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Abstract: Traditional social network analysis can be generalized to model some networked systems
by multilayer structures where the individual nodes develop relationships in multiple layers. A
multilayer network is called multiplex if each layer shares at least one node with some other layer. In
this paper, we built a unique criminal multiplex network from the pre-trial detention order by the
Preliminary Investigation Judge of the Court of Messina (Sicily) issued at the end of the Montagna
anti-mafia operation in 2007. Montagna focused on two families who infiltrated several economic
activities through a cartel of entrepreneurs close to the Sicilian Mafia. Our network possesses three
layers which share 20 nodes. The first captures meetings between suspected criminals, the second
records phone calls and the third detects crimes committed by pairs of individuals. We used measures
from multilayer network analysis to characterize the actors in the network based on their local edges
and their relevance to each specific layer. Then, we used measures of layer similarity to study the
relationships between different layers. By studying the actor connectivity and the layer correlation,
we demonstrated that a complete picture of the structure and the activities of a criminal organization
can be obtained only considering the three layers as a whole multilayer network and not as single-
layer networks. Specifically, we showed the usefulness of the multilayer approach by bringing out
the importance of actors that does not emerge by studying the three layers separately.

Keywords: multilayer network; social network; criminal network; layer similarity; centrality

1. Introduction
1.1. Contextualization

A long time before the development of social network analysis (SNA), people dealt
with multiple social networks. Even if this has always been done with no effort, it is
not a trivial activity that can be overlooked. One of the possible views of the problem is
represented by the connections between individuals through multiple types of relational
ties [1–4].

The world cannot be defined considering different kinds of relationships as ontologi-
cally equivalent and without taking into consideration the interactions among different
kinds of connections from which invisible relationships emerge. For this reason, we cannot
look only at a single kind of relationship within a single social network [1–4].

A single-layer perspective has been used to study the social interactions in most cases.
These interactions have been measured for a long time through the simple graph, which is
one of the most powerful tools from SNA. A simple graph is defined as a set of nodes with
edges between them. There are no edges that connect a node to itself [2]. Nodes are often
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called actors, which usually represent individuals or organizations. Edges are also known
as connections or links, and they usually represent relationships between individuals such
as friendships. The type of graph is defined by edge weight and directionality. If there
exists a numerical value (i.e., a weight) attached to each edge, then the graph is weighted. If
all edges are bidirectional, then the graph is called undirected. If edges have directionality,
then the graph is called directed.

In practical contexts, the most applied set of SNA tools is probably represented by the
family of centrality measures. Centrality is an intrinsically relational concept. In fact, an
actor needs to have relations to be important [2]. An actor is important if it is connected to
other important nodes or to a large number of different nodes. An actor can also be central
if his absence breaks the network into many isolated components. The position of the actor
within a network can give him power in terms of the control over the information flowing
through the network. The number of interactions of each actor is quantified by the most
traditional centrality measure, which is the degree.

Social networks are usually treated as monodimensional objects, but they can at least
have three different dimensions: (i) a structural dimension, (ii) a compositional dimension
and (iii) an affiliation dimension. The full complexity of a social structure can be understood
only through these dimensions [1]. The first one corresponds to the simple graph made
by actors and their relationships. The second one describes the actors and their personal
information. The third one indicates the belonging of these actors to the same organization
or family.

Multiple relationships can also be considered according to an alternative conceptual
approach as a set of layers (i.e., connected levels) [2–4]. Each simple graph with nodes
and edges can be organized into multiple layers. Each layer can represent different types
of edges, nodes, online social networks, communities, social contexts, and so on. In such
a multilayer network, nodes in the different layers refer to a global set of actors, and
edges can also connect nodes in the same layer (i.e., intralayer edges) or in different layers
(i.e., interlayer edges). Analyzing multiple layers, we can obtain information that is not
present in each single layer and would not be achieved considering layers independently
of each other.

Many relevant works on multilayer networks have been reviewed and discussed by
Kivelä et al. [5], who also presented a general framework for these kinds of networks [6–8].
This framework introduced the cumulative constraints on the general model [9], explaining
the different types of networks: monoplex or single layer [6], multiplex [10–12], interdepen-
dent, and networks of networks.

Dickison, Magnani and Rossi [2] realized a book on the evolution of interconnected
social networks, dynamic processes, data collection, data analysis, modeling and mining
of multilayer social network systems. According to the authors, we can find multilayer
social networks in different contexts. They are generated from data of different sizes,
natures and layer semantics. More specifically, during SNA studies, many multilayer
networks with actors connected by multiple types of edges have been created from offline
questionnaires or interviews. They are often networks of small sizes, and they can be very
useful in testing new methods. The only multilayer criminal network is the one described by
Bright et al. [13]. This network has eight layers with a specific type of edge related to the
exchange of drugs, money and other particular resources. The authors explored the actor’s
strategic positions across the eight layers. They recognized the importance of multiplex data
in criminal network analysis, but their results were limited to an aggregate network, which
was obtained by summing up all interactions across the whole network while neglecting
the layered structure.

1.2. Related Works

SNA in an essential tool to study criminal networks [14,15]. It can be used in many
ways: (i) to describe the structure and functioning of criminal organizations [16,17]; (ii) to
identify leaders within a criminal network [18–23]; (iii) to construct crime prevention
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systems [24,25]; (iv) to evaluate police interventions aimed at dismantling and disrupting
criminal networks [26–29].

In 1991, Sparrow [30] began to explore and introduce the relevance of some concepts
from the social network analysis such as centrality, equivalence and weak ties for the
analysis of criminal intelligence. The notion of centrality refers to the use of standard
centrality metrics from SNA to identify the key actors for a criminal organization. The
concept of equivalence refers to the presence in the criminal network of individuals with
similar roles or with the same neighborhood. Weak ties are connections among actors
who have no other direct connections. Sparrow also identified the three main problems
of criminal network analysis: (i) incompleteness (i.e., missing nodes and edges); (ii) fuzzy
boundaries (i.e., which individuals to include and which not to include in the network);
(iii) dynamic (i.e., criminal networks are not static, but they change over time).

Klerks [31] described a crisis of LEA confidence in the mid-1990s which led to a
collaboration between Dutch law enforcement and academics to develop elaborate network
approaches to organized crime. Thanks to this collaboration, it was possible to identify
powerful positions inside criminal networks and to attribute these positions to specific
individual traits or to structural roles covered by these individuals. For example, the
centrality of intermediaries was recognized because these figures could monopolize the
connection inside criminal networks. Moreover, according to the author, valuable resources
and information for criminals could be discovered thanks to social network mapping.

Xu and Chen [17] studied the topology of criminal networks, which are characterized
by a high clustering coefficient, a short average path length and a high level of efficiency
in terms of communication, information flow and commands. These networks are more-
over more vulnerable to attacks when the targets are the bridges connecting different
communities within them rather than their high-degree nodes.

Van der Hulst [14] offered a general introduction to SNA as an analytical tool for the
study of criminal networks, whose systematic analysis could lead to a more comprehensive
understanding of criminal behavior. Some theoretical and key concepts were reviewed by
the author together with functional applications, and a tentative protocol for coding and
data handling.

Morselli [16] wrote an excellent book applying a social network perspective to a variety
of illegal enterprises, focusing on the flexibility of these organizations and their strategies to
adjust after losing key members or opportunities. The author examined the structures and
dynamics of criminal networks, their key and peripheral players, their balance between
efficiency and security, positions and individual traits, the use of legitimate actors in illegal
settings, and finally the network adaptation against disruption.

Calderoni [32] discussed the state of the art in the study of organized criminal groups
through the application of SNA methods. He used both the academic and law enforcement
perspectives to provide an overview of the field development and to describe the existing
approaches. The author focused on data sources, the type of network analysis, and the limi-
tations due to the application of SNA to criminal organizations. He also identified the future
trends and suggested some promising paths from both a policy and research perspective.

Berlusconi [33] also highlighted the relevance of SNA to analyze criminal groups, for
both research and LEA purposes. She discussed how SNA can be applied in various areas
related to the criminological context, and how this application could have great value for
crime prevention.

Burcher [34] explained how intelligence analysts apply SNA in operational environ-
ments focusing on the identification of key actors, network vulnerabilities, avenues of
enquiry, link and attribute weights, and when during an investigation, analysts apply SNA.

Bright et al. [35] discussed the growth in popularity of the use of SNA to study crime
and reviewed the challenges related to the use of data extracted from criminal justice
records. They offered to researchers some recommendations about data collection and
preparation when utilizing these kinds of records. The use of criminal justice records can
suffer from a number of limitations in terms of accuracy, validity and reliability. Such data
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may suffer from the problem of missing data. They may include transcription errors, aliases
or false information. The authors also outlined and discussed the different types of data
used across this literature.

1.3. Past Approaches

In [36], we proposed a unique multilayer mafia network. The Sicilian Mafia [37,38]
is one of the most renowned criminal organizations. Each mafia group is called a cosca,
family or clan. The analysis of the mafia social structure inspired great interest in the
scientific community [39]. Our multilayer network was built from two simple graphs
that captured the meetings and phone calls between a couple of suspected criminals
identified by police audio and physical surveillance during an anti-mafia operation known
as Montagna [25,29,40]. The Public Prosecutor’s Office of Messina (Sicily) concluded this
investigation in 2007. Given these two single-layer networks, we build a weighted and
undirected multilayer network with 154 actors, 439 intralayer edges, and 2 layers named
Meetings and Phone Calls. Then, we focused on the identification of leaders within the
two-layer Montagna network. We chose the degree as descriptor to identify the 20 most
important actors in the network. We used three different approaches to compute degree:
(i) on each layer separately, according to its standard definition on simple graphs; (ii) on the
aggregated network obtained by merging the two layers of the multilayer network into a
single-layer network, again according to its standard definition; and (iii) on the multilayer
network, computed as the number of each actor’s relational ties on all the layers in which
he exists.

In this paper, which is an extended version of [36], we rebuilt the multilayer network
adding a third layer derived by a third new simple graph based on the crimes that suspected
criminals from the Montagna operation committed together. The resulting network is a
weighted and undirected multilayer network with 226 actors, 454 intralayer edges, and
3 layers named Meetings, Phone Calls and Crimes. Then, we made a deep study of the
new three-layer Montagna network using at first some traditional measures from SNA to
study the single layers and, then, actor and layer measures from the multilayer network
analysis to evaluate the actor importance in each layer and in the whole structure and the
dissimilarity among the layers. To the best of our knowledge, we are the first to build
and study a criminal network in a form of multilayer network and not as an aggregate
network. From our analysis, a different understanding of the network structure and of the
key actors emerges, which allows to declare that LEAs should collect more multiplex data
in order to reduce their efforts during an investigation. The identification of key actors
taking into account more layers could, in fact, better identify the strategic positions of
suspected criminals allowing to make decisions on targets of surveillance or arrest.

2. Materials and Methods
2.1. Multilayer Networks

A multilayer network is the most general structure to represent any kind of network [5].
The elementary concept of a graph, also known as single-layer network, is at the base of
its structure.

Definition 1 (Single-layer network). A single-layer network is defined as a simple graph [1]
G = (V, E) where V = {v1, v2, . . . , vN} is the set of nodes and E = {l1, l2, . . . , lL}, E ⊆ V ×V
is the set of edges.

Networks with multiple levels, multiple types of edges or other similar features can
be represented, adding some structures with layers to nodes and edges.

Definition 2 (Multilayer network). A multilayer network [2] is defined as a quadruple
M = (A,L, V, E), where A is the set of actors, L is the set of layers, (V, E) is a simple graph and
V ⊆ A×L.
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An actor is the real-world concept represented by a node which is an element of the
mathematical concept of the graph. An actor can be a person, an organization or an entity
which has relationships with other actors. The same actor can be present in different layers,
where each layer represents a type of actor or a type of edge between actors. A node
represents a specific actor on a specific layer (e.g., a node can be the Facebook or Twitter
account of a specific user which is the actor). Using multiple layers, we can represent
different types of edges that correspond to the relationships between nodes. Intralayer
edges are those among nodes in the same layer. Interlayer edges are those among nodes in
different layers.

When a common set of actors is connected through multiple types of edges, a multi-
layer network can be reduced to a multiplex network.

Definition 3 (Multiplex network). A multiplex network [5] can be defined as a sequence of
graphs {Gα}b

α=1 = {(Vα, Eα)}b
α=1, where Eα ⊆ Vα ×Vα is the set of edges and α is the index for

the graphs and usually
⋂b

α=1 Vα 6= ∅ (i.e., the different layers at least share some nodes).

2.1.1. Descriptive Measures

One of the main approaches to study multilayer networks consists in applying typ-
ical measures of the traditional SNA to each layer separately and then comparing these
results [2]. This kind of approach can be useful for producing an initial overview of the
data before applying truly multilayer measures.

Different layers have in fact their specific characteristics in terms of number of nodes
or edges, edge directionality, graph density, clustering coefficient, components, or network
diameter when observed one at a time.

Definition 4 (Directionality). Edge directionality is a key property that defines the type of graph
together with edge weight (i.e., a numerical value attached to each edge). If all edges are bidirectional,
then the graph is called undirected. If edges have directionality, then the graph is called directed.

Definition 5 (Density). Graph density is a measure of how many edges between nodes exist
compared to how many edges between actors are possible. It is defined as:

δ =
L

N(N − 1)
. (1)

Definition 6 (Diameter). Graph diameter dmax [41] is the maximum shortest path in the graph,
where the shortest path (or distance) dvivj between nodes vi and vj is the path with the fewest number
of edges. A path is a sequence of nodes such that each node is connected to the next node along the
path by an edge.

Definition 7 (Average path length). The average path length 〈d〉 [41] is the average distance
between all pairs of nodes in the graph. It is defined as:

〈d〉 = ∑
vi ,vj∈V

dvivj

N(N − 1)
. (2)

Definition 8 (Connected component). A connected component cc [41] is a subset of nodes in a
graph, so that there is a path between any two nodes that belongs to the component, but one cannot
add any more nodes to it that would have the same property.

Definition 9 (Largest connected component). The largest or giant connected component lcc
can be found typically in real undirected graphs, and it contains most of the nodes in the graph.
The rest of the graph usually is divided into a large number of small components disconnected from
the others.
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Definition 10 (Degree). The degree k [36] is a key property of each node in a graph and represents
the number of connections it has to other nodes. It is defined as:

k(vi) = |{vj : (vi, vj) ∈ E ∨ (vj, vi) ∈ E ∧ vi 6= vj}|. (3)

Definition 11 (Degree distribution). The degree distribution pk [41] provides the probability
that a randomly selected node vi in the graph has degree k. For a graph with N nodes, the degree
distribution is a normalized histogram given by:

pk =
Nk
N

, (4)

where Nk is the number of nodes with degree equal to k.

Definition 12 (Average clustering coefficient). The average clustering coefficient 〈C〉 [41] is
the probability that two neighbors of a randomly selected node link to each other. It is defined as:

〈C〉 = 1
N

N

∑
1

C(vi), (5)

where C(vi) is the clustering coefficient of a node vi which captures the degree to which the neighbors
of vi link to each other. It is defined as:

C(vi) =
2Li

k(vi)(k(vi)− 1)
, (6)

where Li represents the number of edges between the k neighbors of the node vi.

2.1.2. Actor Measures

Actors in multilayer networks can be described by a specific set of metrics [2]. Some
of them are direct extensions of their single-layer counterparts and measure actors based
on their local edges and relationships. Other measures have no counterpart for single-layer
networks. They characterize the relevance of a specific layer or set of layers within the
context of the connectivity of the actors.

Definition 13 (Multilayer actor degree). Given a multilayer network M = (A,L, V, E), the
degree [2] of an actor a ∈ A on a set of layers L ⊆ L is the number of his connections on all these
layers. It is defined as:

k(a, L) = |{{(a, l), (a′, l′)} ∈ E : l, l′ ∈ L}|. (7)

When L = L, the degree of the actor is within the whole multilayer network, whereas
when the set of layers contains only one layer, the traditional degree is computed as shown
in Equation (3) for the actor in that layer.

Definition 14 (Multilayer actor degree deviation). Given a multilayer network
M = (A,L, V, E), the degree deviation [2] of an actor a ∈ A on a set of layers L ⊆ L is
defined as the standard deviation of the degree of a over the layers in L:

σk =

√√√√√ ∑
l∈L

(
k(a, {l})− k(a,L)

|L|
)2

|L| . (8)

The degree deviation indicates the presence of an actor in the multilayer network and
quantifies to what extent actors have similar or different degrees on the different layers.
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Definition 15 (Multilayer actor neighborhood). Given a multilayer network M = (A,L, V, E),
the neighborhood [2] of an actor a ∈ A on a set of layers L ⊆ L is the number of the neighbors ns of
a, i.e., those distinct actors that are connected to a on a specific layer or set of layers. It is defined as:

n(a, L) = |{a′ ∈ A : {(a, l), (a′, l′)} ∈ E ∧ l, l′ ∈ L}| = |ns(a, L)|. (9)

When computed on a single layer network, degree and neighborhood coincide. How-
ever, the degree of an actor cannot be defined anymore as the number of adjacent actors in
a multilayer network where actors can be connected to different individuals depending on
the layer.

Definition 16 (Multilayer actor exclusive neighborhood). Given a multilayer network
M = (A,L, V, E), the exclusive neighborhood [2] of an actor a ∈ A on a set of layers L ⊆ L
counts the neighbors that are adjacent to a only on the input layers L. It is defined as:

xn(a, L) = |ns(a, L) \ ns(a,L \ L)|, (10)

where the symbol \ indicates the set difference operation.

The exclusive neighborhood considers the actors that are connected exclusively on a
specific layer or set of layers, and it is used to explore the role of specific layers for specific
actors. If an actor has a high exclusive neighborhood on a layer, this means that this layer
is important to maintain the actor connectivity. In fact, if the layer was removed, the actor’s
neighbors would also disappear.

Definition 17 (Multilayer actor relevance). Given a multilayer network M = (A,L, V, E), the
relevance [2] of an actor a ∈ A on a set of layers L ⊆ L is the ratio between the neighbors of a on
the specific set of layers L and the total number of his neighbors. It is defined as:

r(a, L) =
n(a, L)
n(a,L) . (11)

The relevance describes the specific signature of each actor, i.e., to be present on the
different layers.

Definition 18 (Multilayer actor exclusive relevance). Given a multilayer network M =
(A,L, V, E), the exclusive relevance [2] of an actor a ∈ A on a set of layers L ⊆ L is the
fraction of neighbors directly connected with a through edges belonging only to layers in L. It is
defined as:

xr(a, L) =
xn(a, L)
xn(a,L) . (12)

The exclusive relevance measures what impact the removal of a specific layer or set of
layers would have on the connectivity of an actor, also in this case in terms of neighbors.

2.1.3. Layer Measures

Actor measures such as the relevance can be used to know the role of a layer (or a set
of layers) with respect to its actors. In order to know the relationship between different
layers (or sets of layers), some measures of layer similarity need to be introduced. Layer
similarity can be studied from two different perspectives: the actor-centered perspective
and layer-centered perspective [2]. The first one describes the differences between different
layers as a sign of different behaviors of the actors, strategically selecting what kinds of
connections they want to establish on every layer. The second one describes the differences
between layers in terms of interlayer influences, and it can be investigated by applying
existing methods to compute correlation and similarities to multilayer networks.
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Berlingerio et al. [42] developed the idea of layer correlation as a multilayer network
version of the classical Jaccard correlation coefficient.

Definition 19 (Jaccard correlation coefficient). Given two finite sample sets A and B, the Jaccard
correlation coefficient [43] is defined as the size of the intersection divided by the size of the union of
the sample sets:

J(A, B) =
|A ∩ B|
|A ∪ B| . (13)

Definition 20 (Jaccard layer correlation coefficient). Given a multilayer network
M = (A,L, V, E), the Jaccard layer correlation coefficient [42] computes the ratio of pairs of
actors connected on a set of layers L ⊆ L and the total number of pairs of actors connected in at
least one layer in L. It is defined as:

J(L) =
|⋂l∈L Pl |
|⋃l∈L Pl |

, (14)

where Pl denotes the set of pairs of actors connected in each layer l ∈ L.

The Jaccard coefficient can be used to measure the overlapping of the actors, i.e., the
presence of common actors between pair of layers in a multilayer network.

This coefficient can also be used to measure the overlapping of the edges to know if
the common actors between two layers behave in a similar way. This measure can show
edges that actually exist in each pair of layers and actors that are highly connected on a
layer but not on the other layer. If actors who are connected by an edge in one layer are
also connected in the other layer, the value of edge overlapping will be equal to 0. On
the contrary, this value will be 1 if the actors are connected in both layers or in none of
the layers.

De Domenico et al. [8] introduced an actor-centered approach trying to quantify the
similarity between the degree of actors across various layers. In this case, it is possible to
use the Pearson correlation coefficient.

Definition 21 (Pearson correlation coefficient). Given two random variables a and b, the
Pearson correlation coefficient [44] is defined as:

Pr =
cov(a, b)

σaσb
, (15)

where cov(a, b) is the covariance of a and b and σaσb is the product of their standard deviations.

Definition 22 (Pearson interlayer correlation coefficient). Given a multilayer network
M = (A,L, V, E), the Pearson correlation coefficient [12] is defined as:

Pr(l, l′) =
〈k(a, l)k(a, l′)〉 − 〈k(a, l)〉〈k(a′, l′)〉

σk(a,l)σk(a′ ,l′)
, (16)

where k(a, l) and k(a′, l′) are the degrees of actor a, respectively, at layer l and layer l′, and
σk(a,l)σk(a′ ,l′) is the product of their standard deviations.

For each pair (actor, layer), the Pearson correlation does not depend on the connected
actors but only on the number of incident edges on an actor.

The difference between the degree distributions in different layers can instead been
quantified using the Jeffreys dissimilarity function [45].
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Definition 23 (Jeffreys dissimilarity function). The Jeffreys dissimilarity function [46] is a
symmetrized relative entropy (i.e., a measure of the inherent uncertainty or randomness of a single
random variable). Given two ensembles A and B, it is defined as:

DJ(A, B) =
1
2 ∑

x
P(Ax)log

P(Ax)

P(Bx)
+

1
2 ∑

x
P(Bx)log

P(Bx)

P(Ax)
, (17)

where P(Ax) and P(Bx) are the probabilities of the propositions {Ax} and {Bx} indexed by the
sample space x.

Definition 24 (Jeffreys layer dissimilarity function). The Jeffreys layer dissimilarity func-
tion [47] is used to compare two layers as a distance between discrete distributions (e.g., the degree
distribution) based on distance between histograms. It is defined as:

DJ(l, l′) =
K

∑
k=1

pl
klog

pl
k

pl′
k
+

K

∑
k=1

pkl′log
pl′

k

pl
k

, (18)

where pl
k is the relative frequency of the kth degree value in a layer l.

Two layers are more dissimilar when Jeffreys divergence values are higher.

2.2. Multilayer Criminal Network Data

As already explained in Section 1.3, our dataset derives from the Montagna operation,
which was an investigation carried out by R.O.S. (Special Operations Group), i.e., a spe-
cialized anti-mafia police unit of the Italian Carabinieri. This operation was concluded in
2007 by the Public Prosecutor’s Office of Messina, i.e., the third largest city on the island of
Sicily (Italy).

The Montagna operation focused on the Mistretta family and the Batanesi clan, i.e.,
two mafia families who used a cartel of corrupted entrepreneurs to infiltrate the public
works in the northeastern part of Sicily in the period 2003–2007. The Mistretta family
also had a mediator role between two families known as Barcellona and Caltagirone, who
operated around Messina, and other criminal organizations around Palermo and Catania.

On 14 March 2007, the Preliminary Investigation Judge of the Court of Messina issued
a pre-trial detention order, which represents the main data source for our criminal networks.
The pre-trial detention for 38 individuals was ordered by the court who wrote a document
of more than two hundred pages containing a lot of details about meetings, phone calls,
crimes and other activities among the suspects.

Two graphs were initially built from the analysis of this document: Meetings and
Phone Calls [25,29,40]. The Meetings network is made of 101 nodes (i.e., suspected crimi-
nals) and 256 edges (i.e., meetings among couples of suspected criminals). The Phone Calls
network is characterized by 100 nodes (i.e., suspected criminals) and 124 edges (i.e., phone
calls among couples of suspected criminals). A total of 47 suspects jointly belongs to both
networks.

In the current study, we also built a third graph called Crimes characterized by 25
nodes and 74 edges. It shares with the Meetings and Phone Calls graphs 20 nodes, which
are also in this case suspected criminals. Individuals are connected by an edge if they have
committed crimes together.

In our previous work [36], we created from the Meetings and Phone Calls graphs a
weighted and undirected multilayer network with 154 actors, 439 intralayer edges and
2 layers. In this paper, we rebuilt the multilayer network adding the Crimes layer to
the Meetings and Phone Calls layers (see Figure 1). Our new undirected and weighted
multiplex network has 226 actors and 454 intralayer edges. Edges in the Meetings layer
represent the meetings among suspected criminals; those in the Phone Calls layer refer
to the phone communications among distinct phone numbers; those in the Crimes layer
refer to common crimes committed by the members of the criminal network. The number
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of meetings, phone calls or common crimes are encoded by the edge weights. According
to Definition 3, our network can be identified as a multiplex network. In fact, a multiplex
network requires that each layer share at least one node with some other layer. In our
case, Meetings and Phone Calls layers share 47 actors; Meetings and Crimes layers share
25 actors; and Phone Calls and Crimes layers share 20 actors.
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2.3. Experimental Design

The analysis of our multiplex criminal network was conducted using the Python
module uunet.multinet (available at: https://bitbucket.org/uuinfolab/py_multinet/src/
master/, accessed on 10 April 2022) created by Magnani, Rossi and Vega to analyze
multiplex social networks. This library is the Python version of the multinet library for the
analysis of multilayer networks released by the same authors for the R framework [48].

Algorithm 1 shows the design of our experiments.

Algorithm 1 Multilayer approach.
% Initialization;
set three undirected and weighted graphs G = (V, E);
% Generation of the multiplex network;
add each graph G as layer l of a multiplex network M = (A,L, V, E);
% Descriptive measures;
for each layer l ∈ L do

compute N, L, dir., |cc|, lcc, δ, 〈C〉, 〈d〉 and dmax;
end
% Actor measures;
for each actor a ∈ A do

compute k(a,L);
end
set the 20 high degree actors KA;
for each actor a ∈ KA do

compute σk and n(a,L);
for each layer l ∈ L do

compute xn(a, l), r(a, l) and xr(a, l);
end

end
% Layer measures;
for each pair of layers (l, l′) ∈ L do

compute JA(l, l′), JE(l, l′), Pr(l, l′) and DJ(l, l′);
end

We started with the creation of the three simple graphs Meetings (G1), Phone Calls
(G2) and Crimes (G3) described in Section 2.2, and we added them, respectively, as the first
layer (l1), second layer (l2) and third layer (l3) of a multiplex network M.

https://bitbucket.org/uuinfolab/py_multinet/src/master/
https://bitbucket.org/uuinfolab/py_multinet/src/master/
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We applied to each layer l some of the most traditional SNA measures such as the
number of nodes, number of edges, directionality, number of connected components, size
of the largest connected component, density, clustering coefficient, average path length and
diameter (see Section 2.1.1).

Then, we studied the actors in the network (see Section 2.1.2). We computed the
highest degree actors on the whole multiplex network focusing on the 20 most central
actors. We also compared the degree values of each actor in each specific layer computing
the standard deviation of the degree. It can be a useful function to estimate what actors
possess similar or different degrees on the various layers.

Given the set of the 20 most central actors KA, we computed the neighborhood for
these actors considering the whole network with all the three layers (L) and the exclusive
neighborhood on each layer l. The neighborhood is not evaluated on each layer because on
a single layer, neighborhood and degree have the same value. The exclusive neighborhood
is calculated on a layer because it allows knowing if a layer is important to maintain the
actor connectivity.

We also calculated relevance and exclusive relevance for the actors in KA on each layer
l. Relevance and exclusive relevance allow studying the relation between the multilayer
network and the actors identifying those who are highly connected on a given layer or
actors that are connected uniquely through a layer.

At the end, we compared layers using four different approaches (see Section 2.1.3).
We computed the overlapping of actors and edges using the Jaccard correlation coefficient.
Consequently, we determined the correlation between the degrees using the Pearson corre-
lation coefficient to know if actors with a high degree on one layer had a similar behavior
on the other layers. Then, we evaluated the dissimilarity between degree distributions
using the Jeffreys dissimilarity function.

3. Results

Table 1 shows our preliminary analysis of the multiplex network considering each
layer as an independent graph. The third layer is the smallest one and presents different
characteristics especially in terms of number of connected components, size of the largest
connected component and graph density. The first two layers seem to be more similar with
the exception of the average clustering.

Table 1. Descriptive measures for the flattened Montagna multiplex network and its three layers:
number of nodes, number of edges, directionality, number of connected components, size of the
largest connected component, density, clustering coefficient, average path length and diameter.

Layer N L Dir. |cc| lcc δ 〈C〉 〈d〉 dmax

Meetings (l1) 101 256 False 5 92 0.050693 0.417647 3.308887 7
Phone Calls (l2) 100 124 False 5 89 0.025051 0.072687 3.378192 7

Crimes (l3) 25 74 False 2 23 0.246667 0.779626 2.407115 6

The results obtained applying the actor measures on the Montagna multiplex network
are shown in Figure 2 and more in detail in Tables 2–4.
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of the 20 highest-degree actors.
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Figure 2. Degree k(a,L) and neighborhood n(a,L) computed on all the three layers L compared
with degree k(a, l), exclusive neighborhood xn(a, l), relevance r(a, l) and exclusive relevance xr(a, l)
computed on each of the three layers Meetings (l1), Phone Calls (l2) and Crimes (l3) for each actor a
of the 20 highest-degree actors.

Table 2 contains the degree of the 20 most central actors in the whole network and in
each single layer. It also shows the standard deviation of the degree. Our actors are specific
individuals involved in criminal activities or members of Mafia families which were at the
center of the Montagna operation. We reconstructed the actor roles reading court documents
of the anti-mafia operation. These roles have been analyzed in our previous work [36]
making particular reference to the structure of a Mafia family which is characterized by
typical figures such as boss, underboss, consigliere, messaggero, caporegimes, soldiers and
associates. Considering the layered structure, the actors we identified as the most central
are 18, 47 and 27. These actors are respectively a caporegime of the Mistretta family, a
deputy caporegime and a caporegime of the Batanesi family. Therefore, they are effectively
important. Caporegimes manage their crew of soldiers (i.e., average type criminals) within
a Mafia family in a specific geographical location. These actors have similar degrees on the
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first two layers and different degrees on the third one. The Crimes layer does not include
some of the most central actors such as 68, 12, 22, 11, 43 and 25. Actor 22 is a pharmacist
which can be an important figure because chemical or pharmacological knowledge is
required during a process of drug synthesis. Actor 11 is a criminal activity coordinator in
Messina which is central to know the connection among the Mistretta and Batanesi families
with other criminal organizations sited in Messina. Node 43 is the messaggero who is a key
figure in a Mafia family who functions as a connection between families. He limits the boss
exposure, reducing the necessity to meet publicly. Actor 29 seems to have equal importance
for all the three layers as confirmed by a low degree deviation. He is an entrepreneur.
Compared with the two-layer multiplex network described in [36], adding the third layer
brings to light the importance of the entrepreneurs such as actors 54, 64 and 63, who did
not appear as prominent figures from the analysis of the first two layers. Entrepreneurs are
important Mafia associates because they can make the criminal organization win public
tenders and accomplish the public contracts in a fraudulent way.

Table 2. Degree and degree deviation computed on the 20 highest-degree actors on the whole
Montagna multiplex network and on its single layers.

a k(a,L) k(a, l1) k(a, l2) k(a, l3) σk

18 57 24 25 8 7.788881
47 44 19 21 4 7.586538
27 31 16 11 4 4.921608
29 30 13 9 8 2.160247
61 29 4 17 8 5.436502
68 25 15 10 N/A 6.236096
54 24 6 5 13 3.559026
45 24 12 6 6 2.828427
51 22 11 4 7 2.867442
48 21 12 1 8 4.546061
64 18 6 2 10 3.265986
12 17 16 1 N/A 7.318166
22 16 14 2 N/A 6.182412
11 16 12 4 N/A 4.988877
75 15 4 8 3 2.160247
43 14 9 5 N/A 3.681787
36 14 8 4 2 2.494438
25 14 13 1 N/A 5.906682
63 13 4 1 8 2.867442
50 13 8 1 4 2.867442

Table 3 shows, respectively, the neighborhood of the 20 highest-degree actors of the
whole Montagna multiplex network and the exclusive neighborhood of the same actors
on each layer of the network. Given an actor a, the neighborhood of a considers only the
distinct actors who are connected to a within the whole multilayer network. As we can
observe comparing the second columns of Tables 2 and 3, some actors are connected on
multiple layers. These actors will not have a higher neighborhood, but they will have
a higher degree. A low exclusive neighborhood on a layer implies that a layer is not
important to maintain the actor connectivity. If the Phone Calls layer disappeared, actors
such as 51, 48, 64, 12, 25, 63, and 50 would lose 0 neighbors. This layer is not essential for
these actors. In the same way, the Crimes layer is not important for the connectivity of
actor 47. A highly exclusive neighborhood means instead that a layer is important for an
actor. For example, we can observe the case of actor 18. If the Meetings layer disappeared,
14 neighbors of this actor would disappear. If the Phone Calls layer disappeared, 15 neigh-
bors of this actor would disappear. If the Crimes layer disappeared, only 3 neighbors of
this actor would disappear. Peculiar are the cases of actors 12 and 25, who are, respectively,
a soldier and a caporegime of the Mistretta family. If the Meetings layer disappeared, these
actors would lose, respectively, 15 and 12 neighbors. This leads us to deduce that they
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would lose their central positions and confirms the results of Table 2 in which we can
observe a degree equal to 16 for actor 12 and equal to 13 for actor 25 in the Meetings layer.
The degree of these actors is 1 in the Phone Calls layer. Actors 12 and 25 are not present on
the Crimes layer.

Table 3. Neighborhood computed on 20 highest-degree actors of the whole Montagna multiplex
network and exclusive neighborhood computed on its single layers.

a n(a,L) xn(a, l1) xn(a, l2) xn(a, l3)

18 44 14 15 3
47 29 8 10 0
27 24 10 5 3
29 20 7 2 4
61 24 2 13 5
68 19 9 4 N/A
54 17 1 1 10
45 17 7 2 3
51 15 5 0 4
48 14 6 0 2
64 13 3 0 6
12 16 15 0 N/A
22 15 13 1 N/A
11 15 11 3 N/A
75 13 3 7 1
43 11 6 2 N/A
36 13 7 3 2
25 13 12 0 N/A
63 9 1 0 4
50 9 5 0 1

Table 4 shows each layer’s relevance and exclusive relevance for the 20 highest-degree
actors of the Montagna multiplex network. A high relevance means that a specific actor has
a significant presence on a specific layer. The exclusive relevance is similar to the exclusive
neighborhood. It allows to know how much the removal of a specific layer would affect the
actor connectivity in terms of actor neighbors. Relevance and exclusive relevance should
be considered together. For example, the presence of actor 12 on the network is totally
based on the Meetings layer, which contains the 100% of its neighbors. Almost 94% of these
neighbors are only present on the Meetings layer.

The presence of the key actor 43 (i.e., the Messaggero) in the network is largely based
on the Meetings layer. This layer contains in fact 81% of the actor neighbors. More than
half of these neighbors are present only in the Meetings layer. The Crimes layer contains
88% of the neighbors of actor 63, while 44% of them are only present on this third layer.
The Crimes layer contains 76% of the neighbors of actor 54; 58% of them are only present
on this third layer. These results support those obtained during the degree computation.
The presence of actor 61 is largely based on the Phone Calls layer, which contains 70% of its
neighbors with 54% only present on this layer. We can observe in Table 2 how actor 61 has
a higher degree in the Phone Calls layer with respect to the other ones.

The results obtained applying the layer measures on the Montagna multiplex network
are shown in Figure 3 and more in detail in Tables 5–8.

Table 5 shows the Jaccard correlation coefficient computed among pairs of layers in
the Montagna multiplex network to verify the presence of the same actors on different
layers. If two layers do not share any actor, the coefficient will be equal to 0. If two layers
share the same actors, the coefficient will be equal to 1. In our case, we can observe the
strongest overlapping between the actors in the Meetings and Phone Calls layers, which is
slightly lower between the Meetings and Crimes layers, and very low between the Phone
Calls and Crimes layers.
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Table 4. Relevance and exclusive relevance of the 20 highest-degree actors on each layer of the
Montagna multiplex network.

a r(a, l1) xr(a, l1) r(a, l2) xr(a, l2) r(a, l3) xr(a, l3)

18 0.545455 0.318182 0.568182 0.340909 0.181818 0.068182
47 0.655172 0.275862 0.724138 0.344828 0.137931 0.000000
27 0.666667 0.416667 0.458333 0.208333 0.166667 0.125000
29 0.650000 0.350000 0.450000 0.100000 0.400000 0.200000
61 0.166667 0.083333 0.708333 0.541667 0.333333 0.208333
68 0.789474 0.473684 0.526316 0.210526 N/A N/A
54 0.352941 0.058824 0.294118 0.058824 0.764706 0.588235
45 0.705882 0.411765 0.352941 0.117647 0.352941 0.176471
51 0.733333 0.333333 0.266667 0.000000 0.466667 0.266667
48 0.857143 0.428571 0.071429 0.000000 0.571429 0.142857
64 0.461538 0.230769 0.153846 0.000000 0.769231 0.461538
12 1.000000 0.937500 0.062500 0.000000 N/A N/A
22 0.933333 0.866667 0.133333 0.066667 N/A N/A
11 0.800000 0.733333 0.266667 0.200000 N/A N/A
75 0.307692 0.230769 0.615385 0.538462 0.230769 0.076923
43 0.818182 0.545455 0.454545 0.181818 N/A N/A
36 0.615385 0.538462 0.307692 0.230769 0.153846 0.153846
25 1.000000 0.923077 0.076923 0.000000 N/A N/A
63 0.444444 0.111111 0.111111 0.000000 0.888889 0.444444
50 0.888889 0.555556 0.111111 0.000000 0.444444 0.111111

Table 5. Jaccard overlapping of the actors in the Montagna multiplex network.

Meetings Phone Calls Crimes

Meetings 1.000000 0.305195 0.247525
Phone Calls 0.305195 1.000000 0.190476
Crimes 0.247525 0.190476 1.000000
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The overlapping between edges in a pair of layers can be checked to know if actors
are connected to the same other actors on different layers. In this case, if no actors who
are connected on a layer are also connected on the other layer, the Jaccard coefficient will
be equal to 0. If all pairs of actors are connected in none of layers or in both of them, the
Jaccard coefficient will be equal to 1.

Table 6 shows that there is no overlapping of the edges in our Montagna multiplex
network. This means that in most cases, the actors of our network who represent suspected
criminals have different connections among them.

Table 6. Jaccard overlapping of the edges in the Montagna multiplex network.

Meetings Phone Calls Crimes

Meetings 1.000000 0.111111 0.071429
Phone Calls 0.111111 1.000000 0.093923
Crimes 0.071429 0.093923 1.000000

When there is an overlapping between the actors in the layer of a multilyer network,
it can be interesting to verify if actors have a high or low degree on all the layers in which
they are present. In other words, we want to know if these actors behave in a similar way.
The Pearson correlation allows us to know this information. Table 7 shows the Pearson
correlation coefficient computed among the degree of the actors in pairs of layers of the
Montagna multiplex network. The Pearson correlation is in the interval [−1, 1]. It is equal
to −1 when actors with high degree values in one layer have low degree values in the other
and vice versa. It is equal to 1 if actors possess high degree values on both layers. It is equal
to 1 if actors possess low degree values on both layers. Since the Meetings and Phone Calls
layers are the layers with the strongest overlapping of the actors, it is not surprising that
the only significant result of the Pearson correlation is the one between these two layers.
Most of the common actors of the Meetings and Phone Calls layers should have the same
degree.

Table 7. Pearson layer correlation in the Montagna multiplex network.

Meetings Phone Calls Crimes

Meetings 1.000000 0.621220 0.022704
Phone Calls 0.621220 1.000000 0.079437
Crimes 0.022704 0.079437 1.000000

Table 8 shows the dissimilarity between degree distributions in the form of pair-wise
comparisons among the layers of the Montagna multiplex network. The dissimilarity is
computed using the Jeffreys dissimilarity function. Two layers of the network are more
dissimilar the higher the values of the Jeffreys divergence. In our case, it is possible to
observe how the degree distributions of the three layers are quite dissimilar. In particular,
the Crimes layer seems to be the most dissimilar from the other two layers, especially with
respect to the Phone Calls layer.

Table 8. Dissimilarity between degree distributions in the three layers of the Montagna multiplex
network, computed using the Jeffreys dissimilarity function.

Meetings Phone Calls Crimes

Meetings 0.000000 0.481833 0.715027
Phone Calls 0.481833 0.000000 2.325230
Crimes 0.715027 2.325230 0.000000

The degree distributions for each layer are showed as normalized histograms in
Figure 4. Most nodes in the Meetings layer have degree k equal to 2. Most nodes in the
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Phone Calls layer have a degree k equal to 1. Most nodes in the Crimes layer have a degree
k equal to 8. The Meetings layer reconstructs the meetings among suspected criminals
assuming all of them had interactions with each other [40]. This may have overestimated
the real number of connections. In fact, some of the participants in these meetings may
have had limited or no interactions. However, it should be noted that LEAs were only
able to identify the individuals who attended the meetings and not the full extent of their
interactions. The Phone Calls layer represents instead the phone calls between suspects
who were intercepted by LEAs. Finally, the Crimes layer represents the individuals who
were charged with mafia association crimes.
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4. Discussion

In this paper, we used a real criminal dataset related to an anti-mafia operation known
as Montagna, which was concluded in 2007. Parsing a two hundred-page pre-trial detection
order by the Court of Messina, we initially built three simple graphs, one for meetings,
one for phone calls and one for crimes committed together by the suspected criminals.
Some suspects who met and called each other also committed crimes together. Therefore,
we identified meetings, phone calls and crimes as layers of a multiplex network. For this
reason, we created a weighted and undirected multilayer network, where edge weights
represented the number of meetings, phone calls or crimes.

We initially studied the three layers of the Montagna multiplex network separately
applying some descriptive measures that are typical of SNA such as the number of con-
nected components, the size of the largest connected component, the density, the average
clustering coefficient, the average path length and the diameter. Then, we used actor
measures from the multilayer network analysis to study the degree of the 20 most central
actors, their degree deviation, their neighborhood and exclusive neighborhood, and their
relevance and exclusive relevance. These measures are useful to understand the importance
of an actor with respect to the whole network and on each specific layer. Finally, we used
layer measures from multilayer network analysis to study the overlapping of actors and
links, the correlation among the actor degree on each layer and the dissimilarity among the
degree distributions on each layer.

Our experiments show how traditional measures, which are usually used for simple
graphs, such as the Jaccard or Pearson correlation coefficients, allow obtaining significant
results even on multilayer networks. Thus, the generalization of traditional network science
measures sounds promising for the study of multilayer networks.

The study of correlation among the layers of a multilayer network, and therefore the
study of the overlapping of actors and edges in it, allows us to understand if each layer
contains unique information. The lack of overlapping among edges proves that compared
with the study of the single layers, the analysis of multiple layers within a criminal network
provides a more nuanced understanding of its structure and of the strategic position of
actors in it.
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A key actor in a certain layer may not be central in any aother layer nor for the
multilayer network. The identification of key actors in a criminal network may be of
particular salience for law enforcement efforts to reduce the capabilities of a criminal
network. LEAs could consider key actors across different layers to make decisions regarding
targets for surveillance, intelligence and arrest. For this reason, LEAs should collect
multiplex data including data on different types of edges across a criminal network [13].

Analyzing multiplex data, we could also redefine the concept of criminal. The level
of criminality of a specific actor could be quantified based on his connections among
the layers.

Multiplex data could also be useful to face the missing data problem in criminal
networks, which are usually incomplete, incorrect and inconsistent [25]. LEAs may have
limited resources or make unintentional errors. Some individuals unrelated to the criminal
organization such as relatives, friends or other frequent contacts may appear during the
investigations. Moreover, some members of the criminal organization try to avoid detection
using intermediaries, coding messages or by refraining from the use of the telephone.
In criminal network analysis, missing data can refer to missing nodes and/or missing
edges. LEAs plan to get reliable results from the application of link prediction algorithms
to address the problem of missing edges, which is a critical impediment to understand
network boundaries and topology. Given a multiplex network, edges on a layer could be
predicted considering the edges present on another layer. A multiplex link prediction could
be even more helpful for researchers and LEAs compared to standard link prediction.

5. Conclusions

Criminal networks are the result of a large number of different pieces of information.
In particular, police stakeout and wiretap records are usually used in conjunction with
documents from criminal prosecutions, law enforcement reports, and interviews with sus-
pects. The nodes of a criminal network are the individuals who appear in these documents.
Communications, meetings, financial transactions, trade in illicit goods, and exchange of
particular resources are modeled using the edges.

Meetings and Phone Calls are two criminal networks based on meetings and phone
calls among suspected criminals observed during stakeouts or wiretapped by police during
a specific period of time. The Meetings network possesses a greater number of connections
because LEAs were only able to identify the participants to meetings and not the full extent
of their interactions. In crowded meetings, some participants may have had a very limited
(if any) interaction with other participants. In such a case, assuming that all participants
interacted with each other may considerably overestimate the real number of connections.
This is the reason why the Meetings network is more dense than the Phone Calls network.
Moreover, we deal with two criminal networks in which communications are supposed
to be reduced to keep the criminal organization safe. If two criminals call each other, it is
reasonable to believe that they will not meet. In this paper, we also built a third network
that represents the connections between subjects who had committed, in concurrence,
crimes for the purpose of the mafia association. Therefore, it is not recommended to
build an aggregated network adding fictitious edges and putting on the same plan phone
calls, group meetings and associative crimes. A complete picture can only be obtained by
considering the three networks as a whole multilayer network.

We applied actor and layer measures on the multilayer network which highlighted the
usefulness of the multilayer approach by bringing out the importance of actors that does
not emerge by studying the three networks separately. The Montagna operation focused
on the Mistretta family and the Batanesi clan, who infiltrated several economic activities
including public works on the Tyrrhenian coast and the Nebrodeo territory, through a cartel
of entrepreneurs close to the Sicilian Mafia. For this reason, entrepreneurs should have a
central role to win public tenders and to accomplish the public contracts in a fraudulent
way. Nevertheless, we were not able to identify their importance analyzing the single
layers but only considering the multilayer structure. More in general, we demonstrated
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that a complete picture of the structure and the activities of the criminal organization can
be obtained only considering the three layers as a whole multilayer network and not as
single-layer networks.

Our results rely on a single case study, which refers to the Sicilian Mafia, but they can
be generalized to other form of organized crime. Unfortunately, most of the information
about criminal networks is not publicly available, and this leads to small datasets available
for analysis. A multilayer approach can be applied in every case in which it is possible to
derive different networks representing different information from the judicial documents
related to a specific investigation.

As future works, we want to apply link prediction and community detection algo-
rithms to our multiplex network and even try to build a network model that can reproduce
a criminal multiplex network. Network models can, in fact, help LEAs to predict and
prevent the creation of connections between criminals or to break them by arresting one
or more of the suspects. Moreover, we intend to evaluate the possibility to change the
Montagna multiplex network into a multilayer network by coupling language networks
of the content produced in the phone calls by suspected criminals [49]. Our multiplex
network could be also changed into a feature-rich network encapsulating node-level at-
tributes coming from our criminal records and evaluating if the information over nodes
is informative about community structure [50]. An actor could in fact be categorized as
boss, underboss, consigliere, messaggero, caporegime, soldier and associate according to
the hierarchical structure of Mafia families [36].
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