

Genome wide survey on three Sicilian horse populations with a focus on Runs of homozygosity pattern

SCHOLARONE™ Manuscripts

 $\mathbf{1}$

Abstract

 Ne = 400), the lowest in Purosangue C
ne Runs of Homozygosity and the relative
f Purosangue Orientale Siciliano and Arab
no and the high heterogeneity of the Sicilia
ve pressure to which the Purosangue Orientated to Purosangue Orientale Siciliano, Sanfratellano and Siciliano represent the Sicilian equine genetic resource. This work aimed at investigating the genetic diversity, population structure and pattern of autozygosity of Sicilian horse populations using genome-wide single nucleotide polymorphism data (SNP) generated with Illumina Equine SNP70. SNP data of Arab, Maremmano and Norwegian Fjord breeds were also included in the study. Patterns of genetic differentiation, model-based clustering, and Neighbor-Net showed the close connections between the Purosangue Orientale Siciliano and the Arab, as well as between Sanfratellano, Siciliano and Maremmano. The highest He and Ne were 30 reported in Siciliano (He = 0.323 Ne = 400), the lowest in Purosangue Orientale Siciliano (He = 0.277 31 Ne = 10). The analysis of the Runs of Homozygosity and the relative derived F_{ROH} highlighted the high internal homogeneity of Purosangue Orientale Siciliano and Arab horses, intermediate values in Maremmano and Sanfratellano and the high heterogeneity of the Siciliano population. The gene level analysis showed the selective pressure to which the Purosangue Orientale Siciliano seems to be subjected towards the traits related to endurance performance and the genetic proximity of this with the Arab. Our results underline the importance of planning adequate conservation and exploitation programs with the means to reduce the level of inbreeding and therefore the loss of diversity.

Keywords: autochthonous horses, genetic diversity, Runs of homozygosity, SNPs

 $\mathbf{1}$

1. Introduction

(Guastella, Zuccaro, Criscione, Marletta, δ
pulations poorly explain the relative impo
framework; Purosangue Orientale Sicilian
ratellano counts 1300 horses (PSR Regione
ano horse date back to the Middle Ages, w
frican Throughout history, horses have played an important role in human civilization for their influence on agriculture, warfare, trade and transportation (Al Abri et al., 2021). For the past 400 years, the establishment of formal breed registries has focused on the conservation of local populations and improvement of traits related to riding, draft, aesthetics, and performance (Zhang et al., 2018). Today in Sicily there are about 15,000 animals belonging to the *equidae* family, of which less of 10% are native horses. Three populations (Sanfratellano, Siciliano and Purosangue Orientale Siciliano) that boast an ancient history and an origin that can be traced back to Greek domination (600BC), represent the Sicilian equine heritage (Guastella, Zuccaro, Criscione, Marletta, & Bordonaro, 2011). The total consistencies of the three populations poorly explain the relative importance of the different genetic types in the Sicilian equine framework; Purosangue Orientale Siciliano and Siciliano are about 200 individuals each, while Sanfratellano counts 1300 horses (PSR Regione Sicilia 2014-2020, ARACSI). The origins of the Sanfratellano horse date back to the Middle Ages, when the Sicilian native horses were crossed with North African, Oriental and subsequently Iberian populations (Fogliata, 1910). Limited introgression of Thoroughbred and Oriental stallions was practiced in 1925 to improve the morphological structure of Sanfratellano (Hendricks, 1995). More recently, from the 1930s and occasionally until the end of the century, Maremmano stallions were used in the planned mating to improve withers height and size (Chiofalo, Portolano, Liotta, Rundo Sotera, & Finocchiaro, 2003; Zuccaro et al., 2008). Sanfratellano is a meso-doligomorphic horse suitable for saddle and draft. Today the breed is successfully engaged in trekking, sports and hippotherapy activities. Purosangue Orientale Siciliano, is a genetic type of Arab-Oriental matrix belonging to the Italian Stud Book since 1875; it represents a Sicilian nucleus of Oriental horses imported from Syria and Mesopotamia since 1864 (Balbo, 1995). It is a mesomorphic and meso-doligomorphic type horse. The morphological characteristics of the Purosangue Orientale Siciliano make it suitable as a saddle horse and for light draft, with particular predisposition for running and endurance performance over long distances. These horse populations possess valuable traits such as disease resistance, longevity and adaptation

 to harsh conditions and poor-quality feed. The Siciliano horse, which took origin from the crossbreed between the Asiatic and the North African horses that were reared in Sicily until the 16th century (Guastella et al., 2011), is a heterogeneous population, reared in an extensive and semi-extensive system and not yet officially recognized as breed. This population includes mesomorphic type horses, more widespread in the central areas of Sicily, and meso-dolicomorphic horses, reared mainly in the eastern part of the island. Overall, it has a conformation that adapts to the saddle and to draft, of a docile and submissive character.

Indians to define the genomic structure
Increasingly widespread, also for the horse
ver, compared to the livestock species, onl
ducted in horses, leaving the population
Exicultar Poster Review eters that are important for With the development of molecular technology in recent years and in particular the use of microarray platforms, investigation techniques to define the genomic structure and evolutionary history of populations have become increasingly widespread, also for the horse breeds (Pereira et al., 2017; Petersen et al., 2013). However, compared to the livestock species, only a limited number of genetic diversity studies were conducted in horses, leaving the population structure of local breeds undisclosed, as for the three Sicilian horse populations. Genetic diversity is a key measure for the monitoring of genetic parameters that are important for the prevention of genetic erosion, inbreeding and other deleterious processes that may lead to population extinction. A valuable method, called Runs of Homozygosity (ROH), has been used in livestock for the identification of homozygous genomic regions and as predictors of whole-genome inbreeding levels (Marras et al., 2015; Mastrangelo et al., 2018). ROH are consecutive homozygous genotypes of variable length distributed across the genome with prevalence in those regions affected by low recombination rate. ROH arise from identical-by-descendent haplotypes transmitted by common ancestors whose length appears to be proportional to the level of inbreeding and directly linked to the generation of parental transmission of the homozygous genotypes. (Ceballos, Joshi, Clark, Ramsay, & Wilson, 2018; Curik, Ferencakovic, & Solkner, 2014; Kim et al., 2013). The characterization of the distribution and lengths of ROH within a population can help to reveal its evolutionary history, reveal incorrect mating schemes that end in an increased level of inbreeding, as well as identify close genomic associations with phenotypic characters. In recent years, studies focused on detection of positive selection, using

JABG Manuscript Proof

100 ROH signals have been also carried out in horse species (Druml et al., 2018; Grilz-Seger, Druml, 101 Neuditschko, Dobretsberger, et al., 2019; Metzger et al., 2015). In this study, a medium density SNP 102 genotyping panel was used to characterize the three Sicilian horse populations, with the aim of investigating the genetic diversity, the population structure and the patterns of ROH. For comparative 104 purposes in relation to their origins and their evolutionary history, the SNP genotyping data of three additional horse breeds (Maremmano, Arab and Norwegian Fjord), were also included in the analyses.

2. Materials and Methods

2.1. **DNA sampling, genotyping and quality control**

ng, genotyping and quality control
ed from 46 horses belonging to Sanfratell
2) and Siciliano (SIC = 17). Whole blood sa
s containing ethylenediamine tetra-acetic a
rried out, according to Directive 2010/63,
ry control, th Blood samples were collected from 46 horses belonging to Sanfratellano (SAN = 17), Purosangue 111 Orientale Siciliano (SOP = 12) and Siciliano (SIC = 17). Whole blood samples (10 mL) were obtained from the jugular vein in tubes containing ethylenediamine tetra-acetic acid (EDTA) as anticoagulant. Sampling procedure was carried out, according to Directive 2010/63/EU, by authorized personnel 114 during the periodic veterinary control, therefore, no pain, suffering, distress and lasting harm was caused to the animals involved in the present study. DNA was extracted from leukocytes using the 116 Illustrablood genomic Prep Mini Spin kit (GE Healthcare, Little Chalfont,UK). Individual samples were genotyped with the Illumina Equine SNP70K Beadchip (Illumina Inc., San Diego, CA, USA), which consist of 65,157 SNPs. Chromosome assignment and position for each marker are referred to 119 the equine *Equ Cab 2.0* genome assembly. The raw data of Sicilian horses have been merged with 120 the genotyping data of three horse breeds, Arab $(ARR = 24)$, Maremmano $(MARM = 24)$ and 121 Norwegian Fjord (NORF = 21), retrieved from a previous study (Petersen *et al*. 2013). Two data sets were generated, one that includes the Sicilian horses, the Maremmano and the Arab breeds (5POP), the other which also includes the NORF as an outgroup breed (6POP). The program PLINK ver.1.9 124 (Purcell et al., 2007) was used to perform quality control. SNPs were filtered to exclude loci assigned 125 to unmapped contigs, and only those SNPs located on autosomes were considered. Quality control 60

126 included call frequency ≥ 0.98 and minor allele frequency (MAF) ≥ 0.01 . Animals with more than 2% missing SNPs were also removed from the analysis. After quality control, 40,715 (6POP) and 40,601 (5POP) SNPs were retained, respectively.

10 129

2.2. Genetic diversity and population structure

ted genetic distances using SplitsTree4 so
the random mating option within the LD r
population size (Ne) was estimated using
also used to calculate pairwise identical by-
resented by multidimensional scaling (M
. ARR and PLINK ver.1.9 (Purcell et al., 2007) was used to estimate within-population diversity (Ho and He). The software Arlequin ver. 3.5.2.2 (Excoffier $\&$ Lischer, 2010) was implemented to infer genetic relationships between populations by pairwise Reynolds' genetic distances. Neighbor-net was constructed from the estimated genetic distances using SplitsTree4 software ver. 4.14.8 (Huson $\&$ Bryant, 2006). According to the random mating option within the LD method (Waples $\&$ Do, 2010), the contemporary effective population size (Ne) was estimated using NeEstimator V2.1 (Do et al., 2014). PLINK software was also used to calculate pairwise identical by-state (IBS) distances between populations, graphically represented by multidimensional scaling (MDS) analysis. The population structure of SOP, SAN, SIC, ARR and MARM populations was investigated by applying the model-140 based clustering algorithm run in ADMIXTURE (Alexander, Novembre, & Lange, 2009) from K = 2 to 10; cross-validation procedure was applied (cv=10). Circle plot of Admixture results was obtained through the package BITE ver. 1.2.0008 (Milanesi et al., 2017) under the open-source programming environment for statistical analysis R (R Development Core Team, 2020). 15 131 17 132 22 134 24 135 26 136 31 138 33 139

2.3. Runs of homozygosity detection

 Runs of homozygosity (ROH) were detected by means of the R package detectRUNS ver. 0.9.6 (Biscarini, Cozzi, Gaspa, & Marras, 2018). The ROH statistics were inferred using the method of consecutive runs (Marras et al. (2015). In detail, ROH were obtained by setting the minimum number of SNPs to 15, not allowing neither missing nor heterozygous SNPs, setting the minimum length of run to 1 Mbps and the maximum gap between consecutive SNPs in a run to 1 Mb. The mean number 151 (N_{ROH}) and average length (L_{ROH}) of ROH per individual per population, as well as the sum of all

Page 7 of 53

JABG Manuscript Proof

For Peer Review 152 ROH segments (S_{ROH}) per animal were estimated. Each ROH was categorized based on its physical length as follows: <2 Mb, 2 to <4 Mb, 4 to <8 Mb, 8 to <16 Mb, and ≥16 Mb. For each of the ROH length categories, the mean sum of ROH per population was calculated by summing all ROH per animal in that category and averaging this per population. The total length of the genome covered by ROH was divided by the total horse autosomal genome length covered by the SNP array to evaluate the individual genomic inbreeding coefficient using the ROH data (F_{ROH}). The most common ROH 158 (ROH islands), which showed a within breed occurrence $\geq 50\%$, were further investigated. The genomic coordinates of these regions were examined through the Ensemble browser for horse genome, according to the assembly EquCab2 (<https://oct2018.archive.ensembl.org/index.html>) to retrieve annotated gene lists. Horse Quantitative Trait Locus Database (Horse QTLdb) (<https://www.animalgenome.org/cgi-bin/QTLdb/EC/index>) was then interrogated to search for possible associations between aforementioned markers and reported QTL in horse species, as well as to clarify the gene's identity and functions. Gene Ontology (GO) and enrichment analysis of annotated genes was conducted using the open source Database for Annotation, Visualization, and Integrated Discovery v.6.8 package (https://david.ncifcrf.gov) (Huang da, Sherman, & Lempicki, 2009). For the Gene Ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways analysis, the *Equus caballus* annotation file as background was used.

3. Results

3.1. Genetic diversity and population structure

 The genetic diversity indices are shown in Table 1. The highest expected heterozygosity value (He) was reported in SIC, the lowest in SOP; the observed heterozygosity (Ho) was highest in MARM and lowest in ARR. The effective population size (Ne) was 10 and 31 in SOP and SAN respectively, while notably higher values were recorded in ARR (195), MARM (294) and SIC (400). The reduction of SNP matrix's variability by the first two component (which accounted for 30.8% of the total variation) of MDS analysis is represented in Fig. 1. As expected, SOP and ARR populations were

mected to the same split node. The anal
rses together with ARR and MARM breed
3). The results indicated that the most
g. S1). At $K = 2$ the admixture analysis
nd SOP as well as between SAN, SIC and
2, the horses of the Or spatially close, SIC and SAN formed a cluster together with MARM breed, and NORF (which is the outgroup of the data set), migrated towards an isolated part of the figure. In particular, the first component (19.2%), clearly separated the Oriental type horses cluster (ARR and SOP), the group consisting of meso-doligomorphic horses (SIC, SAN and MARM breeds) and the NORF horse. The second component, which accounted for 11.6% of the variation, did not discriminate NORF from the oriental mesomorphic type breeds. The Neighbor-Net based on Reynolds' pairwise genetic distance (Fig. 2) recalled the output of the first dimension in the MDS analysis and reported ARR and SOP connected to the same split node, SIC, SAN and MARM close to a common reticulation, with the NORF outgroup breed connected to the same split node. The analysis of population structure, performed on the Sicilian horses together with ARR and MARM breeds, gave results comparable to that of MDS survey (Fig. 3). The results indicated that the most probable number of inferred 189 populations was $K = 4$ (Fig. S1). At $K = 2$ the admixture analysis underlined shared ancestral components between ARR and SOP as well as between SAN, SIC and MARM; at $K = 3$, the MARM breed forms a separate group, the horses of the Oriental type (ARR and SOP) maintain the common 192 clustering, while SIC and SAN shared a similar genetic background. Finally, at $K = 4$, almost all populations have their own identity, with moderate level of admixture for SIC (Fig. 3).

3.2. Runs of homozygosity detection

Table 2 summarize the sum of ROH length expressed in Mb (S_{ROH}), the number of ROH (N_{ROH}), the length of homozygosity runs expressed in Mb (L_{ROH}) and the inbreeding coefficient estimated from 198 ROHs (F_{ROH}). The parameters were highly variable, especially if we consider the ARR and SIC samples, which showed the highest and lowest values, respectively. In particular, the mean length of ROH distributed over the 31 chromosomes (S_{ROH}) was highest in ARR (419.57 \pm 134.97) and SOP (299.45 ± 90.15) breeds, followed by the values of MARM (223.06 \pm 48.27), SAN (205.63 \pm 38.53) and 202 SIC (159.05 \pm 45.80) horses. In the whole sample, 3 ARR and 1 SOP horses showed an S_{ROH} higher than 500 Mb, while 12 individuals (9 SIC, 2 MARM, 1 SAN) reported values lower than 150 Mb.

Page 9 of 53

JABG Manuscript Proof

Intage for ROHs included in the bottom cl
highest value. The medium length class
percentage above 7% while the Sicilian
The highest percentage of ROHs with leng
MARM and SAN (3.7%), then SOP (2.2%
lass of ROH's length are 204 The N_{ROH} and L_{ROH} mean values were highest in ARR, followed by MARM, SOP, SAN and SIC. 205 The mean F_{ROH} varied between 19% (ARR) and 7% (SIC) and retraced the same breed ranking as the 206 sum of ROH length; the highest within-breed F_{ROH} value per individual were in ARR (40%) and SOP (25%) , while the lowest value was in SIC (5%) . Average breeds' and individual inbreeding 208 coefficients are plotted in Fig. 4: ARR showed the highest values and the highest internal variability, 209 followed by SOP horse, while MARM, SAN and particularly SIC showed lower values and a higher within sample homogeneity. The large majority of the ROH detected in the five populations showed 211 a length not exceeding 8 Mb (Table 3), from 94.8% in ARR to 98.2% in SIC: the Arab horse highlighted the lowest percentage for ROHs included in the bottom class of length (0-2 Mb), while 213 SIC and SAN showed the highest value. The medium length class (4-8 Mb) reported ARR and MARM the breeds with the percentage above 7% while the Sicilian horses showed lower values 215 (5.5% in SOP - 4.5% in SIC). The highest percentage of ROHs with length above 8 Mb was registered in ARR (5.2%), followed by MARM and SAN (3.7%), then SOP (2.2%) and SIC (1.8%). In the same table, the F_{ROH} values per class of ROH's length are reported: the inferred inbreeding coefficients 218 decreased with the increasing length of ROHs with the exception of SOP and SAN, which showed a slight increase corresponding to the > 8Mb class. The ARR sample reported the highest F_{ROH} values, considering both the most recent and the oldest inbreeding, whilst SIC showed the lowest values, particularly for the longest classes where F_{ROH} tended to zero. The F_{ROH} percentage incidence $(F_{\text{ROH}}\%)$ of the two lowest length classes (<4 Mb) was always above 55% of the total F_{ROH} per breed (lowest $\%$ in ARR) and reached the highest value in SIC (75%). In the SIC horse the remaining 224 portion of F_{ROH} is equally distributed between the middle (4-8) and long (>8 Mb) length classes, SOP reported a slight percentage increase from the intermediate class to the two major ones, in ARR, MARM and SAN the incidence of F_{ROH} 8Mb is always higher than 24%. The markers involved in 227 ROHs showed a percentage of recurrence within breed ranging from 4% to 100% (Fig. S2-S6). We 228 examined and further investigated the case of those markers within ROH islands that showed an 229 incidence per breed $\geq 50\%$. Table S1 reports the genomic coordinates of the ROH islands, the number

JABG Manuscript Proof

chromosomes ECA9 and ECA7, in which
uging between 52.9% and 58.8%: 51 mark
ic variants. Whilst in SAN, ROH islands
ullation's frequency ranging between 52.9
narkers are located on intronic regions, the
ROHs in ECA4 and ECA harbouring 1770 markers, were identified. The highest number of ROH islands was identified in SOP, in which by 50% up to 100% of individuals shared 60 ROHs harbouring 1029 SNPs detected on 25 chromosomes. In particular, 339 markers are located within intronic regions and 4 markers are detected within exon sequences of 157 known genes (data not shown). In ARR, 50% up to 100% of horses shared 47 ROH islands, identified in 20 chromosomes; within above mentioned ROHs 628 markers were identified: 204 SNPs are located in intronic portions and 9 within exon sequences of 111 known genes. SIC and SAN samples showed 3 ROHs per breed, respectively. In SIC sample, ROH islands were located in chromosomes ECA9 and ECA7, in which 54 markers were identified at a population's frequency ranging between 52.9% and 58.8%: 51 markers are inter-genic variants, 1 intronic variant and 2 exonic variants. Whilst in SAN, ROH islands were identified on ECA11, ECA15 and ECA17 at a population's frequency ranging between 52.9% and 58.8%; in this case, 39 markers were detected: 10 markers are located on intronic regions, the rest are inter-genic variants. Within the MARM breed, 2 ROHs in ECA4 and ECA17 were identified with a frequency between 50% and 54.2% of the individuals; 20 markers in a sequence of ROHs were detected: 1 marker is an intronic variant, the rest are located on inter-genic regions. The search on Horse Quantitative Trait Locus Database (Horse QTLdb) revealed 67 different markers within ROH islands in association with 76 QTL belonging to 11 different traits (Table S2). The highest number of QTL-associated markers was detected in SOP and ARR breeds. In particular, in the SOP breed 44 markers were identified in association with 9 traits (osteochondrosis dissecans, withers height, insect bite hypersensitivity, alternate gaits, white markings, guttural pouch tympany, male fertility, altitude adaptation, temperament). The ARR breed showed 34 markers associated with 8 traits (number of progressively motile sperm, guttural pouch tympany, altitude adaptation, sperm progressive motility, insect bite hypersensitivity, withers height, white markings, alternate gaits). The SIC population showed two markers associated with withers height and alternate gaits traits, whilst MARM and SAN breeds reported one marker each, associated with insect-bite-hypersensitivity and withers-height,

Page 11 of 53

JABG Manuscript Proof

 genes enriched in 93 biological procedurals, in SOP 65 genes were enriched in and 12 in 4 cellular components. ARR has not 44 biological processes, 2 in 1 molecular biological process involved 2 genes. GO and the l respectively. Twenty-one different markers of the abovementioned 67 SNPs fall within intronic regions of 17 known genes. In particular, the marker rs68871178 on ECA9 (45279882 bps), corresponding to the intronic region of the *VPS13B* gene (vacuolar protein sorting 13 homolog B), is a flanking marker of QTL #119813 associated with the temperamental expression in Tennessee Walking horse (Staiger, Albright, & Brooks, 2016). The variant located on ECA18 at position 49758616 bps (rs69171012), sequenced in the intronic region of the *MYO3B* (myosin IIIB) gene, is related to QTL #29459 associated with the capacity to adapt at high altitudes of the Andean horse (Hendrickson, 2013). The results of the GO and enrichment analysis on breeds' annotated genes, shown in Table S3, revealed 215 genes enriched in 93 biological processes, molecular and cellular component functions. In particular, in SOP 65 genes were enriched in 27 biological processes, 27 genes in 9 molecular function and 12 in 4 cellular components. ARR harboured 109 genes, 35 of them were found to be enriched in 44 biological processes, 2 in 1 molecular function and 8 in 4 cellular components while in SAN 4 biological process involved 2 genes. GO analysis revealed no enrichment for SIC and MARM due to the low number of annotated genes. GO terms evidences were also 270 corrected for multiple testing (Bonferroni adjusted $p<0.05$) showing significant enrichment for 5 molecular function related to the nucleotide-binding process within the SOP sample. The KEGG analysis highlighted 8 biological pathways each in ARR and SOP.

4. Discussion

Sicily, in the centre of the Mediterranean area, has always been the crossroads of a continuous flow of animal germplasm that accompanied various dominations. Historically, in the Sicilian equine sector there has been an intense interchange of breeding animals, as well as the succession of different equestrian schools with different methods of training and breeding strategies. Since the distant past (600 BC) up to the 16th century, the equine genetic basis present in the island has been influenced and shaped by various horse breeds from North Africa and Middle East, from Northern Europe with the Norman invasion, from Iberian countries during the Spanish domination (Fogliata, 1910). In more

 recent times, it was worth of note the contribution made by breeds such as the Thoroughbred and Maremmano to the evolution of Sanfratellano (Zuccaro et al., 2008). Arab stallions contributed to the origin of the Purosangue Orientale Siciliano breed and are still used as breeding animals, and also have partly influenced the evolution of the Siciliano horse. The advent of high-throughput genotyping arrays has greatly facilitated the study of genetic structure in livestock species, giving also the possibility to investigate the old and recent relationships among populations. Previous studies (Criscione, Moltisanti, Chies, Marletta, & Bordonaro, 2015; Guastella et al., 2011; Zuccaro et al., 2008), have already focused on the genetic characterization of Sicilian breeds by implementing nuclear and DNAmt markers. In this paper, we presented for the first time the results of the genomic characterization of Sicilian horse populations.

S. In this paper, we presented for the first tiven
orse populations.
has always been lower than observed, with
the almost overlap. The observed heterozy,
al. (2020) who highlighted a range of 0.30
n, and consistent to tha The expected heterozygosity has always been lower than observed, with the exception of Arab breed, in which the He and Ho values almost overlap. The observed heterozygosity in Arab is consistent to that reported by Cosgrove et al. (2020) who highlighted a range of 0.30-0.33 in different Arab strains and 0.26 in Straight Egyptian, and consistent to that reported by Schaefer et al. (2017). Cosgrove et al. (2020) also reported Ho values of other 18 breeds, ranging between 0.32 and 0.36, including the Maremmano horse (Ho=0.36), and consistent with our results. Lower values, both for Ho and He, were reported by Druml et al. (2018) in Haflinger, Noriker, Arab and Bosnian Mountain Horse, $(0.256-0.326 \text{ Ho}; 0.258-0.311 \text{ He})$. Effective population size (Ne) is one of the variables to be taken into account in breed conservation (Verrier et al., 2015) and is defined as the size of an idealized population that would produce the same genetic variation as the population under study (Wright, 1969). The maintenance of Ne at, or above, 50 to 100 is a principle of breed conservation (Meuwissen, 2009). The effective population size indicated a high risk of inbreeding and reduced genetic diversity in Sanfratellano and Purosangue Orientale Siciliano, thus suggesting an appropriate investigation on the breeds' actual census to confirm this evidence. Bayesian model-based clustering algorithm and MDS were used to visualize and explore the genetic relationships between Sicilian populations and the other horse breeds. The results have pointed out the relationship within two group of horses (ARR-

JABG Manuscript Proof

 SOP, SAN-MARM-SIC), according to their genetic origin and breeding history. Reynolds' genetic distance represented by the NeighborNet algorithm gave highly coherent picture of the breeds' relationships confirming both the results obtained by MDS and the genomic admixture analysis and the historical records that explain many of the connections between these genetic types.

ontinued to be imported from the Middline the formation of the Purosangue Oriental in mating plans and still represent an eared in Sicily. The most recent use of Aral source). Guastella et al. (2011), in a study identified Arab and Purosangue Orientale Siciliano partially share a common ancestry: the Purosangue Orientale Siciliano represents the evolution guided by the selection of a nucleus of oriental horses imported from Syria and Mesopotamia in 1864 directly from the Bedouin tribes and belonging to the Hamdani, Saglawi, Kuhaylan and Abayan lines (Balbo, 1995). During the early years of the twentieth century, oriental stallions continued to be imported from the Middle East, Hungary, France and Poland (studbook source). Since the formation of the Purosangue Orientale Siciliano breed, Arabian stallions have been fundamental in mating plans and still represent an important source of genomic diversity for oriental horses reared in Sicily. The most recent use of Arab stallions as breeding animals date back to 2016 (studbook source). Guastella et al. (2011), in a study on Sicilian horses carried out by mtDNA characterization, identified in SOP a unique haplotype which corresponds to the Dafina matrilineal line founder of the Keilan el Krush Arab strain. The Purosangue Orientale Siciliano sums up the physical characteristics of Arab, with the exception of the pure Egyptian lines most voted for performance shows; the morphology developed over the course of its evolution makes it suitable as saddle and light draft horse, with particular predisposition for running and endurance over long distances. The Maremmano horse has significantly influenced the evolution of the Sanfratellano breed: starting from 1934 and for the next 10 years, seven Maremmano stallions were used in the Sanfratellano mating plans. This process of genetic introgression constituted the basic structure of the current Sanfratellano breed. The aim was to soften the shapes of the population, improving its character, increasing the height at the withers without however removing the innate frugality, the robustness of the skeletal structure, the resistance to fatigue, typical of this autochthonous breed and transmitted by the maternal lines. Selective hybridisation was practiced on the progeny of this group of stallions until 1958. At the end of the sixties, two other Maremmano stallions were used in the

red genetics into both populations (Balbo,
years, the globalization of equine breeding
(Waran, 2007). The preferential breeding
the use of sperm from selected stallions is a
nerefore of the equine species (Bowling
n horse selective mating of Sanfratellano (Chiofalo et al., 2003; Zuccaro et al., 2008). The genomic admixture between the Sanfratellano and Siciliano horses can be explained by the common origins of the two Sicilian autochthonous populations influenced by Oriental and North Africa horses, documented by historical data (Fogliata, 1910; Zuccaro et al., 2008), as well as by occasional gene flow between the two populations. Siciliano is a very heterogeneous and largely unmanaged population, probably derived from a primitive strain of Sicilian horses and largely influenced by the breed "Real Casa di Ficuzza" (Borbon domination XIX sec.) which was strictly related to the Napoletano, Persano and Arab horses (Balbo, 1995). The relationship between Siciliano and Maremmano can trace back to the introgression of Thoroughbred genetics into both populations (Balbo, 1995; Giontella et al., 2020; Hendricks, 1995). In recent years, the globalization of equine breeding has strongly oriented this species as a sporting animal (Waran, 2007). The preferential breeding of breeds with high sporting and economic potential and the use of sperm from selected stallions is a threat to the genetic diversity of local populations and therefore of the equine species (Bowling $&$ Ruvinsky, 2000). Local populations, such as Sicilian horses, often have a small effective size, which implies difficulties related to the management of inbreeding and intra-breed genetic diversity. The risk of extinction is recognized in the Sanfratellano (extinction state) and Purosangue Orientale Siciliano (critical state) both by local (PSR Regione Sicilia 2014-2020) and international authorities ([http://www.fao.org/dad](http://www.fao.org/dad-is/browse-by-country-and-species/en/)[is/browse-by-country-and-species/en/](http://www.fao.org/dad-is/browse-by-country-and-species/en/)). Population genetics studies performed by analyzing the distribution, prevalence and location of ROHs provide useful information about population structure, evolutionary history and breeding selection. The inbreeding index estimated on molecular autozygosity is one of the parameters obtainable from genetic characterization using SNPs panels, and particularly useful where genealogical records are lacking or absent. Our results showed that the Arab reached the highest values F_{ROH} , followed by Purosangue Orientale Siciliano. As reported by Cosgrove et al. (2020), the Arab breed have been dispersed widely across the globe but kept a unique genetic identity; the studbook, one of the oldest in the equestrian world, imposes a very restrictive 359 standard that has made the Arab the horse it is today. The F_{ROH} was higher than that reported by 10 337 15 339 17 340 22^{342} 24 343 26 344 31 346 33 347 38 349 40 350 42 351 47 353 54 356

Page 15 of 53

JABG Manuscript Proof

Furthermore, F_{ROH} of Purosangue Oriental
b lineages of Poland and Iran, as well as
comparable to the F_{PLINK} value reported b
ano saddle horses showed intermediate va
mpared with the Arab and Purosangue
tory of formati 360 Druml et al. (2018) in Shagya Arabians (F_{ROH} = 0.16) and Purebred Arabians (F_{ROH} = 0.18), lower 361 than the reported inbreeding coefficient (F_{PLINK}) in Straight Egyptian horses (0.30) by Cosgrove et al. 362 (2020) who also reported a range of F_{PLINK} varying between 0.12 and 0.30 in 6 different lineages of Arabian horses. The Purosangue Orientale Siciliano breed is a genetic type whose Stud Book was 364 established with Royal Decree No. 2690 in 09/19/1875. The breed has always maintained a high degree of morphological and genetic homogeneity during its evolution and despite the very low 366 consistency (today about 200 horses), it has maintained not excessively high degree of inbreeding 367 thanks to the periodic introduction of Arab blood. The F_{ROH} value in Purosangue Orientale Siciliano (0.13) was substantially lower than in Arab sample (ARR) and lower than the values reported by Druml et al. (2018) in Arab. Furthermore, F_{ROH} of Purosangue Orientale Siciliano was comparable to the F_{PLINK} values in the Arab lineages of Poland and Iran, as well as F_{PLINK} of multi-origin Arabs 371 (Cosgrove et al., 2020), and comparable to the F_{PLINK} value reported by Schaefer et al. (2017). The Maremmano and Sanfratellano saddle horses showed intermediate values of the ROH parameters which, especially when compared with the Arab and Purosangue Orientale Siciliano breeds, 374 corroborate the different history of formation of these breeds that have undergone the influence of genetic types such as the Thoroughbred and Iberian horses and report a more recent closure of the registers. The F_{ROH} values of Maremmano (0.10) and Sanfratellano (0.09) are comparable to those reported in Slovenian Haflinger (0.12) (Grilz-Seger et al., 2018), in Lipizzan (mean 0.13) which showed a variation between 0.07 and 0.15 in the 4 lineages analyzed (Grilz-Seger, Druml, Neuditschko, Dobretsberger, et al., 2019), in the Noriker breed with an average of 0.10 and a range 380 of variation between the 6 coat colour lineages of 0.08-0.13 (Grilz-Seger, Druml, Neuditschko, Mesaric, et al., 2019). The Siciliano horse, an equine population that currently does not have breed recognition and for which there is no selective plan, showed the lowest F_{ROH} index (0.07). The census population, recorded by the Association of breeders (ARACSI), currently stands at around 200 horses, 384 a number that would make us wait for higher inbreeding values. Probably the common genomic basis 385 of this population has maintained a high degree of variability among the different family lines kept

JABG Manuscript Proof

on ancestor (Howrigan, Simonson, & Kell
th are estimated to reflect inbreeding up to
related to ancient inbreeding, up to 50 gen
erval of 10 years in the equine species, as
Gómez, & Goyache, 2005), the F_{ROH} , cal
eeding by different breeders in Sicily, also by virtue of unsystematic crossbreeding involving a population 387 of breeding animals larger than the recorded one. The F_{ROH} values in Siciliano are lower than those found in Bosnian Mountain Horse which has less than 200 heads (0.13) and comparable to those of Posavje Horse which has about 600 heads (0.09), horse breeds whose selective recovery programs have only been started in the last 30 years (Grilz-Seger et al., 2018). The inbreeding index derived from the analysis of ROH by length classes allows us to hypothesize the number of generations back in time to which the autozygosity segments refer. The expected length of an autozygous segment follows an exponential distribution with mean equal to 1/2 g Morgans, where g is the number of generations since the common ancestor (Howrigan, Simonson, & Keller, 2011). In particular, ROH segments of 16 MB in length are estimated to reflect inbreeding up to three generations in the past, while short ROH (1 MB) are related to ancient inbreeding, up to 50 generations in the past. Assuming an average generational interval of 10 years in the equine species, as reported by various authors (Valera, Molina, Gutiérrez, Gómez, & Goyache, 2005), the F_{ROH}, calculated for each length class, trace back the common inbreeding in a time interval from 30 to 500 years. In Siciliano, inbreeding is mainly attributable to distant ancestors and date back to the Spanish domination (XVI-XVII century), a period in which the equine genetic basis in Sicily was influenced by Iberian horses and the historical period in which the differentiation between genetic types that we know today (SOP, SAN and SIC) had its beginning. Guastella et al. (2011) reported in Siciliano one haplotype that traces back to a Bronze Age archaeological site (Inner Mongolia; DQ900929). The distribution of length-class inbreeding has shown that in Arab, Maremmano and Sanfratellano, a considerable percentage of the 406 total F_{ROH} dates back to 70 years in the past (ROH length> 8Mb). The Sanfratellano horse, therefore, reports most of its autozygosity in correspondence with the hybridisation process (1950s) that followed the first introduction of Maremmano stallions (1934) and the last introduction of the Maremmano blood into the breed in 1969. Purosangue Orientale Siciliano, after Siciliano, showed the highest percentage of F_{ROH} % for the 0-4 Mb length class, showing also in this case a considerable share of inbreeding attributable to the distant past (500-120 years). Among the breeds analyzed in

Page 17 of 53

JABG Manuscript Proof

they act as protein-ubiquitin ligases. In the *MYO3B* (ECA18), a gene reported
y on Andean horse (Hendrickson, 2013). I
anent oxidative stress and extreme tempe
diovascular, pulmonary and muscle sys
nged or high-intensity 412 relation to the level of autozygosity, only Arab and Purosangue Orientale Siciliano have showed ROH 413 islands with intra-breed percentages $\geq 75\%$, probably a result linked to a high intra-breed 414 homogeneity. Interestingly, the ROH islands on ECA19 and ECA23 and shared by 50% of 415 Purosangue Orientale Siciliano's individuals overlapped with QTL for alternating gaits. Specifically, 416 the ROH island on ECA19 harbouring the gene *FBXO40*, already reported for gait type in Tennessee Walking Horses by Staiger, Abri, Silva, and Brooks (2016), suggest the potential association between 418 this gene and gait phenotype. The *FBXO40* gene is also expressed in skeletal muscle and belongs to 419 the F-box protein family that are key components of SCF (Skp1-Cullin1-F-box protein) E3 ubiquitin ligase complexes, in which they act as protein-ubiquitin ligases. In the ROH islands in Purosangue 421 Orientale Siciliano, mapped the *MYO3B* (ECA18), a gene reported in association with the QTL altitude adaptation in a study on Andean horse (Hendrickson, 2013). High altitude exposes animals to intense pressure as permanent oxidative stress and extreme temperature exposure requiring the adaption of the blood, cardiovascular, pulmonary and muscle systems. Different performance disciplines, including prolonged or high-intensity exercise, may result in oxidative stress involving 426 the skeletal muscle fibers. Performing breeds influenced by the Arabian gene pool were known for their heat tolerance and athletic endurance, trait that is well expressed in Purosangue Orientale Siciliano. The *MYO3B* gene was also reported in ROH islands in other breeds, such as French Trotter, 429 Gidran, Selle Francais Shagya Arabian, Trakehner, Holsteiner, Hanoverian, and Oldenburger (Grilz-Seger, Neuditschko, et al., 2019; Nolte, Thaller, & Kuehn, 2019). In the ROH island on ECA9, mapped the *VPS13B* gene (vacuolar protein sorting 13 homolog B), related to a QTL for temperament (Staiger, Albright, et al., 2016). This gene encodes a potential transmembrane protein that may function in vesicle-mediated transport and sorting proteins within the cell. This protein may play a role in the development and function of the eye, haematological system, and central nervous system. 435 Our results give reason to suppose that the traits of temperament and predisposition to endurance 436 performance have been subjected to selective pressure in the Purosangue Orientale Siciliano breed, a 437 consideration that is reflected in the morphological characteristics and behaviour of the breed as 10 415 15 417 17 418 22 420 24 421 26 422 $^{20}_{29}$ 423 31 424 33 425 38 427 40 428 42 429 45 430 47 431 49 432 53 54 434 55 56 435 57 58 59 60

gene in the negative regulation of inflaments.

By The *NFKB1* gene was annotated in

Neuditschko, et al. (2019), highlighting it

thut phenotype for skin disorders (Bellone

ian subgroup investigated by Cosgrove et

in St reported by historical data and by the breeders themselves. ROH island located in ECA3 and shared by at least 50% of both Purosangue Orientale Siciliano and Arab breeds overlapped with a dense QTL region associated with four traits: white markings, guttural pouch tympany, withers heigh and insect bite hypersensitivity. In particular, the ROH island on ECA3 (35.6–36.9 Mbp) harboured the *NFKB1* gene, a member of the NF-kB transcription factor family, stimulates the expression of many genes involved in a wide variety of biological functions. Inappropriate activation of persistent inhibition of *NFKB* has been implicated in the pathogenesis of several inflammatory diseases, among which skin disease (Wullaert, Bonnet, & Pasparakis, 2011). The GO analysis in Arab breed confirmed the involvement of the *NFKB* gene in the negative regulation of inflammatory and defence response (GO:0050728, GO:0031348). The *NFKB1* gene was annotated in ROH of chestnut horses investigated by Grilz-Seger, Neuditschko, et al. (2019), highlighting its involvement in the reported higher susceptibility of chestnut phenotype for skin disorders (Bellone et al., 2017). *NFKB1* was also annotated in Straight Egyptian subgroup investigated by Cosgrove et al. (2020); the same authors reported the *SLC9B2* gene in Straight Egyptian subgroup also annotated in Purebred Arabian and Gidran breeds investigated by Grilz-Seger, Neuditschko, et al. (2019).

5. Conclusion

 Based on genome-wide data, we investigated for the first time the genetic diversity, population structure and autozygosity pattern of three autochthonous equine populations, including the Maremmano and Arab breeds that have been and still are an important genomic source in the current structure of Sicilian horses. The present study confirmed the historical data that relate Sanfratellano and Maremmano and the close link that exists between Purosangue Orientale Siciliano and Arab horse. We also showed the close genetic relationship between the Sanfratellano and the Siciliano populations and between these and the Maremmano breed. The analysis of the autozygosity pattern of Sicilian equine populations indicated decreasing values, from Purosangue Orientale Siciliano to Sanfratellano and Siciliano, for that part of the genome covered by homozygous sequences and the

Page 19 of 53

 $\mathbf{1}$

JABG Manuscript Proof

For the diversity. The presence or
the approximate of specific diversity. The presence or
es a precious reservoir of genetic variability
mand of the equestrian tourism sector. The
rrently reared to develop a qualitative
va estimated inbreeding index. The ROH parameters, in total and calculated by classes of length, reflect the consequences linked to the actual size of the populations and their selective histories. Effective population size values are of concern in Sanfratellano and Purosangue Orientale Siciliano. Gene level investigation has placed the accent on the selective pressure to which the Purosangue Orientale Siciliano seems to be subjected, particularly with regard to performance traits, a result that is reflected by the morphology and by the description of the breed made both by breeders and breed experts. As in general for all livestock species, also in the equine species the widespread use of breeding animals of highly selected breeds represents a threat to the survival of local breeds and therefore to the maintenance of an adequate level of specific diversity. The presence on the Sicilian territory of these equine populations constitutes a precious reservoir of genetic variability that is particularly suited to supporting the increasing demand of the equestrian tourism sector. Therefore, the opportunity arises to identify the subjects currently reared to develop a qualitative conservation program, while contributing to the maintenance and exploitation of the territory. In this context, the genomic information and genealogical data have a crucial role in assisting the management of small populations with the prior target of planning correct matings and reducing the inbreeding rate.

JABG Manuscript Proof

 $\overline{1}$

lo nobile d'Arabia (pp. 169-175).

Seen, J. L., Mack, M., Singer-Berk, M., Dr

se mutation in damage-specific DNA bind

quamous cell carcinoma in horses. *Int*

4

coa, G., & Marras, G. (2018). detectRUNS:

ygosity in dipl unrelated individuals. *Genome Res, 19*(9), 1655-1664. doi:10.1101/gr.094052.109 Balbo, S. M. (1995). L'influenza dell'arabo-orientale sul cavallo siciliano. In R. R. Editrice (Ed.), *L'Asil Arabo il cavallo nobile d'Arabia* (pp. 169-175). Liu, J., Petersen, J. L., Mack, M., Singer-Berk, M., Drogemuller, C., . . . Lassaline, 7). A missense mutation in damage-specific DNA binding protein 2 is a genetic risk factor for limbal squamous cell carcinoma in horses. *Int J Cancer, 141*(2), 342-353. 002/ijc.30744 ozzi, P., Gaspa, G., & Marras, G. (2018). detectRUNS: Detect runs of homozygosity s of heterozygosity in diploid genomes. CRAN (The Comprehensive R Archive Network). & Ruvinsky, A. (2000). Genetic Aspects of Domestication, Breeds and Their Origins. In A. T. Bowling & A. Ruvinsky (Eds.), *The Genetics of the Horse*. New York, USA.: CABI Publishing. ., Joshi, P. K., Clark, D. W., Ramsay, M., & Wilson, J. F. (2018). Runs of homozygosity: windows into population history and trait architecture. *Nat Rev Genet, 19*(4), 220-234. doi:10.1038/nrg.2017.109 ortolano, B., Liotta, L., Rundo Sotera, A., & Finocchiaro, R. (2003). Demographic rization, inbreeding and genetic variability within Sanfratellano population horse from genealogical data. *Ital. J. Anim. Sci., 2*(sup1), 592-594. doi:10.4081/ijas.2003.11676086

Page 23 of 53

 $\mathbf{1}$

JABG Manuscript Proof

TABLES

Table 1. Breed's acronym, sample size (n.), expected heterozygosity (He), observed heterozygosity (Ho) with relative standard deviations (s.d), and effective population size (Ne) of the three Sicilian horses (Sanfretellano-SAN, Siciliano-SIC and Purosangue Orientale Siciliano-SOP), Arab (ARR) and Maremmano (MARM) breeds.

JABG Manuscript Proof

 Table 2. Breed's acronym and parameters' results of runs of homozygosity (ROH) analysis on Sanfratellano (SAN), Siciliano (SIC), Purosangue Orientale Siciliano (SOP), Arab (ARR) and Maremmano (MARM) samples. Parameters show mean values over individuals and chromosomes of the sum of ROH in Mb (S_{ROH}), of the number of detected ROHs (N_{ROH}), of the length of ROH in Mb 675 (L_{ROH}), of inbreeding coefficient (F_{ROH}) with respective standard deviations (s.d.) and minimum and maximum values.

 Table 3. Breed's acronym and parameters' results of runs of homozygosity (ROH) analysis per class of ROH's length (in Mb) on Sanfratellano (SAN), Siciliano (SIC), Purosangue Orientale Siciliano (SOP), Arab (ARR) and Maremmano (MARM) samples. Parameters show the percentage distribution of ROHs (ROH%), inbreeding coefficient (F_{ROH}) and the F_{ROH} percentage incidence on total F_{ROH} 683 (F_{ROH} %) per class of ROH's length (in Mb).

- 686
-
- -

FIGURE LEGENDS

 Figure 1. Genetic relationship defined with multidimensional scaling (MDS) analysis among Sicilian (Sanfretellano-SAN, Siciliano-SIC and Purosangue Orientale Siciliano-SOP) and other three horse breeds, Arab (ARR), Maremmano (MARM) and Norwegian Fjord (NORF). The individual spatial coordinates of 115 samples are plotted taking into account the first $(x-axis)$ and the second component (y-axis) of the total variance. Only Sicilian horses are colour-plotted (SAN=red, SIC=blue, SOP=green). 14 693 16 694

 $\frac{1}{24}$ 697

47 706

logenetic network estimated from Reynologenetic network estimated from Reynologenesis

esticilian horses (Sanfretellano-SAN, Saremmano (MARM), Arab (ARR) and Nor

senting K=2, K=3 and K=4 ancestral clusters

Sanfratellano- **Figure 2.** NeighborNet phylogenetic network estimated from Reynolds' pairwise genetic distances calculated between the three Sicilian horses (Sanfretellano-SAN, Siciliano-SIC and Purosangue Orientale Siciliano-SOP), Maremmano (MARM), Arab (ARR) and Norwegian Fjord (NORF) breeds. 29 699 31 700

Figure 3. Circle plot representing K=2, K=3 and K=4 ancestral clusters inferred by Admixture analysis of Sicilian horses (Sanfratellano-SAN, Siciliano-SIC and Purosangue Orientale Siciliano- SOP), Arab (ARR) and Maremmano (MARM) breeds. The colours, which are consistent between the different K values, represent each of the genomic group to which the 94 individuals belong. 37 702 42 704 44 705

Figure 4. Scatter plot of individual (circles) inbreeding coefficient (F_{ROH}) and breeds' mean F_{ROH} (squares) estimated from runs of homozygosity (ROH) analysis of the three Sicilian horses (Sanfretellano-SAN, Siciliano-SIC and Purosangue Orientale Siciliano-SOP), Maremmano (MARM) and Arab (ARR) breeds. Y-axis represents F_{ROH} values' gradient, x-axis distributes the 94 individuals grouped per population (coloured alternatively black and white). 50 707 52 708 57 710 59 711

201x111mm (191 x 191 DPI)

Fig.4

199x109mm (237 x 237 DPI)

³ Table S1. Runs of homozygosity (ROH) islands with a population frequency $\geq 50\%$ in Purosangue Orientale ⁴ Siciliano (SOP), Arab (ARR), Sanfratellano (SAN), Siciliano (SIC) and Maremmano (MARM) samples. The table reports the chromosome (Chr), start and end (in bp), the number of SNPs, the annotated genes and the quantitative 7 trait loci (QTL) associated to each ROH island, per breed.

Table S2. Markers within runs of homozygosity (ROH) islands with a population frequency $\geq 50\%$ in Sanfratellano (SAN), Siciliano (SIC), Purosangue Orientale Siciliano (SOP), Arab (ARR) and Maremmano (MARM) samples. Table reports reference SNP (rs) of markers, chromosome (Chr), chromosome location (bp), breed, reported associated traits and annotated genes.

Table S3. Gene Ontology (GO) and enrichment analysis based on annotated genes within ROH islands (frequency $\geq 50\%$) in Purosangue Orientale Siciliano (SOP), Arab (ARR) and Sanfratellano (SAN) samples. The table reports the type of process involving genes (category), the GO analysis output (term), the significance level of the gene-term enrichment (p-value), genes involved in given term (genes), the measure of the enrichment's magnitude (Fold Enrichment) and the correction of significance levels for multiple observations (Bonferroni pvalue).

Purosangue Orientale Siciliano - SOP horse annotated gene list

In the SOP breed from the 157 identified genes, GO analysis underlined that 65 genes were enriched in 27 biological processes, 27 genes in 9 molecular function and 12 genes in 4 cellular components.

Significant overrepresentation of biological processes related to eye morphogenesis and development, cameratype eye development, sensory organ morphogenesis, embryo development ending in birth or egg hatching, endocytosis and secretion, was found. Five GO molecular function related to the nucleotide-binding process showed significant corrected p-values (Bonferroni p<0.05). Further, two GO cellular component (GO:0098590; GO:0005588) and five KEGG pathways were significantly highlighted.

Arab - ARR horse annotated gene list

The annotated gene list of the ARR breed harboured 109 genes, 35 of them were found to be enriched in 44 biological processes, 2 in 1 molecular function and 8 in 4 cellular components.

Gene ontology and enrichment analysis highlighted the overrepresentation of *ABCG8* and *ABCG5* genes, members of the superfamily of ATP-binding cassette (ABC) transporters, involved in the regulation of digestive system process (GO:0060457) and in several biological functions related to the regulation of intestinal lipid absorption.

-
-
-

cluster (x-axis).

199x121mm (133 x 133 DPI)

383x238mm (96 x 96 DPI)

199x123mm (183 x 183 DPI)

 $\mathbf{1}$ $\overline{2}$

-
-
-
-
-
-

-
-
-

 $\mathbf{1}$ $\overline{2}$ $\overline{7}$

200x122mm (184 x 184 DPI)

200x122mm (184 x 184 DPI)