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Abstract
We consider inference for linear regression models estimated by weighted-average
least squares (WALS), a frequentist model averaging approach with a Bayesian flavor.
We propose a new simulationmethod that yields re-centered confidence and prediction
intervals by exploiting the bias-corrected posterior mean as a frequentist estimator of
a normal location parameter. We investigate the performance of WALS and several
alternative estimators in an extensive set of Monte Carlo experiments that allow for
increasing complexity of themodel space andheteroskedastic, skewed, and thick-tailed
regression errors. In addition to WALS, we include unrestricted and fully restricted
least squares, two post-selection estimators based on classical information criteria, a
penalization estimator, and Mallows and jackknife model averaging estimators. We
show that, compared to the other approaches, WALS performs well in terms of the
mean squared error of point estimates, and also in terms of coverage errors and lengths
of confidence and prediction intervals.

Keywords Linear model · WALS · Confidence intervals · Prediction intervals ·
Monte Carlo simulations

JEL Classification C11 · C12 · C18 · C21 · C52

We thank Paolo Li Donni, Chu-An Liu, and Xinyu Zhang for useful discussions; and the referees for their
constructive comments.

B Giuseppe De Luca
giuseppe.deluca@unipa.it

1 University of Palermo, Palermo, Italy

2 Vrije Universiteit Amsterdam and Tinbergen Institute, Amsterdam, The Netherlands

3 University of Rome Tor Vergata and EIEF, Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-022-10255-5&domain=pdf
http://orcid.org/0000-0002-1411-2543


G. De Luca et al.

1 Introduction

Many empirical studies in economics assume that the data are generated by a linear
regression model where a distinction is made between ‘focus regressors’ and ‘aux-
iliary regressors’. The focus regressors are included because we believe the model
is not credible without them or because they are the subject of our investigation,
while the number and the identity of the auxiliary regressors is less certain. The
parameters of primary interest are the coefficients on the focus regressors (the ‘focus
parameters’), while the coefficients on the auxiliary regressors are treated as nuisance
parameters. Instead of a single model for the data generating process (DGP), there is
a ‘model space’ containing a finite but potentially large number of models, namely
the unrestricted model that includes all auxiliary regressors, the fully restricted model
that includes none, and all intermediate models. Adding auxiliary regressors tends to
reduce omitted variable bias in estimating the focus parameters, but tends to increase
sampling variability. Examples include studies concerning the determinants of eco-
nomic growth (Sala-i-Martin et al. 2004; Magnus et al. 2010), risk premia (Sousa and
Sousa 2019), product and labor market reforms (Duval et al. 2021), the impact of
legalized abortion on crime (Donohue and Levitt 2001), and the relationship between
body mass and income (Dardanoni et al. 2011).

Model uncertainty can be approached via ‘model selection’ or via ‘model averag-
ing’. In the model selection approach we attempt to find the ‘best’ model given the
data, the model space, and a specific purpose (e.g., estimation of particular parameters
or prediction of future outcomes). Given this best model, one then employs its esti-
mates for the intended purpose. Like any other data-driven statistical decision, model
selection is subject to sampling uncertainty which, if ignored, can lead to overesti-
mate accuracy (Kabaila andMainzer 2018). Typical examples are the classical pre-test
estimator and post-selection estimators that select the model with the smallest value
of some information criterion, such as the Akaike Information Criterion (AIC) or the
Bayesian Information Criterion (BIC). More recently, considerable attention has been
devoted to penalization estimators based on model sparsity and an absolute penalty
criterion, such as the least absolute shrinkage and selection operator (LASSO), which
address the sampling uncertainty problem by performing variable selection and reg-
ularization at the same time. These estimators typically require the choice of some
‘tuning’ parameters that control the trade-off between bias and variance. They also
tend to be biased and to have nonstandard sampling distributions, so that inference
based on the normal approximation can bemisleading (Knight and Fu 2000; Claeskens
and Hjort 2008).

The second approach is model averaging. In contrast to model selection, one is not
concerned with finding a ‘best’ model but with finding a ‘best’ estimator of the focus
parameters or a ‘best’ predictor of the outcome. The (well-established) terminology is
a little confusing because we don’t average over models but over estimators. In fact,
one takes a weighted average of the estimators from all the available models, with
data-dependent weights to account for the uncertainty associated with each model.
There are many proposed model averaging estimators, typically obtained either from
a Bayesian perspective (Bayesian model averaging: BMA) or from a frequentist per-
spective (frequentist model averaging: FMA). BMA weights can be interpreted as
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posterior model probabilities, while FMA weights are decreasing functions of some
measure of predictive inaccuracy, such as Mallows’ Cp (Hansen 2007) or leave-one-
out cross-validation (Hansen and Racine 2012). There also exist Bayesian-frequentist
‘fusions’, such as weighted-average least squares (WALS), introduced by Magnus
et al. (2010), which is frequentist but with a Bayesian flavor. We refer to Steel (2020)
for an extensive survey of the various types of model averaging estimators and their
use in economics. Like for model selection estimators, most of these estimators tend
to be biased and their sampling distribution is not well approximated by the normal
distribution. Furthermore, there is increasing evidence that, even after correcting for
bias, inference for model averaging estimators can be misleading if based on the nor-
mal approximation (see, among others, Claeskens and Hjort 2008; Hansen 2014; Liu
2015; and DiTraglia 2016).

The finite-sample bias and variance of WALS have recently been analyzed by De
Luca et al. (2021), who exploit results on the frequentist properties of the Bayesian
posterior mean in a normal location model. The current paper extends their results
to inference by proposing a simulation-based approach that yields re-centered confi-
dence and prediction intervals using the bias-corrected posterior mean as a frequentist
estimator of the normal location parameter.We assess its finite-sample performance by
an extensive Monte Carlo experiment. To facilitate comparisons with the simulation
study by Zhang and Liu (2019), we stay close to their framework and consider a finite
model space that contains the true data-generating process (M-closed environment)
but has little additional structure. Unlike Zhang and Liu (2019), who restrict attention
to inference about a single auxiliary parameter, we consider inference about a single
focus parameter, interpreted as the causal effect of a policy or intervention in the pres-
ence of a potentially large number of auxiliary parameters. This is likely to be the
most interesting case for applied economists. We compare the performance of WALS
point estimates and confidence intervals with the performance of several competing
approaches, including least squares estimators for the unrestricted and fully restricted
models, post-selection estimators based on AIC and BIC, Mallows and jackknife
model averaging estimators, and one version of the LASSO (the adaptive LASSO). In
addition, we discuss prediction intervals for the outcome of interest, which involves
linear combinations of all focus and auxiliary parameters. The main conclusion of our
Monte Carlo experiment is that, compared to other estimators, the coverage errors for
WALS are small and confidence and prediction intervals are short, centered correctly,
and allow for asymmetry. They are also easy and fast to compute.

The remainder of this paper is organized as follows. Section 2 introduces the
framework and briefly describes the estimators that we consider. Section 3 dis-
cusses how to construct confidence intervals for a single parameter of interest.
Section 4 describes the Monte Carlo experiment. Sections 5–7 contain the simula-
tion results, separately for point estimates (Sect. 5), confidence intervals (Sect. 6),
and prediction intervals (Sect. 7). Section 8 concludes. There are two appen-
dices. Appendix A formalizes the nine estimators introduced in Sect. 2, while
Appendix B describes the algorithm for simulation-based WALS confidence inter-
vals.
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2 Framework and Estimators

Our framework is the linear regression model

y = Xβ + ε = X1β1 + X2β2 + ε, (1)

where y (n×1) is the vector of observations on the outcome of interest, X1 (n×k1) and
X2 (n× k2) are matrices of nonrandom regressors, β1 and β2 are unknown parameter
vectors, and ε is a vector of random disturbances. The k1 columns of X1 contain the
‘focus regressors’ which we want in the model on theoretical or other grounds, while
the k2 columns of X2 contain the ‘auxiliary regressors’ of which we are less certain.
These auxiliary regressors could be controls that are added to avoid omitted-variable
bias or transformations and interactions of the set of original regressors to allow for
nonlinearities. We assume that k1 ≥ 1, k2 ≥ 0, and that X = (X1, X2) has full
column-rank k = k1 + k2 ≤ n. The disturbance vector ε has zero mean and a positive
definite variance matrix, diagonal but not necessarily scalar. The DGP thus allows for
nonnormality and heteroskedasticity.

Table 1 lists the nine estimators of β = (β ′
1,β

′
2)

′ that we consider in this paper.
Except for LS-R andWALS, all other estimators also appear in Zhang and Liu (2019).
In the remainder of this section, we describe briefly the various estimators with some
emphasis onWALS.AppendixAprovides amore detailed description of all estimators.

Our first two estimators are the least squares (LS) estimators of β in the unre-
stricted model that includes all auxiliary regressors and the fully restricted model that
includes none.We shall refer to these two estimators as the unrestricted LS (LS-U) esti-
mator and the fully restricted LS (LS-R) estimator, respectively. Under an M-closed
environment, the LS-U estimator is unbiased but is likely to have a large variance,
especially when the sample size is small, the number of auxiliary variables is large,
and the regressors are highly correlated. The LS-R estimator is subject to omitted
variable bias when X ′

1X2 �= 0 and β2 �= 0, but has a smaller variance than the LS-U
estimator under homoskedastic errors. These estimators require neither model selec-
tion nor model averaging as they rely on two ad hoc specifications of the unknown
DGP.

Whenwe account explicitly for uncertainty about the auxiliary regressors, themodel
space contains J = 2k2 possible models. Model selection tries to find a single ‘best’
model based on a specific criterion, while model averaging takes a weighted average
of the estimators from all the models in the model space. For example, if̂β1 j and̂β2 j
are the LS estimators of β1 and β2 in model j , then a model averaging estimator takes
the form

̂β1 =
J

∑

j=1

λ j
̂β1 j ,

̂β2 =
J

∑

j=1

λ j
̂β2 j , (2)
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Table 1 The estimators

Estimator Description

Least squares (LS)

LS-U LS estimator of the unrestricted model with
all auxiliary regressors

LS-R LS estimator of the fully restricted model
with no auxiliary regressors

Post-selection estimators based on information criteria

IC-A LSestimator of themodelwith smallestAIC

IC-B LS estimator of themodelwith smallest BIC

Penalization methods

ALASSO Adaptive LASSO estimator (Zou 2006)
with penalty parameter chosen by general-
ized cross-validation

Frequentist model averaging

MMA Mallows model averaging (Hansen 2007)
with preordering ofthe auxiliary regressors

JMA Jackknife model averaging (Hansen and
Racine 2012)with preordering of the aux-
iliary regressors

JMA-M Modified JMA estimator (Zhang and Liu
2019) with preordering of the auxiliary
regressors and penalty parameter equal to
log n

Bayesian combination of frequentist estimators

WALS Weighted-average least squares (Magnus
et al. 2010)

where the λ j are nonnegative data-dependent model weights that add up to one. Even

for moderate values of k2 the computational burden of calculating 2k2 estimates and
the associated model weights can be substantial.

One possibility is to reduce the number of models by preordering, as suggested by
Hansen (2007). If we can order the auxiliary regressors a priori, then we only need to
consider k2 + 1 nested models, with model p containing the focus regressors and the
first p auxiliary regressors. Except for a few cases in which the auxiliary regressors
admit a natural preordering (e.g., polynomial regression models), the question of
how we should order the auxiliary regressors is difficult to answer, and if we use
preliminary regressions to order the regressors then the statistical noise generated by
these preliminary investigations should not be ignored.

Two common model selection strategies are based on information criteria such as
AIC and BIC. AIC and BIC are known to represent two extreme strategies favoring,
respectively, more and less complicated model structures. The IC-A and IC-B post-
selection estimators are the LS estimators in the models with the smallest AIC and
BIC respectively. As implemented in Zhang and Liu (2019), these estimators require
preordering and the assumption of homoskedastic errors. There is no model averaging
here, only model selection.
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The adaptive LASSO (ALASSO) estimator, proposed by Zou (2006), does not rely
on preordering. It solves a penalized LS problem with a penalty on the weighted sum
of the absolute values of the estimated components of the full vectorβ andweights that
depend on the LS-U estimates and a tuning parameter selected by generalized cross-
validation. Following Zhang and Liu (2019), this version of the ALASSO estimator
does not distinguish between focus and auxiliary regressors.

TheMallowsmodel averaging (MMA) estimator was introduced byHansen (2007).
Although it can be applied to the full model space consisting of 2k2 models, it is
typically based on preordering in order to reduce the computational burden. This
estimator is asymptotically efficient in the mean squared error (MSE) sense when the
errors in (1) are homoskedastic (Hansen 2007; Wan et al. 2010; Zhang 2021).

The jackknife model averaging (JMA) estimator, introduced by Hansen and Racine
(2012) , is also generally based on preordering but allows for heteroskedasticity. Under
homoskedasticity it has the same (nonstandard) limiting distribution as MMA (Zhang
and Liu 2019, p. 824) and it remains asymptotically efficient under heteroskedasticity
(Hansen and Racine 2012; Zhang 2021). The modified JMA (JMA-M) estimator,
introduced by Zhang and Liu (2019), is similar but is defined by weights that minimize
a penalized cross-validation criterion.

The weighted-average least squares (WALS) estimator was introduced by Magnus
et al. (2010) and reviewed by Magnus and De Luca (2016). Unlike other model aver-
aging estimators, the WALS approach exploits a preliminary transformation of the
auxiliary regressors that reduces the computational burden from order 2k2 to order k2
and leads to other important simplifications. In particular, after this transformation,
model (1) may equivalently be written as

y = Z1γ 1 + Z2γ 2 + ε, (3)

where Z′
2M1Z2 is equal to the identity matrix of order k2. The WALS estimator

γ̂ = (γ̂ ′
1, γ̂

′
2) of γ = (γ 1, γ 2) is a weighted average of the LS estimators of γ over

the J models in the model space.
From Theorem 2 of Magnus and Durbin (1999), the MSE of γ̂ 1 depends on the

MSE of γ̂ 2. Thus, if we can choose the model weights optimally such that γ̂ 2 is a
‘good’ estimator of γ 2 (in theMSE sense), the sameweights will also provide a ‘good’
estimator of γ 1. Moreover, the dependence of γ̂ on the estimators from all possible
models is completely captured by a random diagonal matrix W , whose k2 diagonal
elements are partial sums of the model weights λ j in (2). It follows that we can restrict
attention to the WALS estimator of γ 2, whose computational burden is of order k2
as we need to determine only the diagonal elements of W , not the full set of model
weights.

The components of γ̂ 2 are shrinkage estimators of the components of γ 2. Under the
assumption of homoskedastic normal errors in (1) and the additional restriction that
the hth diagonal element of the matrix W depends only on the hth component of the
LS-U estimator of γ 2, our shrinkage estimators are also independent. The initial k2-
dimensional problem then reduces to k2 identical one-dimensional problems, namely:
given a single observation x from the normal location model N (η, σ 2), what is the
estimator m(x) of η with minimum MSE? Since the risk properties of m(x) are little
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affected by estimating the variance parameter (Danilov 2005), we assume that σ 2 is
known.

ABayesian approach to the above problem requires two elements: a normal location
model for the independently and identically distributed (i.i.d.) elements {xh} of the vec-
tor of t-ratios x = γ̂ 2,u/su , where s

2
u is the unbiased LS estimator of the error variance;

and a prior distribution for the i.i.d. elements {ηh} of the vector of ‘theoretical’ t-ratios
η = γ 2/σu . For a proper treatment of admissibility, robustness, near-optimality in
terms of minimax regret, and ignorance about ηh , we select a prior that is symmetric,
leads to bounded risk, and satisfies the ‘neutrality condition’ P[|ηh | < 1] = 1/2.
The Bayesian approach to the normal location problem then yields the posterior mean
mh = m(xh) as an estimator of ηh , from which the WALS estimators of γ 1 and γ 2
and therefore of β1 and β2 are easily derived (see Appendix A for the details).

Themixture of Bayesian and frequentist approaches requires special attentionwhen
assessing the sampling properties of our model averaging estimator. First, for a prior
which is symmetric around zero, the posterior mean mh suffers from attenuation
bias, so ̂β1 and ̂β2 are in general biased estimators of β1 and β2. Second, for any
nonnegative bounded prior density, the posterior variance of ηh represents a first-
order approximation to the sampling standard deviation (not the sampling variance)
of the posterior mean mh .

De Luca et al. (2021) presented Monte Carlo tabulations of the bias and variance
of mh under three neutral priors: Laplace, Weibull, and Subbotin. For each prior
considered, they also compared two alternative plug-in estimators of these sampling
moments ofmh : the frequentist maximum likelihood (ML) estimator and the Bayesian
double shrinkage (DS) estimator. Based on these plug-in estimators, they derived new
estimators for the sampling bias and variance of the WALS estimator. This paper
investigates the implications of their findings for the construction ofWALS confidence
and prediction intervals.

3 Confidence Intervals

We concentrate on (1 − α)-level confidence intervals for the lth component βl of β,
which could be either a focus or an auxiliary parameter. All confidence intervals take
the form

CI(βl) =
[

β̌l − cl , β̌l + cl

]

, (4)

where β̌l is an estimator ofβl and the quantities cl and cl are chosen to attain the desired
coverage level. If cl = cl , the interval is called symmetric. We consider sixteen types
of confidence intervals — ten from Zhang and Liu (2019) and six based on WALS—
that differ depending on the choice of β̌l , cl , and cl .

LS-U and LS-R: β̌l is either the LS-U or the LS-R estimator and cl = cl = z1−α/2 sl ,
where z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution and sl is

the standard error of β̌l .
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IC-A and IC-B: β̌l = ̂βl( p̂) and cl = cl = z1−α/2 sl , where ̂βl( p̂) is the LS estimator
in the model with the smallest AIC or BIC, p̂ is the number of auxiliary regressors in
the selected model, and sl is the standard error of β̌l . Zhang and Liu (2019) call these
confidence intervals ‘naive’ because they ignore model selection noise.

ALASSO: β̌l is the ALASSO estimator and cl = cl = n−1/2q∗
l (α), where q∗

l (α) is the
αth quantile of the conditional distribution of |√n(β̌∗

l − β̌l)| given the data and β̌∗
l is

the ALASSO estimate from a bootstrap sample. These confidence intervals and rely
on the asymptotic validity of the bootstrap for the ALASSO estimator (Chatterjee and
Lahiri 2011; Camponovo 2015).

MMA: β̌l is the MMA estimator and we consider two alternative approaches to the
choice of cl and cl . In the bootstrap approach (MMA-B) we set cl = cl = n−1/2q∗

l (α),
where q∗

l (α) is the αth quantile of the bootstrap distribution of |√n(β̌∗
l − β̌l)| and β̌∗

l
is theMMA estimate from a bootstrap sample, while in the simulation-based approach
(MMA-S) we set cl = n−1/2ql(1−α/2) and cl = −n−1/2ql(α/2), where ql(α) is the
αth quantile of the simulated asymptotic distribution of the estimator based on Zhang
and Liu (2019, Theorem 2). The first interval is symmetric, the second is not.

JMA: β̌l is the JMA estimator and we again consider two alternative approaches to
the choice of cl and cl . In the first (JMA-B) we set cl = cl = n−1/2q∗

l (α), where
q∗
l (α) is the αth quantile of the bootstrap distribution of |√n(β̌∗

l − β̌l)| and β̌∗
l is

the JMA estimate from a bootstrap sample, while in the second (JMA-S) we set
cl = n−1/2ql(1− α/2) and cl = −n−1/2ql(α/2), where ql(α) is based on Zhang and
Liu (2019, Theorem 4).

JMA-M: β̌l is the JMA-M estimator and cl = cl = z1−α/2 s∗
l , where s

∗
l is the standard

error in the ‘just-fitted’ model, that is, the model obtained from the ordered sequence
of models by deleting all redundant regressors at the end of the sequence. 1 Symmetry
of these intervals is justified by the asymptotic normality of the JMA-M estimator
(Zhang and Liu 2019, Theorem 5).

WALS: We consider three different methods for constructing confidence intervals,
namely uncentered-and-naive (UN), centered-and-naive (CN), and simulation-based
(S). The algorithm underlying the last two methods is presented in Appendix B.

In the UN method, β̌l is the WALS estimator ̂βl , cl = cl = z1−α/2 sl , and sl is
either the plug-in ML estimator or the plug-in DS estimator of the standard error of
̂βl . The resulting intervals take the classical normal approximation to the sampling
distribution of ̂βl at face value and neglect the bias of the WALS estimator.

In the CN method, β̌l is the bias-corrected WALS estimator, β̌l = ̂βl − bl , where
bl is either the plug-in ML estimator or the plug-in DS estimator of the bias of ̂βl .
As in the UN method, cl = cl = z1−α/2 sl , but now sl depends on the bias-corrected
WALS estimator and is computed by the simulation-based algorithm discussed in
Appendix B. The CN method again takes the classical normal approximation at face

1 The just-fitted model is unknown in practice, so s∗l is not a feasible estimator. In the simulations we
follow Zhang and Liu (2019) and assume that the just-fitted model is known. As a consequence, the correct
intervals will be larger than reported since some of the model selection noise has been ignored.
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Table 2 Eight error distributions Skedasticity Distribution ui σi

Homoskedastic 1 N (0, 1) 2.5

2 t(5)
√
15/4

3 t∗(0, 1, 5, 0.5) 2.5

4 t∗(0, 1, 5, 0.8) 2.5

Heteroskedastic 5 N (0, 1) 2.5 τi

6 t(5)
√
15/4 τi

7 t∗(0, 1, 5, 0.5) 2.5 τi

8 t∗(0, 1, 5, 0.8) 2.5 τi

value but re-centers to correct for estimation bias and accounts for randomness in the
estimated bias.

The S method also yields re-centered confidence intervals by using the bias-
corrected posterior mean as an estimator of the normal location parameter, and
accounts for its randomness by exploiting a large set of pseudo-random Monte Carlo
draws. However, since it does not require critical values from the normal distribution,
its confidence intervals are not necessarily symmetric.

4 Monte Carlo Design

Our setup closely follows Zhang and Liu (2019) with some exceptions explained later
in this section. We have k1 = 2 focus regressors: x11 (the constant term) and x12; and
k2 auxiliary regressors: x21, . . . , x2k2 . Our parameter of interest is the coefficient β12
on x12, which may be interpreted as the causal effect of x12 on y.

The k2 + 1 regressors x12, x21, . . . , x2k2 are drawn from a multivariate normal
distribution with mean zero and variance σ 2

x �x (ρ), where

�x (ρ) =

⎛

⎜

⎜

⎜

⎝

1 ρ . . . ρ

ρ 1 . . . ρ
...

...
...

ρ ρ . . . 1

⎞

⎟

⎟

⎟

⎠

,

with −1/k2 < ρ < 1. We set σ 2
x = ρ = 0.7.

The error term is generated by εi = σi ui , where the ui are independently dis-
tributed following either a standard normal distribution or a skewed t∗-distribution
t∗(μ, σ, d, λ) with mean μ, variance σ 2, d degrees of freedom and skewness param-
eter |λ| < 1 (defined for d > 3). In addition to the standard normal distribution, we
consider three skewed t∗-distributions with μ = 0 and d = 5: (i) the standard t(5)-
distribution, which is obtained by setting σ = √

5/3 and λ = 0, (ii) a distribution with
moderate positive skewness (σ = 1 and λ = 0.5), and (iii) a distribution with large
positive skewness (σ = 1 and λ = 0.8).We also consider four homoskedastic and four
heteroskedastic error distributions, as shown in Table 2. In the homoskedastic cases
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Table 3 Four configurations of
the k2 = 8 auxiliary parameters

Conf. β2

(a) (ξ, ξ2, ξ3, ξ4, 0, 0, 0, 0)′

(b) (ξ4, ξ3, ξ2, ξ, 0, 0, 0, 0)′

(c) (ξ, ξ2, 0, 0, ξ3, ξ4, 0, 0)′

(d) (0, 0, 0, 0, ξ4, ξ3, ξ2, ξ)′

we take σi = 2.5 when the distribution of ui has variance one. For the standard t(5)-
distribution the variance is 5/3, so we need the correction factor 2.5/

√
5/3 = √

15/4.
In the heteroskedastic cases we define

τi = 1 + 2|x (i)
12 | + 4|x (i)

21 |
1 + 6σx

√
2/π

,

where x (i)
12 and x (i)

21 respectively denote observation i on the second focus regressor
and the first auxiliary regressor, and the scaling is chosen such that E[τi ] = 1 for all i .

Setting k2 = 8, we have 2k2 = 256 possible models that include the two focus
regressors and a subset of the eight auxiliary regressors. We fix β1 = (1, 1)′ and
consider four configurations of the eight auxiliary parameters, as shown in Table 3.

Our setup is intentionally similar to that in Zhang and Liu (2019) with three impor-
tant exceptions:

• Our parameter of interest is one of the focus parameters, not one of the auxiliary
parameters, because it is focus parameters that we are primarily interested in.

• Zhang and Liu (2019) ignore the possibility of skewness in the error distribution.
In fact, of the eight cases in Table 2 they only consider two: homoskedastic under
normality (case 1) and heteroskedastic under a t-distribution (case 6). In the het-
eroskedastic setup we take 5 rather than 4 degrees of freedom, so as to ensure
the existence of both skewness and kurtosis. In addition, our scaling in design 6
gives E[σi ] = 2.5/

√
V[t(5)] ≈ 1.94 thus ensuring comparability with the other

designs, whereas in the case considered by Zhang and Liu (2019) we would have
E[σi ] ≈ 3.23. Finally, we let τi depend on one focus and one auxiliary regressor
(instead of two auxiliary regressors).

• To the three cases (a)–(c) in Table 3, we have added case (d) to showwhat can hap-
pen when the preliminary ordering is poor. As in case (b), the auxiliary regressors
with nonzero coefficients enter with a decreasing order of importance as measured
by the magnitude of their coefficients (since we set |ξ | < 1). In addition, case (d)
implies that all submodels in the preordered sequence of k2 + 1 nested models
(except for the unrestricted model) are subject to omitted-variable bias.

We set ξ = 0.5 and consider sample sizes of n = 100 and n = 400. By combining
the eight specifications of the regression error in Table 2 with the four configurations
of the auxiliary parameters in Table 3, we obtain 32 simulation designs for n = 100
and 32 simulation designs for n = 400. Using 5,000 Monte Carlo replications for
each design (instead of 500 replications as in Zhang and Liu 2019), we compute the
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bias, variance, and MSE of the nine estimators discussed in Sect. 2: LS-U, LS-R, IC-
A, IC-B, ALASSO, MMA, JMA, JMA-M, and WALS. The LS-U, LS-R and WALS
estimators are implemented in Stata, the other estimators in MATLAB. 2 SinceWALS
has been shown to be robust to different choices of the prior (De Luca et al. 2018; De
Luca et al. 2021), we focus on the Laplace prior to exploit its computational advantages
in computing the posterior mean.

5 Monte Carlo Results: Point Estimates

In this and the next two sectionswe present the results of theMonteCarlo experiment in
a number of graphs. The current section discusses point estimates; confidence intervals
and prediction intervals are discussed in Sects. 6 and 7 , respectively.

In Figs. 1 and 2 we present the first two sampling moments of the nine estimators
for n = 100. The sixteen plots in Fig. 1 represent the homoskedastic designs, the
sixteen plots in Fig. 2 the heteroskedastic designs. Each plot contains the squared
bias–variance decomposition of the MSE of the nine estimators and, in addition, two
‘iso-MSE’ lines, which consist of all points with the sameMSE as the LS-U estimator
(red dash-dotted line) and the WALS estimator (blue dashed line). Design 1a refers to
distribution 1 (normal, homoskedastic) and configuration (a), and so on, as described
in Tables 2 and 3 .

The similarity of the sixteen plots in Fig. 1 is remarkable. The LS-U, LS-R,
ALASSO, andWALS estimators are not affected by preordering, hence their moments
and MSEs are the same across configurations. This is not the case for the other five
estimators, IC-A, IC-B, MMA, JMA, and JMA-M, for which the effect of preordering
can be substantial (comparing across rows), but the effect of nonnormality (skew-
ness and excess kurtosis) appears to be small (comparing across columns). The LS-R
estimator has a large bias which dominates the small variance, and hence its MSE is
large. ALASSO has a small bias but a large variance, hence a large MSE. The MSE
is also large for IC-B based on the BIC criterion because of its large bias, especially
in configurations (b) and (d) where the ordering is unfavorable. The IC-A estimator
based on the AIC criterion behaves about the same as the LS-U estimator in configura-
tions (a) and (c), but considerably worse in configurations (b) and (d). As predicted by
the asymptotic theory, MMA (Mallows) and JMA (jackknife) perform essentially the
same under homoskedasticity and are indistinguishable in the figure, but again their
performance deteriorates when the preordering is unfavorable. Unlike Zhang and Liu
(2019), we find that JMA is 7–14% more efficient relative to JMA-M (in MSE sense)
in the sixteen designs of Fig. 1.

The dominating estimator is WALS, whose bias is more than offset by a much
smaller variance, thus capturing the essence of model averaging. The efficiency of
WALS relative to the next-best JMA estimator is about 12% in configurations (a)
and (c), 23% in configuration (b) and 31% in configuration (d). The MSE of WALS is
0.23–0.24 depending on the error distribution, hence showing considerable robustness

2 The MATLAB routines were kindly provided by Xinyu Zhang and Chu-An Liu. All Stata routines are
available from the authors upon request.
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Fig. 1 Squared bias and variance of the estimators of the focus parameter β12 in the simulation designs
with k2 = 8, n = 100, and homoskedastic errors. Notes. The sixteen plots represent different specifications
of the DGP as indicated in Tables 2 and 3 . The nine estimators considered are described in Table 1. The two
‘iso-MSE’ lines represent all points (squared bias and variance) with the same MSE as the LS-U estimator
(red dash-dotted line) and the WALS estimator (blue dashed line)

to violations of the normality assumption, probably because n = 100 is already large
enough to justify asymptotic approximations.

Now consider the case of heteroskedastic errors, still for n = 100, as plotted in
Fig. 2. Averaging over all estimators and all designs, this leads to a deterioration of
the MSE by about 30% but does not change the ordering of estimators. Contrary to
what the asymptotic theory predicts, MMA is 2% more efficient than JMA under
heteroskedasticity. WALS remains the preferred estimator in terms of MSE.

When the sample size increases, things change. Since we work in an M-closed
environment and the number of models remains fixed, the LS-U estimator remains
unbiased and its variance and MSE decrease at the rate of 1/n. So eventually it dom-
inates all other estimators unless we also let k2 increase.

Fig. 3 only presents designs 1 and 5 because the t- and skewed t∗-distributions
produce moments that are almost identical. For example, in the homoskedastic case
the MSE ranges from 0.066 to 0.070 for LS-U and from 0.083 to 0.087 for WALS,
while in the heteroskedastic case it ranges from 0.095 to 0.101 for LS-U and from
0.110 to 0.115 for WALS. When n increases from 100 to 400, one would expect the
variance to decrease by about 75%, and this is more or less what happens. Averaged
over all estimators, the variance decreases by about 73% in both the homoskedastic
and the heteroskedastic cases. The (absolute) bias also decreases but at a lower speed.
The LS-U estimator is unbiased, while the bias of the LS-R estimator does not change
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Fig. 2 Squared bias and variance of the estimators of the focus parameter β12 in the simulation designs
with k2 = 8, n = 100, and heteroskedastic errors. Notes. See Fig. 1
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Fig. 3 Squared bias and variance of the estimators of the focus parameter β12 in the simulation designs
with k2 = 8, n = 400, and normal errors. Notes. See Fig. 1
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with n. Averaging over the remaining estimators we find a decrease of the absolute
bias of about 35% in the homoskedastic case and 29% in the heteroskedastic case. The
decrease in absolute bias of the WALS estimator is particularly slow. The resulting
MSE decreases by about 60% averaged over all estimators, both under homoskedas-
ticity and heteroskedasticity. The preferred estimator is now the LS-U estimator, with
ALASSO as second-best andWALS as third-best. These three estimators are not influ-
enced by the order of the auxiliary variables. For the other estimators (except LS-R
which clearly performs badly) a poor choice of preordering may lead to poor behavior
of the estimator.

Let us now extend our design in four directions. First, we consider not only n = 100
and n = 400 but also two intermediate values 200 and 300. Second, we extend the
number of auxiliary variables from k2 = 8 to 16, 24, 32, . . . , 64 by setting β2 =
(ξ, ξ2, . . . , ξ k2/2, 0, 0, . . . , 0)′. Third, we consider not only ξ = 0.5 but also ξ =
−0.5, so that we allow for both positive and negative influences or, what is the same,
for positive and negative correlations between the regressors. Fourth, in addition to
σ 2
x = ρ = 0.7 (high correlation), we also consider σ 2

x = ρ = 0.3 (low correlation).
In total, our second Monte Carlo experiment includes 128 simulation designs for the
different combinations of n, k2, ξ , and ρ, each with 5,000 Monte Carlo replications.
To simplify the presentation, we restrict ourselves to homoskedastic normal errors and
two estimators: LS-U and WALS.

Fig. 4 considers the efficiency of theWALS estimator relative to the LS-U estimator,
i.e. the ratio of the MSE of LS-U and WALS. Theory predicts that, in every setup,
WALS will dominate LS-U when n is ‘small’ and LS-U will dominate WALS when
n is ‘large’. The question is where to draw the line between small and large. We see
that LS-U dominates when n is larger than about 250. But when ξ is negative or the
correlation is small, WALS also dominates LS-U for large values of n, certainly larger
than 400. As expected, we also see that an increase in k2 increases the efficiency of
WALS relative to LS-U.

6 Monte Carlo Results: Confidence Intervals

We now consider confidence intervals for β12 of the form (4) with nominal cover-
age probability of (at least) 1 − α. We compare the sixteen methods discussed in
Sect. 3. The confidence intervals for ALASSO, MMA-B, and JMA-B are based on
499 bootstrap replications, those for MMA-S and JMA-S are based on 499 Monte
Carlo replications, those for WALS (DS-S, ML-S, DS-CN, and ML-CN) on 5,000
Monte Carlo replications. For given α, we calculate β̌12, c12(α), and c12(α) for each
method and each replication of the 32 simulation designs.We then obtain the coverage
probability and the length of the interval by averaging over the 5,000 Monte Carlo
replications for each simulation design.

Figs. 5 and 6 summarize the simulation results for n = 100 and n = 400, respec-
tively. Both figures contain 16 panels, one for each method. On the horizontal axis we
plot the coverage probabilities for the three values of α: 10% (red long-dashed line),
5% (green dashed line), and 1% (blue dash-dotted line). The lengths of the intervals
are plotted on the vertical axis. Since there are 32 designs (labeled 1a–8d), there are
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Fig. 4 Efficiency of WALS relative to LS-U of the estimator of β12 in the simulation designs with
homoskedastic normal errors under alternative values of n, k2, ξ , and ρ. Notes. The sixteen plots rep-
resent different specifications of the DGP obtained by varying the sample size (n = 100, n = 200, n = 300
or n = 400), the values of the auxiliary parameters (ξ = 0.5 or ξ = −0.5), and the correlation coefficient
among regressors (ρ = 0.7 or ρ = 0.3). We also allow the number of auxiliary parameters to range from
k2 = 8 to 16, 24, 32, . . . , 64 by setting β2 = (ξ, ξ2, . . . , ξk2/2, 0, 0, . . . , 0)′. For each of the 128 simula-
tion designs, on the vertical axis we plot the efficiency of WALS relative to LS-U (i.e., the ratio between
the MSE of LS-U and WALS)

32 points in each panel for each level of α (marked as triangles for α = 10%, squares
for α = 5%, and circles for α = 1%). The markers are full for the homoskedastic
designs and empty for the heteroskedastic designs. Not all points are visible because
many overlap, but what really matters is how much the coverage probabilities differ
from their nominal levels and how short the confidence intervals are.

Regarding the coverage probabilities we see that there are five methods that pro-
duce accurate coverage probabilities, namely LS-U and the four centered versions
of WALS: centered-and-naive (WALS-DS-CN and WALS-ML-CN) and simulation-
based (WALS-DS-S and WALS-ML-S). The other eleven methods are much less
accurate. In particular, the naive confidence intervals for IC-A and IC-B lead to large
undercoverage errors because they ignore model selection noise. The MMA-B and
JMA-B confidence intervals are more accurate than the simulation-based algorithms
proposed by Zhang and Liu (2019) , but the underlying undercoverage errors are still
sizeable and increase with the sample size. 3 The JMA-M confidence intervals also
have nonnegligible undercoverage errors which tend to increase with the sample size.

3 With n = 100 the undercoverage errors of MMA-B and JMA-B are −0.03 for α = 10% and −0.02 for
α = 5%, while with n = 400 the undercoverage errors become−0.07 for α = 10% and−0.05 for α = 5%.
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Fig. 5 Coverage probability and length of the confidence intervals for the focus parameter β12 in the
simulation designs with k2 = 8 and n = 100. Notes. The sixteen plots refer to different types of confidence
intervals for β12, with coverage probabilities on the horizontal axis and lengths of the intervals on the
vertical axis. The vertical lines represent three values of the nominal confidence level 1 − α: 90% (red
long-dashed line), 95% (green dashed line), and 99% (blue dash-dotted line). For each level of α we plot
32 points corresponding to the 32 simulation designs in Tables 2 and 3 . The points are marked as triangles
for α = 10%, squares for α = 5%, and circles for α = 1%. The markers are full for the homoskedastic
designs and empty for the heteroskedastic designs

ALASSO performswell for n = 400, but the undercoverage errors of its 90% and 95%
confidence intervals for n = 100 are rather large (−0.19 for α = 10% and −0.08 for
α = 5%). The UN confidence intervals for WALS do not perform well because they
use critical values from the normal distribution and ignore estimation bias. Ignoring
estimation bias is much more important than naively using critical values from the
normal distribution, as shown by first comparing UN and CN intervals (large differ-
ence) and then CN and S intervals (small difference). Obviously to use the correct
critical values is better, but the improvement is very small. Similar conclusions are
obtained when looking at higher moments of the bias-corrected WALS estimator of
the focus parameter β12, computed via the simulation-based algorithm discussed in
Appendix B. We find that this estimator is left-skewed and exhibits positive excess
kurtosis, but the deviations from zero are in general very small.

Regarding the interval lengths for our five favouritemethodswe see that for n = 100
the interval lengths in the homoskedastic designs are about 1.7 when α = 10%, 2.1
when α = 5%, and 2.7 when α = 1%; about 12% higher in the heteroskedastic
designs. For n = 400 the interval lengths decrease by about 50%. WALS performs
slightly better than LS-U, but the differences are small and require further investigation
in an extended design.
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Fig. 6 Coverage probability and length of the confidence intervals for the focus parameter β12 in the
simulation designs with k2 = 8 and n = 400. Notes. See Fig. 5
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Fig. 7 Coverage probabilities of confidence interval of β12 in the simulation designs with homoskedastic
normal errors and alternative values of n, k2, ξ , and ρ.Notes. Same as Fig. 4, but on the vertical axis we now
plot the coverage probabilities of the LS-U (red line with triangle), WALS-DS-S (blue line with circle), and
WALS-ML-S (green lines with square) confidence intervals of β12 for the 90%, 95% and 99% confidence
levels
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Fig. 8 Relative lengths of the 95% confidence interval of β12 in the simulation designs with homoskedastic
normal errors and alternative values of n, k2, ξ , and ρ. Notes. Same as Fig. 4, but on the vertical axis we
now plot the relative lengths of the 95% WALS-DS-S and WALS-ML-S confidence intervals of β12 (i.e.
LS-U divided by WALS-DS-S and LS-U divided by WALS-ML-S)

In the extended design defined in the Sect. 5 we consider only the classical LS-U
confidence interval and the two simulation-basedWALS confidence intervals, WALS-
DS-S and WALS-ML-S, based on the plug-in DS and ML estimators of the bias of
the posterior mean in the normal location model. 4 The coverage probabilities of the
three methods (LS-U, WALS-DS-S, WALS-ML-S) are compared in Fig. 7 for the
90%, 95% and 99% confidence levels. The coverage errors of the three methods are
in general small. In the 128 simulation designs considered in our second Monte Carlo
experiment they are always smaller than 0.03 in absolute value and they are more
often positive (overcoverage) than negative (undercoverage). The fact that WALS-
DS-S yields slightly larger coverage errors than WALS-ML-S is consistent with the
finite-sample properties of the underlying plug-in estimators of the bias of the posterior
mean in the normal location model. Specifically, under the Laplace prior, the plug-
in DS estimator of the bias of the posterior mean has always a larger bias than the
plug-in ML estimator. We also find that the absolute value of the coverage errors for
WALS-DS-S increases with α, reaching a maximum of 0.006 when α = 1%, 0.018
when α = 5%, and 0.028 when α = 10%.

Fig. 8 shows the relative length of the confidence intervals: LS-U divided byWALS-
DS-S and LS-U divided by WALS-ML-S. We only present results for the 95% level
since they are indistinguishable from those for the 90% and 99% levels. For all cases

4 The centered-and-naive results for WALS-DS-CN and WALS-ML-CN are again very close to those
obtained with the simulation-based approach.
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we find that the simulation-based WALS confidence intervals are always smaller than
the classical LS-U confidence intervals, even when the LS-U estimator dominates
the WALS estimator in terms of MSE. The average length reduction with respect to
classical LS-U confidence intervals is about 1.8% forWALS-ML-S and about 5.4% for
WALS-DS-S. This result agrees with the fact that, although more biased, the plug-in
DS estimator of the bias of the posterior mean has better MSE performance than the
plug-in ML estimator, at least for small or moderate values of the location parameter.

The relative gains ofWALSonLS-U in terms of confidence interval length aremuch
smaller than those in terms ofMSEobtained for the point estimators,which agreeswith
the findings of Kabaila and Leeb (2006) and Wang and Zhou (2013) for other model
averaging approaches to inference. A possible explanation is the randomness of the
estimated bias. We have seen that re-centering based on the bias-corrected estimator
is important to obtain small coverage errors. However, correcting for bias increases
sampling variability, which is reflected in the length of the confidence interval.

7 Monte Carlo Results: Prediction Intervals

Finally we consider the problem of predicting a single observation y f from model (1)
and covariate vector x f = (x′

1 f , x
′
2 f )

′, that is,

y f = x′
f β + ε f = x′

1 f β1 + x′
2 f β2 + ε f ,

where ε and ε f are independent of each other and jointly normally distributed with
zero means and variances V[ε] = σ 2 In and V[ε f ] = σ 2. If ̂β1 and ̂β2 denote the
WALS estimators of β1 and β2, then the WALS predictor of y f is defined as

ŷ f = x′
1 f

̂β1 + x′
2 f

̂β2,

and its prediction error is

ŷ f − y f = x′
1 f (

̂β1 − β1) + x′
2 f (

̂β2 − β2) − ε f .

Because of (9), the WALS predictor of y f may be viewed as a weighted average of
the predictors from all 2k2 models in the model space. We are interested in construct-
ing prediction intervals for E[y f ] = x′

1 f β1 + x′
2 f β2. Unlike the confidence intervals

described in Sect. 3, these prediction intervals require dealingwith the sampling uncer-
tainty on all model parameters, focus and auxiliary.

We consider two variants ofWALS prediction intervals. The first, which we call the
naive approach, starts from the bias-correctedWALS estimator β̌ = ̂β−b(̂β) and then
constructs a symmetric prediction interval with nominal coverage probability 1 − α:

x′
f β̌ − z1−α/2

√

x′
f V̌ x f < E[y f ] < x′

f β̌ + z1−α/2

√

x′
f V̌ x f ,
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Fig. 9 Efficiency of the WALS predictor of E[y f ] relative to the LS-U predictor in the simulation designs
with homoskedastic normal errors under alternative values of n, k2, ξ , and ρ. Notes. Same as Fig. 4, but
on the vertical axis we now plot the WALS prediction efficiency (i.e. the ratio between the mean squared
prediction errors of LS-U and WALS)

where V̌ is the Monte Carlo variance of β̌ estimated from B∗, the R × k matrix
containing the replications of the bias-corrected WALS estimator in step (iv) of the
algorithm described in Appendix B. This approach assumes normality of the bias-
corrected WALS estimator, which is why it is called naive. The other, which we call
the simulation-based approach, does not assumenormality of the bias-correctedWALS
estimator and builds the prediction interval directly from the quantiles of the empirical
distribution of the elements of the vector B∗x f . This prediction interval need not be

symmetric around x′
f β̌.

Fig. 9 presents the relative efficiency of the WALS predictor of E[y f ] = x′
f β

relative to theLS-Upredictor in the 128 simulation designswith homoskedastic normal
errors under alternative values of n, k2, ξ , and ρ. In each design, x f is drawn randomly
from a multivariate normal distribution with mean zero and variance σ 2

x �x (ρ) and
then kept fixed for all replications of the same simulation design. Thus, x f changes
with k2 and ρ. The figure has the same format as Fig. 4, except that efficiency is now
measured by the ratio of the mean squared prediction errors (LS-U relative to WALS).
WALS clearly dominates LS-U in all designs, and by an even larger margin than what
we have seen for the focus parameter. As expected, the relative efficiency of WALS
increases with the number of auxiliary parameters in the DGP. The typical profile of
the relative efficiency of the WALS predictor is concave in k2, revealing very large

123



Weighted-average least squares (WALS): Confidence and prediction...

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

(n,ξ,ρ)=(100, 0.5, 0.7) (n,ξ,ρ)=(100, 0.5, 0.3) (n,ξ,ρ)=(100,−0.5, 0.7) (n,ξ,ρ)=(100,−0.5, 0.3)

(n,ξ,ρ)=(200, 0.5, 0.7) (n,ξ,ρ)=(200, 0.5, 0.3) (n,ξ,ρ)=(200,−0.5, 0.7) (n,ξ,ρ)=(200,−0.5, 0.3)

(n,ξ,ρ)=(300, 0.5, 0.7) (n,ξ,ρ)=(300, 0.5, 0.3) (n,ξ,ρ)=(300,−0.5, 0.7) (n,ξ,ρ)=(300,−0.5, 0.3)

(n,ξ,ρ)=(400, 0.5, 0.7) (n,ξ,ρ)=(400, 0.5, 0.3) (n,ξ,ρ)=(400,−0.5, 0.7) (n,ξ,ρ)=(400,−0.5, 0.3)

LS−U WALS−DS−S WALS−ML−S

C
ov

er
ag

e 
pr

ob
ab

ili
tie

s 
of

 p
re

di
ct

io
n 

in
te

rv
al

s

Number of auxiliary coefficients

Fig. 10 Coverage probabilities of prediction interval ofE[y f ] in the simulation designs with homoskedastic
normal errors and alternative values of n, k2, ξ , and ρ.Notes. Same as Fig. 4, but on the vertical axis we now
plot the coverage probabilities of the LS-U (red line with triangle), WALS-DS-S (blue line with circle), and
WALS-ML-S (green lineswith square) prediction intervals for the 90%, 95%and 99%nominal probabilities.

gains when moving from a small number (k2 = 8) to a moderate number (k2 = 24)
of auxiliary parameters.

Fig. 10 shows the actual coverage probabilities of the prediction intervals for LS-U
and WALS for nominal probabilities of 90%, 95%, and 99%. For WALS we only
present the simulation-based intervals, both DS and ML, because the naive prediction
intervals are always very close. This figure is the analog of Fig. 7 and, perhaps not
surprisingly, prediction interval coverage errors are only slightly larger than confidence
interval coverage errors. There is only one design (n = 400, ξ = −0.5, ρ = 0.7) out
of the 128 considered for which the coverage error is sizable (around 6%), and this
coverage error is not much larger than for LS-U in the same design.

Fig. 11 plots the relative lengths of the 95% prediction intervals based on LS-U and
WALS, hence the analog of Fig. 8. The disadvantage of using LS-U is now even more
evident than before. LS-U prediction intervals are 2–3% larger than WALS-ML and
5–10% larger thanWALS-DS. Furthermore, the relative length of the LS-U prediction
intervals, viewed as a function of k2, is concave for all designs, again revealing large
gains when moving from k2 = 8 to k2 = 24.
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Fig. 11 Relative lengths of the 95%prediction interval ofE[y f ] in the simulation designswith homoskedas-
tic normal errors and alternative values of n, k2, ξ , and ρ. Notes. Same as Fig. 4, but on the vertical axis
we now plot the relative lengths of the 95%WALS-DS-S and WALS-ML-S prediction intervals (i.e. LS-U
divided by WALS-DS-S and LS-U divided by WALS-ML-S)

8 Conclusions

In this paper we extend the theory of WALS estimation to inference by proposing
a simulation-based method for confidence and prediction intervals. To highlight the
properties ofWALS and put them in perspective we also consider its main competitors.
We discuss both confidence intervals for a focus parameter and prediction intervals
for the outcome of interest by an extensive set of Monte Carlo experiments that allow
for increasing complexity of the model space and include heteroskedastic, skewed,
and thick-tailed error distributions.

In the homoskedastic case the dominating estimator is WALS, whose bias is more
than offset by a smaller variance, especially when the sample size is small, thus cap-
turing the essence of model averaging. In the heteroskedastic case, the performance
of all estimators deteriorates but their relative position in terms of MSE changes little.
With a large sample size, the preferred estimator is the unrestricted estimator LS-U,
closely followed by ALASSO and WALS.

Regarding coverage probabilities, we find that LS-U and WALS perform well,
while all other methods are much less accurate. Comparing the length of confidence
intervals, WALS performs slightly better than the LS-U estimator, though differences
are small. Finally, regarding prediction intervals, WALS clearly dominates LS-U. The
relative efficiency of WALS increases with the number k2 of auxiliary parameters and
its typical profile is concave in k2. Coverage errors of prediction intervals are only
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slightly larger than of confidence intervals, and when we compare the relative lengths
of 95% prediction intervals based on LS-U and WALS the dominance of WALS is
even stronger.

Post-selection/averaging inference is a challenging issue, which is likely to play a
prominent role in future developments and applications of model selection/averaging
techniques. In addition to estimating the coefficients of interest accurately, many eco-
nomic problems require us to evaluate the precision of the estimated relationships and
their statistical significance. Our new methods for WALS confidence and prediction
intervals provide an easy, accurate, and computational convenient solution for these
difficult tasks. For the latest set of Stata, R, and Python routines coveringWALS infer-
ence of (univariate) generalized linearmodels (linear, logistic and Poisson regressions)
we refer the reader to De Luca et al. (2022).
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Appendix A: The Nine Estimators

In this appendix, we formalize the nine estimators which were introduced in Sect. 2
and listed in Table 1.

Least squares (LS). The LS-U estimator of β = (β ′
1,β

′
2)

′ is ̂βu = (X ′X)−1X ′ y and
the LS-R estimator iŝβr = (̂β

′
1,r , 0

′)′, wherêβ1,r = (X ′
1X1)

−1X ′
1 y.

Post-selection estimators based on information criteria. Suppose that, after preorder-
ing, the pth model (p = 0, 1, . . . , k2) has k1 focus regressors and p auxiliary
regressors. Assume that the underlying error is homoskedastic and let σ̂ 2

p = y′M∗
p y/n

be the maximum likelihood (ML) estimator of its variance, where

M∗
p = In − X∗

p(X
∗′
p X

∗
p)

−1X∗′
p (5)
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is the usual idempotent matrix in model p, In is the identity matrix of order n, and
X∗

p = (X1, X2,p) is the matrix containing the first k1 + p regressors. The AIC for
model p is

AICp = n log(̂σ 2
p) + 2(k1 + p)

and the BIC is

BICp = n log(̂σ 2
p) + (log n)(k1 + p).

The IC-A and IC-B estimators are the LS estimators in the models with the lowest
value of AICp and BICp respectively.

Adaptive LASSO (ALASSO). This estimator solves the optimization problem

min
β

(

( y − Xβ)′( y − Xβ) +
k

∑

l=1

ψl,n|βl |
)

,

where βl is the lth component of β and the weightψl,n = ψn/
̂β2
l,u depends on a tuning

penalty parameter ψn selected by generalized cross-validation and the lth component
̂βl,u of̂βu .

Mallows model averaging (MMA). To reduce the computational burden this estimator
is typically based on preordering. Letting s2u be the unbiased LS estimator of σ 2 in
the unrestricted model and M∗(w) = ∑k2

p=0 wpM∗
p, where M∗

p is defined in (5), the
MMA weights are obtained by solving

min
w

⎛

⎝ y′M∗′
(w)M∗(w) y + 2s2u

k2
∑

p=0

wp(k1 + p)

⎞

⎠

subject to
∑

p wp = 1 and 0 ≤ wp ≤ 1 for all p. Denoting the optimal weights by
ŵ = (ŵ0, . . . , ŵk2

), the MMA estimator takes the form

̂βMMA =
k2

∑

p=0

ŵp(X∗′
p X

∗
p)

−1X∗′
p y. (6)

Jackknife model averaging (JMA). Let D p be the diagonal matrix containing the
diagonal elements of M∗

p on its diagonal and zeros elsewhere and define M†(w) =
∑k2

p=0 wpD−1
p M∗

p.
5 Then the JMA weights are obtained by solving

min
w

(

y′M†′
(w)M†(w) y

)

(7)

5 To ensure nonsingularity of Dp we must add the requirement that the i th unit vector in R
n (the vector

whose i th component is 1 and all other components are 0) does not lie in the column space of X for any i .
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subject to
∑

p wp = 1 and 0 ≤ wp ≤ 1 for all p. The modified JMA (JMA-M)
estimator is defined by weights that solve

min
w

⎛

⎝ y′M†′
(w)M†(w) y + ψn

k2
∑

p=0

wp(k1 + p)

⎞

⎠ (8)

subject to the same constraints as in (7), where the tuning parameter ψn is set equal to
log n. The JMA and JMA-M estimators take the same form as (6) where ŵp is given
by the solution of (7) and (8), respectively.

Weighted-average least squares (WALS). We first transform X2 and β2 by defining
Z2 = X2�2�

−1/2 and γ 2 = �1/2�−1
2 β2, where �2 is a diagonal k2 × k2 matrix

such that all diagonal elements of � = �2X
′
2M1X2�2 are equal to one and M1 =

In − X1(X
′
1X1)

−1X ′
1. We also rescale X1 and β1 by defining Z1 = X1�1 and

γ 1 = �−1
1 β1, where �1 is a diagonal k1 × k1 matrix such that all diagonal elements

of Z′
1Z1 are equal to one. The equivalence between models (1) and (3) follows from

the fact that Z1γ 1 = X1β1 and Z2γ 2 = X2β2. In addition, the transformations
ensure that Z′

2M1Z2 = Ik2
.

Averaging the LS estimators γ̂ 1 j and γ̂ 2 j over the J = 2k2 models in the model
space gives the WALS estimators

γ̂ 1 =
J

∑

j=1

λ j γ̂ 1 j = γ̂ 1,r − QW γ̂ 2,u, γ̂ 2 =
J

∑

j=1

λ j γ̂ 2 j = W γ̂ 2,u, (9)

where the λ j = λ j (γ̂ 2,u) are nonnegative data-dependent model weights that add up

to one, γ̂ 1,r = (Z′
1Z1)

−1Z′
1 y is the LS-R estimator of γ 1, γ̂ 2,u = Z′

2M1 y is the LS-U
estimator of γ 2, Q = (Z′

1Z1)
−1Z′

1Z2, W = ∑

j λ j (Ik2
− S j S

′
j ), S j is a k2 × r j

selection matrix of rank 0 ≤ r j ≤ k2 (that is, S
′
j = [Ir j : 0] or a column-permutation

thereof), and r j is the number of exclusion restrictions implied by model j .
The results in (9) show that the dependence of γ̂ 1 and γ̂ 2 on the estimators from all

the available models is completely captured by the random diagonal matrixW , whose
k2 diagonal elements wh are partial sums of the λ j . Since 0 ≤ wh ≤ 1, this implies
that the components of γ̂ 2 in (9) are shrinkage estimators of the components of γ 2.
The assumption that ε ∼ N (0, σ 2 In) implies that γ̂ 2,u ∼ N (γ 2, σ

2 Ik2
). Hence, if

we restrict each wh to depend only on the hth component of γ̂ 2,u , the components of
γ̂ 2 will also be independent.

If we again treat the error variance σ 2 as known and equal to its unbiased LS
estimator s2u , it follows that the k2-vector of t-ratios x = γ̂ 2,u/su is distributed as
N (η, Ik2

), where η = γ 2/σu is the k2-vector of ‘theoretical’ t-ratios. The individual
components xh of x are therefore independently distributed as N (ηh, 1). As for the
prior information on the vectorη,we assume that its components are i.i.d.with a density
that is symmetric around zero, positive and nonincreasing on (0,∞), differentiable
(except possibly at 0), and satisfies the ‘neutrality condition’ P[|ηh | < 1] = 1/2.
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Given the normal location model for xh and the chosen prior for ηh , the Bayesian
approach yields the posterior mean mh = m(xh) as the estimator of ηh . The WALS
estimators of γ 1 and γ 2 then take the form

γ̂ 1 = γ̂ 1,r − Qγ̂ 2, γ̂ 2 = sum,

with m = (m1, . . . ,mk2)
′, and the WALS estimators of β1 and β2 are

̂β1 = �1γ̂ 1,
̂β2 = �2�

−1/2γ̂ 2. (10)

Appendix B: Algorithm for Simulation-Based WALS Confidence Inter-
vals

Let x = γ̂ 2,u/su = (x1, . . . , xk2)
′ be the k2-vector of t-ratios from the unre-

stricted model and η̂ = (̂η1, . . . , η̂k2)
′ an estimator of the k2-vector of parameters

η = (η1, . . . , ηk2)
′ in the multivariate normal location model x ∼ N (η, Ik2).

The simulation-based WALS confidence intervals for β = (β ′
1,β

′
2)

′ are obtained
by the following five-step algorithm:

(i) Compute η̂ and use its generic element η̂h to generate the R-vectors x∗
h =

(x∗
1h, . . . , x

∗
Rh)

′ of independent pseudo-random draws from the N (̂ηh, 1) dis-
tribution.

(ii) Compute the R×k2 matrix M̌
∗
of pseudo-random draws for the bias-corrected

posterior means with generic element

m̌∗
rh = m∗

rh − δ∗
rh (r = 1, . . . , R; h = 1, . . . , k2),

where m∗
rh = m(x∗

rh) is the posterior mean evaluated at x∗
rh and δ∗

rh is either
the plug-in ML estimator δ(x∗

rh) or the plug-in DS estimator δ(m∗
rh) of the bias

of m∗
rh .

(iii) Generate the R × k1 matrix B∗
1r of independent pseudo-random draws from

the distribution N (̂β1r , V 1r ), where

̂β1,r = �1(Z
′
1Z1)

−1Z′
1 y, V 1r = s2u�1(Z

′
1Z1)

−1�1

are the LS-R estimate of β1 in the fully restricted model and its estimated
variance matrix, respectively.

(iv) Compute the R × k matrix B̌
∗ = (B̌

∗
1, B̌

∗
2) of pseudo-random draws for the

bias-corrected WALS estimator β̌ = (β̌
′
1, β̌

′
2)

′ of β, where

B̌
∗
1 = B∗

1r − su M̌
∗
Z′
2Z1(Z′

1Z1)
−1�1, B̌

∗
2 = su M̌

∗
�−1/2�2.

(v) Compute the (1−α)-level confidence interval for the generic component βl ofβ
(l = 1, . . . , k) as [q∗

l (α/2), q∗
l (1−α/2)], where q∗

l (α/2) and q∗
l (1−α/2) are,
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respectively, the α/2 and (1− α/2) empirical percentiles of the R replications
corresponding to the lth column b̌

∗
l of B̌

∗
.

Remark 1 To achieve good performance in terms of coverage probabilities, the initial
estimator η̂ in the first step of the algorithm must be (approximately) unbiased for η.
This leaves us three possible choices: (i) theML estimator x, (ii) the DS bias-corrected
posteriormeanm(x)−δ(m(x)), and (iii) theMLbias-corrected posteriormeanm(x)−
δ(x). In our experience, the differences between these three estimators are small. In
the simulations, we use (ii) for the WALS-DS-S confidence intervals and (iii) for the
WALS-ML-S confidence intervals. The main difference between these two methods
is the choice of the plug-in estimator for the bias of the posterior mean in the second
stage of the algorithm, namely δ(m∗

rh) for WALS-DS-S or δ(x∗
rh) for WALS-ML-S.

Remark 2 Like inother parametric bootstrap approaches, our simulation-basedmethod
ignores uncertainty causedby randomness of the regressors. Thus, as typically assumed
in the WALS theory for point estimation, we treat the regressors as fixed.

Remark 3 An important difference with the MMA-S and JMA-S confidence intervals
proposed by Zhang and Liu (2019) is that they simulate from the limiting distribution
of the model averaging estimator, while in the simulation-based WALS algorithm we
don’t. TheWALS confidence intervals are based on the finite-sample properties of the
plug-in estimators of the frequentist bias of the posterior mean in the normal location
model (De Luca et al. 2021).

Remark 4 The R × k matrix B̌
∗
of Monte Carlo replications obtained from step (iv)

of the algorithm can be used to estimate any aspect of the sampling distribution of the
bias-corrected WALS estimator. For example, we use it to compute the standard error
of β̌l in the CN method for confidence intervals, and the complete variance matrix of
β̌ in the naive approach to prediction intervals.

Remark 5 Our algorithm is very fast, especially with the Laplace prior. For example,
in applications with n = 400 observations and k2 = 40 auxiliary regressors, we can
compute point estimates, their estimated moments, and confidence intervals for all
parameters based on 100,000 Monte Carlo replications in about 3.5 seconds by using
a workstation with one Intel(R) Core(TM) i7-4790 CPU/3.60 GHz processor and 32
GB of RAM.
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