kraska et al., 2018, we
illustrate how a perceived change of paradigm in computer architecture is one

XXX

of the motivation for introducing Learned Indexes. Furthermore, we provide a
first experimental evidence on the use of Neural Networks as Learned Indexes
through the comparison with simpler models.

In Chapter 3, we examine the advantage of using both simple model, e.g., Re-
gression, and sophisticated ones, which organize different models in a hierar-
chy, e.g., RMI (Kraska et al., 2018), PGM (Ferragina and Vinciguerra, 2020b)
and RS (Kipf et al., 2020), to improve classic search procedures. Then, consid-
ering the existence of time/space trade-off for the Predecessor Search Problem
(as widely discussed by Pdtrascu and Thorup, 2006), we study if it is possi-
ble to improve those classic search algorithms using small or constant space
with respect to the Table size, showing that, even imposing a space bound on
the most complex model, we can achieve this improvement. In addition, we
provide two new kinds of models that respect an imposed space bound.

In Chapter 4, we discuss the difference between Standard and Uniform Search,
observing how these can impact the performance of a Learned Index. These
two procedures, introduced and discussed by Knuth, 1973, have been studied
experimentally in the Literature on synthetic datasets by Khuong and Morin,
2017, who refer to them as Branchy and Branch-free, respectively. So, we ex-
tend this study by testing these two versions of Binary Search on real datasets.
Then, we analyse their use as final search stage of Learned Indexes. In addi-
tion, we apply the same experimental procedure to the Standard and Uniform
versions of k-ary Search.

In Chapter 5, following an analysis of several features of Learned Indexes that
operate on a specific type of Dictionaries, due to their natural fit with the sorted
table layout, we define a new generic type of Learned Dictionary for Static
Sorted Search, able to use as its final search stage various types of Dictionary,
also different from sorted layout. These models base their idea on making
explicit the partition that is normally implicit in Learned Indexes present so
far in the Literature. In particular, we provide two instances of this Generic
Learned Dictionary, mentioning some construction and query bounds. The
first is characterised by a partition with fixed-length intervals derived from
a generalisation of the method presented by Demaine, Jones, and Patrascu,
2004 for solving Interpolation Search for non-independent data. The other is
a partition with variable-length intervals derived from the construction of a
PGM Index. Then, we analysed the “boosting effect” for each of them on a
variety of Data Structures and we compare these Generic Learned Dictionaries
with the specific ones.

In the Conclusions Chapter, we summarize the major contributions of this The-
sis and underline the future direction for this work.

Chapter 1

Learned Data Structures

This Chapter introduces the Predecessor Search Problem (PSP for short), a well-
known problem in the Literature, and presents which of the main classic algorithms
are used to solve it. Then, it is shown how to reduce the PSP to a Learning-Prediction
problem, introducing Learned Indexes. In particular, this Chapter is organized as
follows.

* In Section 1.1, we present the definition of Static Dictionary Data Structures
and we describe the classic PSP operation

¢ In Section 1.2, we describe classic algorithms on arrays and trees for searching
in a sorted set.

¢ In Section 1.3, we preliminarily introduce a fundamental routine for Learning-
Prediction problems, i.e. Linear Regression.

¢ InSection 1.4, we finally reduce the PSP to a Learning-Prediction problem, and
we describe the most relevant Learned indexes in the Literature.

¢ In Section 1.5, we summarise the contents of the previous Sections.

The Bibliographic Notes relevant for this Chapter are in the corresponding Sec-
tion.

1.1 Static Dictionary Data Structures over Sorted Sets

Given an universe U of integers, on which it is defined a total order relation, a static
sorted sets dictionary) SD is a Data Structure that supports the following operations
over a sorted set A:

1. member(x) = TRUE if x € A, otherwise FALSE.
2. PSP(x) = max{y € Aly < x}, i.e. Predecessor Search.
3 range(x,y) = AN [x,y].

From now on, for brevity, we refer to SD simply as Dictionary.

In what follows, we focus on PSP, described more in-depth in the following Sec-
tion, since all of the Dictionaries considered in this Thesis efficiently support range
queries.

2 Chapter 1. Learned Data Structures

1.1.1 Predecessor Search Problem

Consider a 8D, as defined in the previous Section. The membership problem is
defined as follows: for a given element x € U, provide as answer "yes" if x € A, and
"no" otherwise.

Considering a Dictionary again, it is possible to extend the previous problem
with the definition of the so-called Predecessor Search Problem, which, given a
query element x, gives as answer an A[j] such that A[j] < x < A[j +1].

It is possible to solve both problems on an ordered set via the primitive oper-
ation rank(x), which returns the number of elements in A less than or equal to
x. In this way, the operation membership(x) consists of evaluating the expression
Alrank(x)] == x and the operation predecessor(x) simply returns A[rank(x) — 1].

1.2 Standard Algorithmic Tools for PSP: Arrays and Trees

A description of the classic algorithms for searching in ordered tables is provided in
this Section. We can distinguish among;:

1. Search methods that act directly on the ordered table, i.e. Binary Search, Inter-
polation Search and k-ary Search (see Section 1.2.1).

2. Search methods that use a particular transformation of the table, other than
sorted, i.e. Array Layouts (see Section 1.2.2).

3. Search methods for data stored in structures more complex than arrays, i.e.
Self-Adjusting Binary Trees, B-Trees and CSS-Trees (see Section 1.2.3).

1.2.1 Sorted Table Search
Binary Search

Binary Search is the most well-known algorithm used to search in a sorted table.
There are two main versions of it. The standard one, that makes use of if-then-else
constructs within the while loop (Algorithm 1, rows 4 to 10), and the one that goes
under the name of Uniform Binary Search (Algorithm 2), that executes the entire
loop even if the query element is found. It is to be remarked that, in the Literature,
these two routines are, respectively, also referred to as Branchy (denoted in what
follow with BBS) and Branch-free (denoted with BFS) Binary Search. Throughout
this Thesis, we adhere to this formalism.

The denomination Branch-free for Algorithm 2 comes from the fact that the com-
piler translated the if-then-else construct in line 8 in Assembler as a conditional in-
struction, which avoids altering the stream of Assembly code generated. In this way,
better use of instruction pipelining is obtained. This aspect is discussed in more de-
tail in Section 4.1. In instructions 6 and 7 of Algorithm 2, there is a prefetching
procedure that loads data into the cache memory before it is used, to improve the
performance of Binary Search over its Branchy counterpart.

Interpolation Search

The Standard Interpolation Search procedure (IBS for short), described in Algorithm
3, has proved to be highly effective in practice for searching in ordered tables, whose
data are drawn from the universe via a Uniform distribution. The algorithm involves

1.2. Standard Algorithmic Tools for PSP: Arrays and Trees

Algorithm 1 C++ Implementation of Standard Binary Search.

1: int StandardBinarySearch(int *A, int x, int left, int right){
while (left < right) {
int m = (left + right) / 2
if(x < A[m]){
rigth = m;
Jelse if(x > A[m]){
left =m+1;
Jelse{
return m
}
}

return right;

[o S =S
PN P2
—_

Algorithm 2 C++ Implementation of Uniform Binary Search with prefetching.

1: int UniformBinarySearch(int *A, int X, int left, int right){
2: const int *base = A;

3: intn=right;
4: while (n > 1) {
5: constinthalf =n / 2;
6: __builtin_prefetch(base + half/2, 0, 0);
7 __builtin_prefetch(base + half + half/2, 0, 0);
8: base = (base[half] < x) ? &base[half] : base;
9: n -= half;
10: }
11: return (*base < x) + base - A;

4 Chapter 1. Learned Data Structures

determining, by applying a straight line that approximates the distribution of the
data, a pivot point (instruction 8) that divides the table into two complementary
intervals, one of which is chosen to perform the next iteration. Unlike Binary Search,
this division does not necessarily generate intervals of equal cardinality.

Algorithm 3 C++ Implementation of Standard Interpolation Search.

1: int StandardInterpolationSearch(int *arr, int x, int start, int end){

2 int lo = start, hi = (end - 1);
3 while (lo < hi && x > arr[lo] && x < arr[hi]) {
4 if (lo == hi) {
5: if (arr[lo] == x) return lo;
6 return -1;
7 }
8 int pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo]));
9: if (arr[pos] == x) return pos;
10: if (arr[pos] < x) lo = pos + 1;
11: else hi =pos-1;
12: }
13: return pos;
14: }

An additional implementation of Interpolation Search is the Three-Points Inter-
polation Search (TIP for short) described in Algorithm 4. Unlike Standard Interpo-
lation Search, this version uses a 3-points Interpolation method to interpolate effi-
ciently a variety of distributions that are not uniform.

K-ary Search

The k-ary Search is a generalisation of Binary Search. Once chosen a k > 2, it consists
of two iterated steps, as follows.

(1) the sorted table is divided into k parts of the same size.

(2) at most k — 1 checks are performed in order to find the correct range where to
iterate next, until the element is found.

It is to be noted that k = 2 corresponds to a Standard Binary Search and that the
time complexity of a k-ary Search is log(n).

As for Binary Search described in the previous Section, k-ary Search can be imple-
mented in two versions, i.e., the Standard one, as in Algorithm 5, and the Uniform
one, as in Algorithm 6. In analogy with Uniform Binary Search, lines 9 and 10 of Al-
gorithm 6 are translated by the compiler into “conditional moves”, which avoids the
generation of branches. For that reason, in the following, we refer to the Standard k-
ary Search as Branchy (denoted with K-BBS) and to the Uniform one as Branch-free
(denoted with K-BFS).

1.2.2 Array Layouts Other Than Sorted

Array Layouts organise Table elements as if they were stored in a virtual tree, apply-
ing the appropriate search algorithms. We now present the three most well-known
Array Layouts.

1.2. Standard Algorithmic Tools for PSP: Arrays and Trees

Algorithm 4 C++ Implementation of Three Points Interpolation Search.

1: int TipSearch(int *arr, int x, int start, int end){

2: intmid =end/2;

3: double y0 = Alleft] - x;

4: double y1 = A[mid] - x;

5: double y2 = A[right] - x;

6: double num = (y1*(mid-left)*(1+(y0-y1)/(y1-y2)));

7. double den = y0-y2*((y0-y1)/(y1-y2));

8: int expected = mid + num / den;

9: while (left < right && left < expected && right > expected){
10: if(abs((double)expected - (double)mid) < guard){
11: return sequential(A, x, left, right);

12: }

13: if(A[mid] !'= A[expected]){

14: left = mid;

15: Jelse{

16: right = mid;

17: }

18: if(expected+guard > right || expected-guard < left){
19: return sequential(A, x, left, right);

20: }

21: mid = expected;

22: y0 = Alleft] - x;

23: y1l = A[mid] - x;

24: y2 = Alright] - x;

25: num = (y1*(mid-right)*(mid-left)*(y2-y0));

26: den = (y2*(mid-right)*(y0-y1)+y0*(mid-left)*(y1-y2));
27 expected = mid + num/den;

28: }

29: }

Algorithm 5 C++ Implementation of Standard k-ary Search.

1: int StandardKarySearch(int *arr, int x, int start, int end, int k){
2: int left = start, right = end;

3: while (left < right){

4: int segLeft = left;

5: int segRight = left + (right - left) / k;

6 for (inti=2;i < k; ++i){

7 if (x < arr[segRight]) break;

8 segLeft = segRight + 1;

9: segRight = left + (i * (right - left)) / k;

10: }

11: left = segLeft;
12: right = segRight;
13}

14: return left;
15: }

6 Chapter 1. Learned Data Structures

Algorithm 6 C++ Implementation of Uniform k-ary Search.

1: int UniformKarySearch(int *arr, int x, int start, int end, int k){

2: int left = start, right = end;

3: while (left < right){

4 int segLeft = left;

5: int segRight = left + (1 * (right - left)) / k;

6 for (inti=2;i < k; ++i){

7 int nextSeparatorIndex = left + (i * (right - left)) / k;

8 seglLeft = x > arr[segRight] ? segRight + 1 : segLeft;

9 segRight = x > arr[segRight] ? nextSeparatorIndex : segRight;

10: }

11: left = segLeft;

12: right = segRight;
13}

14: return left;

15: }

FIGURE 1.1: An Example of Eytzinger Layouts (see also Khuong and

Morin, 2017). The sorted table is seen as stored a balanced Binary

Search Tree. Then, such a tree is laid out in Breadth-First Search order
in the array.

Eytzinger Layout

The sorted table is thought of as stored in a virtual complete balanced Binary Search
Tree. Such a tree is laid out in Breadth-First Search order in an array. An example
is provided in Fig. 1.1. We adopt a Uniform version with prefetching of the Binary
Search procedure corresponding to this layout. It is reported in Algorithm 7 and
denoted in what follows as BFE.

B-Tree Layout

The sorted table is thought of as stored in a B+1 Search Tree, which is laid out in
Breadth-First Search order in an array. An example is provided in Fig. 1.2. We adopt
a Uniform version with prefetching of the Binary Search procedure corresponding
to this layout. It is reported in Algorithm 8 and denoted in what follows as BFT.

Van Emde Boas Layout

The table is organised starting from a complete Binary Search Tree and constructed
recursively. In particular, we consider n the number of elements and / the height of

1.2. Standard Algorithmic Tools for PSP: Arrays and Trees 7

Algorithm 7 C++ Implementation of Uniform Binary Search with Eyzinger layout
and prefetching.

1: int UniformEytzingerSearch(int *A, int x, int left, int right){
2 inti=0;

3 int n = right;

4: while (i < n){

5: __builtin_prefetch(A+(multiplier*i + offset));

6 i=(x<A[D? 2*%+1): (2% +2);

7

8 intj = (i+1) >> _ builtin_ffs(~(i+1));

9: return(j==0)?n:j-1;

10: }

[3]5]|9]11][15]16] [10] |

IRAPPA VA CHPINPARHPVA 3 | 5 | 9 |11|15(|16(19

FIGURE 1.2: An Example of B-Tree Layout (see also Khuong and

Morin, 2017). The sorted table is thought as stored in a B-Tree with

B = 2. Then, such a Tree is laid out in Breath-First Search order in the
array.

Chapter 1. Learned Data Structures

Algorithm 8 C++ Implementation of Uniform Binary Search with B-Tree layout

and prefetching.

1: int UniformBTreeSearch(int* a, int x, int left, int right){
int j = right;

int i = left;

int n = right - left +1;

int B = cacheline/sizeof(T);

while (i+ B < n) {

2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31: }
32:

}

__builtin_prefetch(a+child(i, B/2, B), 0, 0);
const int *base = &ali];
const int *pred = uniform_inner_search(base, x, B);
int nth = (*pred < x) + pred - base;
{
const int current = base[nth % BJ;
int next =1+ nth;
j = (current > x) ? next : j;
}
i = child(nth, i, B);

if (__builtin_expect(i < n, 0)) {

)

const int *base = &ali];
intm=n-1i;
while (m > 1) {
inthalf=m/ 2;
const int *current = &base[half];
base = (*current < x) ? current : base;
m -= half;
}
int ret = (*base < x) + base - a;
return (ret ==n) ? j : ret;

return j;

33: int* uniform_inner_search(int *base, int x, int C) {

if (C < 1) return base;

constint half=C / 2;

const T *current = &base[half];

return uniform_inner_search((*current < x) ? current

34:
35:
36:
37:
38: }

: base, x, C-half);

1.2. Standard Algorithmic Tools for PSP: Arrays and Trees 9

® (@
DB O O@
A R 8 D D S R

FIGURE 1.3: An Example of Van emde Boas Layout (see also Khuong
and Morin, 2017). The table is seen as a complete Binary Search Tree.
Then, starting from the root, the layout is constructed recursively.

the tree, if n = 1 the element is stored in A[0], otherwise the top part of the tree of
height |}1/2] is stored recursively in the layout at location A[0....,211"/2) — 2] All
leaves of this upper tree are at most 2! *1"/2] and the same procedure is applied on
them recursively from left to right. An example is given in Fig. 1.3. The search algo-
rithm is illustrated in Algorithm 9 and denoted in what follows as BFV. It should be
noted that the extensive experiments conducted in the Literature indicate that such
a layout may be superior to the ones mentioned earlier only occasionally and on
large datasets. Due to such inconsistency in performance, it has been described here
for the sake of completeness, but it is not included in the experimental part of this
Thesis.

1.2.3 Search Trees

Self-adjusting Binary Trees

A Self-adjusting Binary Tree is a Binary Search Tree, with a standard search proce-
dure, except for the Splay operations (see Algorithm 10) that move the accessed node
to the root.

In more detail, if p and g denote, respectively, the parent and the grandparent
of the accessed node x, the possible operation in a splay step consist of Zig, Zig-Zig
and Zig-Zag steps, each of those convolves Rotation and Double Rotations around
p and g. We do not give the details here.

Splay Step ensures that basic operations are performed in O(logn) amortised
time.

B*-Trees

A BT-Tree (as in Fig. 1.4) is a variant of a classic B-Tree, with the following features:
(1) All nodes have at most B children.
(2) All non-leaves nodes (except root) have at least [B/2] children.
(3) The root has at least two internal child nodes or at least one leaves child node.

(4) All non-leaves nodes with k children contain kK — 1 keys and k pointers (as
shown in Fig. 1.5).

(5) The leaves are connected as in a linked list called sequence set.

10

Chapter 1. Learned Data Structures

Algorithm 9 C++ Implementation of Standard Binary Search with Van emde Boas
layout.

1: int StandardVanEmdeBoasSearch(int *a, int x, int n, dumdum *s) {

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

}

int rti{MAX_H+1];

intj=n;
inti=0;
intp=0;
for (intd =0;i < n; d++) {
rtl[d] =;
if (x < a[i]) {
p<<=1

j=1
} else if (x > ali]) {
p=pP<<DH+1L
} else {
return i;
}
i = rtl[d-s[d].h0] + s[d].mO + (p&s[d].m0)*(s[d].m1);
}

return j;

struct dumdum {

5

unsigned char h0, h1, dummy|[2];
int m0, m1;

Algorithm 10 C++ Implementation of the Splay Step in a Self-adjusting Binary
Tree

1: void splay(TreeNode *x) {

2:

:

while (x -> parent != NULL){
TreeNode *p = x -> parent;
TreeNode *g = p -> parent;
if (g == NULL) zig(x);
else if (g -> left == p && p -> left == x) zig_zig(x);
else if (g -> right == p && p -> right == x) zig_zig(x);
else zig_zag(x);

)

this -> root = x;

1.2. Standard Algorithmic Tools for PSP: Arrays and Trees 11

42

2 |3 |5 [7 [11] [13[17]19] [23]29] | [31[37]41] |43]47]
L =~ L T L L D T DL I L
N

FIGURE 1.4: An Example of B'-Tree. @ The table A =

[2,3,5,7,11,15,17,19,23,29,31,37,41,43,47] is stored in a BT-Tree

with B = 4. All table keys are stored in the leaves, connected in a

linked list. Even, the internal node contains only the indexing struc-
tures

Po kl Py kZ Py k3 P3

AR

‘ k< x ‘

x< ki ‘

ki< X < kj k< x < k3

FIGURE 1.5: An Example of an internal B -Tree Node wit B=4. The

internal node contains (a) keys k; that represent different data sub-

interval, and (b) pointers to the nodes of the lower level, correspond-
ing to the selected sub-interval.

The search procedure of an element x consists of the following. Starting from
the root and at each node, the pointer is chosen relative at the key k;, such that
ki < x < kiy1. Once a leaf is found, a Sequential Search on a linked list of at most
B-1 keys is performed.

In particular, BT-Trees perform better than the classic B-Tree counterpart because
removing the pointer to data inside the internal node reduces context switching and
cache misses. In addition, deletions and insertions can often be performed by chang-
ing only leaves and not the internal indexing structures of the tree.

CSS-Trees

A CSS-Tree is a complete k-ary Search Tree stored inside an array A that contains
directory structures at the top and data at the end (as shown in Fig. 1.6). It is built
so that it is possible to determine for each node its children just by calculating an
interval offset with the following formulas: Given a node b, A store all children of b
between the indexes [] * (k+1) + 1and [2] * (k+1) +k+ 1.

A search procedure in a CSS-Tree starts from the root and performs a Binary
Search to find the correct branch among all node’s children. Then, it repeats this
passage within the new branches interval until a leaf node, which maps a sorted
table portion, is found. Finally, a Binary Search in the found portion is performed.

12 Chapter 1. Learned Data Structures

internal Leaves

[o]1] [15[16] [3o[31]

6-10 |[11-15] [16-20][21-25] [26-30]

[3155 || se-s0 |

[o] [49]50] [64]

FIGURE 1.6: An example of a CSS-Tree (see also Rao and Ross, 1999).

Starting from a Table in a k-ary Search Tree with k = 4, it is possible

laid it out in an array with two section: (a) an initial part with only

indexing structures,i.e. the internal nodes of the tree, and (b) an end-
ing part with the leaves, containing the keys of the Table.

This procedure can provide better performance than simple Binary Search be-
cause, by choosing k smaller than the cache size, each search routine is performed
without slowdown caused by context changes and cache misses.

1.3 Linear Regression

Regression Analysis is a methodology for approximating a function F : R — R into
a function F. The independent variable x € R™ is referred to as predictor and the
dependent variable y is referred to as outcome. The parameters of F are determined
through the minimization of an error function, the most commonly used of which is
the Mean Square Error (MSE for short).

Linear regression (LR for short) is the case when a geometric linear form is as-
sumed as model. In the case when m = 1, it is referred to as Simple Linear Regres-
sion (SLR for short) and as Multiple Linear Regression (MLR for short), otherwise.

For the general case of LR, given a sample set of n predictor-outcome couples
(xi,yi), where x; € R™ and y; € R, the goal is to characterize the linear function
model F(x) = wxT + b by estimating the parameters W € R and b € R, using
the sample set. We can define a matrix Z of size n x (m + 1) (usually referred to as
the design matrix), where Z; is the i-th row of Z such that Z; = [x;, 1]. Moreover,
y indicates the vector of size n such that the outcome y; is its j-th component. The
Mean Square Error minimization on the basis of the estimation is:

1 2
MSE(w,b) = - H[w,b]zT—yH2 (1.1)

MSE is a convex quadratic function on [w, b], so that the unique values that min-
imize it can be obtained by setting its gradient V, , equal to zero. The closed form
solution for the parameters w, b is

[W,b] =yz(2'Z)™! (1.2)

It is to be noted that the SLR case is characterized by the choice of a polynomial
of degree ¢ = 1. The general case of Polynomial Regression (PR for short), using
polynomials with degree ¢ > 1, are special cases of MLR. Indeed, we can consider
the model:

g ,
F(z) =) wix'+b= wz! +b,
i=1

1.4. Learned Index Models 13

Query Element 5

11
14

Model —

101

FIGURE 1.7: A general paradigm of Learned Searching in a Sorted

Set (see also Marcus20). The model is trained on the data in the table.

Then, given a query element, it is used to predict the interval in the
table where to search (included in brackets in the figure).

where w is of size ¢, z = [x,.., x8 -1 x8] € RS is the predictor vector for MLR.

1.4 Learned Index Models

1.4.1 A simple view of Learned Search in Sorted Set

Consider a sorted table A of n keys, taken from a universe U. As shown in Section
1.1.1, Sorted Table Search reduces to Predecessor Search. In turn, such a problem
can be transformed into a Learning-Prediction one, as follows. Regarding Fig. 1.7,
the model learned from the data is a predictor of where a query element may be in
the table. Once such a prediction is made, Binary Search is performed only on the
interval returned by the model.

We now outline the basic technique that one can use to build a model for A. It
relies on Linear Regression (more details are described in Section 1.3), with Mean
Square Error Minimization. Consider the empirical cumulative distribution function
(CDF for short) of table A, which maps elements to their relative position within the
table. It is reminiscent of the CDF over the universe U. With reference to the example
in Fig. 1.8, and assuming that one wants a linear model, i.e., F(x) = ax + b, it is
possible to fit a straight line to the CDF and then use it to predict where a point x may
fall in terms of rank and accounting also for approximation errors. More generally,
to perform a query, the model is consulted and an interval in which to search for is
returned. Then, to fix ideas, Binary Search on that interval is performed. Different
models may use various schemes to determine the required range, as outlined in
Section 1.4.2.

For this Thesis, it is essential to know how much of the table is discarded once
the model makes a prediction on a query element. For instance, Binary Search, af-
ter the first test, discards 50% of the table. Because of the diversity across models
to determine the search interval and to place all models on a par, we estimate the
Reduction Factor (RF for short) of a model, i.e., the percentage of the table that is no
longer considered for searching after a prediction, empirically. That is, with the use
of the model and over a batch of queries, we determine the length of the interval to
search into for each query. Based on it, it is immediate to compute the Reduction
Factor for that query. Then, we take the average of those Reduction Factors over the
entire set of queries as the Reduction Factor of the model for the given table.

14

Chapter 1. Learned Data Structures

®) 1 (c) i ;

FIGURE 1.8: The Process of Learning a Simple Model via Linear
Regression. Let A be [47,105, 140,289, 316, 358, 386, 398, 819,939]. (a)
The CDF of A. In the diagram, the abscissa indicates the value of an
element in the table, while the ordinate is its rank. (b) The straight
line F(x) = ax + b is obtained by determining a and b via Linear
Regression, with Mean Square Error Minimization. (c) The maximum
error € one can incur is using F also important. In this case, itis e = 3,
i.e., accounting for rounding it is the maximum distance between the
rank of a point in the table and its rank as predicted by F. In this case,
the interval to search into, for a given query element x, is given by
[F(x) —€,F(x) +€].

1.4.2 Model Classes Characterizing Model Space

Except for the ones operating on table layouts different from sorted and the Trees,
all procedures mentioned in Section 1.2 have a natural Learned version. For each,
its time and space performances depend critically on the model used to predict the
interval to search into. Here we distinguish among four model classes characterising
model space.

The first class consists of models that use constant space, while the other three

consist of models that use space as a function of some model parameters. For each
of those models, we determine the Reduction Factor as described in Section 1.4.1.

Atomic Models: One Level and no Branching Factor

¢ Simple and Multiple Regression. In this Thesis, we use linear, quadratic and

cubic regression models. Each can be thought of as an atomic model in the
sense that it cannot be divided into sub-models. Fig. 1.9(a) provides an exam-
ple. In particular, the corresponding learned methods are prefixed by L, Q, or
C, so that, for instance, L-BFS denotes the Branch-free version of Branch-free
Binary Search with a linear model to restrict the search interval.

Two-Level RMIs with Parametric Branching Factor

¢ Heuristically Optimized RMIs. Informally, a Recursive Model Index (denoted

with RMI) is a multi-level, directed graph, with Atomic Models at its nodes.
When searching for a given key and starting with the first level, a prediction at
each level identifies the model of the next level to use for the next prediction.
This process continues until a final level model is reached. This latter is used
to predict the interval to search into. An example is provided in Fig. 1.9(b). It
is to be noted that Atomic Models are RMIs.

Multi-Level Models with Various Parameters

e Neural Networks. Another method to learn a function F is to use Neural

Nets (NN for short). In particular, we focus on feed-forward neural networks

1.5. Conclusions 15

where the general strategy consists of an iterative training phase during which
an improvement of the F approximation is made. Starting from an initial ap-
proximation Fy, at each step i, given a subset of data as input, an attempt is
made to minimize an error function E so that E(F;,_1) > E(F;). A series of
steps using the entire dataset is called epoch. The process can stop after a fixed
number of epochs, or when, given a tolerance 6, | E(F;_1) — E(F) |< 6.

To perform a Regression using a NN, we need to represent the input integer as
a string containing its 64-bit binary representation, and we call this vector ¥
The characteristics of a NN are:

1. ARCHITECTURE TOPOLOGY:

(@) The atomic element of NN is called Neuron. As described in Fig.
1.9(c).

(b) The Number of Hidden Layers H.

(c) for each hidden layer £;, its neurons number 1y, .

(d) the connection between each layer. In our case a Fully connected
Neural Net is used, i.e. each neuron of layer h; is connected with
each neuron of next layer h; .

2. THE LEARNING ALGORITHM:

(a) The error function E, that is used to measure how close is F to F.

(b) The gradient descent iterative process that starts from a Fy and, at
each step, better approximates F reducing E.

CDF Approximation-Controlled Models

¢ Piecewise Geometric Model (PGM). It is a multi-stage model, built bottom-
up and queried top-down. It uses a user-defined approximation parameter €
that controls the prediction error at each stage. With reference to Fig. 1.9(d),
the table is subdivided into three pieces. A prediction in each piece can be
made via a linear model guaranteeing an error of €. A new table is formed by
selecting the minimum values in each of the three segments. This new table
is possibly again partitioned into pieces, in which a linear model can make a
prediction within the given error. The process is iterated until only one linear
model suffices, as in the case in the Figure. A query is processed via a series of
predictions, starting at the root of the tree.

* Radix Spline (RS). It is a two-stage model. It also uses a user-defined approxi-
mation parameter €. With reference to Fig. 1.9(e), a spline curve approximating
the CDF of the data is built through a greedy algorithm that, by scanning the
points of the table, introduces a spline point in the model when the new point
added to the range no longer respects the error parameters provided as input.
Then, the radix table is used to identify spline points to use to refine the search
interval.

1.5 Conclusions

In this Chapter, we have introduced a well-known problem in the Literature, and
we have provided an overview of the main techniques to solve it. In particular, we
have described both classic solutions from the Literature, as shown in Section 1.2,

16 Chapter 1. Learned Data Structures

(d) © L l : i

(CRRERREE

FIGURE 1.9: Examples of various Learned Indexes. (a) an Atomic
Model, where the box linear means that the CDF of the entire dataset
is estimated by a linear function via Regression, as exemplified in Fig-
ure 1.8. (b) An example of an RMI with two layers and branching
factor equal to b. The top box indicates that the lower models are se-
lected via a linear function. As for the leaf boxes, each indicates which
Atomic Model is used for prediction on the relevant portion of the ta-
ble. (c) An Example of the structure of a NN’s Neuron. The inputs
are binary vector (x!, ..., x?) and the weight parameter (w!, ..., w*) are
a vector of floating points. The final output is y = max(0, "%, wix’).
(d) An example of a PGM Index. At the bottom, the table is divided
into three parts. A new table is so constructed and the process is iter-
ated. (e) An example of an RS Index. At the top, the buckets where
elements fall, based on their three most significant digits. At the bot-
tom, a linear spline approximating the CDF of the data, with suitably
chosen spline points. Each bucket points to a spline point so that, if a
query element falls in a bucket (say six), the search interval is limited
by the spline points pointed to by that bucket and the one preceding
it (five in our case).

(@) o —{

and new methods based on a new Learning-Prediction approach, as in Section 1.4.
For these latter, as described in Section 1.4.2, we have also distinguished four classes
depending on the space that the model used.

Bibliographic Notes

The PSP is a well-known and well-studied problem in Computer Science at the ori-
gin of Algorithmic Design and Analysis (Knuth, 1973 and Aho, Hopcroft, and Ull-
man, 1974). Over the years, it has been extensively studied, e.g., Pdtrascu, 2008 and
Mehlhorn and Tsakalidis, 1990. Uniform Binary Search was introduced by Knuth,
1973 and the terminology Branch-free to refer to it by Khuong and Morin, 2017.
Array Layouts, other than sorted, have been extensively studied in the Literature,
particularly by Khuong and Morin, 2017, from which we take all the implementa-
tions. The interested reader can find relevant references to Array Layouts in Khuong
and Morin, 2017. The advantage of using prefetching is discussed for the first time
by Prokop, 1999 within Cache Oblivious Algorithms. Such an advantage is con-
firmed by Khuong and Morin, 2017 within Binary Search procedures. Apparently,
the straightforward generalisation of Binary Search to k-ary has been considered for
the first time by Schlegel, Gemulla, and Lehner, 2009. We use the Branch-free imple-
mentation with prefetching provided by Schulz, Broneske, and Saake, 2018. Classic
Interpolation Search was introduced by Peterson, 1957 and it has been extensively
studied (see Mehlhorn and Tsakalidis, 1990). The TIP heuristic has been proposed
by Van Sandt, Chronis, and Patel, 2019. Binary Search Trees are well-known Data
Structures in Computer Science. Its generalisation with at most B children per nodes,
i.e. B-Trees, has been introduced by Bayer and McCreight, 1970, and its variant, i.e.
Bt -Trees, is described in Comer, 1979. Sleator and Tarjan, 1985 have introduced

1.5. Conclusions 17

the Self-adjusting Binary Trees and the CSS-Trees have been introduced by Rao and
Ross, 1999.

Regression Analysis is a classic across many disciplines and it is widely dis-
cussed in Freedman, 2005, and in Goodfellow, Bengio, and Courville, 2016b. The
characteristics of a Neural Network are illustrated in Goodfellow, Bengio, and Courville,
2016a. Concerning the architecture used for this Thesis, Kraska et al., 2018 describes
it, but no experimentation has been reported in the Literature.

The fact that one can derive a CDF from the table and approximate that curve
via regression to make a prediction in the table is not new, e.g., Ao et al., 2011. How-
ever it has been not much more than an isolated trick. The full generality of this
trick comes out with the Learned Indexes introduced by Kraska et al., 2018. In that
seminar paper, apart of the paradigm, an initial form of the RMI is provided, which
is then perfected in Marcus, Kipf, et al., 2020. The PGM Index is introduced by
Ferragina and Vinciguerra, 2020b and use, for its construction, the Piecewise Linear
Approximation presented in Ferragina, Lillo, and Vinciguerra, 2020. The RS Index
is introduced by Kipf et al., 2020 and its greedy construction algorithm is provided
by Neumann and Michel, 2008.

19

Chapter 2

On the Suitability of Neural
Network as a Learned Index Model

In this Chapter, we first highlight that one of the motivations for introducing Learned
Indexes is a perceived change of paradigm in computer architectures that would
favour the use of GPUs and TPUs over conventional CPUs. In turn, as an alter-
native to classic indexes, such paradigm shift favours the use of Neural Networks
supported by highly engineered software platforms, such as Tensorflow. However,
no evidence is given that this new approach leads to improvements, in particular
regarding Neural Networks. Here we provide the first experimental evidence that
these models are not competitive with the simple Atomic ones introduced in Sec-
tion 1.4.2. However, as illustrated in the following Chapters, the use of those latter
are inferior to the more structured ones, also described in Section 1.4.2. Therefore,
regarding the ones introduced in Section 1.4.2, we show that Neural Networks are
not competitive as Learned Index models. In particular, this Chapter is organized as
follows.

¢ In Section 2.1, we discuss the role of Neural Networks in the sorted indexing
context, with reference to modern hardware architectures.

* In Section 2.2, we illustrate the experimental methodology adopted in this
Chapter.

¢ InSection 2.3, we illustrate and discuss the results obtained in our experiments.

¢ In Section 2.4, we provide conclusions on the experimental analysis conducted
in the preceding Section.

The Bibliographic Notes relevant for this Chapter are in the corresponding Sec-
tion.

The software used for the experimentation described in this Chapter is available
on Github'!, while the relative datasets are available on a repositoryz.

2.1 The Perceived Potential of the Neural Networks with the
use of the Modern Computer Architectures

Indexes used for searching in a sorted set are usually engineering-optimised on well-
known characteristics of the domain in which they are used and cannot represent the
extreme variety present in real data. Therefore, to solve this problem, it seems possi-
ble to use Machine Learning models capable of learning the intrinsic characteristics

1ht’cps: / / github.com/globosco/ A-Benchmarking-platform-for-atomic-learned-indexes
Zhttp:/ /math.unipa.it/lobosco/NNLI/

20 Chapter 2. On the Suitability of Neural Network as a Learned Index Model

of the data. The ML models with most potential in this area are undoubtedly Neu-
ral Networks because of their power. In fact, they can learn any type of function
with the right architecture. Unfortunately, they require a prohibitive computational
power. In recent years, the introduction of GPU and TPU architectures in commer-
cial computers, and the deployment of highly engineered development platforms
such as Tensorflow, has improved the performance of all those operations involved
in a Machine Learning process. Therefore, ML Models and Neural Networks have
been increasingly used in many fields. The greatest strength of these new architec-
tures is that they can parallelise math operations made by Neural Networks very
well compared to a general-purpose set of instructions. In particular, recent stud-
ies even argue that the power of the GPU can be improved by 1000x in terms of
time in the next few years, while, due to Moore’s law constraints, those improve-
ments are not seen for classic CPUs. Furthermore, a programming paradigm based
on branches of the if-then-else type seems to have been overcome in favour of a
paradigm that promotes mathematical operations carried out in pipelines; this as-
pect is discussed in more detail in Section 4.1 of Chapter 4.

For these reasons, using ML models such as Neural Networks, instead of the
classic Data Structures, which make extensive use of branch instructions in their
code, may lead to the deployment of substantial better Data Structures with benefit
in several areas, such as Databases. In the following Section, we analyse an example
of their use, i.e., Learned Bloom Filter.

2.1.1 From Motivation to Design and Implementation: The Case of Learned
Bloom Filters

In order to be able to illustrate how a Learned Bloom Filter works, we start by defin-
ing its classic version. Then, we illustrate some examples, provided in the Literature,
of the use of Neural Networks to improve Bloom Filters performance.

Classic Bloom Filter

Given a universe U of keys and A C U such that |A| = 1, we define a Bloom Filter as
an array of bits v of size m with every element initialised to 0. Using k hash functions
hi U — {0,..,m —1} with j € {1, .., k}, each element x of A is encoded such that
every bit of v at position /;(x) is equal to 1 for every j € {1,...,k}. To test whether
an element x € U belongs to set A, we compute all values of the hash functions
hi(x) with j € {1,..., k} and reject the test if at least one of the values is equal to 0.
This structure thus defined makes it possible to recognise with absolute certainty if
a given query does not belong to set A but admits a false positive rate (FPR) €, due
to the hash collisions.

An important result concerning Bloom Filter is that the FPR depends only on
apriori defined values k and m. In fact, if x is an element of the Universe U such that
x ¢ A and p is the fraction of bits set to 1, then

Pr(y is a False Positive) = o (2.1)
and
Efp]=1—-(1— %)k" ~1— e kn/m (2.2)

So, the FPR value for a given Bloom Filter is

2.2. Experimental Methodology 21

FPR ~ (1 — e~ kn/myk (2.3)

Learned Bloom Filter

Due to the motivations anticipated in Section 2.1, ML Models have been extensively
used within the design and implementation of Learned Bloom Filters, since the very
start of the area of Learned Data Structures. In particular, the construction of a Basic
Learned Bloom Filter is performed by adding a Binary Classifier f able to reduce
the number of keys filtered by the Bloom Filter. The Classifier provides as output
an estimated probability that a given query x belongs to the set A so that, choos-
ing a threshold 7, due to the possible presence of false negatives, a backup Bloom
Filter is constructed only for each element x € A such that f(x) < 7. Therefore, it
is possible to build a smaller Bloom Filter thanks to the ability of the Classifier to
filter out the elements that with high probability belong to A. The main criticality
of this Data Structure lies in the necessity to establish the model parameters empir-
ically by searching experimentally for those that minimise the space/FPR trade-off.
However, this is the simplest version of Learned Bloom Filters described in the Lit-
erature, which has been extensively experimentally analysed with different types of
models from the simplest Bayesian Classifiers to the most complex Convolutional
and Recurrent Neural Networks.

In addition, as evidence of the increasing importance of this new paradigm, more
complex models have been proposed in the Literature to improve the performance
of Learned Bloom Filters. Some examples are the following.

¢ Sandwich Learned Bloom Filter. In order to reduce the FPR of a Learned
Bloom Filter, this model uses a small preliminary Bloom Filter to filter out a
proportion of negative items. The positive results are then successively filtered
out by the Learned Bloom Filter constructed as described previously.

¢ Partitioned Learned Bloom Filter. The goal of this model is to use classifier
information to identify a partition of the estimated probabilities such that it is
possible to construct in each region a Backup Bloom Filter that optimises the
space/FPR trade-off.

* Adaptive Learned Bloom Filter. Starting from the same considerations as in
the previous model, it uses each region to define different groups of indepen-
dent hash functions that are applied to a single backup Bloom Filter.

Although there is growing interest in using Neural Networks Models to improve
Data Structures such as Bloom Filters, there is no experimental evidence in the Lit-
erature of their use for Learned Indexes, as well as Learned Hash Function and
Rank/Select Data Structures. Therefore, in the following Sections, we propose an
analysis of their use in the Learned Index field.

2.2 Experimental Methodology

2.2.1 Datasets

For this Chapter, we generate two synthetic datasets using random sampling in
1, 2r-1_ 1] with r the integer precision used, i.e., 64 bits. In detail, we have:

22 Chapter 2. On the Suitability of Neural Network as a Learned Index Model

1. uni that contains data sampled from a Uniform distribution defined via the
PDF as
= ifx € [ab]

U(x,a,b) = { 0 a (2.4)

otherwise
wherea =1eb=2"1-1.

2. logn that contains data sampled from a Log-normal distribution defined via
the PDF as

_ (Inx—;l)2

e 202

X\ 2mo

where 1 = 0 e ¢ = 1 are respectively mean and variance of the distribution.

L(x,p,0) = (2.5)

We also use two real datasets available in the Literature, namely:

1. real-wl that contains timestamps of about 715M requests performed by a Web
server during 2016.

2. real-iot that consists of timestamps of about 26M events recorded during 2017
by IoT sensors deployed in academic buildings.

All datasets are ordered and without duplicates. Their details are summarized
in Table 2.1. We anticipate that, as evident from the analysis in Section 2.2.3, the use
of GPU training for the NNs severely limits the size of the datasets that we can use.

Each query dataset is generated from each dataset described above. It has a size
equal to 50% of the reference dataset and contains, in equal parts, both elements
present and not present in the dataset. For all the experiments, the queries are not
sorted.

] Uniform Distribution ‘

Name Size (KB) | Items Type
uni 1.10e+04 | 1.05e+06 | integer

’ Log-normal Distribution ‘

Name Size (KB) | Items Type
logn 1.05e+04 | 1.05e+06 | integer
] Real Distribution ‘
Name Size (KB) | Items Type
real-wl | 3.48e+05 | 3.16e+07 | integer
real-iot | 1.67e+05 | 1.52e+07 | integer

TABLE 2.1: A summary of the Datasets. For each dataset in the collec-

tion, it is shown: the name used (column Name), its size in Kilobyte

(column Size (KB)), the number of elements in it (column Items), and
the type of its elements (final column Type).

2.2.2 Hardware

Experiments have been performed using a workstation equipped with an Intel Core
i7-8700 3.2GHz CPU and an Nvidia Titan V GPU. The total amount of system mem-
ory is 32 Gbyte of DDR4. The GPU is also supplied with its own 12 Gbyte of DDR5

2.3. Experiments, Results and Discussion 23

memory and adopts a CUDA parallel computing platform. CPU and GPU are con-
nected with a PCle 3 bus with a bandwidth of 32Gbyte/s. The operating system is
Ubuntu LTS 20.04.

2.2.3 Models, Training and Query

We consider the Atomic Models introduced in Section 1.4.2. They have been training
exclusively on CPU, following the algorithm described in Section 1.3.

As far as Neural Networks are concerned, with reference to the architecture pre-
sented in Section 1.4.2, we consider three types of NNs with different hidden layers,
as specified next.

* NNO for zero hidden layers.
* NNI1 for one hidden layer with 256 units.

* NN2 for two hidden layers with 256 units each.

We point out that we must transform both training and query datasets to use
them as input of the NNs. Specifically, each item is converted into its binary repre-
sentation with a fixed number of bits, i.e., 64 bits.

NNs have been trained using the highly-engineered Tensorflow platform with
GPU memory support. As far as queries are concerned, following the Literature, we
do not use Tensorflow for NNs queries within the GPU. Moreover, we also anticipate
that, even using our own NVDIA CUDA implementation for queries, the use of GPU
for queries compared with the analogous task on Atomics Models on CPU does not
lead to any advantages, as we show in Section 2.3.2. For this reason, the full set of
experiments, whose results are reported in Section 2.3.3, are performed only with
the use of the CPUs.

2.3 Experiments, Results and Discussion

2.3.1 Training: GPU vs CPU

In Tables 2.2 and 2.3, we report the training times per element for each method de-
scribed in the preceding Section, and we also indicate the respective RF, computed
as indicated in Section 1.4.1. For what concerns Atomic Models L, Q and C, the
training time is the time needed to solve Eq. 2 in Section 1.3. Regarding the NN
models, the used learning algorithm is stochastic gradient descent with momentum
parameter equal to 0.9 and a learning rate equal to 0.1. The Batch size is 64, and the
number of epochs is 2000.

As is evident from the Tables here presented, even with GPU support and the use
of a highly-engineered platform, NNs are not competitive to simple Atomic Models.
Indeed, for each dataset, despite having similar RFs, the NNs training time per item
is four orders of magnitude higher than the one obtained with Atomic Models.

2.3.2 Query: GPU only for NNs

Before comparing NNs with Atomic Models, we perform a preliminary experiment,
only on NNO and uni, to see if there could be a real advantage from using the GPU
for queries. In Table 2.4, we report the query time per element resulting from this
experiment. As evident from that Table, on GPUs, the copy operations from CPU

24

Chapter 2. On the Suitability of Neural Network as a Learned Index Model

| NNO |
Dataset | Training Time (s) | % Reduction Factor
uni 2.55e-04 94.08
logn | 1.39e-04 54.40
real-wl | 2.50e-04 99.99
real-iot | 1.28e-04 89.90
NN1
Dataset | Training Time (s) | % Reduction Factor
uni 4.18e-04 99.89
logn 3.79e-04 94.21
real-wl | 2.31e-04 99.88
real-iot | 4.20e-04 98.54
NN2
Dataset | Training Time (s) | % Reduction Factor
uni 4.49e-04 99.87
logn 8.60e-04 97.14
real-wl | 2.33e-04 99.84
real-iot | 3.57e-04 97.31

TABLE 2.2: NN training with the use of Tensorflow on GPU. For
each dataset and each model, it is shown: the training time per ele-
ment expressed in seconds (column Training Time (s)) and the per-
centage of the table reduction (column % Reduction Factor), as de-

scribed in Section 1.4.1.

] L
Dataset | Training Time (s) | % Reduction Factor
uni 8.20e-08 99.94
logn 5.61e-08 77.10
real-wl | 5.82e-08 99.99
real-iot | 7.70e-08 96.48
Q
Dataset | Training Time (s) | % Reduction Factor
uni 1.27e-07 99.98
logn 1.02e-07 90.69
real-wl | 1.14e-07 99.99
real-iot | 1.25e-07 99.10
C
Dataset | Training Time (s) | % Reduction Factor
uni 1.84e-07 99.97
logn 1.74e-07 95.76
real-wl | 1.24e-07 99.45
real-iot | 1.63e-07 98.87

TABLE 2.3: Linear (L), Quadratic (Q) and Cubic (C) Models Train-

ing. The Legend is as in Table 2.2.

2.3. Experiments, Results and Discussion 25

Methods | Copy (s) | Op. (s) | Search (s) | Query (s)
NNO-BBS | 3.27e-08 | 4.20e-09 | 1.84e-09 | 3.27e-08
BBS 2.55e-09 - 1.89e-09 | 4.44e-09

TABLE 2.4: Query Time on GPUs. NNO0-BBS refers to Binary Search
with NNO as the prediction step, while BBS is the Binary Search exe-
cuted on GPU without a previous prediction. For each of these meth-
ods executed on GPU, we report: the time for CPU-GPU, and vice
versa, copy operations (column Copy (s)), the time for maths oper-
ation (column Op. (s)), the time to search into the interval (column
Search (s)) and the total time to complete the query process (column
Query (s)). Every time in the Table is per element and is expressed in
seconds.

Dataset BFS NNO-BFS NN1 NN2
uni 2.81e-07 | 1.31e-07 | 1.56e-06 5.16e-06
logn | 2.08e-07 | 1.92e-07 | 1.69e-06 5.24e-06

real-wl | 3.38e-07 | 4.59e-07 | Space Error | Space Error

real-iot | 3.07e-07 | 4.76e-07 1.90e-06 1.94e-05

TABLE 2.5: CPU Prediction Effectiveness-Neural Networks Models.

NNO-BEFS refers to Binary Search with NNO as the prediction step,

while the other two columns refer to the time taken by NN1 and NN2

to predict the search interval only. The time is reported as time per

query in second. When the model and the queries are too big to fit in
the main memory, a space error is reported.

to GPU, and vice versa, cancel the one order of magnitude speed-up of the maths
operations. In addition, a classic Binary Search on the GPU is by itself faster than its
Learned counterparts, making the use of NNs on this architecture unnecessary.

2.3.3 Query: CPU only

The query experiments results are summarized in Tables 2.5 and 2.6. As we can see,
NN are also not competitive for the query phase.

The query time on NN1 and NN2 is even two orders of magnitude greater than
with Linear Regression. In addition, in some cases, the transformed dataset cause a
space allocation error when the Intel Math Kernel Library attempts to perform NNs
computations. On the other hand, the simplest model, i.e. L, shows very efficient
query times despite obtaining smaller Reduction Factors in the training phase.

Dataset BFS L-BFS Q-BFS | C-BFS
uni 2.81e-07 | 9.42e-08 | 8.11e-08 | 9.39e-08
logn 2.08e-07 | 1.60e-07 | 1.59e-07 | 1.54e-07

real-wl | 3.38e-07 | 5e05e-08 | 2.12e-7 | 1.80e-7

real-iot | 3.07e-07 | 8.32e-08 | 1.99e-7 | 2.57e-7

TABLE 2.6: CPU Prediction Effectiveness-Atomic Models. The Table
reports results with Linear, Quadratic and Cubic models. The Legend
is as in Table 2.5.

26 Chapter 2. On the Suitability of Neural Network as a Learned Index Model

2.4 Conclusions

As noted in Section 2.1, a perceived paradigm shift is one of the motivations for the
introduction of the Learned Indexes. Despite that, as described in Section 2.3.2, the
use of a GPU architecture for Learned Indexes is still premature, due to a data trans-
fer bottleneck in the communication between CPU and GPU memory. However, we
point out that the identification of this problem is new in the Literature.

In addition, as evident from the analysis in Section 2.3, Atomic Models can a-
chieve significant table reductions and very competitive training and querying times
compared to those performed by Neural Network Models. Although this may not
be surprising to the specialist, those experimental findings, reported here, have not
been quantified before.

From now on, we no longer consider NNs in the following Chapters.

Bibliographic Notes

The potential power of GPUs and TPUs compared to the CPUs is mentioned in
Kraska et al., 2018. In addition, the reader can find an extensive description of the
GPU and TPU architectures potential in Wang, 2017 and Sato, Young, and Patterson,
2017. Moore’s law, fundamental in the semiconductor industry, has been introduced
in Moore et al., 1965. The Neural Networks training has been performed using the
highly-engineered platform Tensorflow, described in Abadi et al., 2015. However,
following the indication in Kraska et al., 2018, we have performed queries using our
native NVIDIA CUDA implementation, due to a significant Tensorflow invocation
overhead.

The universal ability of Neural Networks to learn functions, including the simple
networks described in Section 1.4.2, is widely studied in the Literature. The reader
can refer to Ohn and Kim, 2019.

Bloom Filter is a well-known Data Structure to solve the Approximate Member-
ship Problem and it is introduced by Bloom, 1970. In Kraska et al., 2018, a Learned
version of Bloom Filters that use Recurrent Neural Networks was proposed for
the first time. Successively, the versions called Sandwich and Partitioned Learned
Bloom Filters were described by Mitzenmacher, 2018 and Vaidya et al., 2020, respec-
tively. An other version is the Adaptive Learned Bloom Filters proposed by Dai
and Shrivastava, 2020. In addition, an extensive study on the choice of models and
parameters of a Learned Bloom Filters was presented by Fumagalli et al., 2022.

Real datasets used for experiments in this Chapter, are the same in Kraska et
al., 2018 and Galakatos et al., 2019, while the synthetic ones are introduced in this
Thesis to provide an exhaustive assessment of Neural Networks. It should be noted
that, since we only present negative results, it has not been considered necessary
additional benchmark datasets available in the Literature.

27

Chapter 3

Learned Sorted Table Search and
Static Indexes in Small Space: A
Comprehensive Experimental
Analysis

This Chapter examines the advantages of using Learned Indexes in the field of
Sorted Table Search procedures. It is first considered a simple scenario consisting
of "textbook" algorithms and models. Next, more sophisticated Learned Indexes are
analysed through the Search on Sorted Data (SOSD for short) benchmark platform.
Finally, it is shown that even imposing a space-bound on the most complex mod-
els, it is possible to improve query time. In particular, this Chapter is organized as
follows.

¢ In Section 3.1, we introduce, referring to Sections 1.2 and 1.4, the procedures
used for the experiments described in this Chapter.

¢ In Section 3.2, we illustrate the experimental methodology adopted in this
Chapter.

¢ In Section 3.3, we introduce new models capable of using constant or small
space with respect to the table size.

¢ In Section 3.4, we illustrate and discuss the results obtained in our experiments.

¢ In Section 3.5, we provide conclusions on the experimental analysis of the pre-
ceding Section.

The Bibliographic Notes relevant for this Chapter are in the corresponding Sec-
tion.

The software used for the experimentation described in this Chapter is available
on Github!, while the relative datasets are available on a repository?.

3.1 Classic and Learned Sorted Table Search

In this Chapter, we have considered the main classic algorithms for Sorted Table
Search among those described in Chapter 1. In particular, we choose the following.

Thttps:/ / github.com/globosco/ A-learned-sorted-table-search-library
Zhttp:/ /math.unipa.it/lobosco/LSTS/

Chapter 3. Learned Sorted Table Search and Static Indexes in Small Space: A

28 Comprehensive Experimental Analysis

¢ The two Binary Search versions, i.e. BBS and BFS, used as a baseline to com-
pare against and described in detail in Section 1.2.1.

® k-ary Search in its two versions, i.e., K-BBS and K-BFS (detailed in Section
1.2.1).

¢ All the array layouts described in Section 1.2.2. For the sake of readability
and clarity, BFV and BFT have been omitted from discussion of this Chapter
because they are not competitive compared to BFE.

¢ Interpolation Search (IBS for short) and its variant TIP as shown in Section
1.2.1.

e The classic index BT-Tree as described in Section 1.2.3.

As illustrated in Section 1.4.2, except for the ones operating on table layouts dif-
ferent than sorted and B*-Trees, all the procedures mentioned above have a natural
Learned version.

Concerning model classes described in Section 1.4.2, we have considered each
model described there except for NNs, whose exclusion has been justified in the
previous Chapter.

Most importantly, in Section 3.3, we introduce two new models, which use con-
stant or small space in addition to the table size. The first, which we refer to as KO-,
uses constant space in addition to the table and represents a new category in the hi-
erarchy introduced in Section 1.4, i.e., Two-Level Hybrid Models. The second, which
we refer to as SY-RMI, uses little space in addition to the table, about 0.05%, and is
a member of the Two-Level RMIs with Parametric Branching Factor class.

3.2 Experimental Methodologies

3.2.1 Hardware

All the experiments have been performed on the same workstation described in Sec-
tion 2.2.2. For the sake of this Chapter, it is also helpful to know that its CPU has
three levels of cache memory: (a) 64kb of L1 cache; (b) 256kb of L2 cache; (c) 12Mb
of shared L3 cache. In Addition, the c/s and size, defined in Section 3.3.3, are respec-
tively 64 and 8 bytes.

3.2.2 Datasets

We use five kinds of benchmark datasets presented in the Literature and we generate
four versions for each to obtain data fitting different memory levels. A summary of
those datasets is provided in Table 3.1. However, for a more in-depth description,
refer to Appendix A.

3.2.3 Software Systems for Learned Indexes Training
The software systems used to train Learned Indexes highly depends on the their
model class. More details for each class are provided in the following.

Atomic Models: Linear Regression

We have implemented a simple closed-form regression in Python to train linear,
quadratic and cubic models, as discussed in Section 1.3.

3.2. Experimental Methodologies 29

’ L1 memory level ‘

Name Size (KB) | Items | Type

amzn32 | 3e+l 7.5e+3 | integer
amzn64 | 3e+l 3.75e+3 | integer
face 3e+1 3.75e+3 | integer
osm 3e+1 3.75e+3 | integer
wiki 3e+1 3.75e+3 | integer

] L2 memory level ‘

Name Size (KB) | Items | Type

amzn32 | 2.52e+2 6.3e+4 | integer
amzn64 | 2.52e+2 3.15e+4 | integer
face 2.52e+2 3.15e+4 | integer
osm 2.52e+2 3.15e+4 | integer
wiki 2.52e+2 3.15e+4 | integer

] L3 memory level ‘

Name Size (KB) | Items | Type

amzn32 | 6e+3 1.5e+6 | integer
amzn64 | 6e+3 7.5e+5 | integer
face 6e+3 7.5e+5 | integer
osm 6e+3 7.5e+5 | integer
wiki 6e+3 7.5e+5 | integer

L4 memory level ‘

Name Size (KB) | Items Type

amzn32 | 8e+5 2e+8 integer
amzn64 | 1.6e+6 2e+8 integer
face 1.6e+6 2e+8 integer
osm 1.6e+6 2e+8 integer
wiki 1.6e+6 2e+8 integer

TABLE 3.1: A summary of the Datasets. For each dataset in the collec-

tion, it is shown: the name used (column Name), its size in Kilobyte

(column Size (KB)), the number of elements in it (column Items), and
the type of its elements (final column Type).

Two-Level RMIs with Parametric Branching Factor: CDFShop

To train two-level RMlIs, we use the software platform available online called CDF-
Shop. Through this, it is possible to train an RMI by specifying the models for each
level and the Branching Factor value. It is also possible to use an optimisation tool
to extract the best models for a given table using Pareto optimisation. In particular,
we use the optimization software to obtain up to ten versions of the generic model
for a given table. For each model, the optimization software picks an appropriate
branching factor and the type of regression to use within each part of the model.
Those latter quantities are the parameters that control the precision of the prediction
and its space occupancy. As pointed out in the Literature, it is also to be remarked
that this optimization process provides only approximations to the real optimum. It
is heuristic in nature, with no theoretic approximation performance guarantees. The
problem of finding an optimal model in polynomial time is open.

Chapter 3. Learned Sorted Table Search and Static Indexes in Small Space: A

30 Comprehensive Experimental Analysis

] 1 | 5 |11 14|58|59 60|97|100‘

Cubic Linear Quadratic

FIGURE 3.1: An example of a KO-BFS, with k = 3. The top part

divides the table into three segments, and it is used to determine the

model to pick at the second stage. Each box indicates which Atomic
Model is used for prediction on the relevant portion of the table.

CDF Approximation-Controlled Models: SOSD Platform

For this class of models, we have chosen to use the construction parameters con-
tained in the highly-engineered benchmark software SOSD. In particular, we de-
cided to use models provided in this platform so that our study could be consistent
with those already present in the Literature. Therefore, for a given table, we have
built ten models of both those described in Section 1.4.2, provided by SOSD.

3.3 Constant and Small Space Indexes

A fundamental methodological question has been overlooked so far in the Litera-
ture, i.e., if it is possible to achieve speed-ups analogous to Learned Indexes using
constant or small space with respect to the table size. For this purpose, as illustrated
in the following, we have introduced two new models. We have also modified the bi-
criteria version of PGM, which can return the best query time index within a given
amount of space the model is supposed to use.

3.3.1 A Two-Level Hybrid Model, with Constant Branching Factor

As shown in Fig. 3.1, this model partitions the table into a fixed number of seg-
ments. For each, Atomic Models are computed to approximate the CDF of the table
elements in that segment. Finally, we assign to each segment the model that guar-
antees the best Reduction Factor. Then, we make queries performing a Sequential
Search in the set containing only each starting interval element. We pick up the se-
lected segment and use the corresponding model to get the final search interval. We
denote such a model as KO-BFS or KO-BBS, depending on the base Binary Search
routine used. The number of segments is independent of the input and bounded by
a small constant, i.e., at most 20 in this Thesis.

3.3.2 Synoptic RMIs

For a given set of tables of approximately the same size, we use CDFShop, as in
Section 3.2.3, to obtain a set of models (at most 10 for each table). We compute the
ratio (branching factor)/(model space) for the entire set of obtained models. We take
the median of those ratios to measure the branching factor per unit of model space,
denoted UB. Among the RMIs returned by CDFShop, we pick the relative majority
winner, i.e., the one that provides the best query time over a set of simulations.
When using such a model on tables of approximately the same size as the ones used
as input to CDFShop, we set the branching factor to be a multiple of UB, which
depends on how much space the model is expected to use relative to the input table
size. Since this model can be intuitively considered as the one that best summarizes

3.3. Constant and Small Space Indexes 31

L1 L2
Mining Time: 2.8e-06 Mining Time: ~ 6.6e-06
CDF Shop Time: _1.44e-06 CDF Shop Time: 6.28e-06
UB: 0.042 UB: 0.042

100 100

E

. N
& & ¢ &5 7
N 5 & &
& 8

K
r

Top Layer Top Layer

L
Mining Time: ~1e-06 Mining Time: 1.1e-07
CDF Shop Time: 7.50e-07 CDF Shop Time: 2.12E-07
UB: 0. UB: 0.042

100 100

LT 3
s g8 § &
§ S < s N
& &

&
§
5
s
$

Top Layer Top Layer

FIGURE 3.2: Time and UB for the identification of SY-RMIs. For
each memory level, only the top layer of the various models is in-
dicated in the abscissa, while the ordinate indicates the number of
times, in percentage, the given model is the best in terms of query
performance on a table. The branching factor per unit of space as
well as the time it took to identify the proper SY-RMI (average time
per element, over all RMIs returned by CDFShop) are reported on
top of each figure. For comparison, we also report the same time for
the output of CDFShop.

the output of CDFShop in terms of query time, for the given set of tables, we refer
to it as synoptic and denote it as SY-RMI.

Mining SODS Output for the Synoptic RMI

For each memory level, we need to process the output of SOSD on all tables in this
study, as described in Section 3.3.2, to obtain the corresponding SY-RMI with its
UB. We anticipate that the simulation to identify the relative majority of RMIs is
performed on query datasets extracted as described in Appendix A, but using only
1% of the number of query elements specified there.

The fact that the datasets represent different challenges for the learning of the
CDF is well represented by the variety of models that perform best (see histograms
in Figure 3.2). Therefore, given such a variety, it is far from obvious that the median
UB is the same for each memory level. Moreover, the relative majority model is also
the same across memory levels, i.e., linear spline, with linear models for each second
layer segment.

3.3.3 Bi-Criteria PGM

PGM has a bi-criteria version that returns the best query time index, given the
amount of space the model is supposed to use. It is to be noted that bi-criteria PGM
needs a maximum and a minimum approximation denoted with €,, and €). In par-
ticular, €, is set to 2 x cls/size where cls is the cache line size and size is the number
of bytes of long integers. Preliminary experiments we have conducted indicate that
such a setting, as far as identifying the best query time € when a space-bound is
specified, leads to cases in which the space resource is not fully used. Therefore, we

Chapter 3. Learned Sorted Table Search and Static Indexes in Small Space: A

32 Comprehensive Experimental Analysis
L [Q [C T]150-BFS | SY-RMI2% [SOSDRMI | SOSDRS | SOSD PGM
Datasets Training Time
amzn32 | 7.9e-09 | 14e-08 | 14e-08 | 3.7e-08 1.2¢-06 1.2e-07 9.5e-09 2.4e-08
amzn6d | 7.9e-09 | 14e-08 | 1.4e-08 | 3.7e-08 1.1e-06 2.2e-07 2.1e-08 5.0e-08
face | 8.0e-09 | 1.4e-08 | 1.4e-08 | 3.6e-08 1.3e-06 25e-07 2.1e-08 6.5e-08
osm | 8.0e-09 | 14e-08 | 14e-08 | 3.6e-08 1.2¢-06 2.5e-07 2.2¢-08 74e-08
wiki | 7.9e-09 | 1.4e-08 | 1.4e-08 | 3.6e-08 1.1e-06 2.2e-07 1.9e-08 41e-08

TABLE 3.2: Training time for L4 tables, in seconds and per element.

The first column indicated the datasets. The remaining columns indi-

cate the model used for the learning phase. The SOSD columns refer

to the entire output of that library, averaged over a number of models
and elements in each table.

modified the €, formulas to be parametric, i.e. the multiplicative constant is now a
parameter a. So, we have used a = 0.5,1,1.5 and refer to this PGM as PGM_M_a
for our purpose.

3.4 Experiments, Results and Discussion

3.4.1 Learning the CDF of a Sorted Table

Models need to learn the CDF function of the table in which search. For the uses
intended in this Thesis, three indicators are essential: the time required for learning,
the Reduction Factor that one obtains and the time to perform the prediction. We
have trained the models described in the preceding Sections for each of the table
datasets presented in Appendix A.

We report here only the Table 3.2 for L4 memory level. As for the training time for
the entire set of experiments, it is reported in Tables B.1-B.4 in Appendix B, in terms
of time per element. For KO-BFS, we report the model’s time that has achieved top
query times consistently across experiments. However, it is to be noted that the same
training time applies to KO-BBS. Finally, for PGM, RMI and RS, the timing results
have been obtained by summing the time to train all models returned by SOSD and
taking the average. In those tables, we also include the time that the SY-RMISs, at 2%
of space occupancy, take to learn the CDF of all tables at each memory level.

Atomic and Hybrid Models

Here we consider the learning phase of the Atomic Models L, Q, and C and of the
150-BFS model. As expected, regarding the first class, as the degree of the regres-
sion grows, so does the training time. Moreover, on both L3 and L4 memory levels,
the training times are "stable" for datasets, while there is some variation on the other
two memory levels. This is justified because the performance of the matrix products
involved in the computation depends on the magnitude of the operands involved.
As dataset size grows, such an effect is amortized on a larger and larger number of
elements. In general, those methods perform very well compared to the others, in
particular on the last two memory levels. Unfortunately, as we will see when we
consider Reduction Factor and query time, their use is limited to datasets that are
"very easy" to learn, i.e., with a regular CDF easily summarized by a polynomial
function. As for 150-BFS, its training time is in line with the one of the previous
models, although we anticipate that it provides higher Reduction Factors and better
query times.

3.4. Experiments, Results and Discussion 33

Two Level RMIs

We consider the learning phase of the two kinds of two Level RMIs in the following.

¢ SY-RMILI. Since the simulation step can be seen as a post-processor of CDFShop
output, it is an important finding that its execution time is comparable with the
one of CDFShop, except for the L3 memory level. That is, the simulation is not
too imposing in terms of time if used as a post-processor of CDFShop. Also,
since this is a "one time only" process, the output can then be reused repeatedly,
in analogy with the output of CDFShop.

¢ Heuriustically Optimized RMIs. As for RMIs, they lag behind the other
methods in training time. However, it is quite remarkable that the heuris-
tic optimizations result in training times that are not "too far" from the other
ones. This becomes evident when we compare the training time of a single
model, the SY-RMI, with the average training time obtained with the use of
CDFShop, which returns several models. Indeed, training one RMI model is
costly, while such a cost can be amortized over the training of several models.
This aspect does not seem evident in the current State of the Art.

CDF Approximation-Controlled Models

CDF Aproximation-Controlled models can be built in one pass over the input, with
important implications. In this Thesis as well as in the Literature, the RS is reported
as superior to the PGM in terms of training. However, this seems to hold on large
datasets, while the PGM is "more effective" in training time across the memory hi-
erarchy. The reason may be that those those two indexes use streaming procedures
to approximate the CDF within a parameter €, the main difference between the two
is that the first uses an approximate algorithm while the second uses an exact one,
apparently settling for an "approximation” pays off with large workloads.

3.4.2 Constant Space Models: Query Experiments

Constant Space Models represent an elementary scenario, in which we use nearly
standard textbook code. In particular, the models considered in this Section use
constant space.

The experiments regarding the classic algorithm, described in Section 3.1, and the
constant space models, illustrated in Section 3.3.1, have been performed on all tables
considered for this research. The query datasets have been generated as described
in Appendix A and the corresponding models have been learned as described in
Section 3.4.1. With the exception of TIP and of its learned version, the full set of
results are reported in Figures B.1-B.5 of Appendix B. In all Figures, we report K-
BFS and K-BBS with k = 6, while KO-BFS and KO-BBS with k = 15, since these
are the best performing across experiments. Here we provide two representative
cases, i.e., Figures 3.3-3.4.

As for TIP and its learned versions, their query performance are not reported
since they turned out not to be competitive on the benchmarking datasets used in
this study. For completeness, in Figure 3.5, we provide the query time performance
on only one dataset to show that TIP can be sped up with the simple models consid-
ered here. All query times are averages over one million queries.

Chapter 3. Learned Sorted Table Search and Static Indexes in Small Space: A

34 Comprehensive Experimental Analysis

amzn64-L1 35 X 107 amzn64-L2

00[0 Qtsln 60[0 %elo ol Qo]e (oelo %0]0 ,Lo[o %010
\y o > 52 02 \g 3 o ©0 ®
VT Q,’l ® 60,9 W N Qﬂ i) o
M \
5 %107 amzn64-L3 amzn64-L4
Do[n %b‘olo D‘b«“h gb?'“ q‘?‘?'“ ’go]e Q,chle %%o]e 0,3;[0 g‘b“h
N U G & o N s o o o
N N

FIGURE 3.3: Query times for the amzné64 dataset on Sorted Table
Search Procedures. The methods are the ones in the legend (middle
of the four panels, the notation is as in the main text and each method
has a distinct colour). For each memory level, the abscissa reports
methods are grouped by model. From left to right, no model, linear,
quadratic, cubic and KO-, with k = 15, and with BFS and BBS as
search methods. K-BFS is reported with k = 6. For each model,
the Reduction Factor corresponding to the table is also reported on
the abscissa. On the ordinate, it is reported the average query time,
in seconds. For memory level L4, IBS, L-IBS and Q-IBS have been
excluded, since inclusion of their query time values (3.1e — 06, 2.1e —
06, 1.2e — 06, respectively) would make the histograms poorly legible.

As illustrated in the following Sections, our experiments bring to light non-
obvious scenarios, regarding speed-ups with constant space models. First, our ex-
periments complete a methodologically important analogy between Learned Search-
ing in Sorted Sets and the classic Data Structures approach, by considering the “entry-
level” routines in this area. Another important indication concerns Binary Search
with array layout other than Sorted. Indeed, the fact that BFE performs so well
brings to light the need to consider models that are able to speed up such a proce-
dure.

Atomic Models

(a) Binary Search procedures. The Learned versions of BFS and BBS are better
than the respective simple one apparently only when the Reduction Factor is

3.4. Experiments, Results and Discussion 35

s 107

e

%107

W

(b)

osm-L1 «107 osm-L2

o Q{L“'Q

osm-L3

N ofo ofo
PE.‘O NS ?30 4 9%
N

o %°|°
)
R 3%
o Qfo

FIGURE 3.4: Query times for the osm dataset on Sorted Table Search
Procedures. The figure legend is as in Figure 3.3. For the last three
memory levels, IBS has been excluded, since inclusion of its query
time values (2.2e — 06, 6.5¢ — 06, 6.4e — 05, respectively) would make
the histograms poorly legible. Its regression-based Learned versions
have been excluded for the same reason (data not shown). However,
they have better query time performance with respect to IBS, in par-
ticular Q and C.

quite high, e.g., 95%. Indeed, using a poor or even fairly good Reduction Fac-
tor may result in a Learned version slower than BFS or BBS, respectively. An
example is provided in Figure B.4 of Appendix B. The cost of prediction, which
is a constant time process for the simple models used here, requires only arith-
metic operations, resulting in a loss compared to the speed of BFS or BBS, re-
spectively. In other words, even though reducing the size of the table to search
into brings theoretical benefits, the trade-off between the cost of the prediction
vs reduction in search plays a key role in practice. Quite surprisingly, a good
layout such as Eytzinger can be very competitive, even when the Learned ver-
sion of BFS can speed up its non-learned version (see again Figures B.1-B.5
of Appendix B). Indeed, the regularity in data access and compactness of the
BFE code makes it the one of choice across the memory hierarchy, reinforcing
results already present in the Literature.

Interpolation Search procedures. IBS and TIP seem to take consistent advan-
tage of the prediction phase, with substantial speed-ups, unless the CDF of the
dataset is close to uniform. This is the case for face-L1-face-L2. However, as
the Reduction Factor increases for those procedures, from the one given by L

Chapter 3. Learned Sorted Table Search and Static Indexes in Small Space: A

36 Comprehensive Experimental Analysis

%107

15

H
3
)

0.5
oL I = L |
L1

L2

%10
.
I ip
| L | |
[ipQ
I tip-C
Py |
1k |
0 L]
L3

FIGURE 3.5: Query times for TIP and its Learned Variants on the

amzn32 dataset. For each memory level, the abscissa reports mod-

els with TIP as search methods. From left to right, no model, linear,

quadratic and cubic. On the ordinate, it is reported the average query

time, in seconds. On the fourth memory level the procedures were
stopped due to their poor execution times.

w

to the one given by C, the speed-up tends to increase (e.,g., see Figure B.1 in
Appendix B). It is interesting to note that, although the CDF of face-L4 looks
uniform, there are many “rough spots” that make the prediction particularly
challenging for simple regression methods (see the abscissa of the query times
histograms for face-L4 in Figure B.3 of the B).

In comparison with the other procedures, the Learned version of IBS is quite
competitive on small datasets, with a somewhat simple CDF to learn (see Fig-
ures B.1-B.3 in Appendix B). However, it is to be appreciated that it can even
be better than the very fast BFE in those circumstances.

Two Level Hybrid Model

KO-BBS and KO-BFS are consistently better than K-BBS and K-BFS, respectively,
except for L4-osm, for any given k € [3,20].

As for L4-osm, we observe the same results but with k > 12. KO-BFS is con-
sistently better than BFS for any given k € [3,20] with the exception of the osm
datasets. As for BBS, there is no single k € [3,20] for which KO-BBS is better across
memory levels.

For the sake of readability, the results mentioned above are not shown and are
available upon request.

3.4.3 Parametric Space Models: Query Experiments

As widely discussed in Section 1.4, the models considered here have a space occu-
pancy that depends on parameters specific to the models. Moreover, all the experi-
ments are supported by a highly effective software environment like SOSD.

We have repeated the same experiments reported in Section 3.4.2 using Para-
metric Space Models as illustrated in Section 3.1. We have considered three space-
bound: 0.05%, 0.7%, 2% for the bi-criteria PGM and for SY-RMI. For each percent-
age, this is the amount of additional space the model can use with respect to the ta-
ble size. However, we do not consider models that use a percentage of space higher

3.5. Conclusions 37

than 10% of each table size. Therefore, we report the one with the best query time for
the remaining models. Moreover, we take as a baseline the SOSD version of BBS,
which is implemented via vectors rather than arrays (as in the elementary case). For
completeness, we also include our own vector implementation of BFS as a different
baseline, executed within the SOSD software.

The full set of results are reported in Figures B.6-B.10 of Appendix B. For com-
pleteness, we report in Figures 3.6-3.7 the same representative datasets, as for the
constant space case. Query times are again averages over one million queries. More-
over, in order to gain a synoptic quantitative evaluation of the relationships among
space, query time and prediction accuracy, Table B.5 in Appendix B reports the aver-
age space, query time and Reduction Factor computed on all experiments performed
in this study, normalized with respect to the best query time model coming out of
SOSD.

Our experiments show that both SY-RMI and the bi-criteria PGM are able to
perform better than BBS and BFS across datasets and memory levels, with very
little additional space. As far those two Binary Search routines are concerned, and
within the SOSD software environment, one can enjoy the speed of Learned Indexes
with very little of a space penalty. Our study also provides additional useful insights
into the relation time-space in Learned Indexes.

SOSD Models with at Most 10% of Additional Space

Both the RS and the B -tree are not competitive to the other Learned Indexes. Those
latter consistently use less space and time, across datasets and memory levels. As
for the RMIs coming out of SOSD, they cannot operate in small space at the L1
memory level. On the other memory levels, they are competitive with PGM_M and
SY-RMI, but seem to require more space than them.

Small Space Models

As concerns the PGM_M and the SY-RMI, except for the L1 memory level, it is
possible to obtain models that take space very close to a user-defined bound. The L1
memory level is an exception since the table size is really small. As for query time,
the PGM_M performs better on the L1 and L4 memory levels, while the SY-RMI on
the remaining two. This complementarity and good control of space make those two
models quite useful in practice.

3.5 Conclusions

In this Chapter, we have provided a systematic experimental analysis regarding the
ability of Learned Model Indexes to perform better than Binary and Interpolation
Search in small space. However, our results also indicate that, although a small
model with good accuracy may not provide the best query time, prediction power is
somewhat marginal to assess performance. Indeed, across memory levels, we see a
space hierarchy of model configurations. The most striking feature of this hierarchy
is that the gain in query time between the best model and the others is within small
constant factors, while the difference in space occupancy may be several orders of
magnitude. This brings to light the acute need to investigate the existence of “small
space” models that should close the time gap between those and the best performing
methods.

Chapter 3. Learned Sorted Table Search and Static Indexes in Small Space: A

Comprehensive Experimental Analysis
amzn64-L1 amzn64-L2
120 1 140 1
T 120" T T T T T T T T T T T
*********************** 100
80
80t
60 [
60 [
40t
40 r
20t 20l
OSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
Crm
[rs
I 5 Tree
amzn64-L3 amzn64-L4
250 - I eV 800 r— — — — — — — — — — S T
I PGM_M_0.5
I PGM_M_1 700 b
S s | LR i
I PGM_M_2 600 |
[sY-RMI
— — —BBS
500
wr e BFS
400
100 300
200
50+
100

SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

FIGURE 3.6: Query times for the amzn64 dataset on Learned Indexes
in Small Space. The methods are the ones in the legend (middle of
the four panels, the notation is as in the main text and each method
has a distinct colour). For each memory level, the abscissa reports
methods grouped by space occupancy, as specified in the main text.

When no model in a class output by SOSD

takes at most 10% of ad-

ditional space, that class is absent. The ordinate reports the average

query time, with BBS and BFS executed in
zontal lines).

Bibliographic Notes

SOSD as baseline (hori-

Most of the references for this Chapter are illustrated in the Bibliographic Notes

Se

ction of Chapter 1.

The benchmarking platform SOSD has been proposed in Marcus, Kipf, et al.,
2020, while the optimization platform CDFShop has been described in Marcus,
Zhang, and Kraska, 2020. For consistency with the benchmarking studies in the
Literature, we use the same datasets as in Marcus, Kipf, et al., 2020 and all models
in Section 3.4.3 use the Branchy version of Binary Search contained in SOSD.

3.5. Conclusions 39

osm-L1 osm-L2
120 140
ol T T T T T T T T T 120f——————"—"—"—"—f-—"—"—"—"—~"—"—"—"————
*********************** 100 |
80
80
60
60 -
40 -
40
20 20F
0w S Y e 0 gy S o o
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
[—
[rs
osm-L3 I e osm-L4
300 I oM 700 ¢
[PGM_M_05 - - - - - - - - - - - - -
. [PGM_M_1 L
250 - I PG _M_15 600
I PeM M 2
[sy-RMI 500 -
20— ————————————— ————— — — — — s
————— BFS
150
100
50
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

FIGURE 3.7: Query times for the osm dataset on Learned Indexes in
Small Space. The figure legend is as in Figure 3.6.

41

Chapter 4

Standard Vs Uniform Binary
Search and their Variants in
Learned Static Indexing: The Case
of the SOSD Benchmarking

Software

This Chapter provides a study of how different kinds of searches can affect the per-
formance of Learned Indexes. First, we discuss the difference between Uniform and
Standard Binary Search, with particular attention for how these procedures can take
advantage from modern computer architectures. Then, we describe the experimen-
tal methodology and, finally, we analyse the obtained results. In particular, this
Chapter is organized as follows.

* InSection 4.1, we discuss the difference between Uniform and Standard Binary
Search with the reference to the use on modern computer architectures.

¢ In Section 4.2, we illustrate the experimental methodology adopted in this
Chapter.

* InSection 4.3, we illustrate and discuss the results obtained in our experiments.

¢ In Section 4.4, we provide conclusions on the experimental analysis of the pre-
ceding Section.

The Bibliographic Notes relevant for this Chapter are in the corresponding Sec-
tion.

The software used for the experimentation described in this Chapter is available
on Github!, while the relative datasets are available on a repository”.

4.1 Uniform and Standard Binary Search on Modern Com-
puter Architectures

Several elements of modern computer architectures can influence classic search al-
gorithms in a sorted set. In particular, the communication latency between the CPU

Ihttps:/ / github.com/ globosco/ A-modified-SOSD-platform-for-benchmarking-Branchy-vs-
Branch-free-search-algorithms
Zhttp:/ /math.unipa.it/lobosco/LSTS/

Zﬁhapt‘er 4. Standard Vs Uniform Binary Search and their Variants in Learned Static
Indexing: The Case of the SOSD Benchmarking Software

and Main Memory can be considered the biggest problem in the practical perfor-
mance of an algorithm. In order to avoid that continuous reads of the Main Memory
slow down the execution, different hierarchical memory levels have been included
in the CPUs. In general, cache memory is faster but smaller than Main Memory.
Therefore, if the cache memory contains the data needed for execution, latency is
drastically reduced, and performance improves. Therefore, it is then essential to
avoid frequent context changes to minimise reads and loads from Main Memory.
Furthermore, executing an instruction in the CPU takes several clock cycles to per-
form different operations, such as fetch, decode, read and execute. In modern com-
puter architectures, a pipeline mechanism is used to simultaneously handle several
consecutive instructions in different phases of the cycle to speed up the processing
of these steps. However, “conditional jumps” in the code prevent the CPU from
knowing which instruction to fetch next. Modern CPUs have introduced branch
prediction systems that try to guess the result of a “conditional jump” by anticipat-
ing the caching of the necessary instructions and data. Obviously, if the prediction
fails, a context change must be made.

A procedure such as the Standard Binary Search, which has if-then-else type con-
structs within the loop, during its execution makes many “conditional jumps” that
are difficult to predict. This results in generating several context changes, with con-
sequent slow down of the procedures. In contrast, Uniform Binary Search replaces
“conditional jumps” with “conditional moves” that do not modify and interfere with
the execution flow in the processor pipeline. An example of the Assembly code gen-
erated by the compiler for the Uniform Binary Search is provided in Listing 4.2.4.
In particular, the while loop is implemented in lines 8-15. As anticipated in Section
1.2.1, the line 8 of Algorithm 2 is translated into the “conditional move” at line 12
of Listing 4.2.4, that sets the variable base without the use of jump. In general, this
instruction is predictable by the Branch Predictor with an accuracy of the 95%, with
a consequent performance increase. It should be noted that analogous changes can
be made in k-ary Search routines in order to achieve equal improvements.

For the reasons discussed above, used in a stand-alone context, Uniform Search
can be better than the Standard one in the first two memory levels. However, this
advantage within Learned Data Structures has not been covered in the Literature
and is the subject of this Chapter.

Following the nomenclature used in the Literature, we refer to Standard and
Uniform Search as Branchy and Branch-free, respectively.

4.2 Experimental Methodology

4.2.1 Hardware

We use the same hardware of Chapter 3, described in Section 3.2.1.

4.2.2 Datasets

We use, with the exception of the query tables, the same datasets of experiments
in Chapter 3 and more in-depth described in Section 3.2.2 and Appendix A. As for
query dataset generation, for each of the tables built as described in the mentioned
Sections, we extract uniformly and at random (with replacement) from the Universe
U a total of two million elements, 50% of which present, 50% absent in each table.

IOl W IN -

NRNDNNRNR R R &2 B
= WO NN, OOV WNE O\

4.2. Experimental Methodology 43

4.2.3 Binary Search and Its Variant

In this Chapter, we use our versions of Branchy and Branch-free Binary Search and
k-ary Search, following Algorithms described in Section 1.2.1. In particular, we use
k = 3 as recommended in the Literature. Finally, although not directly usable within
the Learned Indexing framework, we also include the Branch-free Eytzinger Layout
(described in Section 1.2.2), since it is an useful baseline to compare the performance
of those routines within SOSD with analogous performances obtained in the Liter-
ature.

424 Index Model Classes in SOSD

From the models available in SOSD, we choose the ones that have been the most
successful among ones in benchmark studies in the Literature, i.e. RMI, RS and
PGM, described in Section 1.4. For the convenience of the reader, the description of
the training phase for these models is provided in Section 3.2.3. We point out that we
have modified the SOSD library so that an implementation of a Learned Index can
use both Branchy and Branch-free versions of Binary and k-ary Searches. In what
follows, we refer to a Learned Index that uses BFS as Branch-free and to one that
uses BBS as Branchy. An analogous terminology holds for k-ary Search.

.cfi_startproc

movq 8(%rdi), %rdx ; move n into rdx

movq (%rdi), %r8 ; move a into r8

cmpq $1, %rdx ; compare n and 1

movq %r8 , %rax ; move base into rax

jbe .L2 ; quit if n <=1

.L3:

movq %rdx, %rcx ; put n into rcx

shrq %rcx ; rcx = half = n/2

leaq (%rax,%rcx ,4), %rdi ; load &base[half] into rdi
cmpl %esi, (%rdi) ; compare x and base[half]

cmovb %rdi, %rax ; set base = &base[half] if x > base[half]
subq %rcx, %rdx ; n =mn — half

cmpq $1, %rdx ; compare n and 1

ja .L3 ; keep going if n > 1

L2:

cmpl %esi, (%rax) ; compare x to =base

sbbq %rdx, %rdx ; set dx to 00..00 or 11...11

andl $4, %edx ; set dx to 0 or 4

addq %rdx, %rax ; add dx to base

subq %r8, %rax ; compute base — a (* 4)
sarq $2, %rax ; (divide by 4)
ret

.cfi_endproc

LISTING 4.1: Assembly code for Uniform Binary Search (see also
Khuong and Morin, 2017). The while loop is implemented in lines
8-15, while the line 12 is the “conditional move”.

ﬁhapter 4. Standard Vs Uniform Binary Search and their Variants in Learned Static
Indexing: The Case of the SOSD Benchmarking Software

wiki-L1 - wiki-L2

0.8

0.6

0.4r

0.2

[—]
| — S
I PGM
. s
I <RMI
wiki-L3 [KRS wiki-L4
14r o Dveom 127

-

0.8

0.6

0.4r

0.2r

FIGURE 4.1: Branch-free vs Branchy on the wiki dataset. From left
to right, RMI, RS and PGM, highest rank first. For each, and accord-
ing to rank, the bar height indicates the ratio of Branch-free/Branchy
Binary Search average query times for the three best models, reported
by memory level. The following blue bar shows the same ratio for the
two versions of Binary Search (indicated as BS). Next, we have analo-
gous bar heights for k-ary instead of Binary Search (KRMI, KRS and
KPGM). In magenta, the ratio of the two versions of k-ary alone (indi-
cated as KARY). The last two bars are the average query times ratios
of BFE/BBS and BFE/BFS respectively. y. The last two bars report the
homologous ratios for k-ary Search. A bar height below one indicates
that Branch-free indexing is better than its Branchy counterpart.

4.3 Experiments, Results and Discussion

4.3.1 Computational Experiments

For all the Learned Indexes returned by the training step, we execute query exper-
iments using both their Branchy and Branch-free versions. Then, for each category,
we take up to the three best average query times, when SODS returns more than
three models. Finally, proceeding by ascending rank, we take the ratio query time
Branch-free/Branchy. A ratio with value below one indicates that a Branch-free ver-
sion of a model is superior to its corresponding Branchy version of equal rank. As
anticipated in Section 4.2.3, as a baseline to confirm the findings in the Literature
regarding Binary Search are also valid within SOSD, we report the average query
time ratio of BFS/BBS and of BBS and BFS with BFE respectively. Moreover, we
also consider those ratios for k-ary Search instead of Binary Search. All these results
are reported on Figures C.1-C.5 in Appendix C and, for conciseness, we report here
one case in Figure 4.1.

4.4. Conclusions 45

4.3.2 Analysis
Coherence of Literature Results within SOSD

In the Literature has been observed that BFS is able to improve the query times
with respect to BBS, on synthetically generated data, only for the case of L1 and
L2 memory levels. It is also to be remarked that k-ary Search is not considered.
Our experiments, performed within the highly engineered and optimized SOSD
platform and on real datasets provide a somewhat different picture. With reference
to Figure 4.1 for the wiki dataset and Figures C.1-C.5 of the Appendix C for all
datasets, we do not find that BFS is superior to BBS on L1 and L2 memory levels
(see blu bar in the mentioned Figures). On the other hand, we find that K-BFS is
slightly superior to K-BBS on all memory levels. However, it is quite comforting
that, as in the Literature, BFE is better than Sorted Layout Binary Search (see yellow
bars in the mentioned Figures).

The Relevance of Branch-free vs Branchy in Learned Indexing in SOSD: Search
Time

The results concerning this part of the experiments are reported again in Figure 4.1
for the wiki dataset and Figures C.1-C.5 of Appendix C for all datasets. Those re-
sults are in agreement with the preceding point. However, they offer some insights
that we now outline. When Learned Indexes use BBS as terminal for the search
phase, their gain with respect to the use of BFS is in percentage superior to the gain
obtained by using BBS as opposed to BFS on the entire tables. As for the Learned
versions that use k-ary Search, there is a slight advantage of the the Branch-free ver-
sion with respect to the Branchy one.

In view of the fact that we use ratios among the three best Branch-free models
with their corresponding Branchy part and that, for models with the same rank can
actually be different, we consider the ability of each of those models to reduce the
search interval. Those results are reported in Table 4.1 for the case of wiki dataset,
and Tables C.1-C.5 on Appendix C. It is easy to see that homologous models have
basically the same ability to reduce the search interval.

The Relevance of Branch-free vs Branchy in Learned Indexing in SOSD: Space.

It is natural to ask whether the best performing Branch-free models, in terms of time,
offer some gain with respect to their Branchy versions, in terms of model space. The
relative results are presented in Figure 4.2. Although not uniform across datasets,
the Branch-free versions offer some advantage with respect to their Branchy part.

4.4 Conclusions

In this Chapter, following the recommendations provided in the Literature, we have
analysed how a programming paradigm making use of conditional moves can ben-
efit over the use of if-then-else constructs in modern computer architectures. How-
ever, using a highly engineered platform and real benchmark datasets, we obtained
results in contrast with the Literature regarding two different types of Binary Search.
In particular, we have shown, via an extensive set of experiments on benchmark
datasets that, for Learned Indexes, the choice of Branchy Binary or k-ary Search
routine is the most appropriate for the final search stage in the SOSD software plat-
form. Finally, we discussed how, although not uniform across datasets, Branch-free

£6hapter 4. Standard Vs Uniform Binary Search and their Variants in Learned Static
Indexing: The Case of the SOSD Benchmarking Software

RMI RS PGM
BBS BFS BBS BFS BBS BFS
L1 | 99.84%-5 99.86%-5 97.53%-91 | 97.53%-91 99.73%-9 | 45.48%-2033
L2 | 99.97%-9 99.95%-16 | 99.71%-91 | 99.71%-91 | 99.89%-33 99.89%-33
L3 | 100.00%-5 | 100.00%-9 | 99.99%-91 | 99.99%-91 | 100.00%-33 | 100.00%-9
L4 | 100.00%-30 | 100.00%-39 | 100.00%-91 | 100.00%-91 | 100.00%-33 | 100.00%-33
K-BBS K-BFS K-BBS K-BFS K-BBS K-BFS
L1 | 99.84%-5 99.86%-5 97.53%-91 | 97.53%-91 99.73%-9 99.73%-9
L2 | 99.97%-9 99.95%-16 | 99.71%-91 | 99.71%-91 | 99.94%-17 99.89%-33
L3 | 100.00%-5 | 100.00%-9 | 99.99%-91 | 99.99%-91 | 100.00%-9 100.00%-9
L4 | 100.00%-30 | 100.00%-39 | 100.00%-91 | 100.00%-91 | 100.00%-33 | 100.00%-65

TABLE 4.1: Search Range for the wiki dataset. The columns of table
report the model classes. Each model class is divided into Branchy
(BBS) and Branch-free (BFS) versions of Binary and k-ary Searches
(in this latter case K-BBS and K-BFS). In each class, we consider the
best performing models.The rows report the memory levels. Each
memory level corresponds to a row in the table. For those rows, each
entry contains the pair Reduction Factors in percentage - number of
elements to search after a prediction is made.

Learned Indexes seems to use less space than their Branchy counterparts. It is also
to be remarked that the Eytzinger Layout confirms to be competitive in time with
respect to the sorted layout procedures, within SOSD. Unfortunately, none of the
Learned Indexes implementations that we know can use that layout for the final
search stage. This asks for Learned Indexes actually able to support that layout. In
turn, those Indexes do not seem to be readily obtainable from the current ones, since
their prediction stage is based on the CDF of the table, whose arrangement is closely
related to a sorted layout. In the next Chapter, we show how to define a new Learned
Generic Index that is able to use also layouts other than sorted in its finale stage.

Bibliographic Notes

Most of the references in this Chapter are illustrated in the Bibliographic Notes Sec-
tion of Chapter 1. Concerning the platform used to train Learned Indexes, the ref-
erences are provided in the Bibliographic Notes Section of Chapter 3. Listing 4.2.4
in Section 4.1 is provided by Khuong and Morin, 2017, who discuss the difference
between Branchy and Branch-free Binary Search more in-depth via an experimental
analysis on synthetic datasets.

4.4. Conclusions 47

amzn32 amzn64 face
2 2 25
1 15 2
1
0 0] 1 15
0.5
-1 1
° : ! Il-
-2 0.5
-05 H
-3 1 of —L L—H»
-4 -1.5 -0.5
L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4
osm wiki
2 1

0.5
H [
L Ers

H [=Y
oF [KRMI

[kRS
-1 [kPem

L2 L3 L4

L1 L1 L2 L3 L4

FIGURE 4.2: Model size ratios of all the models: The model size ra-
tios Branch-free/Branchy of the fastest (query times) RMI, RS, PGM,
KRMI KRS, KPGM computed on each dataset, for each memory
level. The y scale is logarithmic (base 10). Negative values indicate
the case when, for each Learned Index, the fastest one using Branch-
free Search routines has a model size less than the corresponding
fastest one using Branchy routines, with zero values indicating equal
model sizes.

49

Chapter 5

Generic Learned Static Sorted Sets
Dictionaries

This Chapter provides a new generic type of Learned Dictionary for Static Sorted
Search, which differs from those mentioned so far in that it is able to use, as its
final stage for searching, various types of Dictionaries instead of only a specific one,
e.g. Binary Search. In particular, starting from the definition of a Static Dictionary
Data Structure given in Section 1.1, we define two paradigmatic types of Generic
Learned Static Sorted Sets Dictionaries. Then, we provide instances for each of them,
mentioning some construction and query time bounds, when they are not available
in the Literature. Since the Specific Learned Dictionaries can be seen as boosters of
elementary search procedures, we investigate the boosting property of those Generic
Learned Static Sorted Sets Dictionaries, in addition to a comparison with the specific
ones, provided in the Literature. In particular, this Chapter is organized as follows.

* In Section 5.1, we define a paradigm for Generic Learned Dictionaries.

¢ InSection 5.2, we describe a first family of Generic Learned Dictionaries, which
is based on the division of the Universe U into fixed length intervals.

* In Section 5.3, we describe another family for this paradigm, which is based on
the division of the Universe U into variable length intervals.

* In Section 5.4, we illustrate the experimental methodology adopted in this
Chapter.

¢ InSection 5.5, we illustrate and discuss the results obtained in our experiments.

¢ In Section 5.6, we provide conclusions on the experimental analysis of the pre-
ceding Section.

The Bibliographic Notes relevant for this Chapter are in the corresponding Sec-
tion.

The software used for the experimentation described in this Chapter is available
on Github! while the relative datasets are available on a repository?.

5.1 From Specific to Generic Learned Dictionaries

The models that have been proposed so far for Learned Indexes and described in
Section 1.4, when queried, all return an index i into the table and an approximation

Thttps:/ / github.com/globosco/ An-implementation-of-Generic-Learned-Static-Sorted-Sets-
Dictionaries
Zhttp:/ /math.unipa.it/lobosco/LSTS/

50 Chapter 5. Generic Learned Static Sorted Sets Dictionaries

€ accounting for the error in predicting the position of the query element within the
table. Then, the search is finalized via Binary Search in the intervals [i — €;i + €] of A.
However, other search routines such as Interpolation Search can be used for the final
search stage. In theoretic terms, those Learned Models yield search procedures that,
in the worst case scenario, are no worse than the basic routines we have mentioned
earlier, provided that the prediction can be made in O(log n) time. However, in
practice, the extensive experiments reported in the Literature show that they can
be thought of as very impressive boosters of the mentioned routines. So, in the
following Sections of this Chapter, we investigate whether it is possible to reproduce
this “boosting effect” by modifying these Learned Models so that they can be used
on Data Structures that are more complex than the simple search routines on Sorted
Sets.

5.1.1 Models Specific for Binary and Interpolation Search

Binary Search and analogous procedures have the flexibility that they need only
pointers in the table to perform the search. Therefore, they are very well suited
to be used in the final search stage of the models that have been proposed so far
for Learned Indexing. On the other hand, the predictions of those Learned Models
naturally fit the sorted table layout required by standard routines. Unfortunately,
for the search stage, if one wants to use a data structure that needs more than the
two pointers or an array layout different than the sorted one, all models we know
of cannot be used, at least in their current operational definition. For a more in-
depth description of these models, the reader is refereed to the division into a class
hierarchy characterising model space in Section 1.4.2.

5.1.2 Models for Generic Dictionaries

First, we start by recalling the definition of a static sorted sets dictionary SD as a Data
Structure that supports the operations member(x), PSP(x) and range(x,y), as de-
scribed in Section 1.1. Therefore, we are interested in a Generic Model that can be
applied on a wide variety of Dictionaries instead of just simple search routines in
Sorted Sets, i.e. Binary Search and Interpolation Search. For this reason, we intro-
duce the definition of a new kind of model.

Definition 5.1.1. A Generic Model of type D for table A is a “black box” that returns an
explicit partition of the sorted universe U into intervals, with the elements of A assigned to
intervals and kept sorted. A visit of the partition from left to right provides A. Moreover,
in O(logn) time, given an element x € U, it provides as output the unique interval in the
partition where x must be searched for, in order to assess whether it is in A or not.

The main difference between the models characterized by Definition 5.1.1 and
the ones used so far for Learned Indexing is that, apart from the partition of U be-
ing explicit, no two elements can have an intersecting prediction interval. It is to
be noted, however, that the PGM Index can be easily transformed into a Generic
Model, as outlined in Section 5.3. In principle, multi-layer RMIs, with a tree struc-
ture, can also be adapted to be Generic Models. However, due to the way they
are implemented and “learned” right now, such a transformation would require a
major reorganization of their implementation and “learning” code. The same con-
siderations apply to the RS Model. For those reasons, among the models proposed
so far, we consider only the PGM as Generic Model in the following Sections.

5.2. Learned Dictionaries: The Case of Equal Length Intervals - Binning 51

Definition 5.1.2. Let D be an instance of a Generic Model of type D for A, consisting of
k intervals and let SD be a Dictionary. A Learned Dictionary D is obtained by building
separately an SD for each sorted set within each interval in the partition. In order to answer
a query, D returns a pointer to the SD built on the appropriate interval, which is then
queried.

Generic Models can be subdivided into two families: The ones in which the in-
tervals of the partition are of fixed length and the ones in which their lengths is
variable. We discuss an example of the first type in Section 5.2. The method, over-
looked so far within the development of Learned Indexes, is related to the estimation
of probability density function via histograms, as well as Data Structures introduced
for Dynamic Interpolation Search. As for the second type and as already anticipated,
we discuss the PGM in Section 5.3.

5.2 Learned Dictionaries: The Case of Equal Length Inter-
vals - Binning

5.2.1 Construction

Fix an integer k = O(n). The universe U is divided into k bins By, - - -, By, each
representing a range of integers of size M. Each bin has associated the interval
of elements of A falling into its range. Let SD be a Dictionary. Its Learned version
Dy is built as follows. For each of the mentioned intervals, we build a Data Structure
SD containing the elements in that interval. Moreover, there is an auxiliary array
such that its j-th entry provides a pointer to the data structure assigned to bin j,
which may be empty (no elements in the bin). As for query, given an element x € U,
the bin in which we should search is identified via the formula i = X};ﬁ[}\]{)ﬁ 1.
When 8§D is one of the Dictionaries described in Section 1.2.1, the corresponding
Learned version is particularly simple. Indeed, the k pointers to the chosen SD can
be the start and the end of each interval. Then, the elements of A in that interval are
rearranged according to the selected layout. That is, we obtain a new array, which is

a succession of the same layout type applied to each interval.

Theorem 5.2.1. Dy can be built in worst case (a) in linear time, if SD can be build in
O(c) time, for c elements; (b) O(nlogn) time, if SD can be build in O(clogc) time, for c
elements; (c) O(nloglogn) time, if SD can be build in O(cloglogc) time, for c elements.

Proof. Point (a) is straightforward. As for (b), the total time to build the k data
structures is given by O(Y%_, c;logc;) which, by the convexity of the log funtion,
is bounded by O(nlogn). Point (c) follows along the same lines as (b), for the con-

vexity of the loglog function.
Ul

5.2.2 Worst Case Search Time

We now bound the time to seach for a given element x € U in A, using Dj. Let
the gap ratio be A = %, where G denotes the distance between two consecutive
elements in A. Notice that G,,;, > 0, since A is a set, implying that A is finite. The
following theorem is adapted from results already known in the Literature.

Theorem 5.2.2. Given an element x € U in A, the time to search for it in the model Dy, built
for 8D, is O(logmin(n, %&), assuming that searching in ST can be done in logarithmic
time. Analogous bounds hold for log-log searching time.

52 Chapter 5. Generic Learned Static Sorted Sets Dictionaries

} key:58 Model:f;

H} key:1 Model:f,

(%
El
Kl

~N

key:1 Model:f,
key:58 Model:f,
key:97 Model:f;

1|5 |11(14|58|59 (60 |97 |100[101]

FIGURE 5.1: Examples of a PGM Index. At the bottom, the table is
divided into three parts, according the maximum error €. A new table
is so constructed and the process is iterated. The keys in the last level
give a partition of the Universe U. In this example, the partition P is
{[1,57],[58,96],[97,101] }

Proof. Since the first part of the bound comes from the fact that each bin cannot have
more than n elements, we show next that the number of elements of A falling into

each bin of Dy is bounded by 2.

Gy 1s at least M. Indeed, the bound is satisfied with equality when all

elements are evenly spaced in U. Consider now the variation, with respect to evenly
spaced, for an arbitrary placement of the elements in the bins. If the distance be-
tween two elements decreases, then other distances either stay as in the even spaced

case increase. Now, G,,;; can be rewritten as %, which is lower bounded by

w. Since each bin has width M, no more than % elements can

be in each bin. Using the lower bound for G,,;,, the result follows. O

5.3 Learned Dictionaries: The Case of Variable Length Inter-
vals - The PGM

5.3.1 Construction

n

Fix an integer € < 7. As already described in Section 1.4.2, a PGM Index can be
built using a Piecewise Linear Approximation (PLA for short), so that a prediction
at each node can be made by a linear model guaranteeing a maximum error €. As
anticipated in Section 5.1.2, the PGM, thanks to its built, can be easily transformed
into a Generic Model. In fact, as illustrated in Figure 5.1, keys in the nodes of the
last level provide a partitions of the Universe U with k variable length intervals. As
shown in the previous Section, for each of the mentioned intervals, we build a Data
Structure SD containing the elements in that interval.

Theorem 5.3.1. Dy can be built in worst case (a) linear time, if SD can be build in O(c)
time, for c elements; (b) O(nlog n) time, if SD can be build in O(clog c) time, for c
elements; (c) O(nloglog n) time, if SD can be build in O(cloglog c) time, for ¢ elements.

Proof. As already known in the Literature, the PGM can be built in O(n) time. So, Dy
can be built in a time equal to the sum of the time to build the PGM and the time to

5.4. Experimental Methodologies 53

build the Dictionaries in each interval. As for point (a), the time is O(n) + O(X*_; ¢;).
As YX ¢; = n, we can conclude that the time is O(1). Due to the convexity of the
log and loglog functions, points (b) and (c) follows along the same line as (a). O

5.3.2 Worst Case Search Time

We now bound the time to search for a given element x € U in A, using Di. The
following lemma is derived from one presents in the Literature.

Lemma 5.3.2. Given an element x € U in A, the time to search for it in the model Dy, built
for 8D, is O(log n), assuming that the search in SD can be done in logarithmic time.

Proof. It has been proven in the Literature that the optimal number of segments de-
n

termined by the PLA algorithm is m,,; < 5-. Having fixed € < 7, in the worst
case, that is the case with the maximum error, we have exactly one segment which
contains all the 1 elements of A. From this comes a search time equal to O(logn) O

5.4 Experimental Methodologies

5.4.1 Hardware

We use the same hardware described in Section 3.2.1 of Chapter 4.

5.4.2 Datasets

We use the same datasets described in Section 4.2.2 of Chapter 4.

5.4.3 Dictionaries

In this Chapter, with reference to Dictionaries described in Section 1.2, we use the
following methods to test the “boosting property” of the Generic Model introduced
in Section 5.1.2.

¢ Binary Search and Its Variants. We use both Standard and Uniform Binary
Search (BBS and BFS respectively), described in Section 1.2.1.

¢ Interpolation Search. We use only the Standard Interpolation (IBS) described
in Section 1.2.1, since the TIP implementation is not competitive as illustrated
in Chapter 3.

¢ Array Layout other than Sorted. We use Eytzinger and B-Tree Layouts de-
scribed in Sections 1.2.2. In particular, for the latter, we use two different val-
ues of B. We denoted those two layouts as BFT512 and BFT32k, to indicate that
they have nodes occupying 512 bytes and 32 kilobytes of memory, respectively.

e Search Trees. We use the three kinds of Search Trees described in Section 1.2.3,
i.e. Self-Adjusting Binary Tree, B*-Tree and CSS Tree.

5.5 Experiments, Results and Discussion

Two types of experiments have been conducted to study the efficiency of Generic
Learned Dictionaries, as described in the following.

54

Chapter 5. Generic Learned Static Sorted Sets Dictionaries

(a)

(b)

Boosting. As anticipated in Section 5.1, we investigate whether Generic Learned
Dictionaries provided the “boosting effect” already known in the Literature for
Specific Learned Indexes. So, as anticipated in Section 5.1.2, we analyse the fol-
lowing two cases.

(1) Binning. For each dataset, we increase the space occupied by the Generic
Learned Dictionaries, growing the number of bins in percentage with re-
spect to the number of elements in the given Tables, i.e. from 0% to 100%,
and we calculate the ratios between the query time of a Generic Learned
Dictionary and the respective none learned method applied on the whole
Sorted Table.

(2) PGM. For each dataset, we choose € as a power of two in the interval
1, g] That is, we built models with an increasing error that partitions the
Universe U from very small intervals to the one that contains the whole
dataset. Then, for each of these models, we calculate the ratios between
the query time of the PGM as a Generic Learned Dictionary and the re-
spective none learned method applied on the whole Sorted Table.

For the sake of clarity, for each of the two cases, a ratio under one indicates that
the Generic Learned Dictionary performs better than the corresponding none
learned method.

Competitiveness of Generic Learned Dictionaries with respect to Specific
ones. These experiments provide a comparison with the models that represent
the State of the Art and that have already been extensively discussed in the
previous Chapters. This experiment is only performed in the case of the Bin-
ning Learned Dictionaries, since the PGM is already considered in Chapter 3.
In particular, in the following, we discuss two possible scenarios.

(1) No Bounds on Space. In this case, the use of space is not relevant. For
each dataset and for each memory level, we have built a Binning Learned
Dictionary for each SD in Section 5.4.3. Then, among all these Learned
Dictionaries used, we have chosen the one with the smallest average query
time. So, we have compared it with the best RMI, PGM and RS selected
from the SOSD output, as previously illustrated in Section 3.4.3 of Chap-
ter 3.

(2) Bounds on Space. This scenario introduce a condition of limited available
space. Therefore, as in the experiments of Chapter 3, we have imposed
three space bounds for each dataset and memory level. Then, we have
selected the best Binning Learned Dictionary that satisfy these bounds.
Finally, we have compared it with the best RMI, PGM and RS, which also
satisfy the bounds, selected from the SOSD output. In addition, for the
sake of completeness, for each bound, we report also the SY-RMI anal-
ysed in Chapter 3.

5.5.1 Boosting

Binning

Figure 5.2 reports the results concerning this part of the experiments for the wiki
dataset. Additionally, Figures D.1-D.5 of Appendix D report results for all the datasets.
Such figures show that the previously mentioned boosting property is effective on

5.5. Experiments, Results and Discussion 55

each dataset excluding face, for all the memory levels and Binning Dictionaries, ex-
cept BFE and BFT32k. In particular, BFE is never boosted on L1 and L2. Instead,
BFT32k does not get any boosting on L1. These differences could be imputable to
logarithmic and at most linear query time complexity of the operations related to
S8Ds, which remains unchanged in complexity order in their boosted versions (see
Theorem 5.2.2), but with an increase in the multiplicative constants which penalizes
the case of small Table data size (L1 and L2). However, it is important to point out
that the face dataset is a worst-case scenario. In fact, this dataset is characterized
by an empirical CDF that for the cases of L1, L2, L3 is close to uniform (see Figure
5.8. The consequence is that the Standard Interpolation Search procedure is already
effective on the dataset making useless its Learned versions. Furthermore, the L4
Table data end with some outliers, causing a totally unbalanced binning including
all the elements into the first bin except the last 21 (the outliers). In this case, the con-
sequence is that the Learned procedures do not boost the Standard ones. In addition,
it is useful to note that, as the space used by the model grows, the gain of Binning
increases, confirming the existence of a space/time trade-off already discussed for
Learned Indexes in Chapter 3.

PGM

Figure 5.3 reports the results concerning this part of the experiments for the wiki
dataset. Additionally, Figures D.6-D.10 of Appendix D report results for all the
datasets. Surprisingly, for the PGM as Generic Learned Dictionary, no boosting ef-
fect is consistently found for each dataset. We now explain such behaviour with one
dataset and one procedure as an example, i.e., osm_L4 and BBS respectively. With
reference to Figure 5.4, we can observe that, although the search procedure is im-
proved in its Learned version, the navigation time of the PGM structure is greater
than the one taken by the stand-alone version. In contrast, in Figure 5.5, we can
observe that we can calculate the interval index for the Binning Model very fast,
obtaining an important improvement of the search procedures.

5.5.2 Competitiveness of Generic Learned Dictionaries with respect to
Specific ones

Query Time: No Bound on Space

The results concerning this scenario are reported in Figure 5.6. As it can be noted,
if no bound is imposed on the space, a Binning Model is competitive with the State
of the Art only in memory level L4, with the exception of the face-L4 dataset for the
reasons discussed in the previous Section. Moreover, in memory level L3, although
not competitive with RMI, it performs consistently better than PGM and RS. Finally,
it is useful to note that in most cases the best Binning Model has Branchy Binary
Search as its final stage. This provides more evidence that Standard Binary Search is
the best choice as Learned Index final stage, as already illustrated in the Chapter 4.

Query Time: Bounds on Space

The results concerning this scenario are reported in Figures D.11-D.15 of Appendix
D for all datasets. In this Section, we report, as discussed next, the particular case of
osm dataset in Figure 5.7. It should be noted that, by imposing bounds on the space
occupied by the model, the Binning Models are almost never competitive with the
State of the Art Models and the SY-RMI introduced in Chapter 3. An exception is

56 Chapter 5. Generic Learned Static Sorted Sets Dictionaries

wiki-L1 i wiki-L2

" 28 ogoaloc® BoBd BE2ESY Yh | R o e And b
T, A e Y
061 ot Bl SO Ry
N W N oal
0.4 ’

0 20 40 60 80 100 0 20 40 60 80 100

———bbs

————bfs

ibs

—bfe L
bft512 wiki-L4
bft32k
| —— splay

WAk b hAA I n
WA P\ uw»fw@fvfo

wiki-L3

————css

0.8

R S 1
Rk VPP | N

0.6 1 0.6 [

0o es0mto0tmneencfuesoaysSunensssesess ooeeettnnsstestegssedd

04r 0.4 I

o ssssonssngi,,
e suesotsen s secs0n0s p secsenstuocess boscsssssss

0 26 4‘0 60 8‘0 l(‘]O 0 26 46 t;O 8‘0 1(;0
FIGURE 5.2: Binning boosting property on wiki dataset. For each
memory level, we report in the abscissa axis the number of bins in
percentage with respect of the number of elements in the Table. In
the ordinate, we indicate the ratio between the mean query time of

Binning and SD alone. For the sake of clarity, a ratio under one indi-
cates that the Binning performs better than the simple ones.

the osm dataset in memory levels L3 and L4. Only in these cases a Binning Model
performs better than Learned Indexes in small space. This provides evidence that
the Binning Models are able in a small space to well approximate very complex CDFs
such as that of the osm dataset, shown in Figure 5.8.

5.6 Conclusions

In this Chapter, we have defined a new paradigm for Generic Learned Dictionaries
for Static Sorted Search, capable of using a wide variety of Dictionaries. In par-
ticular, we have provided two families of them, the first based on the subdivision
of the universe U into fixed-length intervals using a Binning technique, the second
based on the use of the PGM Index to make explicit a partition into variable-length
intervals. We have provided time bounds for the construction and the search for
both. Then, considering that Learned Indexes in the Literature are boosters for the
classic search procedures, we have studied the “boosting capacity” of these Generic
Learned Dictionaries with different procedures. The results confirmed an excellent
“boosting capacity” for Binning, while the PGM performs as an overcomplicated
structure that defeats the purpose of improving search performance. Furthermore,
we compared the Binning Dictionaries with the best Learned Indexes in the Litera-
ture, observing very good performance in large amounts of data, if space usage does
not matter, and an ability to approximate very complex CDFs using very small space
in addition to the Table.

5.6. Conclusions

57

—=bbs
——bfs
ibs
—bfe
bft512
bft32k
—=— splay

— - Css

wiki-L1 wiki-L2

10 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1

wiki-L3 wiki-L4

b e e e

I R A I = S I O L T T CRIRNIRIZEZBIQYIgoorow vy oad

FIGURE 5.3: PGM boosting property on wiki dataset. For each mem-

ory level, we report in the abscissa axis the chosen € for the PGM

construction. In the ordinate, we indicate the ratio between the mean

query time of the PGM and the SD alone. For the sake of clarity, a

ratio under one indicates that the PGM performs better than the sim-
ple ones.

58

Chapter 5. Generic Learned Static Sorted Sets Dictionaries

Mean Query Time (s)

1.2

1.0

0.8

0.

0.4

0.2 4

0.0 -

6

N

o

le-6

osm_L4

= Total Time (s)
s PGM Time (s)
B Search Time (s)

226 225 24 223 222 21 20 19 18 317 16 15 14 13 12 511 D10 9 28 77 26 5 24 23 2 9l
Epsilon

FIGURE 5.4: PGM Query Time on osm_L4 dataset. We report in the
abscissa axis the chosen € for the PGM construction, in the ordinate
axis the mean query time expressed in seconds. The blue bars indi-
cate the total time to execute a query using the PGM Dictionary. The
orange bars show the time taken to navigate the PGM structure. The
green bars report the time to search in the found interval using BBS.
Finally, the blue line is the BBS stand-alone mean query time.

5.6. Conclusions 59

4.0 A

3.5

3.0

Mean Query Time (s)

-
5

1.0 1

0.5 A

A |10 O]

0.0

le—7 osm_L4

N
»

g
o

— BBS

B Total Time (s)
B Binning Time (s)
B Search Time (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bin %

FIGURE 5.5: Binning Query Time on osm_L4 dataset. We report in
the abscissa axis the chosen percentage for the Binning construction,
in the ordinate axis the mean query time expressed in seconds. The
blue bars indicate the total time to execute a query using the Binning
Dictionary. The orange bars shows the time taken to calculate the bin
index. The green bar reports the time to search in the found interval
using BBS. Finally, the blue line is the BBS stand-alone mean query
time.

60

Chapter 5. Generic Learned Static Sorted Sets Dictionaries

Mean Query Time (s)

° o o = g
» o ® o »

Mean Query Time (s)

e ©°
o N

le-8 L1 le-7 L2

9710401 - bbs
9210401 bbs
Mean Query Time (s)
I o o =
- o 0o o

o
N

0.0-
amzn32 amzn64 face osm wiki amzn32 amzn64 face osm wiki

1e-7 L3

v

=
[N]

Mean Query Time (s)
N w S

[

amzn32 amzn64 face osm wiki amzn32 amzn64 face osm wiki

FIGURE 5.6: Learned Indexes Query Time Without Bound on Space.

For each memory level and dataset, we report the mean query time

of the best Learned Indexes including the Generic Learned Dictionary

denoted with BIN. Above each bar we report the space in addition to

the table in percentage. Indeed, we report the best search method in
the BIN final stage.

5.6. Conclusions

61

osm-L1

(7]
204

<=0.05

_ osm-L3
25 le-7

Mean Query Time (s)

<=0.05

Mean Query Time (s)

Mean Query Time (s)
o

-
L

o
|

le—7

osm-L2

635002

123e+00
7.49e-01

<=0.05

osm-L4

<=0.7

1236400

2016400

v
L

IS
L

w
f

N
L

5.002-02

<=0.05

<=0.7

FIGURE 5.7: Learned Indexes Query Time With Bounds on Space on
osm dataset. For each memory level, we choose three space bounds
as in Chapter 3. For each space bound, from left to right, we report
the mean query time of the best RMI, PGM and RS that satisfies the
imposed bound. Next bar indicates the mean query time for the SY-
RMI as in Chapter 3. The last bar is the mean query time for the best

Generic Learned Dictionary with space inside the bound.

62 Chapter 5. Generic Learned Static Sorted Sets Dictionaries
amzn32 amzn64
1.09 1.09
0.8 1 0.8
0.6 - 0.6 -
041 0.4
0.21 0.21
0.0 T T T T T T 0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 4 8
1e9 lel8
face osm
1.09 1.09
0.8 - 0.8 A
0.6 - 0.6 -
0.4 1 0.4 4
0.2 0.2
0.01 T T T T 0.0 T T T T T T T
0 2 4 6 8 00 02 04 06 08 10 12 1.4
lelo lel9
wiki
1.09
0.8
0.6 -
0.4
0.2
0.01

T
1.00

T T
1.05 1.10

T
1.15

1.20
le9

FIGURE 5.8: Tables CDF. For each dataset, we report the empirical
Cumulative Distribution Fuction of the element in the Tables.

Bibliographic Notes

Most of the references in this Chapter are provided in the Bibliographic Notes Sec-
tion of Chapter 1. The Fixed Length Generic Model in Section 5.2 is a generalization
of the one proposed by Demaine, Jones, and Patrascu, 2004, who use it with a fixed
number of bins equal to the number of the elements in the Table to improve Inter-
polation Search for non-Independent Data. The method to estimate a probability
density function via histograms, mentioned in Section 5.1.2, it is well-known in the
specialistic Literature that we refers to Freedman and Diaconis, 1981 for some de-
tails.

63

Chapter 6

Conclusions and Future Directions

In this Thesis, we have presented a new approach, which has become of growing
importance in the Literature, for solving classic problems on Data Structures. In
fact, although there are procedures such as Binary Search that are considered opti-
mal according to many computational models, in the era of Big Data, it has become
essential to seek ways to achieve substantial speed-ups even on procedures that are
considered theoretically optimal. This search has led to the definition in the Liter-
ature of the so-called Learned Data Structures, which take advantage of models of
Machine Learning, which, discovering particular patterns in the data, can be used as
indexes for sorted sets. However, although these models seem to have an excellent
performance in practice, some aspects, which could be very useful for designers and
practitioners, have not been investigated so far in the Literature. In the following
Sections, we summarise what have been the significant contributions in this Thesis
and finally what are the future perspectives for extending these studies.

6.1 Advantage of Simple Models over Neural Networks

Starting from the considerations in the Literature on the use of new architectures
such as GPU and TPU instead of CPU, we have provided for the first time exper-
imental evidence on the existence of a data transfer bottleneck between these two
kinds of architectures. This issue makes it premature to use very complex models,
such as Neural Networks, that would benefit from the parallel computation per-
formed by the GPU. In fact, in Chapter 2, although already known by specialists, we
quantified for the first time through experimental results how very simple models
can achieve significant table reductions and training and query times competitive in
comparison to those obtained by Neural Networks models.

6.2 Learned Indexes in Small Space

In Chapter 3, we conducted a systematic experimental analysis of the ability of
Learned Indexes to improve the performance of Binary and Interpolation Search
queries. In particular, we studied the ability of those models to operate in small
spaces. From the results obtained, we found that, although many of these models
fail to achieve the best times in small space conditions, their prediction power is
marginal in performance evaluation. Indeed, even if the query times between these
models and the best ones differ by small constants, the difference in space can be sev-
eral orders of magnitude. Therefore, this scenario reveals the need to ask not only
which model is the best performing but also whether it is possible to obtain similar
results but with a constant or small space with respect to the size of the Table.

64 Chapter 6. Conclusions and Future Directions

6.3 On the Branchfreeness of Learned Indexes

Although there is a rather complex scenario in the Literature on the efficiency of
Branchy versus Branch-free methods, mainly related to the memory hierarchy and
data size, our results revealed in Chapter 4 that the choice of a Branchy procedure
as the final stage of a Learned Index is the best one. However, we have pointed out
that the Branch-free procedures in some cases, while presenting equivalent times to
their Branchy counterparts, seems to use models that require less space in addition
to the Table.

6.4 Generic Learned Dictionary

Starting from considering that Learned Indexes in the Literature can only use spe-
cific Dictionaries, i.e. Sorted Table Layouts, in Chapter 5, we have provided a new
paradigm for the definition of Generic Learned Dictionaries, capable of operating
on a wide range of Dictionaries. We then studied the boosting capabilities, already
known for specific Learned Indexes, on two types of Generic Learned Indexes based
on partitioning the Universe U into fixed or variable length intervals, respectively.
From the results, we found that the former confirms an excellent boosting ability
while the latter does not improve search performance due to a complicated indexing
structure. An additional property of the Generic Learned Dictionaries with fixed-
length intervals seems to be the ability to approximate very complex CDFs using
very small space in addition to the Table.

6.5 Future Direction

From the contributions given in this Thesis comes a variegated scenario of models
and procedures, whose performance in terms of time and space can depend on sev-
eral factors, e.g. the computer architecture used or the distribution of the available
data. Therefore, it could be useful for practitioners and designers to have access to
a Benchmark platform that, given a sample of data and some customised options,
could provide precise indications on which models, among all those most used in
Literature, obtain the best performance in terms of time and additional space with
respect to the Table.

A second consideration that could be made is that these Learned Indexes studied
so far, except for a few, e.g. PGM Index, present a static structure that is poorly suited
to many of today’s scenarios where data is constantly evolving. So a new direction
in this area could be to develop models, which, while maintaining the performance
improvements of the search procedures, can handle the dynamic nature of the data.

65

Appendix A

Datasets

In this Thesis, we use five kinds of real datasets present in the Literature. In particu-
lar, we use 64 bits integers unless otherwise specified. We provide next a description
of those datasets.

amzn: Each key represents the popularity of a particular book from Amazon.
We have two version of this dataset, one where each item is represent with 64
bits and another with 32.

face: Each key represent an unique user ID from Facebook database.
osm Each key represent an embedded location from Open Street Map database

wiki Each key represent the time of editing from Wikipedia.

Furthermore, starting from those, we have produced, as described in Section A.1,
datasets with different sizes. So that, we provide an experimentation, extensive and
not available so far, of "how work" Learned Indexes across different memory levels.

Letting n the number of elements in a table, the details of the tables are the fol-
lowing.

Fitting L1 cache. We choose n = 3.7K. For each dataset, the table correspond-
ing to this type is denoted with the prefix L1, e.g., L1_amzn, when needed.

Fitting L2 cache. We choose n = 31.5K. For each dataset, the table correspond-
ing to this type is denoted with the prefix L2, when needed.

Fitting L3 cache. We choose n = 750K. For each dataset, the table correspond-
ing to this type is denoted with the prefix L3, when needed.

Fitting L4 cache. We choose n = 200M, i.e. the entire datasets. For each
dataset, the table corresponding to this type is denoted with the prefix L4,
when needed.

We chose to fit only one memory line of L1 and L2 cache because our implemen-
tations use only one CPU Core. Instead, We decide to fit only half of the L3 cache
because all CPU Core and processes share it.

As for query dataset generation, we extract uniformly and at random (with re-
placement) one million elements for each of the tables built as described above.

66 Appendix A. Datasets

TABLE A.1: The results of the Kolmogorov-Smirnov Test and of the
KL divergence computation.

L1 L2 L3

Datasets | %succ KLdiv Yosucc KLdiv Yosucc KLdiv
amzn32 100 1.87e-05+1.41e-13 100 1.58e-04 +8.76e-13 100 3.77e-03 +2.20e-11
amzn64 100 9.54e-06+7.27e-14 100 7.88e-05+7.97e-13 100 1.88e-03+1.52e-11

face 100 1.98e-05+1.00e-12 100 7.98e-05+4.43e-13 100 1.88e-03+1.24e-11
osm 100 9.38e-06+4.51e-14 100 7.88e-05£3.46e-13 100 1.88e-03+9.55e-12
wiki 100 9.47e-0615.27e-14 100 7.87e-05£5.64e-13 100 1.88e-03+1.25e-11

A1 Kolmogorov-Smirnov Test and KL Divergence Compu-
tation

For each dataset, in order to obtain a CDF that resembles one of the original ta-
bles, we proceed as follows. First, we extract uniformly and at random a sample of
the data of the required size. Then, we compute its CDF, and use a Kolmogorov-
Smirnov test to assess whether the CDF of the sample is different from the dataset
CDFE. Finally, suppose the test returns that we cannot exclude such a possibility. In
that case, we compute the sample’s probability density function (PDF for short) and
compute its KL divergence from the PDF of the dataset. Finally, we repeat this test
100 times for each table and choose the sample with the smallest KL divergence for
our experiments.

In Table A.1, we report the percentage of times in which Kolmogorov-Smirnov
test failed to find the difference between the two CDFs over the 100 extractions for
each memory level and each dataset. Moreover, we also report the value of the KL
divergence between the chosen generated dataset and the original one.

67

Appendix B

Learned Sorted Table Search and
Static Indexes in Small Space:
Supplementary Results

This Appendix summarizes the results discussed in Chapter 3.

B.1 Learning the CDF of a Sorted Table: Full Set of Experi-
ments

Tables B.1-B.4 report the full set of experiments described and discussed in Section
3.4.1.

B.2 Constant Space Models: Full Set of Query Experiments

Figures B.1-B.5 report the full set of experiments described and discussed in Section
3.4.2.

B.3 Parametric Space Models: Full Set of Query Experiments

Figures B.6-B.10 report the full set of experiments described and discussed in Sec-
tion 3.4.3. Table B.5 reports the average space, query time and Reduction Factor
computed on all experiments performed in this study, normalized with respect to
the best query time model coming out of SOSD.

TABLE B.1: Training time for L1 tables, in seconds and per element.
The first column indicated the datasets. The remaining columns in-
dicate the model used for the learning phase. Abbreviations are as in
the main text. The SOSD columns refer to the entire output of that li-
brary, averaged over a number of models and elements in each table.

L | Q [C T[150-BFS | SY-RMI2% [SOSD RMI | SOSDRS [SOSD PGM
Datasets Training Time
amzn32 | 6.2e-07 | 4.3e-08 | 5.7e-08 | 8.0e-07 3.5e-06 1.2e-06 1.8e-06 5.4e-08
amzn64 | 7.3e-08 | 8.7e-08 | 1.0e-07 | 5.3e-07 2.6e-07 3.6e-07 2.8e-06 6.2e-08
face 3.0e-07 | 7.7e-08 | 8.5e-08 | 5.5e-07 7.5e-06 6.7e-07 8.2e-07 5.7e-08
osm 6.9e-08 | 7.4e-08 | 9.9e-08 | 4.6e-07 4e-05 4.6e-06 5.5e-06 5.0e-08
wiki 6.8e-08 | 1.4e-07 | 7.9e-08 | 9.0e-07 6.9e-06 3.7e-07 8.7e-06 4.6e-08

68

Appendix B. Learned Sorted Table Search and Static Indexes in Small Space:

Supplementary Results
TABLE B.2: Training time for L2 tables, in seconds and per element.
The table legend is as in Table B.1
L | Q [C [150-BFS | SY-RMI2% | SOSDRMI | SOSDRS | SOSD PGM
Datasets Training Time
amzn32 | 1.0e-08 | 7.7e-08 | 1.4e-07 1.1e-07 5.6e-06 4.6e-07 2.3e-07 4.2e-08
amzn64 | 1.6e-08 | 2.7e-07 | 3.1e-07 1.8e-07 5.2e-06 5.6e-07 3.5e-07 5.0e-08
face 1.4e-08 | 2.7e-07 | 2.8e-07 1.0e-07 4.1e-06 4.6e-07 1.1e-07 3.9e-08
osm 1.3e-08 | 2.7e-07 | 2.9e-07 1.2e-07 2.8e-04 2.9e-05 6.9e-07 4.0e-08
wiki 1.7e-08 | 2.7e-07 | 2.7e-07 1.0e-07 7.8e-06 9.3e-07 1.0e-06 3.7e-08
TABLE B.3: Training time for L3 tables, in seconds and per element.
The table legend is as in Table B.1
L Q C [150-BFS [SY-RMI 2% [SOSD RMI [SOSD RS [SOSD PGM
Datasets Training Time
amzn32 | 1.1e-08 | 1.7e-08 | 2.3e-08 5.3e-08 4.5e-06 5.0e-07 1.7e-08 2.7e-08
amzn64 | 1.6e-08 | 2.0e-08 | 1.9e-08 6.3e-08 1.5e-06 1.3e-07 2.4e-08 3.4e-08
face 8.2e-09 | 2.1e-08 | 1.9e-08 3.9e-08 1.5e-05 1.6e-06 1.4e-08 2.4e-08
osm 1.6e-08 | 1.9e-08 | 2.0e-08 4.4e-08 1.2e-05 1.3e-06 3.5e-08 3.8e-08
wiki 1.5e-08 | 2.0e-08 | 1.9e-08 4.1e-08 2.3e-06 2.2e-07 5.1e-08 3.7e-08
TABLE B.4: Training time for L4 tables, in seconds and per element.
The table legend is as in Table B.1
L Q C [150-BFS | SY-RMI2% [SOSD RMI | SOSD RS | SOSD PGM
Datasets Training Time
amzn32 | 7.9e-09 | 1.4e-08 | 1.4e-08 3.7e-08 1.2e-06 1.2e-07 9.5e-09 2.4e-08
amzn64 | 7.9e-09 | 1.4e-08 | 1.4e-08 3.7e-08 1.1e-06 2.2e-07 2.1e-08 5.0e-08
face 8.0e-09 | 1.4e-08 | 1.4e-08 3.6e-08 1.3e-06 2.5e-07 2.1e-08 6.5e-08
osm 8.0e-09 | 1.4e-08 | 1.4e-08 3.6e-08 1.2e-06 2.5e-07 2.2e-08 7.4e-08
wiki 7.9e-09 | 1.4e-08 | 1.4e-08 3.6e-08 1.1e-06 2.2e-07 1.9e-08 4.1e-08

B.3. Parametric Space Models: Full Set of Query Experiments

7 amzn32-L1 -7 amzn32-L2
2510 3510

3L

2l
25}
1.5+ Pas
1k 151
1

05
0.5

ofo 00]6 @]e ofo ofo
\ e P »%F 0%
v Q < '&60’
6 %107 amzn32-L3
,Q°|° 0,5016 ’19010 6%0’“ g%o]o S}o[o QQu]e 000[0 000]& (b,\elo
W B R P R N o O o P
v Q o R v Q © N

FIGURE B.1: Query times for the amzn32 dataset on Sorted Table
Search Procedures. The methods are the ones in the legend. For each
memory level, the abscissa reports methods grouped by model. From
left to right, no model, linear, quadratic, cubic and KO-, with k =
15, and with BFS and BBS as search methods. K-BFS is reported
with k = 6. For those latter, the Reduction Factor corresponding to
the table is also reported. On the ordinate, it is reported the average
query time, in seconds. For memory levels L4, IBS, L-IBS, Q-IBS
and C-IBS have been excluded, since the inclusion of their query time
values (1.4e-05, 1.6e-05, 1.6e-05, 1.4e-05, respectively) would make the
histograms poorly legible.

70 Appendix B. Learned Sorted Table Search and Static Indexes in Small Space:

Supplementary Results
- %107 amzn64-L1 5 x107 amzn64-L2
2 i
25
151 2t
1r 15
it
05+
0 ‘ 0 :
VX\’Q“IQ \;L‘Fo@a[e Qj$>6c[e # 9?)elc - o 9b9'° \@k@le \}167(_)“]0 le'l«@%o,c 0_96'0(7?‘0 . g‘b%
5 X 107 amzn64-L3
\‘\Delo ‘qug’mch Q»\b‘weh Ug%-q‘b?b ‘gng;!b V\\NQQ]Q HIAQ']’Q]“ jbfg(,’o;e Q,,y(o /ggg%olu
e \ Q REN

FIGURE B.2: Query times for the amzn64 dataset on Sorted Table

Search Procedures. The figure legend is as in Figure B.1. For mem-

ory level L4, IBS, L-IBS and Q-IBS have been excluded, since the

inclusion of their query time values (3.1e-06, 2.1e-06, 1.2e-06, respec-
tively) would make the histograms poorly legible.

B.3. Parametric Space Models: Full Set of Query Experiments

%107 face-L1 107 face-L2

ol

,Q“h ,be]c ,5010 %010 6°’° 06[0 1&]6 60]6
N\ v@‘bﬁ Q,%‘bﬂ o,cﬁ'% 0,9‘59 Qsa‘?ﬂ 099'6 ®?
VP A
[bbs
5 x107 face-L3 5 i’:)fz | ¥10° face-L4
ofo ofo ofo ofo ofo erﬁ ofo
»% ©%F o) ® o *® o° e
< RN N

FIGURE B.3: Query times for the face dataset on Sorted Table Search

Procedures. The figure legend is as in Figure B.1. For memory levels

L4, IBS and its Learned versions have been excluded because of their
poor performance (data not shown and available upon request).

Appendix B. Learned Sorted Table Search and Static Indexes in Small Space:

72
Supplementary Results
%107 osm-L1 a5 %107 osm-L2
‘00[0 ,Le[o ,Lc[o ol ,Le|c ’Qe]o ,\?]0 qnjo galn ,\0[0
al el A2 o > v 1 AT kS 0
N o S @0,9 N NS oS S @Q,
[bbs
7 osm-L3 [bfs 6 osm-L4
510 s 110 u u
ofo N ofo ofo ofo ofo ofo ofo ofo 0‘0
\\\VX\'Q © o !_o»bf-b :\/b"c_,Q S R \AN\'Q '\«%(L ,&'\fb f\Q ‘3
Q C Y a® ie \fp

FIGURE B.4: Query times for the osm dataset on Sorted Table Search
Procedures. The figure legend is as in Figure B.1. For all memory lev-
els, IBS has been excluded, since the inclusion of its query time values
(1.2e-06, 2.2e-06, 6.5e-06, 6.4e-05, respectively) would make the his-
tograms poorly legible. Its regression-based Learned versions have
been excluded for the same reason (data not shown and available
upon request). However, they have better query time performance
with respect to IBS, in particular Q and C.

B.3. Parametric Space Models: Full Set of Query Experiments

73

3 %107 wiki-L1 %107 wiki-L2

00]0 6°’° ofo ‘00[0 N 6°l° ofo @lo
26° »® o Qv V&)-‘q’ P Y o1
Q < RS Q < R
[1bs
wiki-L3 Eﬁz | x10% uku u
o ofo ofo ofo ofo ofo ofo ofo
& o 1% S A7 ot o 1%
s o0 o N o s o o
Q < R v Q < oy

FIGURE B.5: Query times for the wiki dataset on Sorted Table
Search Procedures. The figure legend is as in Figure B.1. For all mem-
ory levels, IBS has been excluded, since the inclusion of its query time
values (3.1e-07, 5.1e-07, 9.5e-07, 5.1e-06, respectively) would make
the histograms poorly legible. Its regression-based Learned versions
have been excluded for the same reason (data not shown and avail-
able upon request). However, they have better query time perfor-
mance with respect to IBS, in particular Q and C.

74

Appendix B. Learned Sorted Table Search and Static Indexes in Small Space:

Supplementary Results
L1 | [L3 |
Time Space RF Time Space RF

Best RMI 2.5e-08 | 7.7e+03 99.86 Best RMI 3.1e-08 | 1.4e+03 99.98

PGM 0.70 1.8e00 6.5e-05 1e00 SY-RMI 0.05 3e00 4.5e-05 | 7.9e-01

SY-RMI 0.05 | 2.6e00 3.8e-05 4.2e-01 SY-RMI0.70 | 1.6e00 5.4e-04 | 9.6e-01
PGM 0.05 2.6e00 1.7e-05 2.3e-01 PGM 2 1.7e00 5.6e-04 1e00
Best PGM 1.5e00 1.2e-04 1e00 PGM 0.70 1.8e00 3.1e-04 1e00
PGM < 1.5e00 3e-04 1e00 PGM 0.05 3.1e00 2.2e-04 7.7e-1
PGM 2 1.6e00 1.1e-04 1e00 RMI <10 1.2e00 3.9¢-03 1e00

SY-RMI 2 1.7€00 2.7e-04 9e-01 SY-RMI 2 1.4e00 1.4e-03 | 9.9e-01
SY-RMI 0.70 2e00 1.1e-04 9e-01 PGM < 1.6e00 1.3e-03 1e00
RS <10 2e00 9.5e-04 | 9.5e-01 Best PGM 1.6e00 1.4e-03 1e00

B-Tree < 10 2e00 1.1e-03 | 9.9e-01 RS <10 2e00 2.6e-03 | 9.9e-01
Best B-Tree 1.7e00 3.4e-02 1e00 BTree < 10 2.3e00 5.1e-03 1e00
Best RS 1.3e00 7.4e00 1e00 Best B-Tree 2e00 1.5e-01 1e00
RMI < 10 - - - Best RS 1.3e00 3.4e00 1e00

L2] [L4]
Time Space RF Time Space RF

Best RMI 6.1e-08 | 1.3e+01 100 Best RMI 1.8e-07 | 1.5e+01 99.97
SY-RMI 0.05 | 1.8e00 3.9e-03 | 9.9e-01 PGM 0.05 1.8e00 3.3e-03 1e00
PGM 0.05 2e00 3.5e-03 1e00 SY-RMI 0.05 | 2.1e00 3.3e-03 8e-01
SY-RMI 0.70 | 1.4e00 5.7e-02 1e00 PGM 2 1.5e00 8e-02 1e00
PGM 2 1.6e00 7.1e-02 1e00 PGM 0.70 1.6e00 6.5e-02 1e00
PGM 0.70 1.6e00 3.4e-02 1e00 SY-RMI 0.70 | 1.9e00 4.9e-02 8e-01
RMI < 10 1.2e00 3.3-01 1e00 RMI <10 1.1e00 2.7e-01 1e00
SY-RMI 2 1.4e00 1.5e-01 1e00 Best RS 1.3e00 6.7e-01 1e00
Best PGM 1.5e00 2.1e-01 1e00 RS <10 1.3e00 1.7e-01 1e00
PGM <10 1.5e00 2.1e-01 1e00 Best PGM 1.4e00 2.3e-01 1e00
RS <10 1.5e00 | 3.15e-01 1e00 PGM <10 1.4e00 3e-01 1e00
B-Tree < 10 2.3e00 5.2e-01 1e00 SY-RMI 2 1.6e00 1.3e-01 8e-01
Best B-Tree 2.3e00 9.2e-01 1e00 Best B-Tree 2.3e00 2.1e-01 1e00
Best RS 1.2e00 1.4e+01 1e00 BTree < 10 2.3e00 1.7e-01 1e00

TABLE B.5: A Synoptic Table of Space, Time and Accuracy of Mod-
els For each memory level, the models are listed on the rows. The
first one provides the best performing method for that memory level,
on each of the datasets used in this research. The columns indicate
average query time in seconds, average additional space used by the
model and the average of the empirical Reduction Factor. The re-
maining column entries report analogous parameters, for each model,
normalized with respect to the best one. For each parameter, we take
the ratio Model /best model.

B.3. Parametric Space Models: Full Set of Query Experiments 75

amzn32-L1 amzn32-L2
120 1 140 Fmo o
100l e L ___ 120 -
100 [
80
80
60 [
60 [
40+
40
201 20k
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% [T rmi
rs
amzn32-L3 I o ree amzn32-L4
250 [— el I ~GM 700 [
I PGM_M_0.5
- PGM_M_1 - - - - - . - - - - - - - - - - - - ---.”——
20 T T T T TTT T o I PGM_M_1.5 600
I FGM_M_2
[sy-RMI 500
— — —BBS
wso- @4 e BFS 400 |
100 - 300 -
200 -
50
100 [
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

FIGURE B.6: Query times for the amzn32 dataset on Learned In-
dexes in Small Space. The methods are the ones in the legend (mid-
dle of the four panels, the notation is as in the main text and each
method has a distinct colour). For each memory level, the abscissa re-
ports methods grouped by space occupancy, as specified in the main
text. When no model in a class output by SOSD takes at most 10%
of additional space, that class is absent. The ordinate reports the av-
erage query time, with BBS and BFS executed in SOSD as baseline
(horizontal lines).

76

Appendix B. Learned Sorted Table Search and Static Indexes in Small Space:

Supplementary Results
amzn64-L1 amzn64-L2
120 140
100 . e 70 1
77777777777777777777777 100
80
80
60 [
60
40 r
40 F
20 20
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
[—
[rs
amzn64-L3 I s ree amzn64-L4
250 r I eV 800 — — — — — — — — — T
I PGM_M_0.5
I PGM_M_1 700 |
" | rPGM_M_15 T
I PGV M_2 600 |
[sY-RMI
— — —8BS
500
wor e BFS
400
100 300
200
50
100
0 gy R S S 0 s R RS S
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
FIGURE B.7: Query times for the amzn64 dataset on Learned In-
dexes in Small Space. The figure legend is as in Figure B.6.
face-L1 face-L2
120 140 1
ol T T T T T T T 10 T
*********************** 100
80
80
60 [
60 -
40 r
40 [
20 20
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
[—
[rs
face-L3 I s ree face-L4
250 I PcM 700 1
I PGM_M_0.5 -
I PGM_M_1
s00 | T T T T T T T T I PGM_M_1.5 600
77777777777777777777777 I FGM_M_2
[sy-RMI 500
— — —8BS
wor [z BFS 400
100 300
200
50
100
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2% SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

FIGURE B.8: Query times for the face dataset on Learned Indexes in
Small Space. The figure legend is as in Figure B.6.

B.3. Parametric Space Models: Full Set of Query Experiments

77

1201 osm-L1
00F T
o
60
40 -
20
T B Sy oo
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
2000 osm-L3
2s0F T
20— ————————————— ————— — — — —
150
100
50
S T S A
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

FIGURE B.9: Query times for the osm dataset on Learned Indexes in
Small Space. The figure legend is as in Figure B.6.

wiki-L1
120
00 T
80
60 [
40 -
20
0 R S S
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
wiki-L3
2501
200) S ————
150
100
50
05 S s e
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

osm-L2
140 [
20— ———>—"—"F———f{ """ ——— ——
100
80
60 -
40+
20
O g Y S
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
osm-L4
Lo A0
Bound 0.7% Bound 2%
wiki-L2
140
10/ — — — — - - —
100
80
60
40+
20
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%
wiki-L4
800
40 0N
600
500
SOSD<=10% Bound 0.05% Bound 0.7% Bound 2%

FIGURE B.10: Query times for the wiki dataset on Learned Indexes
in Small Space. The figure legend is as in Figure B.6.

79

Appendix C

Standard Vs Uniform Binary
Search and Their Variants in
Learned Static Indexing;:
Supplementary Results

This Appendix summarizes the results discussed in Chapter 4.

C.1 Experiments with SOSD

For all the considered datasets, Figures C.1-C.5 plot, from left to right, the query
times ratio between Branchy and Branch-free Binary Searches (BFS/BBS) as final
stage of best RMI, RS, PGM models. The following blue bar shows the BFS/BBS
query times without using any index. Next, we have analogous bar for k-ary Search
instead of Binary (KRMI, KRS, KPGM). In magenta, the ratio of the two versions
of k-ary alone (indicated as KARY). The following two bars are the average query
times ratios of BFE/BBS and BFE/BFS respectively.The last two bars report the ho-
mologous ratios for k-ary Search.

Tables C.1-C.5 report Reduction Factors (in percentage) and the number of ele-
ments of the interval reduced by the best performing RMI, RS, PGM indexes, when
using BBS, BFS, K-BBS and K-BFS, for all the considered datasets.

Appendix C. Standard Vs Uniform Binary Search and Their Variants in Learned
80) .
Static Indexing: Supplementary Results

amzn32-L1 - amzn32-L2

081
0.6
051
0.4r

0.2r

[m—Y
 —
[PcM
. s
I <KRMI
amzn32-L3 [kRS amzn32-L4

FIGURE C.1: Branch-free vs Branchy on the amzn32 dataset. From
left to right, RMI, RS and PGM, highest rank first. For each,
and according to rank, the bar height indicates the ratio of Branch-
free/Branchy Binary Search average query times for the three best
models, reported by memory level. The following blue bar shows
the same ratio for the two versions of Binary Search (indicated as
BS). Next, we have analogous bar heights for k-ary instead of Binary
Search (KRMI, KRS and KPGM). In magenta, the ratio of the two
versions of k-ary alone (indicated as KARY). The last two bars are
the average query times ratios of BFE/BBS and BFE/BFS respectively.
The last two bars report the homologous ratios for k-ary Search. A bar
height below one indicates that Branch-free indexing is better than its
Branchy counterpart.

C.1. Experiments with SOSD

81

amzn64-L1 amzn64-L2
tar
12
PRmsis
08 F
0.6
0.4
02
0
[—
rs
I PGM
. s
I <RMI
amzn64-13 [kRS amzn64-L4
161 Emmkeom |12
14F
12
PRSI
0.8
06
0.4
02f
ol
FIGURE C.2: Branch-free vs Branchy on the amzn64 dataset. The
figure legend is as in Figure C.1.
face-L1 face-L2
147 .
12 []
PRmsis
08 F
0.6
04
02
0
[—
 m—
I PGM
. s
I <RMI
. face-L3 [kRS face-L4
PRSI
05F
ol

FIGURE C.3: Branch-free vs Branchy on the face dataset. The figure
legend is as in Figure C.1.

Appendix C. Standard Vs Uniform Binary Search and Their Variants in Learned
82) .
Static Indexing: Supplementary Results

osm-L1 B osm-L2

081

0.6

0.4r

0.2r

osm-L3 [kRS B osm-L4

081

0.6

0.4r

0.2r

FIGURE C.4: Branch-free vs Branchy on the osm dataset. The figure
legend is as in Figure C.1.

wiki-L1 wiki-L2
141 l4r
1.2+ [12 [
1 1
0.8 0.8
0.6 0.6
0.4F 0.4F
0.2 0.2
0 0
[— Y]
[rs
I PGM
. s
[<RMI
I wiki-L3 [<Rs) wiki-L4
12F
11 B
0.8
0.6
041
0.2

FIGURE C.5: Branch-free vs Branchy on the wiki dataset. The figure
legend is as in Figure C.1.

C.1. Experiments with SOSD 83
RMI RS PGM
BBS BFS BBS BFS BBS BFS
L1 99.89%-7 99.89%-7 99.89%-7 96.35%-269 99.87%-9 99.87%-9
L2 99.98%-12 99.98%-12 99.98%-11 99.87%-81 99.98%-9 99.98%-9
L3 100.00%-5 100.00%-6 100.00%-11 | 100.00%-11 100.00%-9 100.00%-9
L4 | 99.84%-323209 | 99.84%-323211 | 100.00%-81 | 100.00%-191 | 100.00%-65 | 100.00%-34
K-BBS K-BFS K-BBS K-BFS K-BBS K-BFS
L1 99.89%-7 99.89%-7 98.92%-81 99.84%-11 99.87%-9 99.87%-9
L2 99.98%-12 99.98%-12 99.98%-11 99.98%-11 99.98%-9 99.98%-9
L3 100.00%-5 100.00%-6 100.00%-11 99.99%-81 100.00%-9 | 100.00%-17
L4 | 99.84%-323209 | 99.84%-323211 | 100.00%-191 | 100.00%-61 | 100.00%-129 | 100.00%-65
TABLE C.1: Search Range for the amazon32 dataset. The columns
of table report the model classes. Each model class is divided into
Branchy (BBS) and Branch-free (BFS) versions of Binary and k-ary
Searches (in this latter case K-BBS and K-BFS). In each class, we con-
sider the best performing models.The rows report the memory levels.
Each memory level corresponds to a row in the table. For those rows,
each entry contains the pair Reduction Factors in percentage - num-
ber of elements to search after a prediction is made.
RMI RS PGM
BBS BFS BBS BFS BBS BFS
L1 | 99.88%-4 99.84%-6 99.79%-7 | 99.68%-11 99.73%-9 99.73%-9
L2 | 99.97%-8 99.98%-5 | 99.96%-11 | 99.74%-81 99.97%-9 99.89%-33
L3 | 100.00%-14 | 100.00%-4 | 99.99%-81 | 100.00%-11 | 100.00%-9 100.00%-9
L4 | 100.00%-16 | 100.00%-22 | 100.00%-81 | 100.00%-81 | 100.00%-65 | 100.00%-34
K-BBS K-BFS K-BBS K-BFS K-BBS K-BFS
L1 | 99.88%-4 99.84%-6 99.79%-7 | 99.68%-11 99.73%-9 99.73%-9
L2 | 99.97%-8 99.98%-5 | 99.96%-11 | 99.96%-11 99.97%-9 99.97%-9
L3 | 100.00%-14 | 100.00%-4 | 99.96%-271 | 99.99%-81 100.00%-9 100.00%-9
L4 | 100.00%-16 | 100.00%-22 | 100.00%-81 | 100.00%-81 | 100.00%-129 | 100.00%-129
TABLE C.2: Search Range for the amazon64 dataset. The table leg-
end is as in Table C.1.
RMI RS PGM
BBS BFS BBS BFS BBS BFS
L1 | 99.85%-5 99.86%-5 99.84%-5 99.84%-5 99.52%-17 | 99.52%-17
L2 | 99.98%-6 99.98%-5 | 98.35%-519 | 99.55%-141 99.97%-9 | 99.94%-17
L3 | 100.00%-10 | 100.00%-10 | 99.98%-141 100.00%-5 | 99.98%-129 | 100.00%-9
L4 | 100.00%-50 | 100.00%-50 | 100.00%-521 | 100.00%-531 | 100.00%-33 | 100.00%-33
K-BBS K-BFS K-BBS K-BFS K-BBS K-BFS
L1 | 99.85%-5 99.86%-5 99.84%-5 99.84%-5 99.08%-33 | 99.08%-33
L2 | 99.98%-6 99.98%-5 99.98%-5 99.98%-5 99.97%-9 99.97%-9
L3 | 100.00%-10 | 100.00%-10 | 100.00%-5 100.00%-5 100.00%-9 | 100.00%-9
L4 | 100.00%-50 | 100.00%-50 | 100.00%-521 | 100.00%-521 | 100.00%-65 | 100.00%-33

TABLE C.3: Search Range for the facebook dataset. The table legend
is as in Table C.1.

34 Appendix C. Standard Vs Uniform Binary Search and Their Variants in Learned
Static Indexing: Supplementary Results

RMI RS PGM
BBS BFS BBS BFS BBS BFS
L1 99.88%-4 99.85%-5 99.73%-9 99.57%-15 | 98.27%-65 | -0.34%-3751
L2 99.98%-6 99.99%-3 99.97%-9 | 98.97%-330 | 99.97%-9 99.97%-9
L3 | 99.99%-80 100.00%-30 | 100.00%-9 | 99.96%-331 | 100.00%-9 100.00%-9
L4 | 100.00%-883 | 100.00%-883 | 100.00%-52 | 100.00%-16 | 100.00%-10 | 100.00%-34
K-BBS K-BFS K-BBS K-BFS K-BBS K-BFS
L1 99.88%-4 99.85%-5 99.73%-9 99.73%-9 99.73%-9 99.73%-9
L2 99.98%-6 99.99%-3 99.97%-9 | 98.97%-330 | 99.97%-9 99.94%-17
L3 | 99.99%-80 100.00%-30 | 99.96%-331 | 99.91%-651 | 100.00%-9 | 100.00%-17
L4 | 100.00%-883 | 100.00%-883 | 100.00%-16 | 100.00%-52 | 100.00%-18 | 100.00%-18
TABLE C.4: Search Range for the osm dataset. The table legend is as
in Table C.1.
RMI RS PGM
BBS \ BFS BBS \ BFS BBS \ BFS
L1 99.84%-5 99.86%-5 97.53%-91 97.53%-91 99.73%-9 | 45.48%-2033
L2 | 99.97%-9 99.95%-16 | 99.71%-91 99.71%-91 99.89%-33 99.89%-33
L3 | 100.00%-5 100.00%-9 | 99.99%-91 99.99%-91 | 100.00%-33 100.00%-9
L4 | 100.00%-30 | 100.00%-39 | 100.00%-91 | 100.00%-91 | 100.00%-33 | 100.00%-33
K-BBS K-BFS K-BBS K-BFS K-BBS K-BFS
L1 99.84%-5 99.86%-5 97.53%-91 97.53%-91 99.73%-9 99.73%-9
L2 | 99.97%-9 99.95%-16 | 99.71%-91 99.71%-91 99.94%-17 99.89%-33
L3 | 100.00%-5 100.00%-9 | 99.99%-91 99.99%-91 100.00%-9 100.00%-9
L4 | 100.00%-30 | 100.00%-39 | 100.00%-91 | 100.00%-91 | 100.00%-33 | 100.00%-65

TABLE C.5: Search Range for the wiki dataset. The table legend is as
in Table C.1.

85

Appendix D

Generic Learned Static Sorted Sets
Dictionaries: Supplementary
Results

This Appendix summarizes the results discussed in Chapter 5.

D.1 Boosting

Figures D.1-D.5 report the full set of experiments described and discussed in Section
5.5.1.

D.2 Comparison with the State of the Art

Figures D.11-D.15 report the full set of experiments described and discussed in Sec-
tion 5.5.2.

86

Appendix D. Generic Learned Static Sorted Sets Dictionaries: Supplementary
Results

0.2

03

03[

0.2

amzn32-L1

amzn32-L2

20 40 60 80 100 0 20 40 60 80 100

amzn32-L3 amzn32-L4

S Ty N

26 46 66 8‘0 1(;0 0 0 26 4‘0 6‘0 86 100
FIGURE D.1: Binning boosting property on amzn32 dataset. For
each memory level, we report in the abscissa axis the number of bins
in percentage with respect of the number of elements in the Table. In
the ordinate, we indicate the ratio between the mean query time of
Generic Learned Dictionaries and SD alone. For the sake of clarity,
a ratio under one indicates that the Generic Learned Dictionary per-
forms better than the simple ones.

amzn64-L1 amzn64-L2

—bbs
—bfs
ibs
—bfe
—bft512 1
bft32k l
——splay

————css

amzn64-L3

amzn64-L4

Sgsy, A pog

Des ; .
s E N oo PR
0.4 Fhoosnpras, — .

"I

0
20 40 60 80 100 0 20 40 60 80 100

FIGURE D.2: Binning boosting property on amzn64 dataset. The
legend is as in D.1.

D.2. Comparison with the State of the Art

87

face-L1 face-L2
18r

e bbs
e bis
ibs
——bfe
14- face-L3 - bft512 face-L4
’ bft32k
—=—splay
~°_Css
12
0.8
0.6
0.4r
0.2
ok
0 20 40 60 80 100

FIGURE D.3: Binning boosting property on face dataset. The legend
isasin D.1.

osm-L1 osm-L2

0.2

0 20 40 60 80 100 0 20 40 60 80 100
—bbs
—bfs

ibs
——bfe
osm-L3 ———— bft512 osm-L4
bft32k
—=—splay

————css

0 0 ; , . .
0 20 40 60 80 100 0 20 40 60 80 100

FIGURE D.4: Binning boosting property on osm dataset. The legend
isasin D.1.

Appendix D. Generic Learned Static Sorted Sets Dictionaries: Supplementary

88
Results
wiki-L1 wiki-L2
181 r
160
14 x’\j‘
I ‘J | i o)
o e
118 |
0.8 ", ? !
06t -
04
02 : : : : : 02 ‘ : : ‘ :
0 20 40 60 80 100 0 20 40 60 80 100
——bbs
—bfs
ibs
——bfe
wiki-L3 bf512 wiki-L4
0 : : : : : 0 : : : : :
0 20 40 60 80 100 0 20 40 60 80 100
FIGURE D.5: Binning boosting property on wiki dataset. The legend
isasin D.1.
amzn32-L1 amzn32-L2
S . — .
05} 05k
ob— : oL
11 10 9 8 7 6 5 4 3 2 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1
amzn32-L3 amzn32-L4
—bbs
bfs
ibs
———bfe 0 0

bft512 NN I I NN N NS I I R S R I T I

FIGURE D.6: PGM boosting property on amzn32 dataset. For each

memory level, we report in the abscissa axis the choosen ¢ for the

PGM construction. In the ordinate, we indicate the ratio between

the mean query time of the PGM and the SD alone. For the sake of

clarity, a ratio under one indicates that the PGM performs better than
the simple ones.

D.2. Comparison with the State of the Art

89

—=—bbs
—bfs
ibs
—— bfe
bft512
bft32k
—— splay

———css

—=—bbs
—bfs
ibs
—— bfe
bft512
bft32k
—— splay

————css

amzn64-L1

amzn64-L2

1 1
051 051
0

0
3 12 11 100 9 8 7 6 5 4 3 2 1

amzn64-13 amzn64-L4

w

251
2

15

1r 1ir

05 05F

ol e
I I S I R I I I I N N

FIGURE D.7: PGM boosting property on amzn64 dataset. The leg-
end is asin D.6.

face-L1 face-L2
sl 25f
25¢ oL
k*%*ﬂ—o—ﬁ/’/\kﬁ\;\/&
e e s S ——— N
E—— N - 15— . . e
—————— = S — e e e e
15}
. . @ @ . 1
e
05| 05
0

. 0
10 9 8 7 6 5 4 3 2 1 3 12 11 10 9 8 7 6 5 4 3 2 1

face-L4

face-L3

FIGURE D.8: PGM boosting property on face dataset. The legend is
asin D.6.

90

Appendix D. Generic Learned Static Sorted Sets Dictionaries: Supplementary

Results

osm-L1

osm-L3

———bbs
—bfs
ibs
——bfe
bft512
bft32k
——splay

———css

osm-L2

0
13 12 11 10 9 8 7 6 5 4 3 2 1

osm-L4

FIGURE D.9: PGM boosting property on osm dataset. The legend is

asin D.6.

wiki-L1
4 L T

,\//

p——— . -

wiki-L3

——bbs
—bfs

ibs
———bfe 0
bft512 NI N N N S B O T I T
bft32k
———splay

———css

wiki-L2

0
13 12 11 10 9 8 7 6 5 4 3 2 1

wiki-L4

FIGURE D.10: PGM boosting property on wiki dataset. The legend

isasin D.6.

D.2. Comparison with the State of the Art

91

le-7 amzn32-L1 le-7 amzn32-L2
14 1.4
12 : ~12 3
O 3 @ g
g 1.01 2 . g 1.0+
= H 3 = - -
> 0.8 > 0.8 & &
g g
& 0.6 & 0.6 R - N _
< s i
204 2044 B 3 il
0.2 0.2
0.0
<=0.05 <=0.05 <=0.7 <=2
. RMI
s PGM
. RS
mmm SYRMI
. BIN
le—7 amzn32-L3 le-7 amzn32-L4
1.754 5
C) Gl
d) o
£ £
[= =
fal ey
G) o
3 3
& &
c c
© ©
Q Q
= =
<=0.05 <=0.7 <=2 <=0.05 <=0.7 <=2

FIGURE D.11: Learned Indexes Query Time With Bounds on Space
on amzn32 dataset. For each memory level, we choose three space
bounds as in Chapter 3. For each space bound, from left to right,
we report the mean query time of the best RMI, PGM and RS that
satisfies the imposed bound. Next bar indicates the mean query time
for the SY-RMI as in Chapter 3, The last bar is the mean query time
for the best Generic Learned Dictionary with space inside the bound.

Appendix D. Generic Learned Static Sorted Sets Dictionaries: Supplementary

92 Results

le-7 amzn64-L1 le—7 amzn64-L2
1.4 1 1.4
— 1.2 1 3 —~ 12
) B K g
@ i g o i s 2
g10 B s E g10 £
F o . [&
>08 > 0.8 b
E _ g]
& 0.6 S 0.6 4
c c
3 0.4 3 0.4
= =
0.2 0.2 1
0.0 0.0
<=0.05 <=0.05 <=0.7 <=2
== RMI
= PGM
== RS
. SYRMI
= BIN
le-7 amzn64-L3 le—7 amzn64-L4
1.75 >
- 1.50 A 4
v 1.25 4 . °
£ g 2 g £,
IS g 3 -4 3 F 31
= 1009 o o 5d 8 =
o 4 - : 2 o
30751 = 32
f=4 <
© ©
L) Q
= =

-

<=0.05 <=0.7 <=2 <=0.05 <=0.7 <=2

FIGURE D.12: Learned Indexes Query Time With Bounds on Space
on amzn64 dataset. The legend is as in Figure D.11.

- face-L1 _ face-L2
10 le-7 12 le-7
_ 0.8 : . s s
<) H B K
@] o R H g
g 0.8 - & H
-E 0.6 E . E]
> el
o [
3 =)
S 0.4 &
c f=4
© ©
Q Q
=02 =
0.0
== RMI
m PGM
== RS
EEE SYRMI
== BIN
le-7 face-L3
8
74
) “ 64
o [
£ £ 54
F F
> >
@ 24
& s
c c 3)
3 3
= = 27
1
04
<=0.05 <=0.7 <=2 <=0.05 <=0.7 <=2

FIGURE D.13: Learned Indexes Query Time With Bounds on Space
on face dataset. The legend is as in Figure D.11.

D.2. Comparison with the State of the Art

93

_ osm-L1 — osm-L2
16 le-7 1.75 le-7
1.4 4 1.50 4
T 10 g 5 0
o 12 s 3 N > 1.254
£1.0- H E
E o '; 1.00 A
] ol g 0.75
<Yy & U2
< 0.6 c
2 0.4 2 0507
0.2 1 0.25 4
0.0 0.00 -
<=0.05 <=0.05 <=0.7 <=2
= RMI
. PGM
[
EEE SYRMI
= BIN
- osm-L3 _ osm-L4
55 le=7 , le-7
204 & —
a 2 - <
[[
£ £
[S S
2 2
[[
=] =]
& &
c c
© ©
[[
s =
<=0.05 <=0.7 <=2 <=0.05 <=0.7 <=2

FIGURE D.14: Learned Indexes Query Time With Bounds on Space
on osm dataset. The legend is as in Figure D.11.

lee7 wiki-L1 Tee7 wiki-L2
12 1.2
¢ ; ; 2
i£ 081 # o =
> fal
8 0.6 g
o o
=4 c
§ 04 §
2 2
0.2
0.0
<=0.05 <=0.05 <=0.7 <=2
= RMI
= PGM
== RS
= SYRMI
= BIN
_ wiki-L3 — wiki-L4
16 le=? 4.0-Le=7
G
[
£
E
fal
[
=]
154
c
©
[
=
<=0.05 <=0.7 <=2 ' <=0.05 <=0.7 <=2

FIGURE D.15: Learned Indexes Query Time With Bounds on Space
on wiki dataset. The legend is as in Figure D.11.

95

Bibliography

Abadi, Martin et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. http://download.tensorflow.org/paper/whitepaper2015.
pdf.

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman (1974). “The Design and
Analysis of Computer Algorithms”. In.

Ao, Naiyong et al. (May 2011). “Efficient Parallel Lists Intersection and index Com-
pression Algorithms Using Graphics Processing Units”. In: Proc. VLDB Endow.
4.8, pp. 470-481. 15SN: 2150-8097. DOL: 10.14778/2002974.2002975. URL: https:
//doi.org/10.14778/2002974.2002975.

Bayer, R. and E. McCreight (1970). “Organization and Maintenance of Large Ordered
Indices”. In: Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control. SIGFIDET ’70. Houston, Texas: Association
for Computing Machinery, pp. 107-141. 1SBN: 9781450379410. DOI: 10 . 1145/
1734663.1734671. URL: https://doi.org/10.1145/1734663.1734671.

Bloom, Burton H. (1970). “Space/Time Trade-Offs in Hash Coding with Allowable
Errors”. In: Commun. ACM 13, pp. 422-426.

Comer, Douglas (June 1979). “Ubiquitous B-Tree”. In: ACM Comput. Surv. 11.2, pp. 121-
137. 1ssN: 0360-0300. DOI: 10.1145/356770.356776. URL: https://doi.org/10.
1145/356770.356776.

Dai, Zhenwei and Anshumali Shrivastava (2020). “Adaptive Learned Bloom Filter
(Ada-BF): Efficient Utilization of the Classifier with Application to Real-Time In-
formation Filtering on the Web”. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., pp. 11700-11710.

Demaine, Erik D., Thouis Jones, and Mihai Pdtrascu (2004). “Interpolation Search
for Non-Independent Data”. In: Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA "04. New Orleans, Louisiana: Society
for Industrial and Applied Mathematics, pp. 529-530. ISBN: 089871558X.

Ferragina, Paolo, Fabrizio Lillo, and Giorgio Vinciguerra (July 2020). “Why Are Learned
Indexes So Effective?” In: Proceedings of the 37th International Conference on Ma-
chine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of
Machine Learning Research. PMLR, pp. 3123-3132. URL: http://proceedings.
mlr.press/v119/ferragina20a.html.

Ferragina, Paolo and Giorgio Vinciguerra (2020a). “Learned Data Structures”. In: Re-
cent Trends in Learning From Data. Ed. by Luca Oneto et al. Springer International
Publishing, pp. 5-41. 1SBN: 978-3-030-43883-8. DOI: 10.1007/978-3-030-43883-
8_2. URL: https://doi.org/10.1007/978-3-030-43883-8_2.

— (2020b). “The PGM-index: a Fully-Dynamic Compressed Learned Index with
Provable Worst-case Bounds”. In: PVLDB 13.8, pp. 1162-1175. 1SSN: 2150-8097.
DOI: 10.14778/3389133.3389135. URL: https://pgm.di.unipi.it.

Freedman, David (Aug. 2005). Statistical Models : Theory and Practice. Cambridge Uni-
versity Press. ISBN: 0521854830.

Freedman, David and Persi Diaconis (Dec. 1981). “On the Histogram as a Density
Estimator:L2 Theory”. In: Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://doi.org/10.14778/2002974.2002975
https://doi.org/10.14778/2002974.2002975
https://doi.org/10.14778/2002974.2002975
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
http://proceedings.mlr.press/v119/ferragina20a.html
http://proceedings.mlr.press/v119/ferragina20a.html
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.14778/3389133.3389135
https://pgm.di.unipi.it

96 Bibliography

Gebiete 57 .4, pp. 453—476. I1SSN: 1432-2064. DOI: 10.1007/BF01025868. URL: https:
//doi.org/10.1007/BF01025868.

Fumagalli, Giacomo et al. (2022). “On the Choice of General Purpose Classifiers in
Learned Bloom Filters: An Initial Analysis Within Basic Filters”. In: Proceedings
of the 11th International Conference on Pattern Recognition Applications and Methods
(ICPRAM), pp. 675-682.

Galakatos, Alex et al. (2019). “FITing-Tree: A Data-Aware Index Structure”. In: Pro-
ceedings of the 2019 International Conference on Management of Data. SIGMOD ’19.
Amsterdam, Netherlands: Association for Computing Machinery, pp. 1189-1206.
ISBN: 9781450356435. DOI: 10.1145/3299869.3319860. URL: https://doi.org/
10.1145/3299869.3319860.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016a). “Deep Feedfoward
Networks”. In: Deep Learning. http://www .deeplearningbook.org. MIT Press,
pp. 164-223.

— (2016b). “Example: Linear Regression”. In: Deep Learning. MIT Press, pp. 105-108.

Khuong, Paul-Virak and Pat Morin (2017). “Array Layouts for Comparison-based
Searching”. In: J. Exp. Algorithmics 22,1.3:1-1.3:39.

Kipf, Andreas et al. (2020). “RadixSpline: a Single-pass Learned Index”. In: Proceed-
ings of the Third International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, aiDM@SIGMOD 2020, Portland, Oregon, USA, June 19, 2020,
5:1-5:5. DOI: 10 . 1145/3401071 . 3401659. URL: https://doi.org/10.1145/
3401071.3401659.

Knuth, Donald E. (1973). “The Art of Computer Programming, Vol. 3 (Sorting and
Searching)”. In: Addison-Wesley Publishing Company 3, pp. 481-489.

Kraska, Tim et al. (2018). “The Case for Learned Index Structures”. In: Proceedings
of the 2018 International Conference on Management of Data. SIGMOD “18. Houston,
TX, USA: Association for Computing Machinery, pp. 489-504. ISBN: 9781450347037 .
DOI: 10.1145/3183713.3196909. URL: https://doi.org/10.1145/3183713.
3196909.

Marcus, Ryan, Andreas Kipf, et al. (2020). “Benchmarking Learned Indexes”. In:
Proc. VLDB Endow. 14.1, pp. 1-13.

Marcus, Ryan, Emily Zhang, and Tim Kraska (2020). “CDFShop: Exploring and Op-
timizing Learned Index Structures”. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’"20. Portland, OR, USA:
Association for Computing Machinery, pp. 2789-2792. I1SBN: 9781450367356. DOTI:
10.1145/3318464.3384706. URL: https://doi.org/10.1145/3318464.3384706.

Mehlhorn, Kurt and Athanasios K. Tsakalidis (1990). “Algorithm for Finding Pat-
terns in Strings”. In: Handbook of Theoretical Computer Science, Volume A: Algo-
rithms and Complexity, pp. 255-300.

Mitzenmacher, Michael (2018). “A Model for Learned Bloom Filters, and Optimizing
by Sandwiching”. In: Proceedings of the 32nd International Conference on Neural In-
formation Processing Systems. NIPS'18. Montréal, Canada: Curran Associates Inc.,
pp. 462-471.

Moore, Gordon E et al. (1965). Cramming More Components Onto Integrated Circuits.

Neumann, Thomas and Sebastian Michel (2008). “Smooth Interpolating Histograms
with Error Guarantees”. In: Sharing Data, Information and Knowledge. Ed. by Alex
Gray, Keith Jeffery, and Jianhua Shao. Berlin, Heidelberg: Springer Berlin Hei-
delberg, pp. 126-138. I1SBN: 978-3-540-70504-8.

Ohn, Ilsang and Yongdai Kim (2019). “Smooth Function Approximation by Deep
Neural Networks with General Activation Functions”. In: Entropy 21.7, p. 627.

https://doi.org/10.1007/BF01025868
https://doi.org/10.1007/BF01025868
https://doi.org/10.1007/BF01025868
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
http://www.deeplearningbook.org
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3318464.3384706
https://doi.org/10.1145/3318464.3384706

Bibliography 97

Patrascu, Mihai (2008). “Predecessor Search”. In: Encyclopedia of Algorithms. Ed. by
Ming-Yang Kao. Boston, MA: Springer US, pp. 661-664. ISBN: 978-0-387-30162-4.
DOI: 10.1007/978-0-387-30162-4_298. URL: https://doi.org/10.1007/978-
0-387-30162-4_298.

Patrascu, Mihai and Mikkel Thorup (2006). “Time-Space Trade-Offs for Predecessor
Search”. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of
Computing. STOC "06. Seattle, WA, USA: Association for Computing Machinery,
pp- 232-240. 1SBN: 1595931341. DOL: 10 .1145/1132516 . 1132551, URL: https :
//doi.org/10.1145/1132516.1132551.

Peterson, W. W. (1957). “ Addressing for Random-Access Storage”. In: IBM Journal of
Research and Development 1.2, pp. 130-146. DOI: 10.1147/rd.12.0130.

Prokop, H. (July 1999). “Cache-oblivious Algorithms”. MA thesis. Massachusetts In-
stitute of Technology.

Rao, Jun and Kenneth A. Ross (1999). “Cache Conscious Indexing for Decision-
Support in Main Memory”. In: Proceedings of the 25th International Conference on
Very Large Data Bases. VLDB "99. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., pp. 78-89. ISBN: 1558606157.

Sato, Kaz, Cliff Young, and David Patterson (2017). An in-depth Look at Google’s First
Tensor Processing Unit (TPU). https: //cloud . google . com/blog/products/
ai- machine - learning /an- in - depth - look - at - googles - first - tensor -
processing-unit-tpu.

Schlegel, Benjamin, Rainer Gemulla, and Wolfgang Lehner (2009). “K-ary Search on
Modern Processors”. In: Proceedings of the Fifth International Workshop on Data
Management on New Hardware. DaMoN ’09. Providence, Rhode Island: Associ-
ation for Computing Machinery, pp. 52-60. ISBN: 9781605587011. DOI: 10.1145/
1565694 .1565705. URL: https://doi.org/10.1145/1565694.1565705.

Schulz, Lars-Christian, David Broneske, and Gunter Saake (2018). “An Eight- Di-
mensional Systematic Evaluation of Optimized Search Algorithms on Modern
Processors”. In: Proc. VLDB Endow. 11, pp. 1550-1562.

Sleator, Daniel Dominic and Robert Endre Tarjan (July 1985). “Self-Adjusting Binary
Search Trees”. In:]. ACM 32.3, pp. 652-686. ISSN: 0004-5411. DOI: 10.1145/3828.
3835. URL: https://doi.org/10.1145/3828.3835.

Vaidya, Kapil et al. (2020). Partitioned Learned Bloom Filter. arXiv: 2006 .03176 [cs.DS].

Van Sandt, Peter, Yannis Chronis, and Jignesh M. Patel (2019). “Efficiently Searching
In-Memory Sorted Arrays: Revenge of the Interpolation Search?” In: Proceedings
of the 2019 International Conference on Management of Data. SIGMOD ’19. Ams-
terdam, Netherlands: Association for Computing Machinery, pp. 36-53. ISBN:
9781450356435. DOI: 10 . 1145/3299869 . 3300075. URL: https://doi.org/10.
1145/3299869.3300075.

Wang, Brian (2017). Moore Law is Dead but GPU will get 1000X faster by 2025. https:
//www.nextbigfuture.com/2017/06/moore-law-is-dead-but-gpu-will-get-
1000x-faster-by-2025.html.

https://doi.org/10.1007/978-0-387-30162-4_298
https://doi.org/10.1007/978-0-387-30162-4_298
https://doi.org/10.1007/978-0-387-30162-4_298
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1147/rd.12.0130
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://doi.org/10.1145/1565694.1565705
https://doi.org/10.1145/1565694.1565705
https://doi.org/10.1145/1565694.1565705
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3828.3835
https://arxiv.org/abs/2006.03176
https://doi.org/10.1145/3299869.3300075
https://doi.org/10.1145/3299869.3300075
https://doi.org/10.1145/3299869.3300075
https://www.nextbigfuture.com/2017/06/moore-law-is-dead-but-gpu-will-get-1000x-faster-by-2025.html
https://www.nextbigfuture.com/2017/06/moore-law-is-dead-but-gpu-will-get-1000x-faster-by-2025.html
https://www.nextbigfuture.com/2017/06/moore-law-is-dead-but-gpu-will-get-1000x-faster-by-2025.html

	Abstract
	Acknowledgements
	Introduction
	State of the Art
	Our Contributions

	Learned Data Structures
	Static Dictionary Data Structures over Sorted Sets
	Predecessor Search Problem

	Standard Algorithmic Tools for PSP: Arrays and Trees
	Sorted Table Search
	Binary Search
	Interpolation Search
	K-ary Search

	Array Layouts Other Than Sorted
	Eytzinger Layout
	B-Tree Layout
	Van Emde Boas Layout

	Search Trees
	Self-adjusting Binary Trees
	B+-Trees
	CSS-Trees

	Linear Regression
	Learned Index Models
	A simple view of Learned Search in Sorted Set
	Model Classes Characterizing Model Space
	Atomic Models: One Level and no Branching Factor
	Two-Level RMIs with Parametric Branching Factor
	Multi-Level Models with Various Parameters
	CDF Approximation-Controlled Models

	Conclusions

	On the Suitability of Neural Network as a Learned Index Model
	The Perceived Potential of the Neural Networks with the use of the Modern Computer Architectures
	From Motivation to Design and Implementation: The Case of Learned Bloom Filters
	Classic Bloom Filter
	Learned Bloom Filter

	Experimental Methodology
	Datasets
	Hardware
	Models, Training and Query

	Experiments, Results and Discussion
	Training: GPU vs CPU
	Query: GPU only for NNs
	Query: CPU only

	Conclusions

	 Learned Sorted Table Search and Static Indexes in Small Space: A Comprehensive Experimental Analysis
	Classic and Learned Sorted Table Search
	Experimental Methodologies
	Hardware
	Datasets
	Software Systems for Learned Indexes Training
	Atomic Models: Linear Regression
	Two-Level RMIs with Parametric Branching Factor: CDFShop
	CDF Approximation-Controlled Models: SOSD Platform

	Constant and Small Space Indexes
	A Two-Level Hybrid Model, with Constant Branching Factor
	Synoptic RMIs
	Mining SODS Output for the Synoptic RMI

	Bi-Criteria PGM

	Experiments, Results and Discussion
	Learning the CDF of a Sorted Table
	Atomic and Hybrid Models
	Two Level RMIs
	CDF Approximation-Controlled Models

	Constant Space Models: Query Experiments
	Atomic Models
	Two Level Hybrid Model

	Parametric Space Models: Query Experiments
	SOSD Models with at Most 10% of Additional Space
	Small Space Models

	Conclusions

	Standard Vs Uniform Binary Search and their Variants in Learned Static Indexing: The Case of the SOSD Benchmarking Software
	Uniform and Standard Binary Search on Modern Computer Architectures
	Experimental Methodology
	Hardware
	Datasets
	Binary Search and Its Variant
	Index Model Classes in SOSD

	Experiments, Results and Discussion
	Computational Experiments
	Analysis
	Coherence of Literature Results within SOSD
	The Relevance of Branch-free vs Branchy in Learned Indexing in SOSD: Search Time
	 The Relevance of Branch-free vs Branchy in Learned Indexing in SOSD: Space.

	Conclusions

	Generic Learned Static Sorted Sets Dictionaries
	From Specific to Generic Learned Dictionaries
	Models Specific for Binary and Interpolation Search
	 Models for Generic Dictionaries

	Learned Dictionaries: The Case of Equal Length Intervals - Binning
	Construction
	Worst Case Search Time

	Learned Dictionaries: The Case of Variable Length Intervals - The PGM
	Construction
	Worst Case Search Time

	Experimental Methodologies
	Hardware
	Datasets
	Dictionaries

	Experiments, Results and Discussion
	Boosting
	Binning
	PGM

	Competitiveness of Generic Learned Dictionaries with respect to Specific ones
	Query Time: No Bound on Space
	Query Time: Bounds on Space

	Conclusions

	Conclusions and Future Directions
	Advantage of Simple Models over Neural Networks
	Learned Indexes in Small Space
	On the Branchfreeness of Learned Indexes
	Generic Learned Dictionary
	Future Direction

	Datasets
	Kolmogorov-Smirnov Test and KL Divergence Computation

	Learned Sorted Table Search and Static Indexes in Small Space: Supplementary Results
	 Learning the CDF of a Sorted Table: Full Set of Experiments
	Constant Space Models: Full Set of Query Experiments
	Parametric Space Models: Full Set of Query Experiments

	Standard Vs Uniform Binary Search and Their Variants in Learned Static Indexing: Supplementary Results
	Experiments with SOSD

	Generic Learned Static Sorted Sets Dictionaries: Supplementary Results
	Boosting
	Comparison with the State of the Art

	Bibliography

