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A B S T R A C T   

Ultrasonic testing has been used for material analysis and inspection since 1930′s. Nevertheless, the applicability 
of ultrasonic waves to new complex cases is still growing, thanks to the availability of powerful electronics and 
software. However, the complication that slows down the deployment of ultrasonic inspection to geometric 
complex parts and structures arises from the wave refraction phenomenon. A clear understanding of the ultra-
sound wave propagation, impacted by refractions, is crucial to interpret the data obtained from the inspection of 
multi-layered/multi-medium test subjects as it is not always possible to assume that mechanical waves travel in 
straight lines. This work presents suitable approaches for solving the ray-tracing problem in multi-layered 
structures. Accurate benchmarking shows that the use of the Newton-Raphson root-finding method allows a 
threefold reduction of the computation time, when compared to the bisection-based root-finding methods. An 
effective combination of the Newton-Raphson methods with bisection-type iterations is also proposed and dis-
cussed. Although the work repeatedly refers to the field of ultrasonic inspection, the presented findings are 
relevant and applicable to areas beyond material inspection.   

1. Introduction 

The propagation of ultrasonic waves has been used for material in-
spection and characterization for many decades and ultrasonic testing 
(UT) has become one of the most established non-destructive testing 
methods. Very short ultrasonic pulse-waves are normally transmitted 
into manufactured parts, components, and systems, to detect disconti-
nuities and to characterize material properties based on the information 
contained in the received echoes. Many industrial sectors use ultrasonic 
testing to inspect components made of natural (e.g. wood), metallic, 
plastic and composite materials [1–5]. In medical diagnostics, ultrasonic 
echography is greatly used to obtain non-invasive examination of 
human and/or animal tissues. Whereas, the UT inspection of flat com-
ponents is typically unproblematic, the ultrasonic assessment of speci-
mens with curved surfaces, such as aerofoils, weld-caps, pipes, and other 
complex structures of this type can be difficult and necessitates bespoke 
approaches. High frequency pressure waves generated by ultrasound 
transducers are strongly attenuated when they travel through air gaps; 
therefore, conventionally, coupling liquids and/or solid wedges, 

designed to match the shape of the components, are used to couple the 
ultrasonic transducer with the part under inspection [6–8]. Seeking 
advanced research solutions to the inspection of components with 
curved surfaces has been the focus of several works, which have pro-
posed ways to couple the ultrasonic transducers with complex shaped 
components. From these possible solutions, including the deployment of 
flexible coupling material layer between the transducer and the part that 
conforms to the surface of the part [9], and the placement of the 
transducer on a nearby planar surface to reach the region of interest 
from the side either directly [10] or by using the waves reflected from 
the back wall of the component [11] can be named. Besides the need to 
address the coupling problem, the inspection of parts with curved ge-
ometries introduces great complications due to wave refraction. The 
ultrasonic signals acquired during the inspection phase are required to 
be processed to extract the information corresponding to the material 
properties and/or to the location and size of any potential flaws. Un-
fortunately, due to the wave refraction at the interface of two adjacent 
layers with different material properties it is not possible to assume 
mechanical waves travel in a straight line through multiple materials. 
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This problem has been tackled by previous works, through the investi-
gation of different ways to compute the ultrasonic ray paths [12–14]. 
The RAYTRAIM method allows numerical discrete solution of the ray- 
tracing in anisotropic inhomogeneous elastic materials [15,16]. One 
solution consists of using the Fast-Marching Method (FMM) combined 
with Fermat’s principle. It considers the domain of interest as a grid of 
connected points, and then uses Dijkstra’s algorithm [17]. Tant et al. 
[18] extended FMM to heterogeneous materials, where each region can 
be anisotropic. A recent work by the authors of the present paper 
introduced a generalized analytic iterative method for the computation 
of ultrasonic ray paths when the ultrasonic source and target are sepa-
rated by multiple complex material interfaces in the two and three- 
dimensional domains [19]. That was based on the iterative bisection 
root-finding algorithm. Despite the general applicability of this iterative 
method, further investigations highlighted that the solutions are 
reached after lengthier computations when compared to other appli-
cable mathematical models. The present work aims to alleviate the 
lengthy computational time of the previous work through the develop-
ment and testing of new optimized iterative solvers to achieve reduced 
solution time for ray tracing across several material interfaces. 
Throughout this paper, the assumption is that each interface between 
two material layers is described by a continuous and differentiable 
function, with a local radius of curvature that is greater than the 
wavelength of the mechanical wave. The interface curves are also sup-
posed to not intersect, meaning that the ray always impinges on the ith 

interface curve before intersecting the (i + 1)th interface. Under these 
conditions, a ray-based approach is valid and the wave propagation 
problem and its transmission across interfaces can be modelled through 
computing the correct ray path between source positions and target 
within the component. This work presents faster methods, based on the 
well-known classical Newton-Raphson root-finding algorithm, which 
can be readily employed to efficiently solve the ray-tracing problem in 
the two-dimensional domain. The manuscript starts with a description of 
the bisection method and of the Newton-Raphson method, in Section 2. 
Then, Section 3 explains how both methods can be utilized to compute 
the ultrasonic path in parts with multiple material layers, which are 
separated by curved interfaces. Crucially, a novel formulation for the 
definition of the initial guess interval (for bisection-based methods) and 
of the initial guess of the root (for Newton-based methods) and a 
rationale for the choice of suitable criteria to stop the iteration of the 
calculus is introduced. Section 4 presents the implementation and the 
performance assessment of the proposed method and of various variants, 
through quantitative comparisons with the existing approach, high-
lighting advantages and limitations. Section 5 provides the conclusions 
of this work and the future prospects. 

2. Iterative root-finding methods 

The iteration of specific computations is at the core of all root-finding 
algorithms. Each iterative root-finding method generally uses a 
distinctive type of computation. Typically, an auxiliary function (also 
referred to as objective function) is defined and iteratively used to get 
progressively better approximations of the root. The iterations stop 
when a fixed point (up to the desired precision) of the auxiliary function 
is reached, that is when the newly computed value is sufficiently close to 
the preceding ones, satisfying the error bounds stated by the user. This 
work models the ray tracing problem for the application of the bisection 
method and of the Newton-Raphson method, comparing the perfor-
mance of the two methods. The first is the simplest and the most robust 
root-finding algorithm, but its convergence speed versus time shows a 
linear behaviour. The latter is faster, achieving a quadratic convergence 
speed. This work also highlights the applicability of hybrid methods, 
consisting of the combination of the Newton-Raphson method with the 
bisection method. 

2.1. Bisection method 

The bisection method applies to any continuous function for which 
two values with opposite signs are known [20]. The method consists of 
iteratively bisecting the interval bounded by these values and then 
successively selecting the subintervals in which the function changes 
sign and, therefore, must contain a root until a root estimation closer 
that the predefined error is reached. The method is applicable to solve 
the equation f(x) = 0 numerically for the real variable x, where f(x) is a 
continuous function defined on an interval [a, b] and where f(a) and f(b)
have opposite signs. In this case, a and b are said to bracket a root since, 
by the intermediate value theorem, the continuous function f(x) must 
have at least one root in the interval (a, b). The interval halving method 
is an iterative method. At each iteration the method divides the interval 
in two by computing the midpoint, c = (a+b)/2, of the interval and the 
value of the function f(c). Unless c itself is a root (which is very unlikely, 
but possible), there are only two possibilities: I. either f(a) and f(c) have 
opposite signs and bracket a root, or II. f(c) and f(b) have opposite signs 
and bracket a root. The method selects the subinterval that is guaranteed 
to be a bracket as the new interval to be used in the next iteration. 
Explicitly, if case I occurs, then the method sets c as the new value for b, 
and if II becomes correct, then the method sets c as the new a. In both 
cases, the new f(a) and f(b) have opposite signs, so the method is 
applicable to this smaller interval. In this way, the interval that contains 
a zero of f(x) is reduced in width by 50% at each iteration. The process is 
continued until the interval is sufficiently small or if f(c) = 0. Then c is 
taken as the root of the function and the process stops. The bisection 
method is easily applicable to the ray-tracing problem by estimating the 
interval of the incidence angle that is expected to contain the optimum 
incidence angle value, for the first layer. Then, starting from an initial 
guess value for the first incidence angle (the mean value of the interval), 
the ultrasonic ray is propagated through all material layers. A new 
subinterval, to be used for the next iteration of the method, is selected 
according to the entity and the sign of the deviation between the posi-
tion reached by the ray and the position of the target point at the last 
layer. The iterations stop as soon as the deviation result becomes lower 
than a set maximum acceptable value. This approach was demonstrated 
in [19], for two dimensional and three-dimensional domains. 

2.2. Newton-Raphson method 

The Newton–Raphson method, named after Isaac Newton and Jo-
seph Raphson [21], is a root-finding algorithm that produces a succes-
sively better approximation of the root (or zero) of a real-valued 
function f(x) [22]. Having f ’(x) as the derivative function and x0 as the 
initial guess for the root, the method suggests that x1 = x0 −

f(x0)
f ’(x0)

is a 
better approximation of the root than x0. Geometrically, (x1, 0) is the 
intersection of the x-axis and the tangent to the function at (x0, f(x0)). 
Therefore, the improved guess is the unique root of the linear approxi-
mation at the initial point. The process is repeated iteratively until the 
root is sufficiently accurately estimated, after the jth iteration through 
the formula: 

xj+1 = xj −
f
(
xj
)

f ’
(
xj
) (1) 

The main advantage of the method is that it can be readily gener-
alized to higher-dimensional problems where it can be extended to 
systems of equations, with n equations and unknown variables. The 
generalized form of the Newton-Raphson method for solving a system of 
equations, with x for the vector of unknown variables, x = (x1,x2,⋯,xn), 
and with g(x) for the vector of functions, can be formulated as: 
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xj+1 = xj − g
(
xj
)
⋅J
(
xj
)− 1

= xj − g
(
xj
)
⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂g1
(
xj
)

∂x1

∂g1(xj)
∂x2

⋯ ∂g1(xj)
∂xn

∂g2
(
xj
)

∂x1

∂g2(xj)
∂x2

⋯ ∂g2(xj)
∂xn

⋮ ⋮ ⋱ ⋮
∂gn
(
xj
)

∂x1

∂gn(xj)
∂x2

⋯ ∂gn(xj)
∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

(2)  

where J is the Jacobian matrix of g(x). 

3. Problem modelling 

Perfectly flat interfaces are only a theoretical abstraction since real 
interfaces always present some degree of roughness and deviation from 
flatness. Moreover, intentionally curved material interfaces are often 
present in parts that are designed to meet critical mechanical properties. 
In order to use the bisection and the Newton-Raphson root-finding 
methods to compute the optimum ultrasonic ray-path, a suitable set of 
equations is defined in this work. 

Fig. 1 shows the schematic representation of an ultrasonic ray that 
travels through four material layers, which are connected through three 
curved interfaces. Taking fi(x) as the function that describes the inter-
face between the ith and the (i + 1)th material layer, it is possible to write 
the following n valid equations, for the generic case with n layers and n-1 
interfaces: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Px
1 = Sx +

[
Sy − f1

(
Px

1

) ]
⋅tan(θ1)

Px
2 = Px

1 +
[
f1
(
Px

1

)
− f2

(
Px

2

) ]
⋅tan(θ2)

⋯
Px

i = Px
i− 1 +

[
fi− 1
(
Px

i− 1

)
− fi
(
Px

i

) ]
⋅tan(θi)

⋯
Px

n− 1 = Px
n− 2 +

[
fn− 2
(
Px

n− 2

)
− fn− 1

(
Px

n− 1

) ]
⋅tan(θn− 1)

Tx = Px
n− 1 +

[
fn− 1
(
Px

n− 1

)
− Ty ]⋅tan(θn)

(3)  

where S ≡ (Sx, Sy) and T ≡ (Tx,Ty) are, respectively, the source and the 
target points and Pi ≡

(
Px

i ,P
y
i
)

is the point of incidence with the interface 
fi(x). θi is the angle the ultrasonic ray forms with the vertical direction 
(the y-axis) in the ith layer. 

Fig. 1b schematically illustrates the relationship between θi, θi+1, αi 
and αi+1, where αi is the incidence angle with respect to the interface 
normal at incidence point Pi on the ith interface and αi+1 is the respective 
refraction angle. The relationship between these latter angles of αi and 
αi+1 are described by the Snell’s law which is conventionally stated in 
the form of the following equation: 

sinαi

vi
=

sinαi+1

vi+1
(4)  

where vi and vi+1 are the speed of sound/ultrasound propagation for the 
ith and (i + 1)th material layers, respectively. From Fig. 1b, it is clear that: 

αi = θi − atan
(
f ’
i

(
Px

i

) )
(5)  

αi+1 = θi+1 − atan
(
f ’
i

(
Px

i

) )
(6) 

Replacing Eqs. (5) and (6) in Eq. (4) and reordering, it results: 

θi+1 = asin
{(

vi+1

vi

)

⋅sin
[
θi − atan

(
f ’

i

(
Px

i

) ) ]
}

+ atan
(
f ’

i

(
Px

i

) )
(7) 

Therefore, it is easy to understand that n-1 additional equations, 
describing the dependence of every refraction angle on the originating 
incidence angle and the relative point of incidence at the interface, can 
be appended to the equations in Eq. (3). Thereby, the generalized form 
for the case with n material layers has a system of equations consisting of 
2n-1 equations and the same number of unknown values 
(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
. Making the elements of the vector function g(x)

explicit and defining the vector of the unknown values as x =
(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
, it results:  

Fig. 1. Annotated ray path travelling through multiple material layers separated by curved interfaces (a) and illustration of relevant angles at the ith incidence point 
(Pi) on the ith interface (b) [19]. 
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3.1. Application of the bisection method 

The ultrasonic ray is propagated through all material layers in the 
bisection method by making an initial guess for the interval of the first 
incidence angle and then, choosing the mean value of the interval as an 
initial approximation of the first incidence angle. This is done by solving 
the subsystems consisting of two equations, gi(x) = 0 and gn+i(x) = 0, 
with 1 ≤ i ≤ (n − 1), sequentially. The solution of the ith subsystem al-
lows computing the incidence point Px

i with the ith material layer 
interface and the refraction angle at that interface θi+1, which are 
inserted in the two equations of the next (i + 1)th subsystem. Eventually, 
the resulting values of Px

n− 1 and θn are inserted in the last unused func-
tion, gn(x), which gives the deviation between the target point and the 
point reached by the ray path on the horizontal line for the target. 
Therefore, the deviation from the target is used to determine a new 
subinterval to be used for the next iteration of the method. Furthermore, 
given that a new approximation of the ultrasonic path becomes available 
at the end of the calculations of each iteration of the algorithm, it is 
possible to choose suitable criteria to stop the iterations. For example, 
one could use the aforementioned deviation, given by the function gn(x), 
to stop the iterations as soon as such deviation result is lower than a set 
maximum acceptable value. However, this is not always the most effi-
cient approach as it will be explained in Section 3.3. 

It should be noted that, generally, the interface functions (f1(x),⋯,

fn− 1(x)) are not linear. This may lead to nonlinear subsystems, which 
also require approximation methods to be solved. Therefore, there must 

be another approximation algorithm nested within the primary bisec-
tion algorithm. To assess the performance of different approaches, both 
the bisection and the Newton-Raphson (N-R) methods were used as the 
secondary approximation algorithm in this work. In the first case, the 

ray-tracing problem is herein said to be solved through a pure “bisection 
method”. In the latter case, the approximation algorithm is referred to as 
“bisection with nested N-R” in the text. 

3.2. Application of the Newton-Raphson method 

Assuming to have an initial guess for the vector of the unknown 
values, x0 =

(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
, the Newton-Raphson method can 

be applied to approximate the solution of the system of equations given 
in Eq. (8). The formula in Eq. (2) is used iteratively to refine the 
approximation of the solution. Although it is anticipated that the 
method reduces the number of iterations required to reach a solution at 
a given precision as compared to the bisection method, k2 partial de-
rivatives of the system functions should be computed to construct the 
Jacobian matrix, where k is the number of functions in the multi- 
variable system. Furthermore, the method needs to calculate the in-
verse Jacobian matrix at every iteration, which is a computationally 
expensive operation to perform for large matrices. 

Looking at the system in Eq. (8), an attentive reader will notice that it 
is possible to reduce the number of functions. Indeed, the refraction an-
gles (θ2,⋯,θn) are not independent variables. Writing θ2 as a function of θ1 
from gn+1(x) and replacing it in gn+2(x), it is possible to extract θ3 as a 
function of θ1. Likewise, replacing θ3 in gn+3(x), it is possible to extract θ4 
as a function of θ1. Finally, by progressing with replacing θi as a function 
of θ1, obtained from gn+i− 1(x), into gn+i(x), all angles can be expressed as 
functions of the first incidence angle θ1. This is formally giving: 

Replacing these angles, expressed as functions of θ1, in the system 
given in Eq. (8), it is possible to reduce the number of nonlinear equa-
tions from 2n-1 to n, with n being also the number of independent un-
known values: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1
(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
= Sx − Px

1 +
[
Sy − f1

(
Px

1

) ]
⋅tan(θ1)

g2
(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
= Px

1 − Px
2 +

[
f1
(
Px

1

)
− f2

(
Px

2

) ]
⋅tan(θ2)

⋯
gi
(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
= Px

i− 1 − Px
i +
[
fi− 1
(
Px

i− 1

)
− fi
(
Px

i

) ]
⋅tan(θi)

⋯
gn− 1

(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
= Px

n− 2 − Px
n− 1 +

[
fn− 2
(
Px

n− 2

)
− fn− 1

(
Px

n− 1

) ]
⋅tan(θn− 1)

gn
(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
= Px

n− 1 − Tx +
[
fn− 1
(
Px

n− 1

)
− Ty ]⋅tan(θn)

gn+1
(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
= asin

{
(v2/v1)⋅sin

[
θ1 − atan

(
f ’

1

(
Px

1

) ) ] }
+ atan

(
f ’

1

(
Px

1

) )
− θ2

⋯
g2n− 1

(
Px

1, ⋯, Px
n− 1, θ1,⋯, θn

)
= asin

{
(vn/vn− 1)⋅sin

[
θn− 1 − atan

(
f ’

n− 1

(
Px

n− 1

) ) ] }
+ atan

(
f ’

n− 1

(
Px

n− 1

) )
− θn

(8)   

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2=asin
{(

v2

v1

)

⋅sin
[
θ1 − atan

(
f ’

1

(
Px

1

))]
}

+atan
(
f ’

1

(
Px

1

))

θ3=asin
{(

v3

v2

)

⋅sin
[

asin
{(

v2

v1

)

⋅sin
[
θ1 − atan

(
f ’

1

(
Px

1

))]
}

+atan
(
f ’

1

(
Px

1

))
− atan

(
f ’

2

(
Px

2

))
]}

+atan
(
f ’

2

(
Px

2

))

θ4=asin
{(

v4

v3

)

⋅sin
[

asin
{(

v3

v2

)

⋅sin
[

asin
{(

v2

v1

)

⋅sin
[
θ1 − atan

(
f ’

1

(
Px

1

))]
}

+atan
(
f ’

1

(
Px

1

))
− atan

(
f ’

2

(
Px

2

))
]}

+atan
(
f ’

2

(
Px

2

))
− atan

(
f ’

3

(
Px

3

))
]}

+atan
(
f ’

3

(
Px

3

))

⋯

θn=⋯
(9)   
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This minimises the size of the Jacobian matrix. Nevertheless, 
replacing the refraction angles with their mathematical dependence of 
the first incidence angle in the functions from g2(x) to gn(x), increases 
the length and complexity of those functions and, hence, can neutralize 
the advantage in terms of computation time. This work quantifies the 
performance of the different approaches, by testing the Newton- 
Raphson algorithm with the full system of equations (herein referred 
to as “N-R method”) and the algorithm with the reduced system 
(“Reduced N-R method”). 

3.3. Stopping criteria 

Specific criteria for halting the iterative algorithms should be 
defined, to stop the iteration of the calculus. The traditional approach to 
terminate an iterative root-finding algorithm is to monitor the difference 
between two consecutive approximations of the root and to stop the 
iteration as soon as the modulus of the difference becomes smaller than a 
threshold value. This could be easily done for the bisection method and 
for the Newton-based method, when the objective function has a single 
variable. Calculating the difference between two vectors, for multi- 
variable objective functions, is not straightforward. Indeed, the phys-
ical meaning of the difference of the two vectors is not always clear. For 
example, this is the case for vectors comprised of variables of different 
types (e.g. lengths and angles). As it was mentioned in Section 3.1, the 
deviation of the point reached by the ray path on the horizontal line for 
the target, from the target point, which becomes available at the end of 
each iteration, can be used to determine the input subinterval for the 
next iteration of the bisection method. This deviation is also readily 
computable at the end of each iteration of the Newton-Raphson method. 
Furthermore, it is a direct measure of how far the approximated ray path 
solution is from crossing the target point, its physical meaning is well 
understood and it is always expressed in a unit of length (e.g. milli-
metres, metres, etc). However, using such deviation as a stopping con-
dition is not the only practicable approach. It must be considered that 
mechanical waves are typically generated through the use of physical 
probes. In this work, it has been decided to select the stopping criteria 
among parameters that can be easily controlled in practice. An inspector 
can only position a probe up to a certain level of accuracy either by using 
naked eyes or by seeking help from devices that augment human senses 
(e.g. callipers, goniometers, laser meters, etc). Similarly, a mechanical 
manipulator (e.g. a gantry system or an industrial robotic arm) can only 
achieve a certain positioning accuracy depending on its linear and/or 
angular resolution (stated by the manufacturer). Therefore, it is sensible 
to terminate the iteration of the root-finding algorithms as soon as the 
difference between one or more measurable parameters becomes 
smaller than what a human or a machine can achieve, in terms of 
positioning resolution. Indeed, further iterations would not translate 
into any practical benefit. Noteworthy, mechanical wave rays can also 
be generated using phased array probes [2]. They are an advanced 

method of transmitting/receiving ultrasound waves with a broad range 
of applications in medical imaging and industrial non-destructive 
testing. The beam from a phased array probe can be focused and 
swept electronically without moving the probe, whereas single-element 
(non-phased array) probes, known technically as monolithic probes, 
only can emit a beam in a fixed direction and must be physically moved 
to sweep the beam through a large area of interest. The beam direction 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1 +
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(
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1
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⋅tan(θ1)

g2
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n− 1, θ1

)
= Px

1 − Px
2 +

[
f1
(
Px

1

)
− f2

(
Px

2

) ]
⋅tan
(

asin
{(

v2

v1

)

⋅sin
[
θ1 − atan

(
f ’

1

(
Px

1

) ) ]
}

+ atan
(
f ’

1

(
Px

1

) )
)

⋯

gi
(
Px

1, ⋯, Px
n− 1, θ1

)
= ⋯

⋯

gn− 1
(
Px

1, ⋯, Px
n− 1, θ1

)
= ⋯

gn
(
Px

1, ⋯, Px
n− 1, θ1

)
= ⋯

(10)   

Fig. 2. Limit incidence points and angles for an example with a flat interface 
(a) and with a curved interface (b). 
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and focus are controllable because a phased array probe is made up of 
multiple small elements, each of which can be pulsed individually at a 
computer-calculated timing. In fact, the term “phased” refers to the 
transmit/receive timing, and the term “array” refers to the group of el-
ements. Commercial phased array controllers have a limited temporal 
resolution, which limits the minimum time delay between consecutive 
pulses. The time-difference between the delays is typically of the order 
of nanoseconds [6]. This corresponds to quite high precision calculation 
for ultrasonic non-destructive testing applications, where the wave pe-
riods are most commonly at least 10 times larger, even for a very high 
frequency of 100 MHz. Thus, in this work, it has been decided to 
compute the travelling time of the approximated ray path at the end of 
each iteration of the iterative root-finding algorithm and stop the iter-
ations as soon as the difference between consecutive travelling times 
falls below 1 ns (Δt < 10− 9s). In this work, it was decided to use this 
stringent criterion as stopping condition for all executed tests, whose 
results are discussed in Section 4. 

3.4. Selection of initial guess 

Both the bisection-based and the Newton-based methods require an 
initial guess for the root to be approximated by the iterative algorithms. 
The bisection-based methods also require an interval that is guaranteed 
to bracket the root. Therefore, it is crucial to establish a way to compute 
such preliminary values. The relationships between the angles, given in 
Eq. (9), are used to identify these preliminary values in this work. 
Combining those relationships together with the fact that asin(x) is only 
defined for − 1 ≤ x ≤ 1, it is possible to define a set of inequalities that 
the unknown variables must satisfy:  

Evidently, extrapolating the domain of validity for all unknown 
variables from this set of nonlinear inequalities is not an easy task. For 
this reason, the search of the domain of validity was restricted to the 
incidence angle (θ1), for which obtaining an approximation of the 
domain interval from the first inequality in the set of Eq. (11) can be 
simply calculated and written as:  

It is clear that the extremities of the interval depend on the incidence 
point at the first interface, since the derivative of f1(x) is computed for 
x = Px

1 in Eq. (12). In [19], the intersection between the segment ST and 

the first interface f1(x) was used to guide an initial guess for Px
1. How-

ever, this approach had the disadvantage of leading to a local interval of 
validity for θ1, which was only accurate for the tentative value of Px

1. 
Therefore, the present work proposes a different approach for a more 
robust definition of the interval of validity. This originates from the fact 
that, besides the formulas in Eq. (12), the formula in Eq. (13) is also 
valid, as the P1 is connected with a straight line to S. 

θ1 = atan

(
Px

1 − Sx

Sy − f1
(
Px

1
)

)

(13) 

Hence, putting together Eq. (12) and Eq. (13), it is possible to write 
two equations with a single unknown value (Px,min

1 or Px,max
1 ). Such un-

known values mark the extremities of the interval of validity for the 
incidence point of the ultrasonic ray emitted from S (the source point) 
with the first interface. 

for (v2 > v1): 
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)
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(14) 

Again, since these are non-linear equations, their roots can be 

approximated using the iterative bisection method. Therefore, once the 
approximated values of Px,min

1 and Px,max
1 are available, the relative ex-

tremities of the interval of validity of θ1 can be computed through Eq. 

(13) as: θmin
1 = atan

(
Px,min

1 − Sx

Sy − f1(Px,min
1 )

)

and θmax
1 = atan

(
Px,max

1 − Sx

Sy − f1(Px,max
1 )

)

. The 

geometric significance of this is illustrated in Fig. 2, where the limit 

incidence points and angles are illustrated, for two examples: with a flat 
interface (Fig. 2a) and with a curved interface (Fig. 2b). It is clear that 
the effective domain interval for θ1, which would originate from the 
simultaneous solution of the inequalities in the system given in Eq. (11), 
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may be smaller than the interval 
[
θmin

1 , θmax
1
]
, since additional constraints 

would be applied to θ1. The approach adopted in this work, to refine the 
interval of validity, is based on a modified version of the iterative 
bisection method. It must be noted that the need for defining the initial 
guess (e.g. a search interval for the bisection method and an initial guess 
vector for the Newton-based methods) is the main drawback of all 
iterative root-finding algorithms. The approach proposed in this work is 
deemed to be robust when the layer interfaces are continuous and there 
exists an interval ([a, b]), where the deviation from the target point is 
always a real number. This is the assumption behind the use of the 
herein described approach. When propagating a ray through the bottom 
limit with the first incidence angle θ1 = θmin

1 , the final deviation from the 
target point can be checked to see whether a real number or an imagi-
nary number is obtained. If the former is the case, θmin

1 is confirmed to be 
the true bottom limit. Otherwise, the bottom limit should be found 
somewhere in between θmin

1 and θmax
1 , truncating the interval of validity. 

The same logic applies for identification of the top limit. If the ray 
propagated by the first incidence angle, θ1 = θmax

1 , generates an imagi-
nary number as the final deviation from the target point, the true top 
limit is to be sought between θmin

1 and θmax
1 . 

As described in Section 2.1, the standard bisection method applies to 
any continuous functions for which one knows two values with opposite 
signs. However, it is easily adaptable to the situation where an objective 
function produces a real number at one end and an imaginary number at 
the other end of an interval. In this case, the method is used twice (for 
the bottom limit and the top limit) to repeatedly bisect the interval 

[
θmin

1 ,

θmax
1
]

and to obtain the subinterval [a, b], with θmin
1 ≤ a ≤ b ≤ θmax

1 . The 
extremities of this subinterval are a numerical approximation of the true 
limits of validity for θ1 and are found by iterating the bisection of the 
original interval, 

[
θmin

1 , θmax
1
]
, at least K times, with K being defined 

upfront according to the width of the initial interval, to guarantee a 
given approximation accuracy. For example, if (θmax

1 − θmin
1 ) = π radians 

and it is desirable to guarantee an accuracy of circa 1.19− 7 radians (e.g. 
the distance from 1.0 to the next larger single-precision floating-point 
number, according to the IEEE 754 standard [23]), the minimum 
number of iterations will be K =

⌈
log2

(
π/1.19− 7)⌉ = 25. Once the 

proper interval of validity ([a, b]) is approximated, the bisection method 

starts from the initial guess of the first incidence angle, equal to: θ0
1 =

a+b
2 . In order to compute the initial guess vector for the Newton-based 

methods (x0), the incidence ray striking the first interface with inci-
dence angle θ0

1 is propagated through all layers, computing all subse-
quent incidence points and refraction angles. 

4. Implementation and results 

The algorithms described in the previous section were implemented 
in MATLAB. Fig. 3 illustrates the schematic workflow for the solution of 
the ray-tracing problem, comprising all options investigated in this 
work. 

The links between the blocks of the diagram represent the sequence 
of the operations and the exchange of information. The process starts 

Fig. 3. Ray tracing workflow, with all investigated options.  

Table 1 
Number of iterations to converge to the solution.  

Method n =

2 
n =

4 
n =

8 
n =

16 
n =

32 
n =

64 

Bisection 9 10 11 18 13 14 
Bisection with nested 

N-R 
9 10 11 10 11 14 

N-R 3 NC* NC NC NC 5 
Reduced N-R 3 NC NC NP** NP NP  

* Non-Convergent. 
** Not-Possible. 

Table 2 
Number of iterations to reach convergence in hybrid methods.  

Method Type of 
iteration 

n =

2 
n =

4 
n =

8 
n =

16 
n =

32 
n =

64 

Hybrid N-R Bisection 0 2 2 2 1 0 
N-R 3 4 4 4 4 5 
Total 3 6 6 6 5 5 

Hybrid 
Reduced 
N-R 

Bisection 0 2 2 NP NP NP 
N-R 3 5 4 NP NP NP 
Total 3 7 6 NP NP NP  
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with the preparation of the symbolic system of equations and the rela-
tive symbolic Jacobian matrix (J), shown on the left-hand side of the 
diagram. Then, the full system of equations is used by the blocks on the 
right-hand side of the diagram, which are related to the definition of the 
interval of validity of the first incidence angle and the initial guess. The 
full system of equations, the interval of validity and the initial guess are 
all that is needed to solve the ray-tracing problem through the bisection 
method, the bisection with nested N-R or the N-R method. The Reduced 
N-R method requires also the preparation of the reduced system and its 
Jacobian matrix (JR). The MATLAB-based toolbox developed in this 
work is openly accessible at: https://doi.org/10.5281/zenodo.5026763. 

The execution of all methods was tested through MATLAB 2020b, 
running in a computer with an Intel® i7-6820HQ CPU (2.70 GHz, 4 
Cores) and 32 Gb of Random-Access Memory. The tests aimed at 
measuring the computation time of each method. It was decided to apply 
the bisection method, the bisection with nested N-R, the N-R method and 

the Reduced N-R to solve the ray-tracing problem for an increasing 
number of material layers (n = 2, n = 4, n = 8, n = 16, n = 32 and n =

64). Source (S) and target (T) were kept at constant positions: (0, 0) and 
(20, − 30), respectively. The function fi(Px

i ) of the ith interface was set 
equal to the following trigonometric function: 

fi
(
Px

i

)
= a⋅sin

[
10⋅Px

i + (i − 1)⋅
π
4

]
− i⋅
(

30
n

)

(15) 

with the amplitude (a) of the sinusoidal part being set equal to a =

30/4n. The first layer material was always set to water (at 20̊C), with a 
speed of sound of v1 = 1480m/s. The last layer was always set to 
aluminium (vn = 6320m/s). In the case with four layers, the second 
layer was set to acrylic (Perspex material, v = 2730m/s) and the third 

Fig. 4. Resulting ray paths obtained with bisection (a-e), hybrid N-R (f-j) and hybrid reduced N-R (k-m) for: n = 2, n = 4, n = 8, n = 16 and n = 32.  

Table 3 
Average time taken for the preparation of the symbolic system of equations 
relative to the full system and the reduced system (times are given in 
milliseconds).  

Method n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 

Full system 401 1510 6063 24,321 97,280 401,571 
Reduced system 295 1057 58,125 NP NP NP  

Table 4 
Average execution time of each iteration for every method (times are given in 
milliseconds).  

Method n = 2 n = 4 n = 8 n =

16 
n =

32 
n = 64 

Bisection 134 429 1066 2350 4785 9691 
Bisection with nested 

N-R 
165 515 1259 2753 5640 11,548 

N-R 0.052 0.063 0.104 0.206 0.419 0.970 
Reduced N-R 0.044 0.100 0.643 NP NP NP  
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layer was set to copper (v = 4660m/s). For the cases with more than four 
layers, other three material types are used: tin (v = 3320m/s), steel 4340 
(v = 5850m/s) and brass (v = 4430m/s). Between the first and the last 
layer, the sequence of acrylic, tin, copper, steel 4340 and brass was 
repeated the necessary number of times to fill all layer positions. Table 1 
reports the number of iterations necessary for the proposed methods to 
converge to the solution, with the defined stopping criterion 
(Δt > 10− 9s). As it was expected, the number of iterations for the 
bisection method and the bisection with nested N-R are similar. They are 
equal for n = 2, n = 4, n = 8 and n = 64. Interestingly, the bisection 
with nested N-R converges with 8 fewer iterations for n = 16 and with 2 
less iterations for n = 32. This is thought to be the result of a more ac-
curate estimation of the intersection points between the ray path and the 
interfaces, produced by the nested Newton-based root-finding algo-
rithm, which reduced the propagation of numerical errors in the 
computation. 

The N-R method reaches convergence with fewer iterations than the 
bisection-based algorithms. It solved the ray tracing problem with just 3 
iterations for n = 2 and 5 iterations for n = 64. However, the main 
drawback of the Newton-Raphson method is that it is not guaranteed to 
converge, particularly when the initial guess is not sufficiently close to 
the root of the problem. In fact, the N-R method did not converge for n =

4, n = 8, n = 16 and n = 32. Table 1 reports the acronym “NC” for 
“Non-Convergent”. The Reduced N-R method also reached convergence 
with 3 iterations for n = 2. However, beside not converging for n = 4 

and n = 8, it was not possible to run the method for n = 16, n = 32 and 
n = 64. Table 1 reports the acronym “NP” for “Not-Possible”. The 
inability to run these tests was due to a limit related to symbolic 
computation in MATLAB 2020b. Due to the replacement of the refrac-
tion angles with their mathematical dependence from the first incidence 
angle, into the functions from g2(x) to gn(x), the implementation of 
Reduced N-R method leads to very long functions that reach the limits of 
MALTAB 2020b, which is only able to manage symbolic functions up to 
a certain length. Such length is exceeded for n = 16, n = 32 and n = 64. 

In order to bypass the non-convergence state of the Newton-based 
methods, this work tested the combination of them with the bisection 
method, resulting in a “hybrid N-R method” and in a “hybrid reduced N- 
R method”. This is simply achieved by attempting to use the Newton- 
based computation and checking the values contained in the Jacobian 
matrix and the new estimation of the root at each iteration. If these 
values contain imaginary numbers, the root estimation is replaced with 
that calculated through the bisection-based computation. Therefore, the 
values of the Jacobian matrix and the estimated root at each iteration 
are the basis for deciding whether the iteration should be carried out 
with the Newton-based or the bisection-based computation. Table 2 
reports the number of iterations that were necessary to reach conver-
gence for hybrid methods. 

It is clear that the combination of N-R and Reduced N-R methods 
with the bisection-type iterations allows the hybrid methods to over-
come the non-convergence problem. It was observed that a certain 

Fig. 5. Computation time relative to the preparation of the symbolic system of equations (a) and computation time of each iteration for every method (b).  
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number of bisection-type iterations are used at first to get sufficiently 
close to the root. Then, Newton-type iterations are used to refine the 
approximation of the root until meeting the stopping criteria. 

Fig. 4 illustrates the ray paths computed with bisection, hybrid N-R 
and hybrid reduced N-R method for: n = 2, n = 4, n = 8, n = 16 and n =

32. It can be noted how all methods started solving the ray tracing 
problem from the same initial guess, which was calculated through the 
approach described in Section 3.4. Whereas the intersection point be-
tween the initial guess path and the horizontal line for the target (T) is 
marked with T0, the intersection point corresponding to the approxi-
mation of the ith iteration is marked with Ti (only if sufficiently far from 
the target point, for the sake of graphical clarity). 

Crucially, beside noting the number of iterations necessary to reach 
convergence, this work has also accurately measured the time taken for 
the preparation of the symbolic system of equations relative to the full 
system and the reduced system (see Table 3) and the execution time of 
each iteration for every method (see Table 4). 

The quantitative results reported in Table 3 and Table 4 are illus-
trated in graphical form in Fig. 5a and Fig. 5b, respectively. The dia-
grams are presented with a logarithmic scale for the horizontal and 
vertical axis. It can be noted how the preparation time is typically three 
orders of magnitude larger than the time taken by the single iterations. 
The measured points have been fitted with analytical curves to fully 
investigate the dependence of the computation times from the 
complexity of the problem (the number of material layers). R2 (R- 
squared) quantifies the goodness of the fitted curves, and it is close to 1 
when there is a good correlation between the actual points and the 
points predicted by the fit, which is the case for all the fits presented in 
the diagrams. Therefore, according to Fig. 5a, it is possible to conclude 
that the preparation time of the full system has a linear dependence from 
the number of layers (it increases proportionally). On the other hand, 
the preparation time of the reduced system appears to increase expo-
nentially with respect to the number of material layers. As suggested by 
Fig. 5b plot, whereas the average computation time of each iteration 
increases linearly with the number of layers for the bisection, the 
bisection with nested N-R and the N-R method, the trend is exponential 
for the Reduced N-R method. The bisection with nested N-R does not 
provide any advantage in terms of iteration time, compared to the 
standard bisection method. The computation times of the iterations of 
the N-R method are always at least three orders of magnitude smaller 
than the computation times of the bisection-based methods. Finally, 
solving the ray-tracing problem with the Reduced N-R method may only 
be convenient for a number of material layers smaller than 4, which does 
not make it particularly attractive for complex ray-tracing problems. 

5. Conclusions 

Ultrasound waves have been used for inspecting components, med-
ical diagnosis and analysing materials for many decades. The ultrasound 
wave propagation problems could become complicated when the wave 
impinges an interface between two adjacent different media at an 
oblique angle, which gives rise to wave refraction at that boundary. The 
refraction phenomenon at a boundary is normally described through 
Snell’s law and causes the wave propagation path to deflect from the 
straight travelling line that it follows in a uniform and monolithic ma-
terial domain. Accordingly, the change in the wave path across a 
boundary or several boundaries should be computed and the wave path 
should be traced to be able to account for it in the interpretation of data 
obtained from ultrasonic inspections. To this end, the present work 
investigated approaches based on iterative root-finding algorithms, 
suitable for solving the ray-tracing problem in multi-layered structures. 
For this purpose, the work introduced a new pivotal formulation for the 
definition of the initial guess interval (for bisection-based methods) and 
of the initial guess of the root (for Newton-based methods) and a 
rationale for the choice of suitable criteria to stop the iteration of the 

calculus. This novel approach used for making the best initial guess has 
proved to be a key step in reaching a solution using any of the ray- 
tracing methods investigated here. The presented findings are relevant 
for areas beyond material inspection and have the potential to be 
deployed within applications involving any kind of wave undergoing 
refraction. The performance and the limitations of all usable algorithms, 
which emerged through this work, were investigated quantitatively and 
rigorously. A series of models for multilayer domains were designed 
with an increasing number of material layers (from 2 to 64). Then, 
bisection-based and Newton-based methods were applied to solve the 
ray-tracing problem. The computation times were benchmarked 
through a computer with a known hardware configuration. It was found 
that the iterations of the Newton-Raphson method are always at least 
three orders of magnitude faster than the iterations of the bisection- 
based methods, which allow for exceptionally faster computations. 
Nevertheless, the Newton-based methods are not guaranteed to 
converge, if the initial guess is not sufficiently close to the root of the 
problem. This issue was also addressed by combining the Newton- 
Raphson methods with bisection-type iterations, to form hybrid itera-
tive root-finding methods. The MATLAB-based implementation of all 
investigated methods is made publicly available, at https://doi.org/10. 
5281/zenodo.5026763, and can be used by the research community for 
future developments. 
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