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Abstract The introduction of the amphipod

Dikerogammarus villosus in European fresh waters

is to date recognized as a threat to the integrity of

invaded communities. Predation by D. villosus on

native benthic invertebrates is assumed as the key

determinant of its ecological impact, yet available

information describe the species as a primary con-

sumer as well as a carnivore depending on local

conditions. Here, we assessed the trophic position (TP)

of D. villosus in Lake Trasimeno, a recently invaded

lentic system in central Italy, using the CN isotopic

signatures of individuals captured in winter spanning

two orders of magnitude in body size. TP estimations

were compared with those characterizing the native

amphipod Echinogammarus veneris and other

representative invertebrate predators. On average, D.

villosus showed a trophic position higher than E.

veneris, and comparable with that of odonate nymphs.

An in-depth analysis revealed that large-sized indi-

viduals had a trophic position of 3.07, higher than

odonates and close to that of the hirudinean predator

Erpobdella octoculata, while small-sized specimens

had a trophic position of 2.57, similar to that of E.

veneris (2.41). These findings indicate that size-

related ontogenetic shifts in dietary habits may per

se vary the nature of the interaction between

Dikerogammarus villosus and native invertebrates

from competition to predation. Information collated

from published isotopic studies corroborated the

generality of our results. We conclude that intra-

specific trophic flexibility may potentially amplify and

make more multifaceted the impact of the species on

other invertebrate species in invaded food webs.Supplementary information The online version of this
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Introduction

The introduction of aquatic non-indigenous species

has long been recognized to have important, disruptive

consequences for the structure and function of fresh-

water ecosystems (Elton 1958; Dudgeon et al. 2006;

Gherardi 2007; Strayer 2010; Gallardo et al. 2016;

Emery-Butcher et al. 2020). Among other inverte-

brates introduced in European waters, the killer shrimp

Dikerogammarus villosus (Sowinsky 1894), a gam-

marid amphipod of Ponto-Caspian origin, after the

opening of the Rhine-Main-Danube Canal has estab-

lished in German rivers including the Danube,

Moselle, and Rhine (Bij de Vaate et al. 2002).

Subsequently, the species spread in lentic and lotic

environments in France, the Netherlands, Great Bri-

tain, and Switzerland (Devin et al. 2001; van der Velde

et al. 2002; Koester and Gergs 2014; MacNeil et al.

2010; Rewicz et al. 2017), as well as towards the Baltic

region (Bącela et al. 2008; Gusev et al. 2017 and

literature cited). In Italy, the killer shrimp appeared in

Lake Garda in 2003 (Casellato et al. 2006) and

subsequently invaded the northern and central regions

of the peninsula (Tricarico et al. 2010).

The predatory behavior of the killer shrimp is

generally recognized as a crucial determinant of its

ecological impact on other benthic invertebrates,

including native amphipods. A number of laboratory

trials on the feeding preferences of the gammarid

supports this assumption (Krisp and Maier 2005;

Kinzler et al. 2008; Pellan et al. 2016; Taylor and

Dunn 2017), together with indirect evidences from

field investigations highlighting significant declines in

native macroinvertebrate assemblages afterD. villosus

invasion (Muskó 1989; Bollache et al. 2004; Noord-

huis et al. 2009).

Noticeably, information on the actual impact of the

gammarid on benthic communities are less univocal

(Hellmann et al. 2017; Koester et al. 2018). In

addition, field studies using carbon and nitrogen

stable isotopes analysis (SIA hereafter), have empha-

sized a high variability in dietary habits, with trophic

position estimations varying by more than one trophic

level from a maximum of 3.7 in the Vistula basin

(Poland) to a minimum of 2.1 in the River Arno (Italy)

(Bacela-Spychalska and Van Der Velde 2013; Hau-

brock et al. 2019).

Indeed, D. villosus shows no morphological spe-

cialization of the mouthparts for a carnivorous diet

(Mayer et al. 2008), and it has been repeatedly

indicated to be an omnivore in invaded food webs

feeding opportunistically also on vegetal resources

(Maazouzi et al. 2007; Truhlar et al. 2014; Boeker and

Geist 2015; Jourdan et al. 2016). Accordingly, the

species is generally posited to adapt its trophic habits

to local environmental conditions, switching between

different functional feeding groups depending on

season, habitat, and resource availability (Maazouzi

et al. 2009; Pellan et al. 2016; Hellmann et al. 2017).

Noticeably, Hellmann and colleagues (2015) indicated

that the trophic position of D. villosus can vary not

only among different locations, but also among

different ontogenetic stages within the same popula-

tion, in turn suggesting that the species may play

simultaneously multiple functional roles within an

invaded food web. So far this aspect of the killer

shrimp trophic ecology has generally received scant

attention in field studies, even though ontogenetic diet

shifts seem to represent a common trophic trait in

invasive aquatic species, from crustaceans (Limén

et al. 2005; Berezina 2007; Mancinelli et al. 2016;

2017b) to fish (Števove and Kováč 2016; Lee et al.

2018). Accordingly, here we verified whether

Dikerogammarus villosus is characterized by a high

feeding plasticity at the intra-population level related

with a size/ontogenetic shift in trophic habits. The

alternative hypothesis was that the species maintains

constant trophic habits independently from size and

ontogenetic stage (as observed for e.g., Gammarus

pulex: Dick et al. 2013). The trophic position of the

killer shrimp was assessed in Lake Trasimeno, a

recently invaded lentic system in central Italy (Catasti

et al. 2017) using stable carbon and nitrogen isotope

analysis. To test the hypothesis, we determined the CN

isotopic values in D. villosus specimens spanning two

orders of magnitude in individual size and assessed the

trophic position of different ontogenetic stages of the

species using a Bayesian procedure. Estimations were

eventually compared with the trophic position char-

acterizing the native amphipod Echinogammarus

veneris and other representative invertebrate

predators.

123

1804 F. Mancini et al.



Since the present investigation focused only on a

single population of the killer shrimp sampled in a

single season, to verify the generality of our results we

reviewed the isotopic literature focusing on the trophic

position of D. villosus, making an effort to collate

information from studies explicitly addressing onto-

genetic shifts. In the last decades, SIA has gained

popularity as a powerful complement to the study of

food webs and of the factors affecting their structure

and dynamics (including biological invasions: see

Mancinelli and Vizzini 2015; McCue et al. 2020 for

recent reviews), allowing robust, large-scale compar-

isons of species’ dietary habits in space and time (e.g.,

Mancinelli 2012a; Pethybridge et al. 2018; Evange-

lista et al. 2019; Lang et al. 2020; Liénart et al. in

press).

Methods

Study site and samples collection

The study was carried out in Lake Trasimeno (Central

Italy), the largest lake in the Italian Peninsula, with a

surface area of 128 km2 and an average depth of 4.7 m.

Further details on lake features can be found in

Ludovisi and Gaino (2010) and in Mancinelli et al.

(2018). The basin is included in a Regional Natural

Park comprised in the Natura 2000 European network

as a Site of Community Interest (SCI) and a Special

Protection Area (SPA). The macroinvertebrate com-

munity of the lake littorals is characterized by a

diverse assemblage of epibenthic taxa, including

herbivorous/detritivorous crustaceans (e.g., the

amphipod Echinogammarus veneris, the isopod Asel-

lus coxalis, and the decapod Palaemonetes antennar-

ius) and gastropods (e.g., Valvata piscinalis, Bithynia

tentaculata, and B. leachii), together with predaceous

insects (e.g., the coleopterans Gyrinus caspius, G.

substriatus, and odonate nymphs of the genera Ashna,

Coenagrion, Erythromma, Ischnura, and Lestes) and

hirudineans (e.g., Erpobdella octoculata, Helobdella

stagnalis, and Hirudo medicinalis) (Minelli 1979;

VV.AA. 2015; Mancinelli et al. 2020).

Noticeably, during the last century the native

lacustrine community has been drastically altered by

the introduction of a number of non-indigenous

species of different origin, including invertebrates

(e.g., Procambarus clarkii, Dreissena polymorpha,

and Sinanodonta woodiana) and fish (e.g., Lepomis

gibbosus, Ictalurus melas, Carassius auratus, and

Pseudorabora parva) (Dörr et al. 2020; Goretti et al.

2020; Lorenzoni et al. 2020). The killer shrimp

appeared in the lake in 2017 (Catasti et al. 2017),

and breeding populations are to date established in

several areas of the basin (VV.AA. 2020).

In February 2018, invertebrates were collected

using a pond net (mesh size = 1 mm) from rocks and

floating leaf detritus accumulations in a shallow

embayment (approximate depth = 1 m) in the locality

of Sant’Arcangelo in the southern sector of the lake

(43.089788�N, 12.156246�E). After collection, sam-

ples were transferred to the laboratory in lake water

using refrigerated containers (4 �C).

Laboratory procedures

In the laboratory, collected specimens were individ-

ually identified under a light microscope to the lowest

taxonomic level. Immediate identification after col-

lection, when the natural coloration of amphipods was

still maintained, allowed a relatively easy differenti-

ation of Dikerogammarus villosus specimens, charac-

terized by a striped morph in Lake Trasimeno

(VV.AA. 2020), from the native Echinogammarus

veneris, showing a uniform coloration. Given the high

color polymorphism of the killer shrimp (see e.g.,

Devin et al. 2004a for illustrative examples), an

additional trait used for the identification ofD. villosus

was the occurrence of dorsal projections on the 18 and
28 urosome segments, absent in E. veneris (Stock

1968; Eggers and Martens 2001; Konopacka 2004).

Individuals of the six identified species (see Results)

were kept in distilled water for 12 h to clear gut

contents and euthanized by thermal shock (-80 �C for

10 min).

Stable isotope analysis

After being euthanized, specimens were oven-dried

(60 �C for at least 1 week), and individually weighed

to the nearest lg using a micro-analytical balance.

Consequently, specimens were individually powdered

with a mortar and pestle. Depending on the taxon,

subsamples of different sizes were taken (amphipods:

0.73 ± 0.19 mg; isopods: 0.18 ± 0.02 mg; odonate

nymphs: 0.61 ± 0.03 mg; hirudineans: 0.79 ± 0.01,

means ± 1SD) and pressed into Ultra-Pure tin
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capsules (Costech Analytical Technologies). For

amphipods, multiple specimens with dry weight

identical to the first decimal place were pooled when

single individuals did not provide a sufficient mass.

Carbon and nitrogen stable isotope values were

determined using an Elemental Analyser (Thermo

Scientific Flash EA 1112) connected with an Isotope

Ratio Mass Spectrometer (Thermo Scientific Delta

Plus XP). Isotopic values were expressed in conven-

tional d notation (as %) in relation to international

standards (Pee Dee Belemnite for carbon and atmo-

spheric N2 for nitrogen). Analytical precision based on

the standard deviation of replicates of standards

(International Atomic Energy Agency IAEA-NO-3

for d15N and IAEA-CH-6 for d13C) was 0.1% for both

d13C and d15N. Invertebrate taxa showed variable C:N
ratios, in some cases[ 3.5 (see Tab. 1 in results) thus

indicating a non-negligible contribution of lipids to

tissue carbon pool (Post et al. 2007). Lipids are

depleted in 13C compared to proteins and carbohy-

drates and can significantly bias d13C estimations

(Logan et al. 2008). Accordingly, for samples with a

C:N ratio[ 3.5, d13C values were corrected for lipid

content using tissue C:N ratios following the algo-

rithm proposed by Post et al. (2007). Lipid-corrected

d13C values were used in further analyses.

Literature search

Isotopic studies reporting on the killer shrimp were

searched using the online databases ISI Web of

Science, Scopus, and JSTOR (last access date:

November 20th, 2020). We adopted a multiple search

criterion, using the terms ‘‘Dikerogammarus villosus’’

or ‘‘killer shrimp’’ in combination with ‘‘stable iso-

topes’’ to search in all available fields. Additional

information were found by checking the references of

collected papers, and performing general searches in

Google Scholar. The papers identified in the search (13

in total) were screened by a three-step approach using

a title/abstract/full text procedure (Mancinelli et al.

2017a and literature cited therein). In order to be

selected, publications had to (1) be performed in the

field; laboratory studies were omitted, although they

had their references scrutinized; (2) analyze the

stable isotopes at least of nitrogen and (3) include an

estimation of the trophic position of D. villosus or,

alternatively, its nitrogen isotopic signature together

with those of taxa located at the first or second trophic

level. Data were extracted from tables and figures of

10 studies meeting the criteria; figures were digitized

after a five-fold enlargement and converted to numer-

ical format (estimated error: 0.02%) using the

Table 1 List of sampled taxa reported in order of abundance

Species Order N Dry weight d13C d15 N C:N

Dikerogammarus villosus Amphipoda 169 9.1 ± 15

(0.4/27.7)

- 16.2 ± 2.3

(- 19.1/- 13.6)

7 ± 2.1

(4.7/9.4)

5 ± 0.8

(4.3/5.9)

Erythromma sp. Odonata 12 5.6 ± 1.5

(3.4/8)

- 17.6 ± 0.8

(- 18.5/- 15.7)

7.2 ± 8.8

(7/7.4)

3.9 ± 2.3

(3.6/4.2)

Echinogammarus veneris Amphipoda 6 3.8 ± 2.4

(1.6/7.7)

- 18.5 ± 0.6

(- 19/- 17.5)

5.3 ± 1

(4.2/6.3)

6.4 ± 0.8

(5.7/8)

Asellus aquaticus Isopoda 5 1.5 ± 0.7

(0.6/2.4)

- 18.5 ± 1.4

(- 19.9/- 16.3)

5.1 ± 0.8

(4.5/6.5)

5.2 ± 0.7

(4.2/5.9)

Ischnura sp. Odonata 4 3 ± 0.4

(2.7/3.6)

- 17.4 ± 0.2

(- 17.6/- 17.2)

7.4 ± 0.4

(6.8/7.8)

3.8 ± 0.1

(3.6/3.9)

Erpobdella octoculata Arhynchobdellida 3 7.3 ± 3.5

(3.3/9.8)

- 20.6 ± 0.2

(- 20.8/- 20.5)

11.5 ± 0.8

(10.7/12.2)

4.3 ± 0.2

(4.1/4.5)

Additional information on individual dry weights (in mg), carbon and nitrogen isotopic values (in %), and C:N ratios are included as

mean ± SD, with min–max values in parentheses. d13C values were corrected considering C:N ratios (see text for details). d13C,
d15 N, and C:N values were determined in the totality of sampled individuals for all taxa with the exception of Dikerogammarus
villosus, for which CN isotopic and elemental concentrations were determined in a subsample of 54 individuals whose individual dry

weight ranged between 0.4 and 27.6 mg
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freeware WebPlotDigitizer (ver. 4.3; https://

automeris.io/WebPlotDigitizer/).

The majority of the studies explicitly reporting D.

villosus trophic position (see Results) used the equa-

tion TP = (d15Nconsumer – d15Nbaseline)/D
15 N ?k

(Vander Zanden and Rasmussen 1999), where d15-

Nconsumer is the nitrogen isotopic signature of the killer

shrimp, d15Nbaseline and k are the nitrogen isotopic

signature and the trophic position of a baseline taxon,

while D15 N is the trophic level fractionation of d15 N
(3.4%: Post 2002). For the sake of comparison, we

adopted the same formula and D15 N for those studies

where the trophic position of D. villosus was not

explicitly calculated using the isotopic signatures of

the killer shrimp (d15Nconsumer) and those of taxa with

k = 1 or 2 (d15Nbaseline).

Data analysis

In general, values reported in the paper are expressed

as means ± 1SD if not otherwise specified. For

parametric statistical analysis, data were tested for

conformity to assumptions of variance homogeneity

(Cochran’s C test) and normality (Shapiro-Wilks test)

and transformed when required. A Shapiro-Wilks test

was also used to verify the normality of the size

frequency distribution of collected D. villosus speci-

mens. One-way Permutational Analysis of Variance

(PERMANOVA: Anderson 2005) was run on a

Euclidean distance matrix calculated on individual

CN isotopic signatures with 9999 permutations of

residuals within a reduced model to test for dissim-

ilarities in isotopic values among taxa. PERMA-

NOVAwas also used to confirm the significance of the

differences between size groups after a preliminary

cluster analysis with complete linkage performed on

the Euclidean distance matrix indicated a discontinu-

ity in the isotopic signatures of the specimens analyzed

(see Results).

The trophic positions of gammarids, odonate

nymphs and hirudineans were estimated implementing

a one-baseline, two-discrimination factor Bayesian

model run with 2 parallel chains and 40,000 adaptive

iterations, using the isopod Asellus aquaticus as

isotopic baseline (see also Annabi et al. 2018 for an

example). The species, together with the confamiliar

Proasellus coxalis, is an herbivorous/detritivorous

consumer widely distributed in Italian lentic and lotic

waters and plays a significant role in leaf detritus

processing in lacustrine environments (Marcus et al.

1978; Costantini et al. 2005). Accordingly, a trophic

level (k) = 2 was assigned to A. aquaticus, assuming

k = 1 for basal resources, k = 2 for primary con-

sumers, etc., with the trophic enrichment factors (TEF

hereafter) D13C = 0.57 ± 1.58% and D15 -

N = 3.40 ± 1.04% (Post 2002). Even though a

species-specific TEF measurement is available from

the literature (i.e., Hellmann et al. 2015), here we used

a general TEF value to make more comparable the

trophic positions estimated for the different taxa

analyzed in the study, as well as those collated for

D. villosus from the literature.

All statistical analyses were performed in the R

statistical environment (R Development Core Team

2020). Specifically, PERMANOVA was run in the

package vegan (version 2.5–6; Oksanen et al. 2019),

while trophic positions were estimated using the

tRophicPosition package (version 0.7.7; Quezada-

Romegialli et al. 2018; 2019). The function ‘‘com-

pareTwoDistributions’’ available in the aforemen-

tioned package was used to statistically compare in a

Bayesian context TP values estimated for the different

taxa and size groups.

Results

Six taxa were captured in total, including the gam-

marid amphipods Dikerogammarus villosus and

Echinogammarus veneris, the isopod Asellus aquati-

cus, odonate larval stages, and the hirudinean Erpob-

della octoculata (Table 1). Only six and five adult

specimens of A. aquaticus and of E. veneris were

respectively collected, while D. villosus dominated in

abundance with 169 individuals varying in size by two

orders of magnitude (Table 1; see also Fig. S1 in the

online material). Among predators, 16 odonate

nymphs were captured belonging to the genus Ery-

thromma and, to a minor extent, Ischnura (four

specimens). In addition, three individuals of the

hirudinean Erpobdella octoculata were collected

(Table 1).

On average,Dikerogammarus showed d15 N values

lower by 4.5% than E. octoculata, but close to the

overall isotopic values of odonate nymphs (Table 1).

Ischnura individuals were significantly smaller than

Erythromma (Table 1; t-test for separate variance

estimates: t = 5.28, P = 0.0001, adjusted
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d.f. = 13.91); nonetheless, negligible differences

between the two taxa were verified in terms of isotopic

values [1-way PERMANOVA on d13C and d15 N
values, factor ‘‘taxon’’: Pseudo-F = 0.42, P(perms) =

0.42, d.f. = 1.14]. Accordingly, no distinctions were

made between the two taxa in subsequent analyses.

d13C and d15 N values in individual D. villosus

varied considerably (Table 1), suggesting a significant

trophic plasticity. In particular, d15 N varied by more

than 4.5%, shifting from values close to E. octoculata,

to signatures comparable with those of A. aquaticus

(Fig. 1A). In addition, d15 N values showed a non-

linear increase with amphipod body size (Fig. 1B),

while d13C varied considerably, with small-size gam-

marids being more 13C-enriched compared with large-

size individuals (Fig. 1C).

A cluster analysis followed by a PERMANOVA

revealed two distinct groups of D. villosus individuals

with statistically different isotopic values (see Fig. S2

in supplementary online material). The first group

included small-sized specimens with an individual dry

weight of 3.78 ± 0.69 mg (range 0.39–17.98 mg); the

second comprised large-sized gammarids with an

average dry weight of 18.03 ± 1.33 mg (range

7.74–27.65 mg). Accordingly, the two size groups

showed significantly different trophic positions

(P = 0.03; Fig. 2). In particular, small-sized D. villo-

sus showed a TP value not statistically different from

that estimated for E. veneris (2.57 ± 0.14 vs.

2.41 ± 0.19; P = 0.19; mean ± 1SD; see also Tab.

S1 for additional statistical information on the robust-

ness of the estimations). Conversely, large-sized killer

Fig. 1 (A) Bi-plot of individual d13C and d15 N values of the

amphipods Dikerogammarus villosus and Echinogammarus
veneris, Odonata larval stages, and the hirudinean Erpobdella
octoculata. See Table 1 for summary statistics. For D. villosus,
full and empty circles identify large-sized (L) and small-sized

(S) individuals included in the two size groups recognized by

cluster analysis and PERMANOVA (see Fig. S2 in the online

information). The relationships between the individual dry

weight of D. villosus specimens and the respective d15 N (insert

B) and d13C values (insert C) are also reported
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shrimps showed a TP of 3.07 ± 0.15, similar to the

trophic position of odonate nymphs (2.83 ± 0.14;

P = 0.12), but significantly lower than that of E.

octoculata (3.75 ± 0.44; P = 0.03).

The literature search and the subsequent selection

procedure identified ten isotopic studies on D. villosus

published between 2006 and 2019 (Tab. 2), including

information on its trophic position either directly or

providing d15 N values for the killer shrimp and

baseline taxa (5 studies per category). All the publi-

cations providing trophic position estimations used the

equation by Vander Zanden and Rasmussen (1999)

with the exception of Haubrock et al. (2019), where a

Bayesian approach identical to the one adopted in the

present study was used. The study by Haubrock and

colleagues was also the only carried out in southern

Europe (i.e., in the River Arno, Central Italy) while the

remaining were all located in lakes and rivers of

central European countries (Germany, the Nether-

lands, Poland, Switzerland, and Austria). 9 literature

sources provided a total of 25 trophic position values

estimated on bulk samples (Table 2A), corresponding

to a mean TP of 2.38 (± 0.71 SD), but varying three-

fold between 1.7 and 4.9 independently from the

system (i.e., river or lake: t-test for separate variance

estimates: t = -0.52, P = 0.61, adjusted d.f. = 13.45)

or the season [1-way ANOVA, factor ‘‘season’’ with

three levels (‘‘spring’’; ‘‘summer’’, and ‘‘autumn’’):

F2,21 = 0.05, P = 0.94 after excluding the TP value

from Bacela-Spychalska and van der Velde (2013),

providing no indication of the sampling season].

Only three studies performed in Germany and the

Netherlands estimated the trophic position of D.

villosus considering the ontogeny of analyzed indi-

viduals (i.e., adult vs. juvenile; Table 2B). Over the 13

investigated locations the two developmental stages of

the killer shrimp showed a two-fold variation in

trophic position (Table 2B; adults min-max range:

1.9–3.5; juveniles: 1.5–3.3), yet adult D. villosus were

generally characterized by TP values significantly

higher than juveniles (2.36 ± 0.45 vs. 2.14 ± 0.49,

mean ± SD; t-test for paired samples: t = 5.65,

P = 0.0001, 12 d.f.).

Discussion

The results of the present study suggest that the

individuals of a single population of Dikerogammarus

villosus simultaneously play, depending on body size,

two distinct functional roles within an invaded food

web, shifting from omnivorous feeding habits that are

predominantly plant-based and similar to the native

amphipod Echinogammarus veneris, to a markedly

predaceous strategy comparable with those character-

izing odonate nymphs.

Dikerogammarus villosus showed a bipartite pat-

tern in the isotopic signatures of its specimens (Fig. 1,

and Fig. S1), and, in turn, a dual trophic position

(Fig. 2). These findings corroborate and extend the

results of other studies where the effect of size on the

isotopic values of D. villosus has been addressed

explicitly (see references in Tab. 2B). In particular,

Koester and colleagues (2016) found in the majority of

ten populations of D. villosus analyzed in the River

Rhine a size-related positive shift in d15 N with

increasing body size, even though no attempts were

made to consider the trophic position of the species,

either estimated on bulk samples or, most importantly,

on different ontogenetic stages of the species. Here,

the first group included small-sized D. villosus spec-

imens, the majority less than 10 mg in weight.

Transformed using the allometric equation proposed

in Dobrzycka-Krahel et al. (2016), i.e., dry

Fig. 2 Trophic positions (TP) of the amphipods Dikerogam-
marus villosus and Echinogammarus veneris, Odonata larval

stages, and the hirudinean Erpobdella octoculata. For. D.
villosus, TP values for large-sized (L) and small-sized (S) indi-

viduals included in the two groups differing significantly in their

isotopic values after cluster analysis and PERMANOVA (see

Fig. S2 in the online information) are also reported. Bars

showing identical letters were not statistically different (a
level = 0.05)
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Table 2 Summary of published isotopic investigations on Dikerogammarus villosus in invaded systems

(A) D. villosus bulk samples

Reference System Location Notes Season d15 N N d15Nbaseline TP

van Riel et al. (2006) The

Netherlands

River Waal 1996–98 Summer 14.7 10 2.6

Waal 2001–03 Summer 10.6 33 2.7

Brauns et al. (2011) Germany Lake Langer

See

Shore Autumn 9.2 NA 2.3

Langer

See

Retaining

wall

Autumn 9.1 NA 2.5

Gergs et al. (2011) Germany Lake Constance 2005 Autumn 15.1 NA 5.2 (2)* 4.9

Constance 2006 Autumn 6.2 NA 6.1 (2)� 2

Bacela-Spychalska and Van

Der Velde (2013)

Poland Lake Zegrzynski NA 1 3.7

Brandner et al. (2013) Germany River Danube Summer 11.6 6 2.8 (2)* 2.8

Koester and Gergs (2014) Switzerland River Untere

Lorze

Hagendorn Spring 6.1 16 1.9 (2)** 1.9

Untere

Lorze

Maschwanden Spring 6.6 17 1.8 (2)** 1.9

Rothhaupt et al. (2014) Germany Lake Constance Site1 Summer 8.5 NA 1.8 (2)# 1.8

Constance Site3 Spring 8.2 NA 1.7 (2)# 1.8

Constance Site4 Summer 8.2 NA 2.3 (2)# 2.3

Austria Constance Site5 Summer 8.3 NA 1.7 (2)# 1.7

Koester et al. (2016) Germany River Rhine Site1 Autumn 9.7 20 2.3 (1)§ 2.3

Rhine Site2 Autumn 10.6 20 1.9 (1)§ 1.9

Rhine Site3 Autumn 8.7 20 2.1 (1)§ 2.1

Rhine Site4 Autumn 9.8 20 2.1 (1)§ 2.1

Rhine Site5 Autumn 9.1 20 2.3 (1)§ 2.3

Rhine Site6 Spring 12.5 20 3.5 (1)§ 3.5

Rhine Site7 Autumn 9.0 20 2.2 (1)§ 2.2

Lake Constance Site8 Autumn 7.3 20 2.1 (1)§ 2.1

Constance Site9 Autumn 6.9 20 2.1 (1)§ 2.1

River Rhine

tributary

Site10 Autumn 12.0 20 1.9 (1)§ 1.9

Haubrock et al. (2019) Italy River Arno Spring 9.3 11 2.1

(B) D. villosus ontogenetic stages

Reference Country System Location Notes Season d15 N N Size d15Nbaseline TP

van Riel et al. (2006) The

Netherlands

River Waal 2001–03 Summer 11.3 5 adults[ 12 mm 2.9

Waal Summer 10.5 22 juveniles 2.7

Hellmann et al.

(2015) ?

Germany River Elbe Autumn 11.0 17 adults[ 9 mm 1.9

Elbe Autumn 8.2 NA juveniles 1.5

River Rhine Autumn 12.7 18 adults[ 9 mm 2.6

Rhine Autumn 11.7 NA juveniles 2.4

Koester et al. (2016) Germany River Rhine Site1 Autumn 9.8 12 adults[ 9 mm 2.3 (1)§ 2.3

Rhine Autumn 9.6 8 juveniles 2.2

River Rhine Site2 Autumn 10.7 17 adults[ 9 mm 1.9 (1)§ 2.0

Rhine Autumn 10.3 3 juveniles 1.8

River Rhine Site3 Autumn 8.7 19 adults[ 9 mm 2.1 (1)§ 2.1
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weight = 0.0674*total length 2.6917 (expressed respec-

tively in mg and mm), this reference individual mass

corresponds to a length of 6.4–6.5 mm roughly

matching the lower size limit for adults (Devin et al.

2004b). Thus, the observed differences in isotopic

signatures may to be due to an ontogenetic dietary

shift. Growth in gammarid amphipods is essentially a

continuous process, yet gonadal maturation generally

induces a strong metabolic and physiological trade-off

between investments in somatic or reproductive

tissues. Accordingly, sexual maturity coincides with

abrupt morphological changes and variations in ener-

getic requirements, the latter in turn reflecting in

ontogenetic diet shifts (Hartnoll 1982; Summers et al.

1997; Longo and Mancinelli 2014; Shi et al. 2020).

In the present study sexes were not determined; as

male D. villosus are generally larger than females

(Devin et al. 2004b) it is possible that also sex may

have contributed to the observed pattern, even though

available information do not support this hypothesis

(Maazouzi et al. 2009; Sahm et al. in press).

Small-sized killer shrimps showed a trophic posi-

tion similar to that of E. veneris (2.57 vs. 2.41,

respectively; Fig. 2). Dikerogammarus villosus juve-

niles are very efficient consumers of plant material

before they reach maturity (Rewicz et al. 2017);

similarly, E. veneris is predominantly a primary

consumer; however, as generally observed for other

gammarids in freshwater and brackish habitats, it can

include animal items in the diet, especially in the

winter season (Gophen 1979; see also Mancinelli

2012a, b). The similar trophic position, and the

generally comparable carbon isotopic values, suggest

that small-sized D. villosus may compete with E.

Table 2 continued

(B) D. villosus ontogenetic stages

Reference Country System Location Notes Season d15 N N Size d15Nbaseline TP

Rhine Autumn 7.5 1 juveniles 1.6

River Rhine Site4 Autumn 9.9 3 adults[ 9 mm 2.1 (1)§ 2.2

Rhine Autumn 9.7 17 juveniles 2.1

River Rhine Site5 Autumn 9.2 15 adults[ 9 mm 2.3 (1)§ 2.4

Rhine Autumn 8.7 5 juveniles 2.1

River Rhine Site6 Spring 12.6 20 adults[ 9 mm 3.5 (1)§ 3.5

Rhine Spring 12.0 1 juveniles 3.3

River Rhine Site7 Autumn 9.8 2 adults[ 9 mm 2.2 (1)§ 2.6

Rhine Autumn 8.9 21 juveniles 2.2

Lake Constance site8 Autumn 7.3 9 adults[ 9 mm 2.1 (1)§ 2.2

Constance Autumn 7.2 12 juveniles 2.1

Lake Constance Site9 Autumn 6.9 15 adults[ 9 mm 2.1 (1)§ 2.1

Constance Autumn 6.9 5 juveniles 2.1

River Rhine tributary Site10 Autumn 12.1 16 adults[ 9 mm 1.9 (1)§ 1.9

Rhine tributary Autumn 11.6 4 juveniles 1.7

The first part of the table (A) includes references where D. villosus signatures were assessed on bulk samples, while the second

(B) includes studies considering the ontogenetic stage of analyzed individuals (i.e., adult vs. juvenile). In part B the original,

individually-resolved data by Koester et al. (2016) were grouped as juveniles and adults to compare them with data provided by van

Riel et al. (2006) and Hellmann et al. (2015), taking the sizes provided in the latter publication as a reference. Additional information

on the country, location, system, season, nitrogen isotopic signatures of D. villosus (d15 N = mean, N = number of analyzed samples)

are reported. The table includes studies where the trophic position of D. villosus was not explicitly calculated; for the sake of

comparison, a TP value (reported in bold) was estimated using the isotopic signatures of D. villosus and of a baseline species (*:

Dreissena polymorpha; � = Centroptilum luteolum; **: Ancylus fluviatilis; #: Limnomysis benedeni; §: periphyton; trophic level k
provided in round brackets) using the equation provided in Vander Zanden and Rasmussen (1999; see text for further details)

? : TP estimated using a D15 N = 2.93
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veneris for trophic resources, a hypothesis supported

also by their similar sizes [E. veneris reaches a

maximum size of 10–12 mm (Gophen 1979; Herbst

and Dimentman 1983)]. The sampling method used in

this investigation allowed neither a quantitative anal-

ysis of the macrobenthic assemblage charactering the

study site, nor a robust assessment of the relative

densities of D. villosus and E. veneris in Lake

Trasimeno; however, the disproportionality in the

number of specimens collected for the two species is

remarkable (Table 1). Echinogammarus veneris is the

only native gammarid characterizing the littoral

macrobenthic communities of Lake Trasimeno

(VV.AA. 2015). The species was found at high

abundance in 2015 and 2016 (Mancinelli et al. 2018;

2020); the extremely reduced occurrence recorded in

2018 at the same location (this study) coincides with

the recent establishment of D. villosus and suggests

that the latter may have played a negative impact on E.

veneris abundance, as hypothesized for other native

amphipods in other investigations (Muskó 1989;

Bollache et al. 2004; Noordhuis et al. 2009). Besides

representing an important food source for macroin-

vertebrates, fish, birds and amphibians, E. veneris also

plays a major role in leaf detritus processing in

lacustrine environments (Mancinelli et al.

2002, 2007). Significant variations in leaf detritus

decomposition rates have been suggested to occur in

freshwater systems after the arrival of D. villosus

(Truhlar et al. 2014; Jourdan et al. 2016); thus,

potential post-invasion variations in key functions of

the benthic system of Lake Trasimeno deserve to be

thoroughly addressed in future investigations.

In contrast with small-sized D. villosus, large-sized

individuals showed a trophic position analogous to

that of damselfly nymphs, and comparable with that of

the hirudinean Erpobdella octoculata (Fig. 2). For

odonates, in particular, the d13C ranges indicate a

potentially high overlap in the prey included in the diet

and, in turn, competition or even intra-guild predation.

Odonata larvae are generalist predators including a

wide spectrum of invertebrate and vertebrate sec-

ondary consumers in their diet (Fischer 1964; Thomp-

son 1978; Johnson 1991), while E. octoculata is a

macrophagous opportunistic predator preying on a

wide spectrum of benthic invertebrates, including

chironomids, amphipods, insects, and conspecifics

(Dall 1983). Our results indicate that the trophic niche

of large-sized D. villosus may overlap those of

damselfly nymphs and, to a minor extent, of

hirudineans, competing for food or even preying on

both groups of native predators. While laboratory

experiments indicate that the killer shrimp prey

actively on hirudineans (Krisp and Maier 2005),

information on odonate nymphs are less univocal: D.

villosus is generally recognized to include them in its

diet (Rewicz et al. 2014), yet laboratory trials showed

low or negligible predation, a discrepancy likely to be

related with the experimental design, as influenced by

e.g., differences in sizes between prey and D. villosus

individuals (Krisp and Maier 2005; Lipinskaya and

Makarenko 2019 and literature cited).

Future investigations deserve to focus on the

double, size-dependent role of D. villosus as an

intra-guild competitor and predator for native primary

consumers as well as for native invertebrate predators.

It is apparent that a thorough analysis of the size

structure of the invader’ populations will be necessary

to assess the relative prevalence of one role in respect

with the other. To date, available information are

relatively scant (but see Devin et al. 2004b), yet they

indicate for the species an almost continuous repro-

duction, with juveniles present throughout the year,

and a generally bi- or multi-modal size frequency

distribution, as clearly suggested also by the present

study (Fig. S1). Accordingly, to test how constant the

functional duality highlighted here for the killer

shrimp is, future studies need to include multiple

seasonal samplings (i.e., temporal data), since the

present investigation, as most of the isotopic studies

carried out in the past (Table 1), focused only on a

single season, thus providing only a snapshot of the

trophic habits of the species.

The impact of omnivores on food webs and

ecosystems is still under debate, due to the difficulties

in predicting their ultimate functional effects on the

general structure and dynamics of food webs (Wootton

2017). This difficulty is particularly challenging for

invasive omnivores, as their direct and indirect effects

on multiple trophic levels through resource consump-

tion limit a robust assessment of their ecological

impact on invaded communities (Gallardo et al. 2016;

Tumolo and Flinn 2017). Even though limited in space

and time, the individual-scale investigation carried out
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in the present study, and the results of the literature

search, clearly indicated that at least two groups of

specimens with distinct functional roles coexist as

‘‘ecological species’’ (sensu Polis 1984) within the

same D. villosus population, reflecting potential

simultaneous interactions with taxa located at differ-

ent trophic levels. Obviously, the possibility for

populations of the killer shrimp to adapt to local

conditions, as generally assumed, is not ignored (as

testified in Table 1 by the remarkable variability in

trophic position estimations). Indeed, the present study

adds an intraspecific dimension to the omnivorous

nature of D. villosus, stressing the necessity to

explicitly take into consideration its potentially mul-

tiple functions related to body size and, in turn,

ontogenetic stage, for an ecologically meaningful

assessment of the ecological impact of the gammarid

in invaded communities (Médoc et al. 2018).
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