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Abstract: Dielectric metasurfaces have emerged as a promising alternative to their plasmonic coun-
terparts due to lower ohmic losses, which hinder sensing applications and nonlinear frequency
conversion, and their larger flexibility to shape the emission pattern in the visible regime. To date,
the computational cost of full-wave numerical simulations has forced the exploitation of the Floquet
theorem, which implies infinitely periodic structures, in designing such devices. In this work, we
show the potential pitfalls of this approach when considering finite-size metasurfaces and beam-like
illumination conditions, in contrast to the typical infinite plane-wave illumination compatible with
the Floquet theorem.

Keywords: all-dielectric metasurfaces; multipolar decomposition; T-matrix; BIC

1. Introduction

All-dielectric metasurfaces have recently emerged as a valid and promising alternative
to their plasmonic counterparts. Their lower dissipative losses and thermal heating at opti-
cal frequencies allow working at higher pump power for nonlinear frequency generation
and the performance of non-invasive sensing of biological samples [1–12]. Moreover, in all-
dielectric resonators, electric and magnetic resonances can be used to engineer near and far
fields, thus providing more degrees of freedom in the design of optical devices [1,13–16].
In this framework, III-V compounds have been used for second-harmonic generation,
due to their non-centrosymmetric structure and their high second-order nonlinear coeffi-
cients [2–5,17–23]. Strong third-harmonic generation has been demonstrated instead with
Si-based platforms [24,25]. Lately, great efforts have been made to improve the design
of optical nanoresonators, either in the limit of single isolated nanoantennas or in the
opposite scenario where perfect periodicity is assumed and thus the finite-size real-world
structure is approximated by an infinite structure [26–28]. The two opposite situations
are required in order to limit the numerical burden in the modelling when resorting to
the full-wave solution of Maxwell’s equations. Despite the fact that this has given very
helpful guidelines, these approaches fail in the accurate design of a device, because they
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unavoidably neglect the effects that are due to the size of a real device, which is necessarily
finite and is often pumped by input beams exciting a limited portion of the device (see
Figure 1). Such limitations become particularly relevant when considering metasurfaces
supporting bound states in the continuum (BIC), which are non-radiating resonant modes
in an open system that are not coupled to the radiating channels and exist only in infinite
structures [29]. A common approach to obtain extremely high Q-factor resonances is to
introduce a defect into a BIC-supporting metasurface (e.g., by breaking its symmetry), thus
realizing a so-called quasi-BIC. This approach is mainly dictated by the fact that currently
available simulation tools allow only infinite structures to be inspected, and thus it is
necessary to break the symmetry in order to couple to such modes. Quasi-BICs, however,
are expected to arise naturally by simply considering the finite extent of a real metasurface.

Figure 1. Sketch of a finite-size metasurface on a substrate illuminated by a Gaussian beam. Only a
portion of the array is covered by the impinging light.

The necessity of using a finite-size model arises from the fact that the currently adopted
models simulate an elementary unit cell and exploit the periodicity of the structure through
Floquet’s theorem to obtain the optical parameters of an infinite extended metasurface. The
results of these models are very good, but they do not take into account the finiteness of
the structure and the border effects. Furthermore, when Floquet’s theorem is employed,
the only possible excitation is a plane wave, unlike in experiments, where a Gaussian beam
is usually employed. The combination of the two types of models can help to better foresee
the behaviour of an actual metasurface in the experimental phase.

The differences between an infinite model and a finite one are highlighted in [30]
and [31], where the situation is analysed with a dipole coupling model for a 2D array of
nanoparticles. However, dielectric resonators often support higher-order resonances which
cannot be described in the dipole approximation. In order to overcome this limitation, it
is necessary to account for higher-order multipolar components, which are of particular
interest for dielectric metasurfaces and the study of metamaterials in general [26,32–35].
Babicheva and Evlyukhin [36] provided an analytical model to include a quadrupolar
contribution, but the authors employed an infinite structure approximation. In [37], the au-
thors employed the superposition T-matrix scheme with the Ewald sum formalism to
describe periodic structures with large unit cells. In [38], the authors studied finite-size
effects in plasmonic metasurfaces, highlighting the full-width half-maximum dependence
of resonances upon the number of resonators.

Our study aims to highlight the importance of the spatial finiteness of a metasurface
supporting high-order multipole components. For this purpose, we employed SMUTHI [39],
which implements a linear space-limited model, and tested its performance considering
a metasurface composed of silicon nanopillars on a silicon oxide substrate. We analysed
the total reflectivity behaviour as a function of the incident wavelength and compared it
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with the results obtained with the COMSOL infinite periodic model. The reflectivity of
the metasurface strongly depends on the number of elements and converges to the infinite
array approximation for a large array size, thus highlighting the importance of considering
the finiteness of the metasurface. Furthermore, this approach allows the metasurface to
be illuminated with a Gaussian beam of a different size under the paraxial approximation,
which is not possible when employing Floquet’s theorem.

2. Methods

We simulated an all-dielectric metasurface composed of Si cylinders on a SiO2 sub-
strate, both with a periodic model using COMSOL (exploiting the periodicity via Floquet’s
theorem) and a space-limited model using SMUTHI, which allowed us to simulate very
large finite structures due to the lower computational power required. To test the finite
model, we calculated the reflectivity (R) for both models, varying the wavelength of the
incident wave λ from 1250 nm to 1800 nm, in steps of 10 nm.

The finite structure was composed of a maximum of 169 cylinders lying on the sub-
strate in a 13 × 13 configuration, as seen in Figure 2. The refractive indices were 1 for
the air, 3.45 for the cylinders, and 1.45 for the substrate, the last two values being the
silicon and silicon oxide indices at the working frequencies. The cylinder heights were
428 nm and their radii were 214 nm. The distance between two adjacent cylinders was
856 nm. These dimensions were chosen to create a structure that supports resonant modes
at the working frequencies on two levels: inside single cylinders and globally due to the
periodicity. The layers consisted of a substrate with thickness 2λ/nsubstrate and an air layer
2λ thick, and the domain on the plane of the cylinders was a square with a side length
of 15,500 nm. Although SMUTHI allows the simulation of lossy media, in this study we
employed a fixed real value for the refractive indices, because in the spectral region of
interest the silicon and silicon dioxide absorption coefficients and the dispersion were very
small and thus could be neglected.

Figure 2. The y-component of the scattered electric field given by SMUTHI in the xy (left) and yz
planes (right) for the structure composed of 13 × 13 cylinders. The substrate (positive z-axis) has
n = 1.45 and the air layer (negative z-axis) has n = 1. The cylinders have n = 3.45, height 428 nm,
and radius 214 nm, and 856 nm is the periodicity (distance between two cylinders on the same column
or row). The incident wave is a Gaussian beam 15 µm wide at 1600 nm, linearly polarized along
the y-axis with an initial maximum intensity of the electric field of 1 V m−1, with the maximum at
the origin (x, y, z) = (0, 0, 0). The incidence is perpendicular to the substrate and the propagation
direction is towards the positive z-direction. The domain on the xy plane is a square with a side
length of 15,500 nm.

The incident wave used for the COMSOL periodic model is always a plane wave
polarized along the y-axis, while with SMUTHI it is also possible to simulate an incident
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Gaussian beam. We set an incident wave propagating from the air layer towards the
substrate at normal incidence, at a wavelength which varied as previously described.
The polarization of the wave was linear, with the electric field oscillating along the y-axis
and an initial intensity of E0 = 1 V m−1. The maximum value of the electric field was at
the air–substrate interface. To calculate the reflectivity, we wrote a MATLAB script, which
takes as an input the SMUTHI results related to the scattered field from the cylinders and
the reflected one from the substrate. Then, we calculated the flux of the Poynting vector
through three surfaces xy, yz, and xz at the border of the domain described above, inside
the air layer.

The formulas used to evaluate the Poynting vector components were the follow-
ing [40]:

px =
|Ey|2 + |Ez|2

2Z
py =

|Ex|2 + |Ez|2
2Z

pz =
|Ex|2 + |Ey|2

2Z
p0 =

|E0y|2

2Z
=
|E0|2
2Z

where Ex, Ey, and Ez are the field components given by the combinations of the scattered
and the reflected waves, E0 is the initial intensity, and Z is the characteristic impedance of
vacuum. Integrating these values along the respective surfaces, it is possible to calculate
the reflectivity:

R =
Pz + 2Px + 2Py

P0

where capital Px, Py, and Pz are the powers relative to the power densities with the same
subscript and are obtained through surface integration over the simulation domain walls.
This procedure was repeated for each wavelength to obtain the full spectrum.

3. Validation

To develop the space-limited model we used SMUTHI, a recently developed open-
source Python package based on numerical methods, to speed up the computation of light
scattering problems [41,42] (an analytical treatment is reported in Appendix A).

To determine how the software performs in our situation, we developed two simple
models of the metasurface, one using COMSOL and the other using SMUTHI, to compare
the outputs for a structure composed of nine cylinders arranged in a 3 × 3 configuration
around the origin. The parameters were the same as those set in the previous section,
except for the domain width in the plane of the cylinders, which was changed to 5000 nm,
and the incident plane wave that was fixed at 1200 nm. In COMSOL, we simulated a larger
domain: a cube with a side length of 6500 nm with a perfectly matched layer all around,
in order to prevent unwanted reflections from the side. We performed the integration
on the same surface as that employed in SMUTHI. We employed the iterative GMRES
solver in COMSOL and set a mesh size of λe/7, where λe is the effective refractive index of
the material.

Figure 3 shows the electric fields at a distance of 1430 nm from the last cylinder,
obtained in COMSOL (left) and SMUTHI (right), respectively.

A good agreement was found using a multipolar expansion with l = m = 3 for the
cylinders, which resulted in very similar field distributions and integrated reflectance
values of:

RCOMSOL = 0.0649

RSMUTHI = 0.0542
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Then, for the transmission coefficient:

TSMUTHI = 0.9482

and thus the condition R + T = 1 is almost respected (this must hold because the refractive
indices are real) [41,42].

We underline the times required for the two simulations: for the structure reported in
this chapter, COMSOL required 16 min with a reduced geometry, obtained by exploiting
symmetry considerations, and 74 min with the full structure, to solve the problem; on
the other hand, SMUTHI required 3 min (PC specifications: CPU Intel© Xeon© E5-2650
0, 2 GHz, 8 core. RAM DIMM-DD3 1600 MHz, 64 GB. GPU NVIDIA Quadro K2000).
Although COMSOL provides a more complete simulation by computing the field in the
full volume of the structure, we only need the field on three specific surfaces, and thus
SMUTHI is much more time-efficient.

Figure 3. The y-component of the scattered electric field obtained with COMSOL (left) and with
SMUTHI (right) for the structure composed of 3 × 3 cylinders. The cylinders have n = 3.45, height
428 nm, and radius 214 nm, with 856 nm as the periodicity. The incident wave is a plane wave at
1200 nm, linearly polarized along the y-axis at normal incidence. The domain on the xy plane is a
square with a side length of 5000 nm. The plots are along the yz plane at a distance of 1430 nm from
the last cylinders (2500 nm from the centre of the structure).

4. Results

Figure 4a shows the plots of R, calculated on the same surface, as a function of the
wavelength, for different metasurface sizes. When the number of cylinders increases,
the spectral features related to the multipolar resonances inside the cylinders and their
interplay become more evident. We note that for smaller arrays, the covered area inside the
integration surface is much smaller, thus resulting in smaller reflectivity values.

In Figure 4b–d we compare the reflectivity as a function of the wavelength obtained
with the two models.

For the finite-size model, the values are relative to the 13 × 13 cylinder structure and
are normalized to have a maximum equal to one. The normalization is only for comparison
purposes. Indeed, in the finite structure case, when the integration domain is enlarged,
the unpatterned surface increases, thus reducing the reflectivity. However, the relative
size of the peaks does not change as this is only due to the cylinders. The normalization
of the finite structure to the infinite structure allows the relative intensities of the peaks
to be compared, and thus the finite-size effect to be evaluated. We compared the spectra
with an incident plane wave for both structures and then changed the wave for the finite
model into a Gaussian beam 15 µm and 6 µm wide. Our simulations showed that as long
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as the paraxial simulation holds and the beam covers the metasurface, the plane wave
approximation deviates slightly from the real situation.

Figure 4. Reflectivity (R) as a function of the wavelength for both the periodic model and the finite
model. (a) R as a function of the wavelength for the structures obtained by varying the number of
cylinders (3 × 3, 5 × 5, 10 × 10, and 13 × 13), simulated with SMUTHI. The integration surface is the
same for all the structures. (c,d) Comparisons between the two models. For the periodic model with
COMSOL, the incident wave is a plane wave; for the space-limited model with SMUTHI there is an
incident plane wave (b), an incident Gaussian beam 15 µm wide (c), and an incident Gaussian beam
6 µm wide (d). The values obtained with SMUTHI are normalized so that the maximum is equal
to one.

The normalized behaviours are very faithful to the COMSOL behaviours, either with
an incident plane wave or with a Gaussian beam. In particular, we see two peaks at
1610 nm and 1330 nm, which are at exactly the same wavelengths for the two models. The
resonance at 1610 nm is related to the magnetic dipole inside the cylinder and is also present
in the scattering cross section in the isolated structure. The different values around the
shorter wavelength peak are due to the finite extension of the structure and the excitation
beam; therefore, this feature can only be highlighted through a finite-size model. Indeed,
a Gaussian beam can be described by considering a larger amount of k-vectors, which is
not possible with the plane-wave excitation employed in COMSOL. This is further evident
from Figure 5, where we report also the results obtained considering the flux through the
walls around the central cylinder in the finite-size model and the reflectivity of the infinite
periodic structure. It is interesting to note that the characteristic of the bigger structure
is more similar to the periodic model. As expected, the relative weight of the resonant
peak due to the interaction between the cylinders (around 1330 nm) and the single-pillar
magnetic dipole (1610 nm) increases with the array size. We emphasize that the resonance
at 1610 nm is related to the magnetic dipole in the isolated pillar, thus it is well reproduced
even for small arrays and beam sizes. Thus, these results show that it is essential to consider
the size of the system and the excitation, to correctly describe a real finite-size system. For
this purpose, it should be noted that the size of the structure compared to the wavelength
is more important than the number of unit cells considered in the simulation. However,
the size of the unit cells plays a key role in determining the interaction strength between the
resonators. Indeed, if the cylinders are well separated from each other, they act as isolated
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sources, and the scattering properties can be evaluated by computing the electromagnetic
field of an isolated pillar and considering the system as an array of antennas.

Figure 5. Reflectivity as a function of the wavelength for infinite case (dashed lines) and finite case
(continuous lines). For the finite case, the power flux is considered through the walls around the
central cylinder for the structures with 3 × 3 cylinders (a) and 13 × 13 cylinders (b). This means that
the simulation domain on the xy plane has a width of 856 nm around the central cylinder (compared
to the previous value of 15,500 nm). The plots obtained with SMUTHI are normalized to have a
maximum equal to one.

To further prove the importance of finite-size effects in conjunction with resonant
behaviour, we consider a structure supporting bound states in the continuum. Figure 6
shows the reflectivity as a function of the wavelength for a suspended array of cylinders,
which was previously reported for sustaining a BIC [43]. The Gaussian beam waist was
kept fixed at 10 µm, while the number of resonators was increased. It is clear that increasing
the number of resonators reduces the line width of the Fano resonance associated with
the quasi-BIC. We highlight that in [43], the authors introduced a gap in the middle of the
cylinders in order to couple to the resonant mode, while in our case this was not necessary
since both the illumination and the structure were finite and the modes could couple to the
radiating channels.

Figure 6. Reflectivity as a function of wavelength for arrays of cylinders (height 563 nm, radius 250
nm, and period 850 nm) with different numbers of elements. The refractive index is 3.49 and the
impinging Gaussian beam waist is 10 µm.

5. Conclusions

In conclusion, we built a space-limited model with SMUTHI to simulate a real meta-
surface, to determine the border effects. First, we tested the software performance in
the presence of the metasurface and verified the conservation of energy in the simulated
domain (R + T = 1), as well as the agreement with the COMSOL simulation. The resulting
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reflection coefficients R were similar for the two structures, and the produced scattered
fields were very similar.

We developed the finite model by introducing an approximation for the scattered
field and the refractive indices. Moreover, with the finite-domain model, it was possible
to highlight a difference in the higher-frequency peak related to collective excitation. We
could also simulate an incident Gaussian beam, which is not possible in the periodic case.
SMUTHI allowed us to simulate the wavelength sweep for a large finite structure with 13×
13 cylinders, which is impractical to replicate in COMSOL, and also allowed us to simulate
the configuration with 3 × 3 cylinders 5.3 times faster. This approach also allowed us to
employ a non-periodic distribution of resonators, which is not possible when exploiting the
Floquet theorem. Furthermore, it allowed us to study real situations involving BIC, which
are intimately related to the finiteness of the system. The proposed approach may be further
extended by analogy with [44], where the authors employed multipolar decomposition to
study free-standing single nanoparticles, to simulate nonlinear frequency generation in
finite-size metasurfaces.
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Appendix A. Scattering from Axially Symmetric Particles on a Stratified Medium

The SMUTHI software allows the resolution of the electromagnetic scattering problem
from an ensemble of axially symmetric particles in a stratified medium. To approach
this problem, SMUTHI uses a combination of methods that include the expansion of
spherical vector wave functions (SVWFs) to represent the impinging wave in spherical
waves, the expansion of plane vector wave functions (PVWFs) to represent the spherical
wave in a complete set of plane waves, in order to consider the interaction between the
scattered field from the particle and the stratified medium, and a T-matrix approach
(or null-field method) with the addition theorem to take into account the interaction
between each scatterer. The first step of the method consists of the representation of all
the fields as an expansion of SVWFs, then, fixing a scatterer s, they can be written as
a superposition of regular harmonic functions for the incoming field or with outgoing
harmonic functions [41,42,45–53]:

Es
reg(r) = ∑

n
as

n M(1)
n (r− rs) (A1)

Es
sca(r) = ∑

n
bs

n M(3)
n (r− rs) (A2)
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where the apexes (1) and (3) represent the types of the SVWFs. In particular, the first type
of the Bessel spherical function is used as the harmonic function with (1) and the third type
of the same function is used with (3). Each one is centred in the middle of the particle rs.
The second step consists of the simultaneous calculation of the coefficients for the incoming
and outgoing fields for each scatterer s. For this, we use the null-field method and the
addition theorem, obtaining:

bs
n = ∑

n′
Ts

mn′ a
s
n′ (A3)

as
n = ∑

s′
∑
n′

Wss′
mn′b

s′
n′ a

s,in
n (A4)

having indicated with Ts
mn′ the T-matrix for a single scatterer, and with the matrix Wss′

mn′
the mutual interaction between the particles, using the addition theorem and the stratified
medium. The third step is characterized by the determination of the interaction between
the ensemble of the scattering particles and the stratified medium. The coupling matrix
Wss′

mn′ can be found by considering the superposition of two contributions:

Wss′
mn′ = WD,ss′

mn′ + WR,ss′
mn′ (A5)

where the first is the coupling term for an infinite medium and the second represents the
(multiple) reflections of the wave at the layer interfaces, which are then the incident fields
to the particle s. In particular, the last term can be expressed as an expansion of PVWFs,
given the flat nature of the interface. Using the Sommerfeld integration form we have:

WR,ss′
mn′ = 4i|m

′−m|ei|m′−m|ϕs′s

∫ ∞

0

[(
f+nn′(K, z) + f−nn′K, z)

)
J|m′−m|(kρ)dK

]
(A6)

with

f+nn′(k, z) =
K

kzk ∑
j

[
B
′+
n,j(Lis

j )12B−n′ ,je
ikzz + B

′−
n,j(Lis

j )21B+
n′ ,je

−ikzz] (A7)

f−nn′(k, z) =
K

kzk ∑
j

[
B
′+
n,j(Lis

j )11B−n′ ,je
ikzz + B

′−
n,j(Lis

j )22B+
n′ ,je

−ikzz] (A8)

where j indicates the plane wave TE- or TH-polarization, k, K, and kz are the wavenumber,
the wave vector’s radial cylinder and the z component in the scattering particle surface,
respectively, B

′±
n,j are the transformation coefficients in matrix form between the SVWFs and

PVWFs, and Lis
j is a generalized reflection coefficient in matrix form encoding the overall

response of the flat layer interfaces. A complete derivation of the values can be found
in [41,42,45–53].
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