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(anti-)PT−symmetric systems

Hossein Rangani Jahromi1, ∗ and Rosario Lo Franco2, †

1Physics Department, Faculty of Sciences, Jahrom University, P.B. 74135111, Jahrom, Iran
2Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy
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Non-Hermitian systems with parity-time (PT ) symmetry and anti-PT symmetry give rise to exceptional
points (EPs) with intriguing properties related to, e.g., chiral transport and enhanced sensitivity, due to the
coalescence of eigenvectors. In this paper, we propose a powerful and easily computable tool, based on the
Hilbert-Schmidt speed (HSS), which does not require the diagonalization of the evolved density matrix, to
detect exactly the EPs and hence the critical behavior of the (anti-)PT−symmetric systems, especially high-
dimensional ones. Our theoretical predictions, made without the need for modification of the Hilbert space,
which is performed by diagonalizing one of the observables, are completely consistent with results extracted
from recent experiments studying the criticality in (anti-)PT−symmetric systems. Nevertheless, not modifying
the Hilbert space of the non-Hermitian system, we find that the trace distance, a measure of distinguishability of
two arbitrary quantum states, whose dynamics is known as a faithful witness of non-Markovianity in Hermitian
systems, may be non-contractive under the non-Hermitian evolution of the system. Therefore, it lacks one of
the most important characteristics which must be met by any standard witness of non-Markovianity.

I. INTRODUCTION

One of the fundamental postulates of quantum theory is that
the Hamiltonian of an isolated system is Hermitian. This Her-
miticity seems to be a compelling postulate because it ensures
that the eigenvalues of the Hamiltonian are real. Moreover, a
Hermitian Hamiltonian leads to a unitary time evolution and
consequently the conservation of probability. However, de-
coherence effects are ubiquitous in nature because the phys-
ical systems are always inevitably affected by the environ-
ment. Under this condition, the dynamics of the system is
dominated by a Lindbladian generalized master equation. Be-
cause accurately solving this master equation is usually a very
difficult task, especially in high-dimensional systems, an ap-
proximate but fruitful approach [1] to describe the dynamics
of open quantum systems is directly handling the Schrödinger
equation i∂t |ψ〉 = H |ψ〉, such that the time evolution opera-
tor is determined by an effective time-dependent Hamiltonian
H which is not necessarily Hermitian [2, 3]. Non-Hermitian
Hamiltonians usually have complex eigenvalue spectra and do
not conserve probabilities, and therefore they often only serve
as phenomenological descriptions of an open quantum sys-
tem. Nevertheless, there is a certain class of non-Hermitian
Hamiltonians, invariant under a combination of parity (P) and
time-reversal (T ) operations, i.e., [PT ,H] = 0, whose spec-
trum can be entirely real as long as they respectPT symmetry
[4–8]. Some applications and features of PT symmetry are
addressed in Refs. [9–19].

In general, PT−symmetric systems exhibit two phases: the
unbroken phase in which the entire eigenspectrum is real, and
the broken phase where some or all of the eigenvalues form
complex conjugate pairs. This phase transition occurs at an
special point where n eigenvalues, as well as their correspond-
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ing eigenvectors, coalesce [20–22]. This non-Hermitian de-
generacy, also known as exceptional point (EP) of order n
(EPn), has recently emerged as a new way to engineer the
response of the open physical system.

In optics, the abrupt nature of the phase transitions be-
ing encountered around EPs has been demonstrated to lead
to many intriguing phenomena, such as unidirectional invisi-
bility [23, 24], loss-induced transparency [25], band merging
[26, 27], laser mode selectivity [28, 29], topological chirality
[30, 31], new types of thresholdless phonon lasers [32, 33],
and even exceptional photon blockade [34]. These impor-
tant phenomena have been experimentally observed in differ-
ent platforms based on optomechanics [32], electronics [35],
metamaterials [36], acoustics [37, 38], and plasmonics [39].

Moreover, recently, it has been demonstrated that the bifur-
cation properties of second-order non-Hermitian degeneracies
can be used as an efficient tool to improve the sensitivity (fre-
quency shifts) of resonant optical structures to external per-
turbations [40]. In addition, it is of particular interest [41] to
use even higher-order EPs (greater than second order), which
in principle could considerably amplify the effect of perturba-
tions, leading to greater sensitivity beyond what is possible in
standard arrangements [42].

Recently, anti-PT−symmetric systems where the Hamil-
tonian is anti-commutative with the joint PT operator, i.e.,
{H,PT} = 0, have attracted much research interest. Interest-
ing physical phenomena reported in anti-PT−symmetric sys-
tems include optical systems with constant refraction [43] and
optical materials with balanced positive and negative index
[44]. Moreover, several relevant experiments have been re-
alized in diffusive systems [45], electrical circuit resonators,
and atomic [46–48] or molecular systems [49]. Addition-
ally, quantum processes such as the observation of EPs [50],
symmetry-breaking transition [46], and simulation of anti-
PT−symmetric Lorentz dynamics [51], which are impor-
tant phenomena different from Hermitian quantum mechan-
ics, have been addressed in these experiments.

Decoherence control is a key task for practical implemen-

http://arxiv.org/abs/2101.04663v3
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tations of nanoscale solid-state quantum information process-
ing, in which the decoherence may be mainly affected by
non-Markovian dynamics due to the strong backactions from
the environment [52–81]. A fundamental issue is how to ac-
curately define Markovianity in quantum processes [82, 83].
In order to present a definition of a Markov process in the
quantum regime, it is essential to understand the concept of
Markov process in the classical scenario.

A classical Markov process is defined as a family of ran-
dom variables {X(t), t ∈ I ⊂ R}, for which the probability that
X takes a value xn at any arbitrary time tn ∈ I, if it took value
xn−1 at some previous time tn−1 < tn, can be uniquely deter-
mined, and is not influenced by the possible values of X at
previous times to tn−1. One can formulate it in terms of con-
ditional probabilities as follows: P(xn, tn|xn−1, tn−1; ...; x0, t0) =
P(xn, tn|xn−1, tn−1) for all {tn ≥ tn−1 ≥ ... ≥ t0} ⊂ I. Roughly
speaking, its concept is informally encapsulated by the state-
ment that "a Markov process has no memory of the history of
past values of X".

In order to obtain a similar formulation in the quantum
realm we demand a way to define P(xn, tn|xn−1, tn−1; ...; x0, t0)
for quantum systems. In the classical scenario we can sam-
ple a random variable without affecting its posterior statistics.
However, ’sampling’ a quantum system requires measuring
process, disturbing the state of the system and affecting the
subsequent outcomes. Therefore, P(xn, tn|xn−1, tn−1; ...; x0, t0)
depend on both the dynamics and the measurement process.
Because in such a case the Markovian character of a quan-
tum dynamical system would depend on the the measurement
scheme chosen to achieve P(xn, tn|xn−1, tn−1; ...; x0, t0), a defi-
nition of quantum Markovianity in terms of which is not an
easy task. In fact, the definition of Markovianity should be
independent of what is required to verify it.

The aforementioned problem can be solved by adopting a
different approach focusing on the study of one-time probabil-
ities P(x, t). In linear quantum evolutions it may lead to con-
cept of divisibility which can be defined without any explicit
reference to measurement processes in the quantum realm
[83]. Although these probabilities help us to avoid the dif-

ficulties associated with the measurement disturbance, their

efficiency in the scenarios involving some measurement with

postselection is controversial.

One of the most well-known approaches to identify the non-
Markovian character of the system dynamics has been pro-
posed by Breuer-Laine-Piilo (BLP), namely the distinguisha-
bility of two evolving states of the quantum system [84, 85].
For two arbitrary states ρ1 and ρ2, this distinguishability is
quantified by the trace distance (TD) D(ρ1, ρ2) = 1

2 Tr|ρ1 − ρ2|,
where |A| =

√
A†A for some operator A.

To explain the physical origin of this interpretation we con-
sider two parties, Alice and Bob, and assume that Alice pre-
pares a quantum system in one of two states ρ1 or ρ2, with
a probability of 1/2 each. Then, the system is passed into
a "black box" where it may be probed by Bob in any way
allowed by the laws of quantum mechanics. Bob’s task is
to determine whether the system is in the state ρ1 or ρ2, by
means of a single quantum measurement. It has been shown
that the maximal success probability which Bob can achieve

through an optimal strategy is directly related to the trace dis-

tance [82, 86]: Pmax = 1/2
(

1+D(ρ1, ρ2)
)

. Therefore, the trace

distance denotes the bias in favor of a correct state discrimi-
nation by Bob, and hence it can be interpreted as the distin-
guishability of the quantum states ρ1 and ρ2.

The TD is contractive under completely positive and trace-
preserving (CPTP) maps, i.e. D(Et(ρ1),Et(ρ2)) ≤ D(ρ1, ρ2),
if Et is a CPTP map. Therefore, a monotonic decrease in the
distinguishability (Ḋ < 0) indicates unidirectional informa-
tion flow from the system to the environment. However, an
increase in the distinguishability (Ḋ > 0) signifies backflow
of information from the environment to the system, indicating
that the time evolution of the system is affected by the history
of system-environment interaction. This is one of the most
well-known definitions of quantum non-Markovianity in the
literature. It should be noted that there are also other ways
to define and detect non-Markovianity or memory effects in
quantum mechanics (see [83] for a review). It should be noted
that non-Markovian dynamics is always associated with non-
unitary evolution of the system. Contrary to Hermitian sys-
tems which can evolve unitarily and non-unitarily, (anti-)PT−
dynamics is intrinsically nonunitary both in the unbroken and
broken phases [87], satisfying one of the necessary conditions
to exhibit non-Markovian dynamics.

Similar to classical scenario, appearance of a measurement
with postselection in the process may call into question the
validity of this non-Markovianity definition, because the time
evolution of the system becomes dependent on not only the
history of system-environment interaction but also the output
of the postselection. This dependence of the quantum non-

Markovianity definition on the measurement scheme, chosen

to achieve the time evolution, is bothering even if we distin-

guish between memory effects and backflow of information

from the environment. Following this idea, we show that the
BLP measure does not have a necessary condition to be a fig-
ure of merit for characterizing non-Markovianity, if it is de-
finable in dynamics involving postselection. To this aim, we
investigate the TD contractivity, a necessary condition which
should be satisfied by this measure when it is used for defining
non-Markovianity.

Recently, the Hilbert-Schmidt speed (HSS), a measure of
quantum statistical speed not requiring diagonalization of the
system reduced density matrix, has been introduced as a faith-
ful witness of non-Markovianity in Hermitian systems, com-
pletely consistent with the BLP witness [88]. Moreover, the
HSS has been introduced as an efficient figure of merit for
quantum estimation of phase encoded into the initial state of
open n−qubit systems [89]. Possibility to enhance quantum
sensing near the EPs [40, 90–92] and application of the TD
to characterize the criticality in (anti-)PT−symmetric systems
[49, 87, 93] motivate one to investigate the efficiency of the
HSS measure to find these singular points in non-Hermitian
systems. Moreover, they motivate us to study the relationship
among the HSS, TD, and quantum Fisher information (QFI),
playing a central role in quantum estimation theory, in (anti-
)PT−symmetric systems.

In this paper, we address the aforementioned issue and
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also show how the HSS can effectively determine the EPs

and reveal the critical behavior of non-Hermitian (anti-

)PT−symmetric systems. Because finding the coalescence
of eigenvectors at EPs by numerical full diagonalization, re-
quired when computing the TD, may be a tedious and time-
consuming chore, this theoretical development for detecting
the EPs could be very useful.

This paper is organized as follows. In Sec. II we briefly re-
view the definition of the Hilbert-Schmidt speed. In Sec. III
the time evolution of the (anti-)PT−symmetric systems as
well as non-contractivity of the trace distance are discussed.
In Sec. IV we propose a protocol based on the HSS to char-
acterize phase transitions in (anti-)PT−symmetric systems.
The efficiency of this protocol for detecting EPs and critical-
ity in single-qubit systems is discussed in Secs. V and VI.
Moreover, the sensitivity of this witness is also studied for a
high-dimensionalPT−symmetric system in Sec. VII. Finally,
Sec. VIII summarizes the main results and prospects.

II. HILBERT-SCHMIDT SPEED

The distance measure, defined as [94]

[d(p, q)]2 =
1
2

∑

x

|px − qx|2, (1)

where p = {px}x and q = {qx}x are probability distributions,
leads to the classical statistical speed

s[p(ϕ0)] =
d

dϕ
d(p(ϕ0 + ϕ), p(ϕ0)). (2)

Thus, one can define a special kind of quantum statistical
speed called the HSS by extending these classical notions
to the quantum case. To this aim, we may consider a given
pair of quantum states ρ and σ, and write px = Tr{Exρ} and
qx = Tr{Exσ} denoting the measurement probabilities cor-
responding to the positive-operator-valued measure (POVM)
defined by the {Ex ≥ 0} which satisfies

∑

x
Ex = I. Then the

associated quantum distance called the Hilbert-Schmidt dis-
tance δHS [95] can be achieved by maximizing the classical
distance of Eq. (1) over all possible choices of POVMs [96]

δHS (ρ, σ) ≡ max
{Ex }

d(ρ, σ) =

√

1
2

Tr[(ρ − σ)2]. (3)

Consequently, the HSS, the corresponding quantum statisti-
cal speed, is obtained by maximizing the classical statistical
speed of Eq. (2) over all possible POVMs [94, 97]

HSS
(

ρ(ϕ)
) ≡ HSS ϕ ≡ S

[

ρ(ϕ)
]

= max
{Ex }

s
[

p(ϕ)
]

=

√

1
2

Tr
[(dρ(ϕ)

dϕ

)2]

, (4)

which can be easily computed without diagonalizing
dρ(ϕ)/dϕ.

III. TIME EVOLUTION OF THE SYSTEM GOVERNED BY

A (AN) (ANTI-)PT−SYMMETRIC HAMILTONIAN

LEADING TO NON-CONTRACTIVITY OF TD

We directly apply the conventional quantum mechan-
ics on (anti-)PT−symmetric systems to obtain the evolved
state. Accordingly, the dynamics governed by a (an) (anti-
)PT−symmetric system with non-Hermitian Hamiltonian
H

(anti)
PT is described by [87, 98]

ρ(t) =
e−iH

(anti)
PT ρ(0)eiH

(anti)†
PT

Tr[e−iH
(anti)
PT ρ(0)eiH

(anti)†
PT ]

, (5)

where the usual Hilbert-Schmidt inner product is employed.
In this situation, the effective dynamics governed by H

(anti)
PT

is nonunitary and hence it describes the evolution of an open
quantum system [49, 87, 99]. It originates from the fact that a
(an) (anti-)PT−symmetric system cannot be implemented by
a closed system. In other words, the lack of Hermiticity of the
Hamiltonian, is not observable in closed systems, in contrast
to open systems [100]. Hence, we do not use a preferentially
selected inner product with which the (anti-)PT−symmetric
Hamiltonian H

(anti)
PT can be employed to generate the unitary

time evolution for the characterization of a closed quantum
system. The metric operators used in this approach for mod-
ifying the Hilbert space inner products are not physically ob-
servable [100], as discussed above. Such physical constraints
prohibit experimentalists from modifying the inner product in
a laboratory, although it can be used as an effective mathe-
matical tool to nicely formulate the theory of quantum sys-
tems whose dynamics is governed by (anti-)PT−symmetric
Hamiltonians (see Ref. [101, 102] ).

In more detail, we see that the conventional metric used
in Eq. (5) leads to results completely consistent with experi-
mental observations [49, 91, 102–109] provided that it is ap-
plied correctly. In fact, in order to physically implement the
non-unitary evolution leading to Eq. (5), we can embed the
(anti)PT−symmetric system into a larger Hermitian system,
realized by adding ancillary qubits, and perform a measur-
ing process [93, 103]. This idea originates from the Naimark
dilation procedure for quantum measurement [87, 110–112]:
by including an ancilla and extending the Hilbert space, any
nonunitary dynamics can be implemented by a unitary dynam-
ics of the total closed system followed by quantum measure-
ment acting on the ancilla. When a measurement is performed
on the ancilla and a special definite state is postselected, the
evolved state (5) is realized. Because of this post-selection
occurring in the measuring process, the successful implemen-
tation of the non-unitary gate is a probabilistic procedure.
This experimental limitation [49, 102, 103, 105], is similar to
the situation which occurs in Bell inequality tests [113–115].
Therefore, we can solve the paradoxes [7, 101, 116, 117] as-
sociated with violation of no-go theorems in PT−symmetric
theory [101] using normalized density matrix (5), without the
need for any modification in the Hilbert space (for more de-
tails, see Refs. [87, 103]).

A significant property of the extended Hamiltonian dis-
cussed above is that the original system is non-Hermitian if
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and only if the characteristic interaction between the original
system and the ancilla is nonzero. On the one hand, the in-
formation flowed into the environment is actually stored in
the entanglement with the ancilla. On the other hand, be-
cause the interaction is global, the quantum correlation be-
tween the system and the ancilla may oscillate in time [87].
Moreover, the information exchange between the system and
this entangled partner hidden in the environment may be one
of the physical origins of the time oscillations of the distance
measures for quantum states of the (anti-)PT−symmetric sys-
tem. The aforementioned reasons motivates us to define non-
Markovianity concept in the (anti-)PT−symmetric systems,
however, as also described in the Introduction, the dependence
of this definition on the postselection process, appearing in all
current experimental realizations of (anti-)PT−symmetric dy-
namics [49, 91, 102–106, 109], may call into question its va-
lidity. Demonstrating the failure of the BLP measure in defin-
ing possible non-Markovian effects in (anti-)PT−symmetric
systems (see Refs. [105, 118]) can support this reasoning.

Adopting the BLP’s definition of non-Markovianity, one
finds that the P divisibility of a linear quantum dynamical map
is equivalent to Markovianity of the dynamics [119]. In spite
of the fact that the (anti-)PT dynamics given by Eq. (5) is in-
deed P divisible [98], the divisibility cannot capture the non-
Markovianity of the (anti-)PT dynamics because of the non-

linearity of quantum operation E [87]. It is emphasized that
even in the linear evolutions the divisibility of map has not
be used to generally define Markovianity, because the concept
of divisibility is limited to processes for which the inverse of
the dynamical map exists [82, 120], a property which cannot
be guaranteed e.g., examples on quantum semi-Markov pro-
cesses [121] or the damped Jaynes-Cummings model on reso-
nance [85], thus making the concept of divisibility sometimes
ill defined.

In order to answer the question of whether the BLP’s def-
inition of non-Markovianity can be used in non-Hermitian
systems [49, 87, 93], we focus on TD contractivity. As
known, the TD always characterizes the distinguishability be-
tween two quantum states. When this property is associated
with contractivity, it can be used for the definition of non-
Markovianity interpreted as backflow of information from the
environment to the system. However, in the absence of con-
tractivity, its oscillation can only be attributed to oscillation of
distinguishability, not existence of information backflow from
the environment. Hence, to answer the question we should
investigate the contractivity of TD in non-Hermitian systems.

Concerning the mutual relations of the quantum operations
and trace distance, as referred briefly in Introduction, the
following important result is well known [1, 122–124]: if
there is no initial correlation between the system and envi-
ronment and E is a trace-preserving quantum operation then
D
(E(ρ),E(σ)

) ≤ D
(

ρ, σ
)

where ρ and σ denote arbitrary nor-
malized quantum states. This result is usually referred to
as contractivity of the trace distance under the linear trace-
preserving quantum operations.

However, the quantum operation E, generating the evolved
state (5), is non-trace-preserving [1], since it does not provide
a complete description of the processes occurring in the sys-

tem. This nondeterministic feature originates from the fact
that other measurement outcomes may take place with some
probability. Therefore, the contractivity of the TD under the
evolution given in Eq. (5) should be investigated in more de-
tail. Our numerical calculation, presented in the next sections,
shows that the trace distance may exhibit non-contracticity

under (anti-)PT dynamics and hence in such systems it loses

one of the necessary conditions which should be satisfied by a

faithful witness of non-Markovianity.

It should be noted that contractivity is not a universal fea-
ture but depends on the metric: the dynamics may be contrac-
tive with respect to a given metric and may not be contrac-
tive with respect to other metric measures [123]. In addition,
contractivity of quantum evolution can break down when the
system is initially correlated with its environment (for details
see [124] ).

IV. DETECTING CRITICALITY THROUGH HSS IN

NON-HERMITIAN SYSTEMS

In this section we provide the witness based on the Hilbert-
Schmidt speed to faithfully identify the EPs and phase transi-
tions in non-Hermitian systems.

It is known that in the PT -symmetric systems the trace
distance oscillates with evolution time when the system sym-
metry is unbroken while in anti-PT -symmetric systems, the
oscillations of the distinguishability occur if the symmetry is
broken [49, 87, 93, 102]. Inspired by this fact and the close
relationship between HSS and TD described in Ref. [88], we
propose the following easily computable witness to character-
ize the criticality in (anti-)PT -symmetric systems:

For a quantum system with an n-dimensional Hilbert space

H , let us consider an initial state given by

|ψ0〉 =
1
√

n

(

eiϕ|ψ1〉 + . . . + |ψn〉
)

, (6)

where ϕ is an unknown phase shift and {|ψi〉, i = 1, . . . , n}
represents the computational orthonormal basis. Then, we

find that when the dynamics of the HSS, computed with re-

spect to the initial phase ϕ, exhibit an oscillating pattern, the

(anti-)PT−symmetric system is in (anti-)PT−unbroken (bro-

ken) phase. At EPs or broken (unbroken) phase of the (anti-

)PT−symmetric system, no oscillation is observed in the HSS

dynamics. Therefore, the EPs can be easily detected by inves-

tigating the time evolution of the HSS.

The sanity check of this protocol as a faithful witness of
EPs and criticality is performed in the following section.

V. PT -SYMMETRIC TWO-LEVEL SYSTEM

A. Hamiltonian model and computing the witness

As the first example, we consider the paradigmatic model
of a two-level system described by the Hamiltonian

HPT = ε(σx + iaσz) =
(

iaε ε

ε −iaε

)

, (7)
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where ε > 0 is an energy scale and a > 0 denotes the degree
of non-Hermiticity. This model has been previously realized
in both classical [125–127] and quantum [49, 103, 128] exper-
iments. The eigenenergies are ±ε

√
1 − a2, and therefore one

has an EP2 (exceptional point of order 2) given by a = 1.
The time evolution operator of this system is obtained as

[87]

UPT = e−iHPT t

=
1

√
1 − a2

(
√

1 − a2cosθ + a sinθ −i sinθ
−i sinθ

√
1 − a2cosθ − a sinθ

)

,

(8)

where θ =
√

1 − a2 εt.
In order to check the efficiency of our HSS-based witness,

we first compute the normalized evolved state of the sys-
tem when it is prepared in the initial state ρ0 = |ψ0〉 〈ψ0|,
where |ψ0〉 = (eiϕ|0〉 + |1〉)/

√
2. We can easily calculate

the HSS analytically by inserting the evolved state ρt(ϕ) =

UPT ρ0U
†
PT

{

Tr[UPT ρ0U
†
PT ]

}−1

into Eq. (4); however, its ex-

plicit expression has a cumbersome form and is not reported
here.

B. Dynamical behavior of the witness of the quantum

criticality

The qualitative dynamics of the HSS is displayed in Fig. 1
for the PT−broken phase (a > 1) and PT−unbroken phase
(0 < a < 1). In the PT−broken phase, the HSS, as ex-
pected, exhibits no oscillations and monotonically decreases
with time. However, in the PT−unbroken phase, it oscillates
and eventually returns to its initial value, namely there is a T

such that HSS (T ) = HSS (0), (9)

where the period is given by T = π
[

1−a2]−1/2. This period T

of the oscillation, called the recurrence time, increases as the
system approaches the EP (a = 1). This period is exactly sim-
ilar to one achieved theoretically as well as experimentally for
the distinguishability oscillations [87, 93]. Moreover, check-
ing the experimental data presented in [93], we find that the
EP predicted by the HSS-based witness is quite accurate.

Behavior at the exceptional point

As discussed in the Introduction, the exceptional points
(EPs) in non-Hermitian Hamiltonians constitute a threshold
for the system parameters individuating a phase transition of
the system. In the present case of a PT−symmetric system,
one has a broken-to-unbroken phase transition by diminish-
ing the value of the non-Hermiticity degree a appearing in the
Hamiltonian of Eq. (7). Since this phase transition is asso-
ciated to intriguing physical phenomena, the characterization
of the behavior of the non-Hermitian system around EPs is
important. Moreover, because of the importance of the HSS

FIG. 1. Dynamics of the Hilbert-Schmidt speed HSS (ρt(ϕ)) (blue
dashed curve) and the Quantum Fisher information QFI(t) (red solid
curve) as a function of the dimensionless time εt for a two-level sys-
tem (a) in the PT−broken phase (a > 1) and (b) in the PT−unbroken
phase (0 < a < 1).

in detecting the EPs, it would be interesting to investigate the
behavior of this measure when the system approaches the EP,
i.e., when a → 1. In this limit, we find that the HSS is given
by

HSS EP(t) =
1

4 ε2t2 − 4 ε2t2 sin (ϕ) + 2
. (10)

It is immediate to see that it decreases monotonically with
time according to HSS EP(t) ∝ t−2; while only for ϕ = π/2 the
HSS gives a constant value equal to 1/2. These results imme-
diately show that, when the system parameters reach the EP
(a → 1), no oscillation in HSS dynamics is observed which
arises from the divergence of period T at this limit.

Overall, we see that the HSS can be employed as an efficient
witness to identify phase transitions and detect the EPs in the
non-Hermitian system under consideration.
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C. Relationship between quantum Fisher information (QFI)

and HSS

The fundamental question in the theory of quantum esti-
mation is the following: When performing measurements on
the quantum systems affected by some classical parameter ϕ
(which may be the phase encoded into the initial state of the
system), how precisely can ϕ be estimated? The answer is
given by the quantum Cramer-Rao bound [129] indicating that
the smallest resolvable change in ϕ is δϕ = 1/

√

Fϕ where
Fϕ denotes the quantum Fisher information (QFI) given by
[129, 130]

Fϕ(ρ(t)) = 2
∑

i, j

|〈φi|∂ϕρ (ϕ) |φ j〉|2
(λi + λ j)

, (11)

where |φi〉 and λi represent, respectively, the eigenvectors and
eigenvalues of the density matrix ρ (t). It should be noted that
recently other expressions for the QFI have been proposed in
non-Hermitian systems [131], however, for pure states they re-
duce to the above expression, ignoring a constant coefficient.

Because both QFI and HSS are quantum statistical speeds
associated, respectively, with the Bures and Hilbert–Schmidt

distances (for details see [94]), it is reasonable to explore how
they can be related to each other. Recently, a strong rela-
tionship between the HSS and QFI has been constructed in
the process of phase estimation for n-qubit Hermitian systems
[89]. It has been found that, when both the HSS and QFI are
computed with respect to the phase parameter encoded into
the initial state of an n-qubit system, the zeros of the HSS dy-
namics are actually equal to those of the QFI dynamics. Like-
wise, the signs of the time-derivatives of both HSS and QFI
exactly coincide.

Now computing the QFI with respect to the phase pa-
rameter encoded into the initial state of our one-qubit
PT−symmetric system, we obtain the similar result, i.e., both
the QFI and HSS exhibit the same qualitative dynamics (see
Fig. 1). Moreover, in the PT−broken phase (a > 1) illus-
trated in Fig. 1(a), both measures are contractive and hence
monotonically decrease with time. However, as observed in
Fig. 1(b), not only the HSS but also the QFI, contractive under
CPTP maps in Hermitian systems, may be non-contractive un-
der the non-trace-preserving evolution in the unbroken phase
(0 < a < 1). Moreover, this important relationship between
the HSS and QFI shows that the HSS may be introduced as an
efficient figure of merit for quantum estimation of phase en-
coded into the initial state of n-qubit PT−symmetric systems.
This will be investigated in detail in future studies.

The non-contractivity of the QFI and HSS confirms the fact
that quantum information measures and witnesses may exhibit
different behaviors for Hermitian and non-Hermitian systems.
It is known that the QFI measures the maximum information
about a parameter ϕ, extractable from a given measurement
procedure [129, 130, 132–134]. In our model, because the
parameter to be estimated is encoded into the initial state of
the system and the system, initially not correlated with the en-
vironment, does not sense it later, we reasonably expect that
the maximum information, achieved in the estimation process,

0.4
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0.8
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D
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))
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FIG. 2. Dynamics of the distinguishability D between two evolved
states ρ1(t) and ρ2(t) starting from two special pairs of initial states
as a function of the dimensionless time εt for a two-level system in
the PT−unbroken phase (0 < a < 1).

must be extracted from the initial state itself. Contrary to this
intuitive reasoning, it is observed that the non-Hermitian evo-
lution of the system interestingly may enhance the estimation
of the initial parameter with time.

We can conclude that the system initially hides some of the
encoded information such that it is inaccessible at first and
then the non-Hermitian evolution makes this hidden informa-
tion available for the estimation of the initial phase. In fact,
this unusual behavior, leading to non-contractivity of both QFI
and HSS, is indistinguishable from the non-Markovian behav-
ior (backflow of information from the environment to the sys-
tem). This is why we cannot use the standard Hermitian wit-
nesses based on QFI and HSS to detect the non-Markovianity
in this context.

D. Non-contractivity of TD in PT−symmetric one-qubit

systems

The non-contractivity of the QFI and HSS motivates us
to investigate the TD non-contractivity under non-Hermitian
evolution of the system. Our numerical computation shows
that the TD may be non-contractive in such systems. As-
suming two initial states |ψ(1)

0 〉 = 1/
√

2
(

eiϕ |0〉 + |1〉 ) and
|ψ(2)

0 〉 = 1/
√

2
( |0〉 − eiϕ |1〉 ), and computing the TD between

the two corresponding evolved states, we can observe the non-
contractivity of the TD underPT dynamics (see Fig. 2, show-
ing the time evolution of the TD, in which the green solid and
orange dashed curves are plotted for (a = 0.2, ϕ = π/3 ) and
(a = 0.4, ϕ = π/4), respectively).

In our model, initially the system is not correlated with the
environment. This preparation alongside the fact that the de-
coherence effects lead to flow of information from the sys-
tem to the environment, make us reasonably expect that the
distinguishability shows contractivity under the time evolu-
tion. However, as discussed in Sec. V C, the system initially
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may hide some of the information such that it is inaccessi-
ble at first and then the non-Hermitian evolution makes this
hidden information available for the system. This counterin-
tuitive behavior may be one of the reasons that the TD ex-
hibits non-contractive behavior. Moreover, this unusual be-
havior is indistinguishable from the non-Markovian behavior
(i.e., backflow of information from the environment to the sys-
tem). Therefore, we cannot use the BLP’s measure as a faith-
ful witness to detect the non-Markovianity in PT−symmetric
systems.

VI. ANTI-PT−SYMMETRIC TWO-LEVEL SYSTEM

A. Hamiltonian model and witnesses

The generalized form of a single-qubit anti-PT−symmetric
Hamiltonian can be expressed as [4]

Hanti
PT =

(

λη eiϑ iη

iη −λη e−iϑ

)

, (12)

where all of the parameters λ, ϑ and η denote real numbers.
It is easy to show that this Hamiltonian satisfies the anti-
commutation relation

(PT )Hanti
PT (PT )−1 = −(Hanti

PT )T = −Hanti
PT (13)

where here operator P denotes Pauli matrix σx, T represents
the complex conjugation, and notation AT means the trans-
pose of matrix A. The eigenvalues of Hamiltonian Hanti

PT
are

given by ǫ± = iλη sinϑ ±
√

λ2η2cos2ϑ − η2 and the system is
denoted in the regime of unbroken anti-PT−symmetric phase
if λ2η2cos2ϑ − η2 < 0. For simplicity, as well as comparison
with the experimental results presented in [49] for this kind
of system, we consider the scenario in which ϑ = 0, η ≥ 0
being an energy scale and λ ≥ 0 denoting the degree of Her-
miticity. Therefore, the EP2 is located at λ = 1. We obtain the
corresponding time evolution operator of this system as

Uanti
PT =















cos θ − iλ sin θ√
λ2−1

sin θ√
λ2−1

sin θ√
λ2−1

cos θ + iλ sin θ√
λ2−1















, (14)

where θ =
√
λ2 − 1 ηt.

The calculation of the HSS is similar to the approach fol-
lowed in the previous section. The analytical expressions for
this witness is also accessible; however, it does not have com-
pact informative forms, and hence it is not reported here.

B. Dynamical behavior of the witness of quantum criticality

We again see that the HSS works well in detecting the crit-
ical behavior of the system. In the anti-PT−unbroken phase
(λ < 1), as shown in Fig. 3(a) plotted for λ = 0.2, the HSS
does not oscillate over time. However, its oscillatory be-
havior for λ > 1 exactly predicts that the system is in anti-
PT−broken phase (see Fig. 3(b) plotted for λ = 1.4). More-
over, we find that the intensity of the HSS oscillations is re-
lated to the parameter λ, denoting the degree of Hermiticity,

FIG. 3. Dynamics of the Hilbert-Schmidt speed HSS (ρt(ϕ)) (blue
dashed curve) and QFI D(t) (red solid curve) as a function of
the dimensionless time ηt for a two-level system (a) in the anti-
PT−unbroken phase (λ < 1) and (b) in the anti-PT−broken phase
(λ > 1).

such that with an increase in this parameter, its oscillation
gradually weakens.

In Ref. [49], the authors proposed an algorithm for the
implementation of the above generalized anti-PT−symmetric
evolution with a circuit-based quantum computing system ap-
plying a three-qubit scheme including two ancillary qubits and
one working qubit. The implementation scheme is based on
decomposing the non-Hermitian Hamiltonian evolution into
a linear combination of unitary operators and realizing the
scheme in an enlarged Hilbert space with ancillary qubits. The
experimental results clearly show that the distinguishability
oscillates with period

T =
π

η
√
λ2 − 1

, (15)

when the system symmetry is broken. Moreover, the intensity
of the distinguishability oscillation is connected to parameter



8

λ such that the transition between the broken and unbroken
phases is completely determined by this parameter. Compar-
ing our findings to these experimental results, we see that they
are completely consistent. In particular we find that the peri-
ods of the HSS and distinguishability oscillations are exactly
the same. This fact hence proves the efficiency of our pro-
posed witness in faithfully detecting the critical behavior of
the anti-PT−symmetric systems.

Behavior at the exceptional point

In this case of an anti-PT−symmetric system, the excep-
tional point (EP) individuates a phase transition of the system
from the unbroken to the broken phase when increasing the
parameter λ of the Hamiltonian of Eq. (12). In order to com-
plete the analysis, we investigate the behavior of the HSS at
the EP λ = 1, where it is given by

HSS anti
EP (t) =

1

2
∣

∣

∣2η2t2 + 2ηt
[

ηt sin ϕ + cosϕ
]

+ 1
∣

∣

∣

. (16)

It is easily seen that the time behavior of the HSS is similar to
that we have shown in Fig. 3(a) depicting the HSS dynamics
in the unbroken phase. This result also confirms that the HSS
can be used to detect phase transitions at the EPs in this type
of non-Hermitian systems.

C. Relationship between QFI and HSS

Calculating the QFI with respect to phase parameter ϕ, we
again find that both the QFI and HSS exhibit the same quali-
tative dynamics in this one-qubit anti-PT−symmetric system
(see Fig. 3).

Interestingly, in both unbroken and broken phases, depicted
in Fig. 3, both measures does not necessarily exhibit contrac-
tivity, usually assumed as a necessary property for any faithful
witness of non-Markovianity.

D. Non-contractivity of TD in anti-PT−symmetric one-qubit

systems

Numerically investigating the TD contractivity under the
anti-PT−symmetric evolution of the system, we find that
it is not necessarily contractive in these systems. Start-
ing from two initial states |ψ(1)

0 〉 = 1/
√

2
(

eiϕ |0〉 + |1〉 ) and
|ψ(2)

0 〉 = 1/
√

2
( |0〉 + eiϕ |1〉 ), and computing the TD between

the two corresponding evolved states, we may observe the
non-contractivity of the TD under anti-PT symmetric dy-
namics in both unbroken and broken phases (see Fig. 4(a)
(4(b)), showing the time evolution of the TD in the unbro-
ken (broken) phase, where the green solid and orange dashed

curves are plotted for
(

λ = 0.5 (λ = 1.5), ϕ = 3.1
)

and
(

λ = 0.6 (λ = 1.3), ϕ = 2.9
)

, respectively).

FIG. 4. Dynamics of the distinguishability D between two evolved
states ρ1(t) and ρ2(t) starting from two special pairs of initial states as
a function of the dimensionless time ηt for a two-level system (a) in
the anti-PT−unbroken phase (λ < 1) and (b) in the anti-PT−broken
phase (λ > 1).

VII. HIGH-DIMENSIONAL PT−SYMMETRIC SYSTEM

A. Hamiltonian model and witnesses

Now we consider an open, high-dimensional system de-
scribed by a 4 × 4 Hamiltonian [105]

HPT = −JS x + iγS z (17)

in which S x and S z denote spin-3/2 representations of
the SU(2) group. In the orthonormal computational basis
{|1〉 , |2〉 , |3〉 , |4〉}, the Hamiltonian can be written in the fol-
lowing matrix form

HPT =
1
2

































3iγ −
√

3J 0 0
−
√

3J iγ −2J 0
0 −2J −iγ −

√
3J

0 0 −
√

3J −3iγ

































, (18)

representing a PT−symmetric qudit with d = 4.
The eigenvalues of HPT are simply given by λk =
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FIG. 5. Dynamics of the Hilbert-Schmidt speed HSS (ρt(ϕ)) as a
function of the dimensionless time γt for the qudit system (a) in the
PT−broken phase (γ > J) and (b) in the PT−unbroken phase (γ <
J).

{−3/2,−1/2, 1/2, 3/2}
√

J2 − γ2 (k = 1, 2, 3, 4), leading to an
EP4 at the PT−breaking threshold γ = J. This Hamiltonian
can be easily generalized to an arbitrary dimensional system
and has an EP with the order equal to the dimension of the
system [41, 135, 136].

Let us now assume that the qudit system is 4-dimensional
(d = 4) and prepared in the pure initial state of Eq. (6):
|ψ0〉 =

(

eiϕ |1〉 + |2〉 + |3〉 + |4〉 )/
√

4. To obtain the time evo-
lution operator U = e−iHPT t, we can expand the initial state
in terms of the non-orthogonal eigenvectors |ζk〉 of the non-
Hermitian Hamiltonian HPT as |ψ0〉 =

∑

k βk |ζk〉, where the
coefficients βk’s should be determined. To this aim, we first
define a square d×d matrix Φ such that the normalized eigen-
vectors |ζk〉 are concatenated as its columns. Therefore, the
initial state can be represented as |ψ0〉 := Φ β where β denotes
a column matrix with elements βi. Because the columns of
Φ are linearly independent, it is invertible, and hence we can

write |ψ0〉 := ΦΦ−1 |ψ0〉, leading to the relation β = Φ−1 |ψ0〉.
After computing the coefficients βk’s by the above method, we
can easily obtain the evolved state of the system. Although
the computation of the HSS (associated with the evolved den-
sity matrix ρt(ϕ) = |ψ(t)〉 〈ψ(t)| /Tr[|ψ(t)〉 〈ψ(t)|] where |ψ(t)〉 =
e−iHPT t |ψ0〉 =

∑

k e−iλktβk |ζk〉, with respect to initial phase ϕ) is
straightforward, the explicit analytic expression is extremely
complex and is not reported in this paper, whereas the results
are described below.

B. Dynamical behavior of the witness and EP role

Analyzing the HSS dynamics reveals that the EP4 with
γ = J determines the border betweenPT−symmetric unbrken
and broken phases of the qudit (see Fig. 5). In the PT−broken
phase (γ > J), the HSS first may increase with time and show
a peak. Nevertheless, no oscillation in its dynamics is ob-
served and then it monotonously falls with time (see Fig. 5(a)
plotted for J/γ = 0.9). However, in the PT−symmetry unbro-
ken region (γ < J), as expected and shown in Fig. 5(b) plotted
for J/γ = 2.2, the HSS dynamics exhibits periodic oscillations
(see relation (9)).

C. Non-contractivity of TD in high dimensional

PT−symmetric systems

The computation of the trace distance requires diagonaliza-
tion of ρ1(t) − ρ2(t) for the pair of optimal initial states ρ1(0)
and ρ2(0). The optimization process with complexity of com-
puting the eigenvectors of the high dimensional complicated
density matrices ρi(t) (i = 1, 2), makes the trace distance too
difficult to compute.

We check numerically the contractivity of TD under the
PT−symmetric evolution of the qudit for a large number of
random pairs of initial states. We explicitly show that the
TD may exhibit non-contractivity in both unbroken and bro-
ken phases. For example, starting from two initial states
|ψ(1)

0 〉 =
(

eiϕ |1〉+|2〉+|3〉+|4〉 )/
√

4 and |ψ(2)
0 〉 =

(

eiθ |1〉+eiϕ |2〉+
|3〉 + |4〉 )/

√
4, and computing the TD between the two corre-

sponding evolved states, one can observe the non-contractivity
of the TD under PT symmetric dynamics of the qudit in both
phases (see Fig. 6(a) (6(b)), representing the dynamics of
the the distinguishability in the broken (unbroken) phase, in
which the green solid and orange dashed curves are plotted for
(

θ = π/4, ϕ = π/2
)

and
(

θ = 1.1 (θ = 1.5), ϕ = 2.1 (ϕ = 0.1)
)

,

respectively).
Recently, this interesting four-dimensional system, has

been implemented experimentally with single photons and a
cascaded interferometric setup [105]. In that work, 4 × 4
nonunitary evolution operations were realized by six beam
displacers and another one is used for state preparation. More-
over, two different measurements, i.e., the projective measure-
ment and the quantum state tomography of a four-level sys-
tem, are carried out at the output. We find that our theoretical
predictions are completely consistent with the experimental
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FIG. 6. Dynamics of the distinguishability D between two evolved
states ρ1(t) and ρ2(t) starting from two special pairs of initial states of
the qudit system as a function of the dimensionless time γt (a) in the
PT−broken phase (J/γ = 0.9) and (b) in the PT−unbroken phase
(J/γ = 2.2).

results discussed in [105] in which explicitly reported that the
EP4 (γ = J) plays the main role in determining the critical be-
havior of the qudit. Moreover, our theoretical analysis shows
that the HSS oscillates with period T = 2π/(

√

J2 − γ2) in the
unbroken phase. This is exactly the period measured experi-
mentally in [105] for oscillations of the dynamics of the quan-
tum information (as quantified by entropy). Because the TD
is not contractive in this model, these oscillations cannot be
interpreted as evidence of information backflow from the en-
vironment or the signature of non-Markovianity. They can be
attributed to the non-Hermitian evolution of the system mak-
ing the initial hidden information available, as discussed in
Sec. V C.

VIII. CONCLUSIONS

We have proposed a powerful and easily computable wit-
ness, based on the Hilbert-Schmidt speed (HSS), which is a
special case of quantum statistical speed, to detect the quan-
tum criticality in systems governed by non-Hermitian (anti-
)PT−symmetric Hamiltonians. Surprisingly, our theoretical
predictions can exactly predict the experimental results.

In addition to its conceptual interest, we remark that the
HSS-based witness of criticality does not require the diagonal-
ization of the reduced density matrix of the system. Hence, as
discussed in the paper for a four-dimensional qudit, it can be
introduced as a faithful witness for characterizing criticality
in high-dimensional (anti-)PT−symmetric systems in which
computation of other measures leads to serious challenges.
The role of the HSS-based measure in detecting the excep-
tional points (EPs) at which breaking of (anti-)PT−symmetry
occurs has been also analyzed. We have especially illustrated
that the system critical behavior appearing at EPs is similar to
that of (anti-)PT−symmetric system in its broken (unbroken)
phase. We stress that our theoretical findings all are in com-
plete agreement with experimental observations. These re-
sults thus indicate that the HSS-based witness can be adopted
to exactly identify the parameter values where phase transi-
tions in the physical behavior of non-Hermitian systems oc-
cur.

As an interesting outlook, the introduced HSS-based wit-
ness can be employed to characterize controlled speedup of
quantum processes in non-Hermitian systems. Such a line of
investigation is suggested by recent advances in the context of
shortcuts to adiabaticity (STA), which enable us to control a
quantum system evolution with no need of slow driving [137–
140]. Strategies for STA are typically engineered by means of
non-Hermitian control Hamiltonians [140–142]. On the ba-
sis of this argument and seeing the results presented here, one
may thus expect that the HSS measure plays a role in optimiz-
ing STA via non-Hermitian Hamiltonians. This study will be
carried on elsewhere.

Another important feature which should be addressed is
the non-contractivity of both trace distance (TD) and HSS
in (anti-)PT−symmetric non-Hermitian systems. Because of
this non-contractive behavior, the change in the TD of two
arbitrary states can no longer be interpreted as a flow of in-
formation between the system and the environment. There-
fore, contrary to what happens in Hermitian system [84, 88],
both TD and HSS can no longer be used as general measures
or definitions of non-Markovianity in (anti-)PT−symmetric
systems. Our results show that the non-contractivity of the
Hilbert-Schmidt speed in a given model may be a signature of
the trace distance non-contractivity and its failure in detecting
non-Markovianity.

We explain that the definition of non-Markovianity remains
as an important open question in the theory of non-Hermitian
quantum systems. In fact, the distinguishability and HSS
oscillations in (anti-)PT−symmetric dynamics may be at-
tributed to the result of the dynamical overlap between the
skew eigenstates in the (anti-)PT−symmetric, an interesting
characteristic absent in conventional open quantum systems.
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In the unbroken (broken) phase, this overlap is nontrivial and
leads to a beat from the two skew dynamical eigenstates, such
that the beat period equals the oscillation period. However,
in the broken (unbroken) phase, the aforementioned overlap
becomes trivial, and in addition, the amplitudes of the eigen-
states monotonically shrink or grow under quantum evolution,
leading to a monotonic decrease in the distinguishability or the
HSS dynamics (see [106] for more details).

In Figs. 1 and 3, we have compared the behaviors of HSS
and quantum Fisher information (QFI) associated with the
initial phase ϕ for one-qubit (anti-)PT−symmetric systems.
This investigation shows that the HSS and QFI exhibit the
same qualitative dynamics in one-qubit systems. According
to the discussion presented in the previous paragraph, we find
that by inspecting the QFI dynamics one cannot exactly de-
tect the non-Markovian evolution of the (anti-)PT-symmetric
systems. However, as known, the QFI is a faithful witness of

non-Markovianity in Hermitian systems [143, 144]. There-
fore, we conclude that the witnesses proposed for Hermitian
systems should be reexamined to check their efficiency in non-
Hermitian systems.

Our work thus motivates deeper analyses to clarify the ap-
plicability of other witnesses of the non-Markovianity to de-
tect the memory effects in Hermitian and non-Hermitian sys-
tems. Our results also pave the way to further studies on HSS
applications in detecting the criticality in high-dimensional
non-Hermitian multi-qudit systems.
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[24] Bo Peng, Şahin Kaya Özdemir, Fuchuan Lei, Faraz Monifi,
Mariagiovanna Gianfreda, Gui Lu Long, Shanhui Fan, Franco
Nori, Carl M Bender, and Lan Yang, “Parity–time-symmetric
whispering-gallery microcavities,” Nat. Phys. 10, 394–398
(2014).



12

[25] A Guo, GJ Salamo, D Duchesne, R Morandotti, M Volatier-
Ravat, V Aimez, GA Siviloglou, and DN Christodoulides,
“Observation of PT-symmetry breaking in complex optical
potentials,” Phys. Rev. Lett. 103, 093902 (2009).

[26] Bo Zhen, Chia Wei Hsu, Yuichi Igarashi, Ling Lu, Ido
Kaminer, Adi Pick, Song-Liang Chua, John D Joannopoulos,
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[90] Weijian Chen, Şahin Kaya Özdemir, Guangming Zhao, Jan
Wiersig, and Lan Yang, “Exceptional points enhance sensing
in an optical microcavity,” Nature 548, 192–196 (2017).

[91] Shang Yu, Yu Meng, Jian-Shun Tang, Xiao-Ye Xu, Yi-Tao
Wang, Peng Yin, Zhi-Jin Ke, Wei Liu, Zhi-Peng Li, Yuan-
Ze Yang, et al., “Experimental investigation of quantum pt-
enhanced sensor,” Phys. Rev. Lett. 125, 240506 (2020).

[92] Mengzhen Zhang, William Sweeney, Chia Wei Hsu, Lan
Yang, AD Stone, and Liang Jiang, “Quantum noise theory of
exceptional point amplifying sensors,” Phys. Rev. Lett. 123,
180501 (2019).

[93] Lei Xiao, Kunkun Wang, Xiang Zhan, Zhihao Bian, Kohei
Kawabata, Masahito Ueda, Wei Yi, and Peng Xue, “Observa-
tion of critical phenomena in parity-time-symmetric quantum
dynamics,” Phys. Rev. Lett. 123, 230401 (2019).

[94] Manuel Gessner and Augusto Smerzi, “Statistical speed of
quantum states: Generalized quantum Fisher information and
Schatten speed,” Phys. Rev. A 97, 022109 (2018).

[95] Masanao Ozawa, “Entanglement measures and the Hilbert-
Schmidt distance,” Phys. Lett. A 268, 158–160 (2000).

[96] Shunlong Luo and Qiang Zhang, “Informational distance on
quantum-state space,” Phys. Rev. A 69, 032106 (2004).

[97] Matteo GA Paris, “Quantum estimation for quantum technol-
ogy,” Int. J. Quantum Inf. 7, 125–137 (2009).

[98] Dorje C Brody and Eva-Maria Graefe, “Mixed-state evolution
in the presence of gain and loss,” Phys. Rev. Lett. 109, 230405
(2012).



14

[99] Tommy Ohlsson and Shun Zhou, “Transition probabilities
in the two-level quantum system with PT-symmetric non-
Hermitian hamiltonians,” J. Math. Phys 61, 052104 (2020).

[100] Dorje C Brody, “Consistency of PT-symmetric quantum me-
chanics,” J. Phys. A 49, 10LT03 (2016).

[101] Chia-Yi Ju, Adam Miranowicz, Guang-Yin Chen, and Franco
Nori, “Non-Hermitian Hamiltonians and no-go theorems in
quantum information,” Phys. Rev. A 100, 062118 (2019).

[102] Shruti Dogra, Artem A Melnikov, and Gheorghe Sorin
Paraoanu, “Quantum simulation of parity–time symmetry
breaking with a superconducting quantum processor,” Com-
mun. Phys. 4, 1–8 (2021).

[103] Jian-Shun Tang, Yi-Tao Wang, Shang Yu, De-Yong He, Jin-
Shi Xu, Bi-Heng Liu, Geng Chen, Yong-Nan Sun, Kai Sun,
Yong-Jian Han, et al., “Experimental investigation of the no-
signalling principle in parity-time symmetric theory using an
open quantum system,” Nat. Photonics 10, 642–646 (2016).

[104] M Naghiloo, M Abbasi, Yogesh N Joglekar, and KW Murch,
“Quantum state tomography across the exceptional point in a
single dissipative qubit,” Nat. Phys. 15, 1232–1236 (2019).

[105] Zhihao Bian, Lei Xiao, Kunkun Wang, Franck Assogba
Onanga, Frantisek Ruzicka, Wei Yi, Yogesh N Joglekar,
and Peng Xue, “Quantum information dynamics in a high-
dimensional parity-time-symmetric system,” Physical Review
A 102, 030201 (2020).

[106] Yi-Tao Wang, Zhi-Peng Li, Shang Yu, Zhi-Jin Ke, Wei Liu,
Yu Meng, Yuan-Ze Yang, Jian-Shun Tang, Chuan-Feng Li,
and Guang-Can Guo, “Experimental investigation of state dis-
tinguishability in parity-time symmetric quantum dynamics,”
Phys. Rev. Lett. 124, 230402 (2020).

[107] Anant V Varma and Sourin Das, “Simulating many-body non-
hermitian pt-symmetric spin dynamics,” Phys. Rev. B 104,
035153 (2021).

[108] Geng-Li Zhang, Di Liu, and Man-Hong Yung, “Observation
of exceptional point in a pt broken non-hermitian system sim-
ulated using a quantum circuit,” Sci. Rep. 11, 1–8 (2021).

[109] Yang Wu, Wenquan Liu, Jianpei Geng, Xingrui Song, Xi-
angyu Ye, Chang-Kui Duan, Xing Rong, and Jiangfeng Du,
“Observation of parity-time symmetry breaking in a single-
spin system,” Science 364, 878–880 (2019).

[110] Mark A Naimark, “On a representation of additive operator
set functions,” in Dokl. Akad. Nauk SSSR, Vol. 41 (1943) pp.
373–375.

[111] Masahito Hayashi, Quantum information (Springer, 2006).
[112] Minyi Huang, Ray-Kuang Lee, Guo-Qiang Zhang, and Junde

Wu, “A solvable dilation model of pt-symmetric systems,”
arXiv preprint arXiv:2104.05039 (2021).

[113] Bas Hensen, Hannes Bernien, Anaïs E Dréau, Andreas Reis-
erer, Norbert Kalb, Machiel S Blok, Just Ruitenberg, Ray-
mond FL Vermeulen, Raymond N Schouten, Carlos Abel-
lán, et al., “Loophole-free Bell inequality violation using elec-
tron spins separated by 1.3 kilometres,” Nature 526, 682–686
(2015).

[114] Marissa Giustina, Marijn AM Versteegh, Sören Wengerowsky,
Johannes Handsteiner, Armin Hochrainer, Kevin Phelan,
Fabian Steinlechner, Johannes Kofler, Jan-Åke Larsson, Car-
los Abellán, et al., “Significant-loophole-free test of Bell’s
theorem with entangled photons,” Phys. Rev. Lett. 115,
250401 (2015).

[115] Lynden K Shalm, Evan Meyer-Scott, Bradley G Christensen,
Peter Bierhorst, Michael A Wayne, Martin J Stevens, Thomas
Gerrits, Scott Glancy, Deny R Hamel, Michael S Allman,
et al., “Strong loophole-free test of local realism,” Phys. Rev.
Lett. 115, 250402 (2015).

[116] Yi-Chan Lee, Min-Hsiu Hsieh, Steven T Flammia, and Ray-
Kuang Lee, “Local PT symmetry violates the no-signaling
principle,” Phys. Rev. Lett. 112, 130404 (2014).

[117] Carl M Bender, Dorje C Brody, João Caldeira, Uwe Günther,
Bernhard K Meister, and Boris F Samsonov, “PT-symmetric
quantum state discrimination,” Philos. Trans. R. Soc. A 371,
20120160 (2013).

[118] Liangyu Ding, Kaiye Shi, Yuxin Wang, Qiuxin Zhang, Chen-
hao Zhu, Ludan Zhang, Jiaqi Yi, Shuaining Zhang, Xiang
Zhang, and Wei Zhang, “Information retrieval and eigenstates
coalescence in a non-hermitian quantum system with anti-pt-
symmetry,” arXiv preprint arXiv:2107.12635 (2021).

[119] Ángel Rivas, Susana F Huelga, and Martin B Plenio, “Entan-
glement and non-Markovianity of quantum evolutions,” Phys.
Rev. Lett. 105, 050403 (2010).

[120] Steffen Wißmann, Heinz-Peter Breuer, and Bassano Vacchini,
“Generalized trace-distance measure connecting quantum and
classical non-markovianity,” Phys. Rev. A 92, 042108 (2015).

[121] Bassano Vacchini, Andrea Smirne, Elsi-Mari Laine, Jyrki
Piilo, and Heinz-Peter Breuer, “Markovianity and non-
markovianity in quantum and classical systems,” New J. Phys.
13, 093004 (2011).

[122] Alexey E Rastegin, “Trace distance from the viewpoint of
quantum operation techniques,” J. Phys. A Math 40, 9533
(2007).

[123] Jerzy Dajka, Jerzy Łuczka, and Peter Hänggi, “Distance
between quantum states in the presence of initial qubit-
environment correlations: A comparative study,” Phys. Rev.
A 84, 032120 (2011).

[124] E-M Laine, Jyrki Piilo, and H-P Breuer, “Witness for initial
system-environment correlations in open-system dynamics,”
EPL 92, 60010 (2011).

[125] Christian E Rüter, Konstantinos G Makris, Ramy El-Ganainy,
Demetrios N Christodoulides, Mordechai Segev, and Detlef
Kip, “Observation of parity–time symmetry in optics,” Nat.
Phys. 6, 192–195 (2010).

[126] Tiejun Gao, E Estrecho, KY Bliokh, TCH Liew, MD Fraser,
Sebastian Brodbeck, Martin Kamp, Christian Schneider, Sven
Höfling, Y Yamamoto, et al., “Observation of non-Hermitian
degeneracies in a chaotic exciton-polariton billiard,” Nature
526, 554–558 (2015).

[127] Zhong-Peng Liu, Jing Zhang, Şahin Kaya Özdemir, Bo Peng,
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