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Abstract

We propose a model for studying several nonlinear waves for heat transport along a
cylindrical system with lateral non-linear heat transfer to the environment. We consider
relaxational equations, each with its own relaxation time, for longitudinal heat transfer and
for lateral heat transfer across the wall. We consider two kinds of nonlinear lateral heat
transport: radiative heat transport, and flux-limited heat transport. This work generalizes
our previous studies in which the relaxation time for the lateral heat transfer was considered
equal to that of the longitudinal heat flux. We explore the influence of both relaxation
times on the propagation speed of linear and nonlinear waves, and on the form of nonlinear
waves.
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1 Introduction

The appearance of nonlinear phenomena is an appealing feature which interests many branches

of physics and biology. One of the most important nonlinear phenomena is the existence

of solitons [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In recent papers we have considered the

propagation of heat solitons along thin wires with a nonlinear heat exchange between the wire

and environment given by the Stefan-Boltzmann law [13] or by a flux-limited heat exchange

[14]. This idea follows the interest on hyperbolic heat propagation along thin wires or along

quantum vortex lines [15, 16, 17, 18, 19, 20]. In particular, solitons have been obtained in the

context of heat transfer combined with the Fourier’s law and some nonlinear heat producing

process (exothermic chemical reactions, and phase transitions with latent heat) [21]. Instead,

in [22, 23, 24, 25] the authors have considered a nonlinear radiative heat exchange between

the system and the environment. Apart from the existence of the thermal solitons, as seen

also in [26], other kinds of nonlinear waves could also be of interest in the heat transport.

In this paper we propose an extension of the model introduced in [13, 14] with the trans-

verse heat exchange being considered as an independent field, namely with a further evolution
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equation for it with its own relaxation time different from the relaxation time for the longitu-

dinal heat transfer. The presence of two different relaxation times is not a mere mathematical

ingredient but it follows the physical idea that the heat propagation along the wire involves

the collision time of phonons, whereas heat transport across the walls involves the emission of

photons at the surface of the wire, or the collisions of particles in the environment against the

wall of the wire. The combination of two relaxation times has been considered in other papers

but in a linear approximation [27, 28, 29]. There, the authors have studied the propagation of

the second sound in terms of linear waves along nanowires and thin layers. Here, we consider a

different geometry, thin wires, with a nonlinear approach, which would generalize what found

in [13, 14].

For the lateral term, we consider both the Stefan-Boltzmann law and flux-limited heat

exchange [30, 31]. This analysis is aimed to explore possible strategies for heat transport and

signal transmission along thin wires. Indeed, it may answer to: a) the increasing interest in

the transmission and processing of information by means of thermal signals along nanowires,

and b) the interest in evaluating the energy cost for the transmission of a signal, in the case

the signal is transmitted by a solitonic signal. Both of them have been dealt with by means

of the soliton solutions following the recent paper but with a single relaxation time [13] .

The paper is organized as follows. In Section 2 we present the mathematical model; in

Section 3 we study the linear waves of the model; in Section 4 we study the nonlinear heat

waves with some emphasis to the soliton waves and in Section 5 we apply some nonlinear

waves to a Si thin wire. The mathematical approach used in Section 4 and in the Appendix

is finding exact solutions of the partial differential equation (PDE), namely functions which

exactly solve the PDEs and hence the mathematical problem considered. It allows to prove

the existence of the obtained solutions. For the sake of simplicity, we will refer to “solutions”

for “exact solutions”. The last section is for the conclusions.

2 The mathematical model

Following the main ideas of the papers [13, 14], in this section we consider heat propagation

along a heat-conducting wire of radius r (composed of a material of mass density ρ and specific

heat per unit mass c) but we assume that the longitudinal heat transfer along the cylinder and

the transverse heat exchange per unit area have evolution equations characterized by different

relaxation times.

Let’s consider the following mathematical model:
ρc
∂T

∂t
= − ∂

∂z
q − 2

r
qt

τ
∂q

∂t
+ q = −λ ∂

∂z
T

τ1
∂qt
∂t

+ qt = f(T )

(2.1)

where the first equation is the energy balance equation expressed in terms of the temperature

field T , q = q(z) ẑ is the longitudinal heat transfer along the cylinder, described by the so-

called Maxwell-Cattaneo equation [26, 28] (second equation), and qt is the transverse heat

exchange per unit area from the cylinder to the environment.

The coefficient τ is the relaxation time of the longitudinal heat flux q and τ1 is the relaxation

time of the transverse heat exchange qt; λ is the thermal conductivity of the material. In
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[13, 14] we have considered the case τ1 = τ . This was motivated on purely physical grounds

and it may be expected that τ and τ1, corresponding to different processes, will be different.

Indeed, τ corresponds to the characteristic collision time of heat carriers inside the wire,

whereas τ1 corresponds to the characteristic emission time of electromagnetic radiation on the

walls of the wire. It is expected that τ1 is shorter than τ , but on mathematical grounds we

aim to analyze the general situation of independent values of τ and τ1.

The function f(T ) is the souce term for the transverse heat exchange qt, which may be

given by the Stefan-Boltzmann law for radiative transfer

f(T ) = σSB(T 4 − T 4
0 ), (2.2)

with σSB the Stefann-Boltzmann constant or by a nonlinear flux-limited heat exchange, as for

instance

f(T ) =
σ(T − T0)√

1 +
(
σ′(T−T0)

T

)2 (2.3)

with σ the heat exchange coefficient between the medium and the environment. Indeed, if in

this equation one ignores the denominator, it reduces to the Newton heat transfer law, with the

stated meaning for the coefficient σ. In such equation, qt increases indefinitely with an increase

of T − T0. If in contrast we consider the full expression (2.3), including the denominator, qt
does no longer indefinitely increases with T − T0 but tends to a saturation value given by

σT/σ′. Thus, the coefficient σ′ is related to the saturation value of the heat flux; when σ′ is

zero there is no saturation.

3 Linear heat waves

In this section we investigate the linear waves of the linearized system (2.1) near a reference

steady-state, where system (2.1) becomes
∂

∂z
q +

2

r
qt = 0

q = −λ ∂
∂z
T

qt = f(T )

(3.1)

f(T ) being given by (2.2) or by (2.3).

3.1 Linear waves from the Stefan-Boltzmann law

By substituting the last two equations into the first equation of the system (3.1) and using the

Stefan-Boltzmann law (2.2), corresponding to the case when radiative exchange is dominating,

we find

∂2

∂z2
T − 2

λr
σSB(T 4 − T 4

0 ) = 0 (3.2)

which is a second-order nonlinear partial differential equation. Apart from the constant solu-

tion T = T0 (equilibrium temperature), which leads to the null solutions for the longitudinal

and transverse heat transfer q0(z) = −λ ∂
∂zT0 = 0 and q0t (z) = f(T0) = 0, equation (3.2) has

more non trivial solutions. Indeed, as shown in the Appendix A, some solutions of equation
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(3.2) can be expressed in terms of the elliptic and hyperelliptic functions, which we have

avoid to report here because we will consider the simplest stationary solution: the equilibrium

temperature T0.

Let’s set Γ(0)(z) = (T (0)(z), q(0)(z), q
(0)
t (z)) the stationary solution of the system (3.1). The

nonlinear term f(T ) can be approximated around the stationary solution by

f(T ) = f(T (0)) + f ′(T (0))
(
T − T (0)

)
, (3.3)

which, for the Stefan-Boltzmann law (2.2), becomes:

f(T ) = σSB(T (0)4 − T 4
0 ) + 4σSBT

(0)3(T − T (0)) (3.4)

Now, we consider the propagation of harmonic plane waves of the three fields Γ(z, t) =

(T, q, qt) along the z-axis

Γ(z, t) = Γ(0)(z) + Γ̃ei(K(z)−ωt) (3.5)

where K(z) = kr(z) + iki(z) is the wave number, which here we assume that may depend

on z in the case of inhomogeneity, ω is the real frequency, and Γ̃ = (T̃ , q̃, q̃t) denotes small

amplitudes of the fields, whose product can be neglected.

Substituting (3.5) in the linearized system, the following equations for small amplitude

waves are obtained 
−iωρcT̃ + iK ′q̃ +

2

r
q̃t = 0

iλK ′T̃ + (1− iωτ)q̃ = 0

−4σSBT
(0)3T̃ + (1− iωτ1)q̃t = 0

(3.6)

where K ′ = dK/dz is the derivative of K(z) with respect to z, and T (0)(z) is the stationary

solution.

The dispersion relation follows by requiring a nonzero solution for the fields Γ̃ = (T̃ , q̃, q̃t),

namely by setting zero the determinant of the linear system (3.6). Thus, we find the following

dispersion relation

ciρττ1ω
3 − ciρω− cρτω2 − cρτ1ω2 − iλK ′2τ1ω−

8iσSBτT
(0)3(z)ω

r
+ λK ′2 +

8σSBT
(0)3(z)

r
= 0

(3.7)

which focuses the importance of the nonlinearity through T (0)3(z) [32]

Note that if we assume that K(z) is a linear function of z, namely K(z) = Kz and hence

K ′ = K, and that all the parameters in (3.7) are independent of z, then the stationary solution

T (0)(z) in (3.7) cannot depend on z, but it has to be constant. From equation (3.2) it follows

that T (0) = T0 (with T0 the temperature at equilibrium). This means that homogeneous

perturbations along z, given by (3.5), take part only for homogeneous distribution of the

stationary solution of the temperature, which has to coincide with the temperature T0 at

equilibrium, because it is the only constant solution of equation (3.2). The general case K(z) 6=
Kz is much more demanding to analyze because of the hyperelliptic functions involved (see

the Appendix for more details) and the further integration required to find K(z) from K ′(z)

in (3.7). Thus, for the sake of simplicity we discard this situation and we study propagation

in equilibrium reference states.
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Let’s assume that K(z) = K z = kr z + iks z. Then equation (3.7) can be split into real

and imaginary part
−cρτω2 − cρτ1ω2 + λk2r + 2λkrksτ1ω − λk2s +

8σSBT
3
0

r
= 0

ω

(
cρ
(
ττ1ω

2 − 1
)

+ λk2sτ1 −
8σSBτT

3
0

r

)
− λk′2r τ1ω + 2λk′rk

′
s = 0

(3.8)

If we assume ks small enough that k2s can be neglected in (3.8), (namely, that the attenu-

ation is relatively small) we find expressions for the phase-velocity v = ω/kr and ks:

v =
ω

kr
= ± U0√

1− 8
σSBT

3
0

cρrτω2
(1+ττ1ω2)

(1+τ21ω2)

ks = ±
1 + 8

σSBT
3
0

cρr
(τ−τ1)
1+ω2τ21

2U0τr

√
1− 8

σSBT
3
0 (1+ω

2ττ1)

cρτrω2(1+τ21ω2)

. (3.9)

where U0 is the Maxwell-Cattaneo velocity defined by U0 =

√
λ

ρcτ
. Note that the quantity

ρcr/(σSBT
3
0 ) has the dimensions of time, and characterizes the relaxation of the heat signal

because of lateral radiative exchange. This sets a characteristic time scale that must be

compared to the timescales set by the longitudinal heat relaxation time τ and the lateral heat

relaxation time τ1.

From (3.9) the following condition arises for the existence of the root square, namely:

8
σSBT

3
0 (1 + ω2ττ1)

cρτrω2
(
1 + τ21ω

2
) < 1. (3.10)

This means that for sufficiently high frequencies, making that condition (3.10) is fulfilled,

namely for ω higher than ω2
min = 8

σSBT
3
0

cρrτ1
, the velocity v will be real and waves will propagate.

Instead, for smaller frequencies there will not be propagation of waves. Note that for σSB = 0,

i.e. in the absence of radiative lateral transfer, ωmin = 0. Thus, the presence of the lateral

heat transfer sets in this case a cutoff minimal frequency for the propagation of heat waves.

It is interesting to analyze the results (3.9) in four main cases, namely: ωτ � 1 (high-

frequency asymptotic limit); and three high-frequency (but not infinite) cases, corresponding

to τ = τ1; τ1 � τ and τ � τ1 [33, 34].

In the high-frequency asymptotic limit, namely ωτ � 1, the velocity of the waves becomes

the Maxwell-Cattaneo velocity and the attenuation coefficient ks becomes:v = ±U0

ks = ± 1

2U0τr

(3.11)

In the high-frequency cases instead we consider the following three situations τ = τ1,

τ1 � τ and τ � τ1, corresponding to ω finite but sufficiently high that the propagation

condition (3.10) is satisfied.

For τ = τ1, velocity and dissipation (3.9) become
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v =

ω

kr
= ± U0√

1− 8
σSBT

3
0

cρrτω2

ks = ± 1

2U0τr
√

1− 8
σSBT

3
0

cρτrω2

(3.12)

For τ1 � τ and τ ' 0, in such a way that ττ1ω
2 � 1, (3.9) becomes

v =
ω

kr
= ± U0√

1− 8
σSBT

3
0

cρrτω2
1

(1+τ21ω2)

ks = ±
1− 8

σSBT
3
0

cρr
τ1

1+ω2τ21

2U0τr

√
1− 8

σSBT
3
0

cρτrω2(1+τ21ω2)

(3.13)

and finally, for τ � τ1 and τ1 ' 0, in such a way that ω2τ21 � 1, (3.9) becomes
v =

ω

kr
= ± U0√

1− 8
σSBT

3
0

cρrτω2 (1 + ττ1ω2)

ks = ±
1 + 8

σSBT
3
0

cρr τ

2U0τr
√

1− 8
σSBT

3
0 (1+ω

2ττ1)

cρτrω2

(3.14)

Note that velocity in (3.12), (3.13) and (3.14), as well as in the general expression (3.9),

is bigger than the Maxwell-Cattaneo velocity because the denominator is less than the unit.

This is not the same for the dissipation coefficient ks: indeed, it is surely bigger in (3.12) and

(3.13) but nothing can be asserted for the expression in (3.14) because the numerator is smaller

too. The characteristic attenuation lengths instead (recriprocal of ks) are shorter than in the

Maxwell-Cattaneo case. Note also that if τ1 is zero, the speed in (3.14) has the same form as

in (3.12), corresponding to τ = τ1. This is of interest, because it indicates that our previous

analysis in [13] where the Stefan-Boltzmann law was generalized to a relaxational transfer

equation with relaxation time τ1 equal to τ , is also valid for the usual (non-relaxational)

Stefan-Boltzmann law, corresponding to τ1 = 0.

In actual physical situations it is expected that τ (related to photon collisions in the

wires) is much shorter than τ1 (related to photon collisions with suspended particles in the

environment).

3.2 Linear waves for the flux-limited heat exchange

In this subsection we consider the propagation of linear waves in the case of the flux-limited

lateral heat exchange (2.3), which can be approximated to the third-order in the Taylor’s series

f(T ) =
σ(T − T0)√

1 +
(
σ′(T−T0)

T

)2 ' σ(T − T0)−
σσ′2

2T 2
0

(T − T0)3. (3.15)

Thus, the steady-state system (3.1) leads to
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∂2

∂z2
T − 2σ

λr

[
(T − T0)−

σ′2

2T 2
0

(T − T0)3
]

= 0 (3.16)

for the steady temperature along the wire. In the appendix A we have studied the above

equation (3.16) and, apart from the constant solution T0, we have found some non trivial

solutions for the above equation.

Let’s consider now the propagation of linear waves and look for their dispersion relation.

According to the linearization (3.3) we find

f(T ) = σ
(
T (0) − T0

)
− σσ′2

2T 2
0

(T (0) − T0)3 +

[
σ − 3σσ′2

2T 2
0

(T (0) − T0)2
]

(T − T0) (3.17)

Now, we follow the same procedure used in the previous subsection, namely the propagation

of harmonic plane waves along the z-axis. For this aim, we consider again Γ(z, t) = (T, q, qt)

and (3.5), where Γ(0)(z) is the stationary solution which have been found in the Appendix

and given in terms of the elliptic function and in the degenerate cases by (A.60), (A.61) and

(A.62).

Substituting (3.5) in the linearized system, we find
−iωρcT̃ + iK ′q̃ +

2

r
q̃t = 0

iλK ′T̃ + (1− iωτ)q̃ = 0[
σ − 3σσ′2

2T 2
0

(
T (0) − T0

)2]
T̃ + (1− iωτ1)q̃t = 0

(3.18)

where K ′ = dK/dz is the derivative of K with respect to z.

The dispersion relation is found from the system (3.18):

−T0
(
cρrω

(
−iττ1ω2 + i+ ω(τ + τ1)

)
+ λrK ′2(iτ1ω − 1) + 2σ

(
3σ′2T (0) + 1

)
(iτω − 1)

)
+

+3σσ′2T 2
0 (iτω − 1) + 3σσ′2T (0)2(iτω − 1) = 0 (3.19)

Here we can make the same comments we have written below the dispersion relation (3.7)

and assume that K(z) = kr(z) + iks(z). When we split the dispersion relation into real and

imaginary part we need to take into account whether T (0)(z) is a complex function. As seen

in the Appendix, this is the case and what we have seen is that (3.19) leads to a very hard

solution for kr and ks. For this reason, we consider the constant solution T0 (the temperature

at equilibrium) and we assume that k′2s is small enough to be neglected in (3.19). The real

and imaginary part are−cρω2(τ + τ1)− λk2s +
2σ

r
+ λk2r + 2λτ1ωkrks = 0

ω
(
cρr

(
ττ1ω

2 − 1
)

+ λrτ1k
2
s − 2στ

)
+ 2λrkrks − λrτ1ωk2r = 0

(3.20)

Thus, we find two expressions for the phase-velocity v = ω/kr and the spatial attenuation

coefficient ks:
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v =
ω

kr
= ± U0√

1− 2σ
ω2cρrτ

(ττ1ω2+1)

(τ21ω2+1)

ks = ±
1 + 2σ (τ−τ1)

cρr(τ21ω2+1)

2U0τ

√
1− 2σ

ω2cρrτ
(ττ1ω2+1)

(τ21ω2+1)

(3.21)

where U0 =

√
λ

ρcτ
is the Maxwell-Cattaneo velocity. The existence of the above solutions is

subordinated to the positive value of the argument of the root-square

2σ

ω2cρrτ

(
ττ1ω

2 + 1
)(

τ21ω
2 + 1

) ≤ 1 (3.22)

In the case of high frequencies ω for the propagating waves, this condition leads to ω2 ≥
ω2
min =

2σ

cρrτ1
.

For ω � 1 (high frequency limit) the velocity of the waves becomes
v =

ω

kr
= ±U0

ks = ± 1

2τU0

(3.23)

For τ = τ1, we have 
v =

ω

kr
= ± U0√

1− 2σ
ω2cρrτ

ks = ± 1

2U0τ
√

1− 2σ
ω2cρrτ

(3.24)

For τ1 � τ and τ ' 0, in such a way that ττ1ω
2 � 1, the system becomes

v =
ω

kr
= ± U0√

1− 2σ
ω2cρrτ

1

(τ21ω2+1)

ks = ±
1− 2σ τ1

cρr(τ21ω2+1)

2U0τ
√

1− 2σ
ω2cρrτ

1

(τ21ω2+1)

(3.25)

and finally, for τ � τ1 and τ1 ' 0 in such a way that ω2τ21 � 1, they become
v =

ω

kr
= ± U0√

1− 2σ(ττ1ω2+1)
ω2cρrτ

ks = ±
1 + 2σ τ

cρr(τ21ω2+1)

2U0τ
√

1− 2σ(ττ1ω2+1)
ω2cρrτ

(3.26)

Note that the velocity in (3.24), (3.25) and (3.26) is higher than the Maxwell-Cattaneo

velocity. In (3.24) it tends to U0 when ω tends to infinity; instead (3.25) and (3.26) cannot be
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extrapolated to ω infinite, because of the condition that ττ1ω
2 � 1 in (3.24) and τ21w

2 � 1 in

(3.26). It is also interesting to note that if τ1 is zero, the speed in (3.26) has the same form as

in (3.24), corresponding to τ = τ1. On the other side, note that the characteristic attenuation

lengths (recriprocal of ks) are shorter than in the Maxwell-Cattaneo case.

4 Nonlinear heat waves

In this section we consider the propagation of the nonlinear waves, i.e. temperature waves of

amplitude sufficiently large that nonlinear terms in f(T ) given by (2.3) cannot be neglected

(we consider that longitudinal heat transfer is linear, namely that ρ, c and τ do not depend

on T ). By differentiating the first equation of (2.1) with respect to the time and using the

second and the third equations, the following equation for the temperature is found

ρc

(
∂2T

∂t2
+ τ1

∂3T

∂t3

)
=
λ

τ

(
∂2

∂z2
T + τ1

∂2

∂z2
∂T

∂t

)
− ρc

τ

(
∂T

∂t
+ τ1

∂2T

∂t2

)
− 2

τr
f(T )− 2

r

∂f(T )

∂t
.

(4.1)

For τ1 = τ we find the same mathematical model proposed in Ref. [13] and [14], when f(T ) is

given by (2.2) or (2.3), respectively.

4.1 Nonlinear waves for the Stefan-Boltzmann heat exchange

When f(T ) is given by (2.2), the nonlinear equation for the temperature (4.1) takes the form

ρc

(
∂2T

∂t2
+ τ1

∂3T

∂t3

)
=
λ

τ

(
∂2

∂z2
T + τ1

∂3T

∂z2∂t

)
−ρc
τ

(
∂T

∂t
+ τ1

∂2T

∂t2

)
− 2

rτ
σSB(T 4−T 4

0 )−2

r
σSB4T 3∂T

∂t
(4.2)

Following the usual procedure for investigating on the propagation of nonlinear waves [13],

we use the similarity variable

ξ = kz − ωt (4.3)

in order to transform our equation from a partial differential equation to an ordinary differential

equation. Indeed, the transformation (4.3) leads to the rules:
∂

∂t
= −ω ∂

∂ξ
and

∂

∂z
= k

∂

∂ξ
.

Thus, equation (4.2) becomes

ωτ1

(
k2
λ

τ
− ρcω2

)
∂3T

∂ξ3
+

(
ρcω2 − λk2

τ
+
ρcτ1ω

2

τ

)
∂2T

∂ξ2
−ρcω

τ

∂T

∂ξ
+

2

rτ
σSB(T 4−T 4

0 )−8

r
ωσSBT

3∂T

∂ξ
= 0

(4.4)

If we replace T = (T − T0) + T0 in equation (4.4) and write u =
∆T

T0
, we find

ωτ1

(
k2
λ

τ
− ρcω2

)
∂3u

∂ξ3
+

(
ρcω2 − λk2

τ
+
ρcτ1ω

2

τ

)
∂2u

∂ξ2
− ρcω

τ

∂u

∂ξ
+

+
2

rτ
σSBT

3
0 (u4 + 4u3 + 6u2 + 4u)− 8

r
ωσSBT

3
0 (u3 + 3u2 + 3u+ 1)

∂u

∂ξ
= 0 (4.5)

The general solution of (4.5) is a hard task to find, for this reason we will give some

particular solutions.
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4.1.1 Exact solutions from reduced first-order equation (4.5)

In this subsection we consider some nonlinear heat waves arising from equation (4.5). First,

we set zero the first term of (4.5), namely the coefficient of the third-order term, and we find

the following dispersion relation between k and ω:

ωτ1

(
k2 − cρτω2

λ

)
= 0 (4.6)

which leads to the solutions ω = 0, ω = ±k

√
λ

cρτ
. The former refers to the stationary wave

whereas the latter leads to speeds of the nonlinear waves:

v = ±U0 = ±

√
λ

cρτ
(4.7)

which is the Maxwell-Cattaneo velocity, already found for the propagation of linear waves.

Case ω = 0

Let’s consider first the case ω = 0, which simplifies further the equation to

2σSBT
3
0

(
u4 + 4u3 + 6u2 + 4u

)
− k2λru′′ = 0 (4.8)

which we multiply by u′ and integrate

u′2 = 4
σSBT

3
0

k2λr

(
1

5
u5 + u4 + 2u3 + 2u2 + C1

)
(4.9)

with C1 an integration constant. Note that (4.9) is exactly equation (A.51) exception made

for the function u which is u = T/T0 instead of u = (T −T0)/T0 and the independent variable

z instead of ξ = kz, because ω = 0. From the above equation (4.9) we find∫
1√

1
5u

5 + u4 + 2u3 + 2u2 + C1

du = 2

√
σSBT 3

0

λr
z + C2 (4.10)

C2 being a further integration constant.

The left-hand side in (4.10) is again an inversion Jacobi problem, which defines the hyper-

elliptic functions of genus 2 when the 5 zeros of the polynomial in the root square are distinct.

There are only two values of C1 in which the polynomial 1
5u

5 + u4 + 2u3 + 2u2 + C1 has one

double zero: the case C1 = 0 (which leads to the double zero u = 0) and the case C1 = −8/5

(which leads to the double zero u = −2). For these two cases, the polynomial in the left-hand

side in (4.10) has 4 different zeros, and the inversion Jacobi problem leads to elliptic solutions.

More precisely, for C1 = 0 the exact solution (4.10) becomes

−

[
2u(u3 − u2)

√
− (u−u2)(u−u3)

(u2−u3)2
√

u
u3

Π
(

1− u2
u3

; sin−1
(√

u3−u
u3−u2

)
| − u2−u3

u3

)]
[√

u5

5 + u4 + 2u3 + 2u2u3

] = 2

√
σSBT 3

0

λr
z+C2

(4.11)
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where uj is the j− th zero of the polynomial P [u] = u3+5u2+10u+10, which are u1 ' −2.65,

u2 ' −1.17− i1.55 and u3 ' −1.17 + i1.55. The function Π is the elliptic integral of the third

kind. The solution (4.11) can be written by inserting the zeros of the polynomial P [u]:

−
(0.82 − 0.62i)u

√
u(u+ 2.35) + 3.77

√
(0.32 − 0.34i)u+ (0.856 − 0.9i)√

u2 (u (0.2u2 + u+ 2) + 2)

Π
(

1.279 − 0.96i; sin−1
(√

(0. + 0.32i)u+ (0.5 + 0.38i)
)∣∣∣ 1.05 + i

)
= 2

√
σSBT 3

0

λr
z + C2

(4.12)

For C1 = −8/5 the exact solution (4.10) becomes the elliptic function u(z)

2
√

5(u+ 2)(u2 − u3)
√

u−u1+2
u3−u1

√
− (u−u2+2)(u−u3+2)

(u2−u3)2 Π
(

1− u2
u3

; sin−1
(√

u−u3+2
u2−u3

)
|u2−u3u1−u3

)
√

(u+ 2)2 (u3 + u2 + 2u− 2)u3
= 2

√
σSBT 3

0

λr
z+C2

(4.13)

where Π is the elliptic integral of the third kind and uj is the j − th zero of the polynomial

P [u] = u3−5u2 + 10u−10, which are u1 ' 2.65, u2 ' 1.17− i1.55 and u3 ' 1.17 + i1.55. Note

that the elliptic solution written for the case ω = 0 can be read as solutions of the equation

(A.51) by changing the variables: u = T/T0 instead of u = (T − T0)/T0 and z instead of

ξ = kz.

Case ω = ±k

√
λ

cρτ

Let’s consider now the cases for ω 6= 0. We also assume that τ1/τ � 1 in such a way that the

coefficient in uξξ is zero too. Thus, equation (4.5) becomes

2σSBT
3
0 u
(
u3 + 4u2 + 6u+ 4

)
−
k
√
λu′
(
cρr + 8σSBτT

3
0 + 8σSBτT

3
0 u

3 + 24σSBτT
3
0 u

2 + 24σSBτT
3
0 u
)

√
c
√
ρτ1/2

= 0

(4.14)

which yields the following exact solution implicitly defined

8
√
c
√
ρσSB

√
τT 3

0

k
√
λ

ξ+4c1 = cρr

(
log

(
u

u+ 2

)
− 2 tan−1(u+ 1)

)
+8σSBτT

3
0 log

(
(u2 + 2u+ 2)u(u+ 2)

)
(4.15)

with velocity given by (4.7), namely the Maxwell-Cattaneo velocity.

4.2 Nonlinear waves from the flux-limited heat exchange

Let’s consider now (4.1) with the function f(T ) given by the flux limiter proposal (2.3).

For the sake of simplicity, we use the same approximation for f(T ) used in (3.15), namely

f(T ) ' σ(T − T0)− σσ′2

2T 2
0

(T − T0)3, and the equation (4.1) becomes

ρc

(
∂2T

∂t2
+ τ1

∂3T

∂t3

)
=
λ

τ

(
∂2

∂z2
T + τ1

∂2

∂z2
∂T

∂t

)
− ρc

τ

(
∂T

∂t
+ τ1

∂2T

∂t2

)

11



− 2

τr

(
σ(T − T0)−

σσ′2

2T 2
0

(T − T0)3
)
− 2

r

(
σ − 3σσ′2

2T 2
0

(T − T0)2
)
∂T

∂t
. (4.16)

By means of (4.3), equation (4.16) becomes

ωτ1

(
k2
λ

τ
− ρcω2

)
∂3T

∂ξ3
+

(
ρcω2 − λk2

τ
+
ρcτ1ω

2

τ

)
∂2T

∂ξ2
− ρcω

τ

∂T

∂ξ

+
2

τr

(
σ(T − T0)−

σσ′2

2T 2
0

(T − T0)3
)
− 2ω

r

(
σ − 3σσ′2

2T 2
0

(T − T0)2
)
∂T

∂ξ
= 0. (4.17)

In the above equation (4.17), we can set u =
T − T0
T0

and we find

ωτ1

(
k2
λ

τ
− ρcω2

)
∂3u

∂ξ3
+

(
ρcω2 − λk2

τ
+
ρcτ1ω

2

τ

)
∂2u

∂ξ2
− ρcω

τ

∂u

∂ξ

+
2σ

τr

(
u− σ′2

2
u3
)
− 2σω

r

(
1− 3σ′2

2
u2
)
∂u

∂ξ
= 0. (4.18)

As we have done with (4.5), we consider the case in which the coefficient of the first term

in (4.18) (corresponding to the third-order derivatives of u) vanishes. This leads to ω = 0 and

ω = ±k

√
λ

cρτ
.

By means of the first condition ω = 0 we find the stationary solution given by

λk2r
∂2u

∂ξ2
= 2σ

(
u− σ′2

2
u3
)
. (4.19)

Equation (4.19) can be integrated after multipling by
∂u

∂ξ(
∂u

∂z

)2

= −σσ
′2

2λr
u4 + 2

σ

λr
u2 + 2

C1

λr
. (4.20)

where we have used that ∂/∂ξ = (1/k)∂/∂z because of the condition ω = 0.

The integration of equation (4.20) can be handled by the elliptic functions [35]. The general

solution of the equation (4.20) is

u(z) =

√
2C1
λr ℘

′(z; g2, g3)

2
(
℘(z; g2, g3)− σ

6λr

)2
+ C1σσ′2

2λ2r2

(4.21)

where ℘(z; g2, g3) is the Weierstrass elliptic function of variable z and invariants g2 and g3
given by [35]

g2 =
σ
(
σ − 3C1σ

′2)
3λ2r2

and

g3 = −
σ2
(
σ + 9C1σ

′2)
27λ3r3

and the discriminant ∆ = g32 − 27g23 is

∆ = −
C1σ

3σ′2
(
σ + C1σ

′2)2
λ6r6

12



The discriminant ∆ and the invariants g2 and g3 are useful to classify the solutions. For ∆ 6= 0

the Weierstrass elliptic function is a double-periodic elliptic function, whereas for ∆ = 0 it

reduces to elementary functions of genus zero, as we will see below. The condition ∆ = 0 is

fulfilled when

C1 = 0; C1 = − σ

σ′2

which simplify the solution (4.21) accordingly.

In particular for C1 = 0, the solution (4.21) becomes:

u(z) = ±2i

σ′
csch

(
√
σ

(√
2z√
λr
− 2c2

))
(4.22)

with c2 constant.

Instead, for C1 = − σ

σ′2
it is

u(z) = ± i
√

2

σ′
tan

(√
σz√
λr
± i
√

2c2σ
′
)

(4.23)

Let’s consider now the case ω = ±k

√
λ

cρτ
which leads to the velocity v = ±U0. If we also

assume that
τ1k

2λ

τ2
� 1, namely the term ∂2u

∂ξ2
in (4.18) is negligible, then (4.18) becomes:

−ρcω
τ

∂u

∂ξ
+

2σ

τr

(
u− σ′2

2
u3
)
− 2σω

r

(
1− 3σ′2

2
u2
)
∂u

∂ξ
= 0 (4.24)

The solutions of (4.24) are

1

4
(cρr − 4στ) log

(
2− u(ξ)2σ′2

)
+

1

2
(−cρr − 2στ) log(u(ξ)) = −

√
c
√
ρσ
√
τ

k
√
λ

ξ + c3 (4.25)

for ω = k

√
λ

cρτ
and c3 constant, and

1

4
(cρr − 4στ) log

(
2− u(ξ)2σ′2

)
+

1

2
(−cρr − 2στ) log(u(ξ)) =

√
c
√
ρσ
√
τ

k
√
λ

ξ + c3 (4.26)

for ω = −k

√
λ

cρτ
and c3 constant.

4.3 Existence of soliton waves

In the above subsections we have found some nonlinear heat waves for our model, stationary

or propagating with the Maxwell-Cattaneo velocity. Here we analyze the existence of solitons,

because of their peculiarity to travel without changing their shape. Indeed, soliton is a non-

linear travelling wave, U(ξ = kx − ωt), solution of a non-linear evolution equation (partial

differential equation), which at every moment of time is localized in a bounded domain of

space, such that the size of the domain remains bounded in time.
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In our previous papers [13, 14] we have found solitons, but assuming that τ1 = τ in such

a way that equation (4.2) becomes:

ρc
∂2T

∂t2
+ =

λ

τ

∂2

∂z2
T − ρc

τ

∂T

∂t
− 2

τr
f(T ) (4.27)

and, in the limit case that λ→∞, τ →∞ but λ/τ finite, to the following equation

ρc
∂2T

∂t2
+ =

λ

τ

∂2

∂z2
T − 2

τr
f(T ) (4.28)

Now, we apply the the Auxiliary equation method [36], [37], [38] to the nonlinear equation

(4.5) for the case of Stefan-Boltzmann heat exchange and to the nonlinear equation (4.18) for

the flux-limited heat exchange in order to search the “sech” and “tanh”-type soliton (the same

method used in [13, 14]).

4.3.1 Auxiliary method for travelling waves

In this section we recall the main steps of the Auxiliary method [36], [37], [38], which allows

to find some exact travelling wave solutions of the 1 + 1 nonlinear equation:

E(z, t, u, uz, ut, ...) = 0. (4.29)

The first step is to transform equation (4.29) in an ordinary nonlinear equation, E(ξ, u, uξ, uξξ, ...) =

0, by means of the transformation ξ = kz − ωt, which is typical for searching for travelling

wave solutions.

The second step is to choose for u(ξ) a polynomial form

u(ξ) =
n∑
i=0

uiy(ξ)i, (4.30)

where ui are constants to be determined and the functions y(ξ) are solutions of the auxiliary

equation. The first choice of the auxiliary equation is the Riccati equation [36]:

y(ξ)′ = 1− y(ξ)2, (4.31)

which is solved by the function y(ξ) = tanh(ξ), having the form of a propagating front. Another

interesting example is

y(ξ)′2 = y(ξ)2(1− y(ξ)2) (4.32)

which has the solution y(ξ) = sech(ξ), having the form of a propagating pulse.

The third step of the method is to determine the coefficients ui in the expression (4.30).

This is achieved after the introduction of (4.30) into (4.29) taking into account of (4.31) or

(4.32). The value of n (the maximum value of the exponents of y(ξ) in (4.30)) is determined by

balancing the higher-order linear term with the higher nonlinear term of the equation (4.29).
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4.3.2 Soliton waves

First of all we have applied the Auxiliary equation method to the nonlinear equation (4.5),

both with the auxiliary equation (4.31) and (4.32), as well as the case for λ→∞ and τ →∞
but keeping λ/τ finite. The result was that they are not satisfied by the solution (4.30).

Let’s follow the same procedure for the equation (4.18), namely for the flux-limited ex-

change case. By means of the auxiliary equation (4.32) we find the two stationary soliton

solutions

u(z) = ± 2

σ′
sech(kz) (4.33)

with the frequency ω = 0 (a non-propagating solution) and k2 =
2σ

rλ
.

We apply the method to the same equation but with the auxiliary equation (4.31) and we

find

u(z, t) = ∓ 1√
2σ′

tanh(kz − ωt)± 1√
2σ′

(4.34)

with λ = 0, ω = − 1

6τ1
and ρ =

9στ1
cr

, and

u(z, t) = ± 1√
2σ′

tanh(kz − ωt)± 1√
2σ′

(4.35)

with λ = 0, ω =
1

6τ1
and ρ =

9στ1
cr

.

We have also found two stationary soliton solutions

u(z) = ±
√

2

σ′
tanh(kz) (4.36)

with the further condition that k2 = − σ

λr
. The positive parameters σ (the heat exchange

coefficient), λ (thermal conductivity) and r (the radius of the cylinder) lead to a imaginary

wavenumber k. In this case, the function tanh(kz) becomes i tan(=(k)z) (= being the imagi-

nary part of k).

We have also found these other solitons:

u(z) = ∓ 1√
2σ′

tanh(−ωt)± 1√
2σ′

(4.37)

with ω = − 1

6τ1
and ρ =

9στ1
cr

, and

u(z) = ± 1√
2σ′

tanh(−ωt)± 1√
2σ′

(4.38)

with ω =
1

6τ1
and ρ =

9στ1
cr

.

In the limit case λ→∞, τ →∞ but λ/τ finite, equation (4.18) becomes

ωτ1

(
k2
λ

τ
− ρcω2

)
∂3u

∂ξ3
+

(
ρcω2 − λk2

τ

)
∂2u

∂ξ2
− 2σω

r

(
1− 3σ′2

2
u2
)
∂u

∂ξ
= 0. (4.39)
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When we apply the Auxiliary equation method to the (4.39), only the auxiliary equation

(4.31) leads to solitons. More precisely, we find the following soliton solutions for (4.39):

u(z, t) = ± 2
√

6τ1ω√
σ′2(12τ21ω

2 + 1)
tanh(kz − ωt)±

√
2
3√

σ′2
(
12τ21ω

2 + 1
) (4.40)

with

k = ±

√
τω2 (12τ1 (cρrτ1ω2 − σ) + cρr)

λr
(
12τ21ω

2 + 1
) (4.41)

which leads to the following velocity

v =
ω

k
= ±

√
λr
(
12τ21ω

2 + 1
)

τ (12τ1 (cρrτ1ω2 − σ) + cρr)

and the soliton

u(z, t) = ± 2
√

6τ1ω√
σ′2(12τ21ω

2 + 1)
tanh(−ωt)±

√
2
3√

σ′2
(
12τ21ω

2 + 1
) (4.42)

with k = 0 and

ω2 =
12στ1 − cρr

12cρrτ21

In this subsection we have found the soliton-like solutions of the nonlinear evolution equa-

tions. The solitons (4.33) and (4.36) are stationary solutions, independent of time, and for this

reasons they are not propagating waves. The soliton solutions (4.37), (4.38) and (4.42) are

instead independent of the variable z, but they depend on t, which mimic localized vibrations.

The soliton (4.34) requires a null thermal conductivity, which may be a strong constraints for

the existing materials, but it may be useful for future materials. For our aims, the most inter-

esting solitons are given by (4.40), which have been found assuming high thermal conductivity

λ and relaxation time τ but finite λ/τ .

The existence of the soliton (4.40) is related to the existence of the root square in (4.41),

namely the requirements

τ21ω
2 +

1

12
≥ στ1
cρr

,

which leads to two solitons: one propagating forward (+) and one propagating backwards

(−).

5 Applications

In the previous sections we have found both some linear and nonlinear waves for the proposed

model (2.1) with two relaxational times.

In this section we plot some of the nonlinear waves for suitable choice of the parameters.
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5.1 The Stefan-Boltzmann law

Let’s consider a concrete example to illustrate these results. Let’s choose a Si thin wire with the

same parameters used in Ref. [13]: diameter of the wire d = 15000 nm, temperature T0 = 300

K, and σSB = 5.67 × 10−8W/(m2K4), ρ = 2330kg/m3, λ = 148W/(m K), c = 700J/(kg K)

and τ = 50ps = 5 · 10−11s. Thus, the nonlinear thermal wave (4.15) becomes

9.09113× 1013

k
ξ = 12.23

(
log

(
u

u+ 2

)
− 2 tan−1(u+ 1)

)
+6.1236×106 log

(
(u2 + 2u+ 2)u(u+ 2)

)
(5.43)

where we have chosen c1 = 0 and with the Maxwell-Cattaneo velocity U0 given in (4.7)

v = ±

√
λ

cρτ
= 13.47 m/s (5.44)

Figure 1: Plot of (5.43) for two values of the wavenumbers: k = 107 m−1 and k = 108 m−1.

The plot of the above solution (5.43) is given in Figure 1 for k = 107 m−1 and k = 108

m−1. It is interesting to note the steep increase of the plot around ξ = 0 (which is the center

of the wave).

5.2 Flux-limited exchange

In this subsection we consider the same example used in the previous subsection, and hence

the same parameters. We assume also that ω =
√

3 as chosen in [14] and σ′ = 1 for the sake

of simplicity.

The nonlinear heat waves (4.25) becomes
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−2.38× 10−6k
(
−6.14 log u(ξ) + 3.03 log

(
2− u(ξ)2

))
= ξ (5.45)

where we have chosen c1 = 0. The velocity of this wave follows from the dispersion relation

ω = ±k

√
λ

cρτ
, which leads to the same velocity (4.7) found for the previos case and hence

to the velocity (5.44), the Maxwell-Cattaneo velocity U0, namely v = 13.47 m/s. The plot of

the above solution (5.45) is given in Figure 2. Note that the solution looks like a dark soliton

solution.

Figure 2: Plot of (5.45) for ω =
√

3 s, and for two values of the wavenumbers: k = 107 m−1

and k = 108 m−1.

Finally, we also consider the solitons (4.40) found in Section 4.3. For both solitons we

have two speeds

v =
ω

k
= ±

√
λr
(
12τ21ω

2 + 1
)

τ (12τ1 (cρrτ1ω2 − σ) + cρr)
, (5.46)

which allows the soliton to propagate forward and backwards. In the previous section we have

found the condition τ21ω
2 + 1

12 ≥
στ1
cρr for the existence of the speeds (5.46) and hence of the

solitons.

For the sake of simplicity, we consider the soliton (4.40) with positive sign, which we may

write

u(z, t) =
∆T

T0
=

1√
σ′2(12τ21ω

2 + 1)

[
2
√

6τ1ω tanh(kz − ωt) +

√
2

3

]
, (5.47)

with k given by (4.41). The following arguments holds for the other solitons. Because of the two

horizontal asymptotes of tanh, we assume that one of the asymptote is u = 0, namely T = T0,
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with T0 the equilibrium temperature. Thus, we find τ1ω = 1/6. Let’s assume instead that the

second asymptote is u = 0.1, namely that T = T0 + 1
10T0. This means that the parameter

σ′ is σ′ = 10
√

2. The other parameters are those chosen in Ref. [13] for the Si thin wire:

diameter of the wire d = 15000 nm, temperature T0 = 300 K, σSB = 5.67 × 10−8W/(m2K4),

ρ = 2330kg/m3, λ = 148W/(m K) and c = 700J/(kg K). We instead choose for the two

relaxation times τ = 5000ps = 5 ·10−9s and τ1 = 500ps = 5 ·10−10s in such a way τ1/τ = 10−1,

and the frequency ω = 1/(6τ1).

Figure 3: Plot of (5.48) with velocity v = 151432 m/s.

Inserting the parameters of our example, the expression of the soliton as function of ξ is

u(ξ) =
1

20
(1 + tanh(ξ)) (5.48)

with velocity v = 151432 m/s. The plot of the above dark soliton (5.48) is given in Figure 3.

The same soliton, given in (5.47), is shown in Figure 4 in three dimensional space ztu (left)

and in two dimensional space zu for three different times t = 0, t = 0.01 s and t = 0.02 s

(right). Note that in the latter figure the soliton propagates to the right, and the temperature

change from the T0 + 1
10T0 to the equilibrium temperature T0. The same conclusions can be

achieved choosing dark soliton with negative sign or with negative speed (propagating to the

left).

6 Conclusions

In this paper we have considered a mathematical model for studying linear and nonlinear

waves along thin wires with lateral heat exchange with the enviroment assuming that both

longitudinal heat flux and lateral heat flux satisfy relaxational constitutive equations, with

two different relaxation times, τ and τ1 respectively. From the mathematical point of view,

this means that the two relaxation times are high enough that the first terms in the second

and in the third equation of (2.1) are not negligible. From the physical point of view, this

means that the collision time of phonons (given by τ when heat propagates along the wire) has
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Figure 4: Plot of (5.47) in three dimensional space (left), and in the plane zu for three different
times t = 0, t = 0.01 s and t = 0.02 s (right).

to be comparable to the time ω−1 (where ω is the frequency of the heat wave), and the time

of emission of photons at the surface of the wire, or the time of collisions of particles in the

environment against the wall of the wire (given by τ1 when heat transport across the walls)

has to be comparable to the time ω−1, respectively. If these times are experimentally known,

then the results obtained in this paper can be experimentally checked. In Section 5 we have

used τ = 50ps = 5 · 10−11s for the sake of simplicity. This value is of the order of the collision

time of phonons in Si at room temperature.

The model (2.1) generalizes those proposed in our previous papers [13, 14] where we con-

sidered the relaxation time τ equal for both longitudinal and lateral heat flux. Here, we have

enlarged our analysis to the more realistic physical situation but more involved mathematical

problem where τ1 and τ may be different. We have also considered that the source term for

the transversal heat exchange can be given by the Stefan-Boltzmann law or by a nonlinear

flux-limited heat exchange.

The paper considers the propagation of linear waves in Section 3, where we have seen that in

principle the perturbation of the inhomogeneous stationary solution would be possible but it is

quite hard to handle. For this reasons we have considered the perturbation of the homogeneous

stationary solution, which leads to the velocity and attenuation of the waves given in (3.9) for

the Stefan-Boltzmann law and to (3.21) for nonlinear flux-limited heat exchange. There are

two conditions for the existence of these perturbations, which are given in (3.10) and (3.22),

respectively.

For both situations we can consider four main cases, namely: ωτ � 1 (high-frequency

asymptotic limit); and three high-frequency (but not infinite) cases, corresponding to τ = τ1;

τ1 � τ and τ � τ1, respectively given by expressions (3.12), (3.13) and (3.14) for the Stefan-

Boltzmann law, and (3.24), (3.25) and (3.26) for the flux-limited lateral exchange. In both

situations we note that the velocity of the linear waves is always higher than the Maxwell-

Cattaneo velocity, exception made for the high frequency limit ω � 1, where the velocity is

the Maxwell-Cattaneo velocity.

In Section 4 we have looked for nonlinear waves. From the mathematical point of view,

the partial differential equation (4.2), or the corresponding ordinary differential equation in

moving reference frame, are very difficult to handle for finding the general solution. For

this reasons, we have applied some mathematical tools for searching nonlinear exact solution

and in particular soliton solutions. We have found some interesting solutions, some of them

solitons. We have then applied in Section 5 some of them to a Si thin wire with diameter
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d = 15000 nm, temperature T0 = 300 K, and σSB = 5.67 × 10−8W/(m2K4), ρ = 2330kg/m3,

λ = 148W/(m K), c = 700J/(kg K) and τ = 50ps = 5 · 10−11s. For information transport to

relatively long distances it is necessary that the corresponding solitons are stable; thus, in the

future, the stability of the solitons found here could be considered, following analogous lines

as those studying the stability of optical solitons in references [39, 40, 41].

It is interesting to note that we have found the nonlinear waves (4.15), (4.25) and (4.26)

which propagate with the Maxwell-Cattaneo velocity U0, which is the same velocity found for

the high frequency linear perturbation of the homogeneous stationary solution.

By means of the auxiliary equation method we have also found soliton waves. Apart from

the stationary solitons, in the limit case λ→∞, τ →∞ but λ/τ finite, we have also found the

soliton (4.40), plotted in Figure 3, which could be a candidate for information transmission,

namely, to transmit a bit if information.
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A Appendix A

In this appendix we discuss the stationary solution of the system (3.1) with the two proposals

for f(T ), given by (2.2) or by (2.3).

A.1 Stationary solution for the Stefan-Boltzmann law

We first consider the temperature (3.2), where we have used the Stefan-Boltzmann law. We

start from

∂2

∂z2
T − 2

λr
σSB(T 4 − T 4

0 ) = 0 (A.49)

Equation(A.49) has more complicate solutions apart from constant solution T = T0 .

Let’s write (3.2) in terms of u =
T

T0
, namely

∂2

∂z2
u− 2

λr
σSBT

3
0 (u4 − 1) = 0 (A.50)

then if we multiply (A.50) by
∂

∂z
u and integrate, we find

(
∂

∂z
u

)2

=
4

5

σSB
λr

T 3
0

(
u5 − 5u+ 5c1

)
(A.51)

Equation (A.51) regards the classical inversion Jacobi’s problem, which in general defines the

funtions arcsin(x), the elliptic functions such as the Weierstrass function [42, 35] and more in

general the hyperelliptic functions [43, 44]. The righ-hand side of equation (A.51) is given by
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the polynomial P [u] =
4

5

σSB
λr

T 3
0

(
u5 − 5u+ 5c1

)
of 5 degree with 5 distinct zeros. This implies

that (A.51) implicitly defines a hyperelliptic function of genus 2. There are two values for the

constant c1 for which two of the 5 zeros of P [u] are equal. It happens for 5c1 = 4 and for

5c1 = −4. For these values of c1 (A.51) degenerates from the hyperelliptic functions (genus

2) to the elliptic functions (genus 1), but never to the simplest functions of genus 0, for the

elementary functions. For this reasons, we avoid to report here the exact elliptic solutions of

equation (A.51). In the nonlinear section of this paper 5.1 we will find again equation (A.51),

but in that situation we will write the exact solution in terms of the elliptic functions.

A.2 Stationary solution for the flux-limiter heat exchange

Now we consider the temperature (3.16), where we have used the flux-limiter heat exchange.

We start from

∂2

∂z2
T − 2σ

λr

[
(T − T0)−

σ′2

2T 2
0

(T − T0)3
]

= 0 (A.52)

By setting
T − T0
T0

= u, the above equation becomes

∂2

∂z2
u+

2σ

λr

[
−u+

σ′2

2
u3
]

= 0. (A.53)

Multiplying the above equation (A.53) by ∂u/∂z and integrating both sides, we find(
∂

∂z
u

)2

+
2σ

λr

(
−u2 +

σ′2

4
u4
)

+ 2c1 = 0 (A.54)

where c1 appears from the integration.

The solution (A.54) is an elliptic function because the polynomial P (u) = −2σ

λr

(
−u2 +

σ′2

4
u4
)

+

2c1 has 4 different zeros exception made for the degenerate cases, namely when the 4 zeros

are not distinct, which happens for c1 = 0 and c1 =
σ

λrσ′2
. Following the same choice for

the equation (A.51), we avoid to write the exact solutions of (A.54) in terms of the elliptic

functions, apart from the degenerate cases to the elementary functions.

Case c1 = 0

In this case we find for the steady-state profile of u(z)

u(z) = ±2i

σ′
coth

(
√
σ

( √
2z√
λ
√
r
− 2c2

))√√√√sech2

(
√
σ

( √
2z√
λ
√
r
− 2c2

))
(A.55)

which leads to the steady state temperature profile

T = ±2T0i

σ′
coth

(
√
σ

( √
2z√
λ
√
r
− 2c2

))√√√√sech2

(
√
σ

( √
2z√
λ
√
r
− 2c2

))
+ T0 (A.56)
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q = −λ d
dz
T = ∓

√
2T0
σ′

√
λσ√
r

sech

( √
σz√
λ
√
r
−
√

2c2σ
′
)2

(A.57)

qt = f(T ) = ±σ2T0i

σ′
coth

(
√
σ

( √
2z√
λ
√
r
− 2c2

))√√√√sech2

(
√
σ

( √
2z√
λ
√
r
− 2c2

))

∓σσ
′2

2T 2
0

2T0i

σ′
coth

(
√
σ

( √
2z√
λ
√
r
− 2c2

))√√√√sech2

(
√
σ

( √
2z√
λ
√
r
− 2c2

))3

(A.58)

Case c1 =
σ

λrσ′2

In this case we find

u(z) = ±
i
√

2 tan
( √

σz√
λ
√
r
± i
√

2c2σ
′
)

σ′
(A.59)

which leads to the steady state

T = ±
i
√

2T0 tan
( √

σz√
λ
√
r
± i
√

2c2σ
′
)

σ′
+ T0 (A.60)

q = −λ d
dz
T = ∓

i
√

2
√
λ
√
σT0 sec2

( √
σz√
λ
√
r
± i
√

2c2σ
′
)

√
rσ′

(A.61)

qt = f(T ) = ±σ
i
√

2T0 tan
( √

σz√
λ
√
r
± i
√

2c2σ
′
)

σ′
∓ σσ′2

2T 2
0

 i√2T0 tan
( √

σz√
λ
√
r
± i
√

2c2σ
′
)

σ′

3

(A.62)
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