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Abstract: Background: Early in-vivo diagnosis of Alzheimer’s disease (AD) is crucial for accurate
management of patients, in particular, to select subjects with mild cognitive impairment (MCI) that
may evolve into AD, and to define other types of MCI non-AD patients. The application of artifi-
cial intelligence to functional brain [18F]fluorodeoxyglucose (FDG) positron emission tomography
(PET)/computed tomography(CT) aiming to increase diagnostic accuracy in the diagnosis of AD
is still undetermined. In this field, we propose a radiomics analysis on advanced imaging segmen-
tation method Statistical Parametric Mapping (SPM)-based completed with a Machine-Learning
(ML) application to predict the diagnosis of AD, also by comparing the results with following
Amyloid-PET and final clinical diagnosis. Methods: From July 2016 to September 2017, 43 patients
underwent PET/CT scans with FDG and Florbetaben brain PET/CT and at least 24 months of clin-
ical/instrumental follow-up. Patients were retrospectively evaluated by a multidisciplinary team
(MDT = Neurologist, Psychologist, Radiologist, Nuclear Medicine Physician, Laboratory Clinic) at
the G. Giglio Institute in Cefalù, Italy. Starting from the cerebral segmentations applied by SPM
on the main cortical macro-areas of each patient, Pyradiomics was used for the feature extraction
process; subsequently, an innovative descriptive-inferential mixed sequential approach and a machine
learning algorithm (i.e., discriminant analysis) were used to obtain the best diagnostic performance
in prediction of amyloid deposition and the final diagnosis of AD. Results: A total of 11 radiomics
features significantly predictive of cortical beta-amyloid deposition (n = 6) and AD (n = 5) were found.
Among them, two higher-order features (original_glcm_Idmn and original_glcm_Id), extracted from
the limbic enthorinal cortical area (ROI-1) in the FDG-PET/CT images, predicted the positivity of
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Amyloid-PET/CT scans with maximum values of sensitivity (SS), specificity (SP), precision (PR) and
accuracy (AC) of 84.92%, 75.13%, 73.75%, and 79.56%, respectively. Conversely, for the prediction of
the clinical-instrumental final diagnosis of AD, the best performance was obtained by two higher-
order features (original_glcm_MCC and original_glcm_Maximum Probability) extracted from ROI-2
(frontal cortex) with a SS, SP, PR and AC of 75.16%, 80.50%, 77.68%, and 78.05%, respectively, and
by one higher-order feature (original_glcm_Idmn) extracted from ROI-3 (medial Temporal cortex;
SS = 80.88%, SP = 76.85%, PR = 75.63%, AC = 78.76%. Conclusions: The results obtained in this
preliminary study support advanced segmentation of cortical areas typically involved in early AD
on FDG PET/CT brain images, and radiomics analysis for the identification of specific high-order
features to predict Amyloid deposition and final diagnosis of AD.

Keywords: radiomics; Alzheimer’s disease; PET/CT; machine learning

1. Introduction

Alzheimer’s disease (AD) is the most common form of progressive and irreversible
dementia. Early in-vivo diagnosis of AD is crucial for accurate management of patients, in
particular, to select subjects with mild cognitive impairment (MCI) that may evolve into AD,
and to identify MCI with suspected non-AD pathology [1]. Brain [18F]fluorodeoxyglucose
(FDG) positron emission tomography (PET)/computed tomography(CT) is a functional
neuroimaging tool evaluating dysfunction, synaptic disconnection, and neuronal loss in
AD. Concerning the low membrane permeability, [18F]FDG dephosphorylation in the
brain occurs slowly due to the low concentration of phosphatase in this tissue. Once the
glucose analogue has entered the cell, it is phosphorylated in position 6 by a hexokinase;
the presence of fluorine in the molecule also makes it impossible to continue along the
glycolytic pathway. Therefore, brain [18F]FDG PET/CT has the unique ability to estimate
the local cerebral metabolic rate of glucose consumption, thus providing information on the
distribution of neuronal damage in AD in-vivo. Amyloid-PET/CT with several radiotracers
([18F]Florbetaben, [18F]Florbetapir, [18F]Flutemetamol, [11C]Pittsburgh compound C-PIB)
provide a quantitative measure of the insoluble cortical amyloid load in vivo and it is
currently being recognized to have a determining role in the diagnosis of AD. Although the
target of these tracers is fibrillar Aβ, they do not represent a specific marker for a particular
pool of Aβ but rather for the global cerebral amyloid load. Amyloid PET shows detectable
cortical uptake with high sensitivity and specificity when a moderate-to-severe burden
of plaque is present, reflecting a high negative predictive value, despite a sub-optimal
specificity for possible Aβdeposition in some non-AD conditions [2]. One of the main
issues regards the lack of a quantitative threshold value for the amyloid burden able to
discriminate accurately patients with AD. The difficulties in identifying a precise cut-off,
combined with the considerable inter-individual variability of the percentage of amyloid
deposition in the population, reduce its specificity. Further, in elderly subjects with no
signs of neuronal dysfunction, for example, the presence of Amyloid-PET positivity may
be highlighted [3]. It must also be considered that there are other possible conditions such
as Parkinson’s disease, Lewy body dementia, cerebral amyloid angiopathy, head trauma,
and Down Syndrome which may show an increasein beta-Amyloid deposition [4–6].

The importance of exploring associated biomarkers for the early diagnosis and prediction
of the disease progress of AD is a major clinical issue. The National Institute on Aging-
Alzheimer’s Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including
Aβ42, p-tau, and t-tau in cerebrospinal fluid (CSF), and PET [7].However, the invasiveness of
lumbar puncture for CSF assessment and the limited availability of PET with new radiotracers
(for Tau and Aβ brain burden), represent a valid reason to develop new approaches with
artificial intelligence applied to the more easily available methods such as FDG-PET.

The application of artificial intelligence through the development of radiomics predic-
tive models on functional FDG-PET imaging, aiming to increase diagnostic accuracy in the
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diagnosis of AD is still undetermined. In this setting, we propose a radiomics analysis
based on Statistical Parametric Mapping (SPM) and Pyradiomics, in combination with a
Machine-Learning (ML) application, to predict Amyloid-PET positivity and diagnosis of AD.

2. Materials and Methods

From July 2016 to September 2017, 43 patients (median age 64.8 years, Range 53–83 years;
females = 23; males = 20; median Mini-Mental State Examination, MMSE = 19.27, Range 4–28)
underwent PET/CT scans with FDG and [18F]Florbetaben (FBB) brain PET/CT, and at least
24 months of clinical/instrumental follow-up. Patients were retrospectively evaluated by
a multidisciplinary team (MDT = neurologist, psychologist, radiologist, nuclear medicine
physician, and laboratory clinic doctor) at the G. Giglio Institute in Cefalù, Italy.

The inclusion criteria were as follows: (a) neurological and neuropsychological
suspicion of neurodegenerative disease, based on the National Institute on Aging and
the Alzheimer’s Association (NIA-AA) and European Federation of Neurological Soci-
eties/European Neurological Society (ENS-EFNS) criteria [8]; (b) MRI brain imaging also
to rule out moderate or severe cerebrovascular defects; (c) FDG PET/CT performed for
metabolic assessment; (d) availability of an amyloid-PET scan with FBB within 6 months
from conventional imaging and FDG PET/CT scan; (e) report of the positivity/negativity
of FBB-PET and multidisciplinary team meeting with the final diagnosis for each patient;
(f) minimum duration of neurological and neuropsychological follow-up of 24 months after
the first neurological evaluation for the cognitive defect.

Follow-up information were used to estimate the disease status to allow the assessment
of disease progression over time and confirm/exclude the in-vivo diagnosis of AD.

2.1. PET/CT Acquisition Protocol

FDG PET/CT: All the subjects underwent an FDG PET/CT imaging examination using
3D PET scans, on a GE multi-ring Discovery STE PET/CT tomograph (General Electric,
Milwaukee, WI, USA), at the Nuclear Medicine Unit of the G. Giglio Institute in Cefalù,
Italy. All patients underwent an FDG PET before the Amyloid-PET scan. Patients received
an intravenous injection of FDG (3.7 MBq/kg) at rest, in a supine position, in a quiet, dimly
lit room. Image acquisition began approximately 45 min after injection, with a scan time
duration of 15 min. Before the injection of FDG, the subjects were fasted for at least 6 h,
and a blood glucose <160 mg/dL was measured and required to proceed with the scan.
The reconstruction of the images was based on an OSEM algorithm. The low-dose CT was
co-registered and used for attenuation correction.

2.2. Qualitative Evaluation of FDG PET

FDG PET/ CT brain transverse, sagittal and coronal images were assessed separately
by two nuclear medicine physicians with expertise in PET neuroimaging. The images
were classified as normal, possible, or probably suspected of AD. The rainbow scale was
used to normalize the images with a uniform uptake threshold, using the basal ganglia
and the cerebellum as a reference to background regions. Patients, whose cortical areas
showed reduced glucose metabolism in the regions including the posterior cingulate, the
precuneus, the parietal cortical territories, and the medial and lateral temporal cortex,
were classified as suffering from possible or probable AD, depending on the intensity and
extent of the uptake. The collection of anamnestic data played an essential role in the
differential diagnosis of patients with ambiguous patterns such as AD—vascular dementia
(VD), frontotemporal dementia (FTD), Lewy-body disease (DLB).

2.3. Image Pre-Processing and ROI Selection

The entire dataset was spatially pre-processed using the Statistical Parametric Mapping
(SPM) 12 software package (https://www.fil.ion.ucl.ac.uk/spm/ (accessed on 31 January
2022)). First, each PET scan, comprising 47 Digital Imaging and Communications in
Medicine (DICOM) images, was converted into a single NIfTI file, preserving the original

https://www.fil.ion.ucl.ac.uk/spm/
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spatial resolution. Then, the resulting 3D volume was spatially normalized to the Montreal
Neurological Institute (MNI) 152 space, using the SPM unified segmentation normalization
algorithm [9], which combines segmentation, bias correction and spatial normalization
in a single process of optimization. This iterative method, which provides better results
than simple serial applications of each step [9], allowed to directly estimate the warping
tensors that register the SPM standard spatial priors (i.e., tissue probability maps) in each
individual subject space. The intensity distribution of each class of tissue has been modelled
by at least a mixture of two Gaussians, in order to take into account the partial volume
effect; moreover, a smoothness level of 5 mm was set, in order to derive a fudge factor
related to the spatial correlation between neighbouring voxels, due to the assumption
of independence of the unified model [9]. The default settings were used for all other
parameters. Then, the estimated nonlinear spatial transformations were applied and the
PET images were resampled in a bounding box with an isotropic voxel size of 2 mm,
reflecting the MNI-152 spatial proportions in a similar way to previous works [10–12].

After spatial normalization, we focused on four different regions of interest (ROI) that
were extracted from the brain fragmentation available in SPM, whose maximum probability
tissue labels derived from the “MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas
Labelling” (https://my.vanderbilt.edu/masi/workshops (accessed on 31 January 2022)). This
neuro-anatomical classification was generated and made public by Neuromorphometrics,
Inc. under academic subscription and provides a fine subdivision of cortical and non-cortical
structures, for a total of 138 labels throughout the brain. Each selected ROI included 8 to
12 brain areas labelled according to Table 1 and, prior to mask extraction, their bounding box
and voxel sizes were adapted to the template for alignment reasons.

Table 1. Regions of interest (ROI) extracted from the cerebral segmentation using SPM.

ROI 1 Areas Label
Index ROI 2 Areas Label

Index ROI 3 Areas Label
Index ROI 4 Areas Label

Index

Right
Hippocampus 47

Right (AOrG
anterior orbital

gyrus
104 Right FuG

fusiform gyrus 122 Right PO parietal
operculum 174

Right PHG
parahippocampal

gyrus
170

Right MOrG
medial orbital

gyrus
146 Right GRe gyrus

rectus 124 Right PoG
postcentral gyrus 176

Right Ent
entorhinal area 116

Right
OpIFGopercular

part of the inferior
frontal gyrus

162
Right ITG

inferior temporal
gyrus

132 Right SPL superior
parietal lobule 198

Right MTG middle
temporal gyrus 154

Right OrIFG orbital
part of the inferior

frontal gyrus
164 Right TMP

temporal pole 202
Right PCgG

posterior cingulate
gyrus

166

Left Hippocampus 48 Right MFC medial
frontal cortex 140 Left FuG

fusiform gyrus 123 Right
PCuprecuneus 168

Left PHG
parahippocampal

gyrus
171 Right MFG middle

frontal gyrus 142 Left GRe gyrus
rectus 125 Left PoG

postcentral gyrus 177

Left Ent entorhinal
area 117 Left MOrG medial

orbital gyrus 147 Left ITG inferior
temporal gyrus 133 Left PO parietal

operculum 175

Left MTG middle
temporal gyrus 155 Left AOrG anterior

orbital gyrus 105 Left TMP
temporal pole 203 Left SPL superior

parietal lobule 199

Left
OpIFGopercular

part of the inferior
frontal gyrus

163 Left PCuprecuneus 169

Left OrIFG orbital
part of the inferior

frontal gyrus
165

Left PCgG
posterior cingulate

gyrus
167

Left MFC medial
frontal cortex 141

Left MFG middle
frontal gyrus 143

https://my.vanderbilt.edu/masi/workshops
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2.4. Extraction of Radiomics Features and Machine Learning Classification

The ROIs described in Table 1 were used to extract the features through a certified
and image biomarker standardisation initiative (IBSI) [12] compliant software, namely
Pyradiomics [13]. Subsequently, an innovative descriptive-inferential mixed sequential
approach for feature reduction and selection was used to identify a small set of radiomics
features with a strong association with patient outcomes in order to obtain good predictive
performance, leading to the exclusion of non-reproducible, redundant and irrelevant
features from the initial set [14]. After this selection and reduction process, discriminant
analysis (DA) was used as the predictive model [15,16]. The training phase was performed
only once and, after being completed, the DA was able to classify new cases. Using the
k-fold cross-validation strategy, the data was split into training and validation sets using
a random partition. Specifically, the data were divided into k-folds: one of the folds was
used as a validation set and the remaining folds were combined into the training set.
The pooling was done so that both the training and validation sets maintained the same
positive/negative percentage for beta-amyloid deposition compared to the original dataset.
In our study, k = 5 was determined empirically by the trial-and-error method (range k:
5–15, a step of 5).

Based on the above systems (Figure 1), we defined the features capable of obtaining the
best diagnostic performance in predicting amyloid deposition and the final diagnosis of AD.

Figure 1. The proposed radiomics workflow, from SPM-based image pre-processing to Pyradiomics
-based feature extraction process to machine learning-based classification.

3. Results

Forty-three patients met the inclusion criteria (Table 2). MMSE was less than 25 in
29/43 patients (Median MMSE = 19.27, Range 4–28). The clinical dementia rating (CDR)
scale was greater than 0.5 in 27/43 patients. The qualitative evaluation of FDG was consid-
ered positive in 28 patients (65%), while PET with FBB was positive in 23 patients (53%).
CSF assay values for quantification by Double-sandwichenzyme-linked immunosorbent
assay (ELISA) were available in 18 patients, with 5 subjects showing reduced values of
beta-amyloid protein (Aβ1-42) according to the cut-off < 450 pg/mL (InnotesthTAUantigen
and amyloid Aβ1-42, Innogenetics). 13/18 patients, instead, showed reduced amyloid beta
values (Aβ1-42) for the cutoff < 750 pg/mL; 12/18 had high CSF values of tau for the cutoff
< 500 ng/L and in particular 15/18 patients phospho-tau was elevated for the cutoff <
61 pg/mL. Following the MDT evaluation, based on the results of the neuropsychological
tests, the dosage of the levels of specific proteins (amyloid and tau) in the cerebrospinal
fluid (CSF) if available, integration/comparison with morphological imaging (Magnetic
Resonance Imaging), and evaluation of the evolution of the disease until last neurological
evaluation (>24 months), 22/23 amyloid-PET positive patients were definitively classified
as AD patients, while the remainder as non-AD. Similarly, 22/28 FDG PET-positive patients
were classified by the multidisciplinary team as AD.
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Table 2. Patients’ main characteristics.

pt N◦ Sex Age Schooling MMSE CDR MRI FDG PET Amy-PET Final Diagnosis
(MDT)

1 F 64 21 19 1 1 1 1 1

2 M 81 5 27 0 0 0 0 0

3 F 59 8 23 0.5 1 0 0 0

4 M 63 18 21 1 1 1 1 1

5 F 79 5 20 0.5 1 0 0 0

6 F 80 5 18 2 1 1 1 1

7 F 75 5 22 1 1 1 1 1

8 F 72 5 12 1 1 1 1 1

9 F 77 5 19 2 1 0 0 0

10 F 71 13 20 2 1 1 1 1

11 F 75 5 17 2 1 1 0 0

12 F 83 5 20 1 1 0 0 0

13 M 58 18 9 2 1 1 1 1

14 F 61 13 22 2 0 0 1 1

15 M 66 13 21 1 0 1 1 1

16 F 75 8 26 0.5 1 0 0 0

17 F 53 13 13 1 1 1 1 1

18 M 66 8 28 0.5 1 1 1 1

19 M 72 18 24 0.5 1 0 0 0

20 M 79 13 17 1 1 1 1 1

21 M 69 13 28 0.5 1 1 0 0

22 F 73 13 25 1 1 1 1 1

23 M 76 8 28 0.5 1 1 0 0

24 M 74 5 29 0.5 1 0 0 0

25 M 61 18 22 2 0 1 1 1

26 F 70 8 25 1 1 1 0 0

27 F 68 13 15 2 1 1 1 1

28 M 65 8 25 0,5 1 1 1 1

29 M 80 8 18 1 1 0 0 0

30 F 71 5 4 3 0 1 1 1

31 M 78 8 13 1 1 1 0 0

32 F 74 8 10 2 1 1 1 1

33 M 80 0 18 1 1 0 0 0

34 M 78 5 22 0.5 1 0 0 0

35 M 71 0 17 1 1 1 0 0

36 M 58 8 21 1 1 1 1 1

37 F 63 18 24 1 1 0 0 0

38 F 74 5 28 0.5 1 1 1 1

39 M 77 5 30 0.5 1 0 0 0

40 M 65 8 20 1 0 1 1 1
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Table 2. Cont.

pt N◦ Sex Age Schooling MMSE CDR MRI FDG PET Amy-PET Final Diagnosis
(MDT)

41 M 62 17 21,46 0.5 1 1 1 0

42 F 77 5 22 1 1 1 1 1

43 F 66 8 26 0.5 1 0 0 0

Legend: N◦ = number; MMSE = Mini Mental State Examination; CDR = Clinical dementia rating; MRI = Magnetic
Resonance Imaging.

Analysis of Radiomics Features

Based on the SPM-based segmentation process described in the “Image pre-processing
and ROI selection” section, 43 brain areas were selected for radiomics feature extraction
and machine-learning classification. After the reduction and selection process based on
the descriptive-inferential mixed sequential approach proposed in [14], we focused on the
radiomics features capable of obtaining the best performances, expressed as sensitivity (SS),
specificity (SP), precision (PR) and accuracy (AC) in the diagnostic prediction of AD in
relation to the results obtained with amyloid-PET and with clinical diagnosis.

As regards the performances of prediction of PET-amyloid positivity (see Table 3), we
obtained the following features, respectively, for each selected ROI (Table 3 and Figure 2):

− ROI 1

◦ original_glcm_Idmn
◦ original_glcm_Id: with the following values of SS 84.92%, SP 75.13%, PR 73.75%,

AC 79.56% (p < 0.001).

− ROI 2

◦ original_glcm_MaximumProbability: with the following values of SS 88.67%, SP
46.81%, PR 59.47%, AC 65.57% (p < 0.001).

− ROI 3

◦ original_glcm_Id: with the following values of SS 93.83%, SP 61.80%, PR 67.51%,
AC 76.15% (p < 0.001).

− ROI 4

◦ original_glcm_MaximumProbability
◦ original_firstorder_Maximum: with the following values of SS 86.33%, SP 64.93%,

PR 66.88%, AC 74.58% (p < 0.001).

As regards the performance in the prediction of the final clinical-instrumental diag-
nosis of AD defined by MDT evaluating all the available data, we obtained the following
features from the 4 different ROIs (Table 4 and Figure 3):

− ROI 1

◦ original_glcm_Idmn: with the following values of SS 66.39%, SP 57.51%, PR
58.46%, AC 61.51% and (p = 0.004).

− ROI 2

◦ original_glcm_MCC
◦ original_glcm_MaximumProbability: with the following values of SS 75.16%, SP

80.50%, PR 77.68%, AC 78.05% and (p = 0.002).

− ROI 3

◦ original_glcm_Idmn: with the following values of SS 80.88%, SP 76.85%, PR
75.63%, AC 78.76% and (p < 0.001).

− ROI 4

◦ original_glcm_MaximumProbability: with the following values of SS 75.50%, SP
55.25%, PR 59.53%, AC 64.96% (p = 0.0040).
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Table 3. Performances of FDG-PET derived features in the prediction of Amyloid-PET positivity.

Features Selected for Each ROI Sensitivity [%] Specificity [%] Precision [%] Accuracy [%] p-Value

ROI 1

original_glcm_Idmn
original_glcm_Id 84.92 75.13 73.75 79.56 <0.05

ROI 2

original_glcm_MCC 88.67 46.81 59.47 65.57 <0.05

ROI 3

original_glcm_Id 93.83 61.80 67.51 76.15 <0.05

ROI 4

original_glcm_Maximum
Probability 86.33 64.93 66.88 74.58 <0.05

Figure 2. AUROC Curves of FDG-PET derived features in the prediction of Amyloid-PET positivity.

Table 4. Performances of FDG-PET derived features in the prediction of AD.

Features Selected for Each ROI Sensitivity [%] Specificity [%] Precision [%] Accuracy [%] p-Value

ROI 1

original_glcm_Idmn 66.39 57.51 58.46 61.51 0.004

ROI 2

original_glcm_MCC
original_glcm_MaximumProbability 75.16 80.50 77.68 78.05 0.002

ROI 3

original_glcm_Idmn 80.88 76.85 75.63 78.76 <0.05
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Table 4. Cont.

Features Selected for Each ROI Sensitivity [%] Specificity [%] Precision [%] Accuracy [%] p-Value

ROI 4

original_glcm_Maximum
Probability

original_firstorder_Maximum
75.50 55.25 59.53 64.96 0.004

Figure 3. AUROC Curves of FDG-PET derived features in the prediction of AD.

4. Discussion

So far, few studies have investigated the use of artificial intelligence on FDG PET/CT
brain images in the evaluation of neurodegenerative diseases. Early in-vivo diagnosis of
AD is critical for accurate patient management, particularly for the selection of subjects
with MCI who may evolve into AD and for defining prodromal forms of AD from other
non-AD forms. Brain FDG PET/CT is a functional neuroimaging technique able to provide
information on neuronal damage as dysfunction, synaptic disconnection, and neuronal loss.
Amyloid-PET is currently recognized as a determinant in the diagnosis of AD in considera-
tion of its high negative predictive value, albeit with a suboptimal specificity, determined
by the possible cortical deposition of beta-amyloid in some non-AD conditions [3]. In this
context, the first objectives of our study concerned the application of artificial intelligence
on FDG PET/CT brain images in predicting PET-Amyloid positivity, eventually avoiding
the additional execution of an amyloid-PET as a diagnostic method not widely diffuse
compared to FDG-PET/CT, ultimately reducing the social and economic impact on the
health system. Secondly, the opportunity to select those patients who can benefit from
the diagnostic use of amyloid-PET and to evaluate how the integration of the functional
and pathophysiological information of the two investigations can improve the diagnostic
accuracy for AD through the help of artificial intelligence.

In the present study, through a radiomics system based on SPM, Pyradiomics, and
DA to performimage normalization, the selection of the cerebral cortical areas typically
involved in AD, the feature extraction process, and the development of predictive models,
a total of 11 radiomics features were identified for the study objectives (6 FDG-PET features



Diagnostics 2022, 12, 933 10 of 13

in the prediction of amyloid deposition and 5 FDG-PET features for the final diagnosis
of AD). The brain FDG PET/CT metabolism alteration in the medial temporal cortex
resulted in two higher-order features (original_glcm_Idmn and original_glcm_Id), as the
best predictive of PET-amyloid positivity with SS, SP, PR, and AC of 84.92%, 75.13%, 73.75%,
and 79.56%, respectively. The regions from which these features were extracted belonged to
ROI 1, including the hippocampal, para-hippocampal, entorhinal cortex, and the territories
of the middle temporal gyrus. These areas are considered in the literature as the most
involved sites of AD-related functional damage in the initial/prodromal forms [17–20].
Hypometabolism in this area, therefore, appears to be the possible result of a particular
correlation between functional damage in the limbic regions and a particular tropism for
the cortical deposition of the beta-amyloid protein. Regarding the type of features obtained,
the Gray Level Co-occurrence Matrix (GLCM) texture features belong to that group of
higher-order features that have shown a significant clinical impact both in radiology and in
nuclear medicine [1,21,22].

The achievement of predicting the deposition of beta-amyloid using radiomics fea-
tures extracted from FDG PET/CT has not been previously reported in the literature.
Furthermore, the application of artificial intelligence through the development of predictive
radiomics models on functional FDG PET/CT brain imaging aimed at increasing diagnostic
accuracy in the final diagnosis of AD is still highly debated. In our analysis for the predic-
tion of AD, the best values were obtained for SS, SP, PR, and AC (75.16%, 80.50%, 77.68%,
and 78.05%, respectively) for two higher-order features (original_glcm_MCC and origi-
nal_glcm_MaximumProbability). The regions from which these features were extracted
concerned the ROI 2, including the anterior and medial orbital gyri of the inferior frontal
cortex and the medial frontal cortex. The population studied was characterized by a median
age of 64.8 years and a median MMSE value of 19.27, thus configuring a good number
of patients with MCI and early onset. The optimal performance of our radiomics models
obtained for the limbic areas (ROI 1) in the prediction of amyloid burden and for the frontal
cortex (ROI 2) in the predictive analysis for the final diagnosis of AD, could support, as
noted in the scientific literature, the possible metabolic involvement of the frontotemporal
synaptic connections in early-onset Alzheimer Disease (EOAD) forms. These results should
be considered relevant considering the purely prognostic and non-diagnostic objective of
the study.

In the same field of our study, Zhou et al. in 2019 [23], investigated the risk factors
most associated with the conversion from MCI to AD, through a dual-model radiomics
analysis with Cox proportional hazards, based on T1-MRI and [18F]FDG PET/CT scans data
from the AD Neuroimaging Initiative (ADNI) database including 131 MCI patients who
converted to AD and 132 MCI patients without conversion within 3 years [23]. Differently
to Zhou et al., our study presents an added value in evaluating patients enrolled in the
same Institute, despite the absence of the aid of linear regression analysis. However, our
patients’ cohort performed the same clinical questionnaire and the same multidisciplinary
evaluation, allowing a reduction of potential bias in the definition of the reference standard
of positivity that may affect the innovative machine-learning tools and DA adopted in
this study. We implemented the analysis using DA as a predictive model with a k-fold
cross-validation strategy, first to test the prediction of FDG-PET radiomics features for
PET-Amyloid positivity, and then, assessing the follow-up data of all patients, to confirm
the predictive accuracy of FDG PET/CT radiomics features in defining the typical re-
gions/patterns of hypometabolism for the diagnosis of AD. Further studies have evaluated,
albeit differently, the application of radiomics models in increasing diagnostic accuracy for
the diagnosis of AD, particularly in the prodromal stages of the disease, as in the article pub-
lished in 2019 by Yupeng Li et al. [24]. In their multicenter study, FDG PET/CT brain data
and clinical evaluations were collected in a cohort of 466 individuals (including 152 AD, 130
MCI and 184 healthy controls—HC) from the ADNI. A Support Vector Machine (SVM) was
used to test the radiomics features’ ability to classify patients with HC, MCI, and AD. Brain
regions were identified by ROIs distributed in the temporal, occipital, and frontal areas. A
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total of 168 radiomics features of AD were defined (alpha> 0.8). The classification experi-
ment resulted in maximum accuracies of 91.5%, 83.1%, and 85.9% for the classification of
AD versus HC, MCI versus HC and AD versus MCI [24]. The most evident limitation of
the study, as in the previous one, was to use a predefined patient database (ADNI), with
the limits resulting from a poor homogenization between different centers that inevitably
use different tomographs, administration and acquisition times, in addition to the lack of
clinical data from the same center for a complete clinical-instrumental evaluation.

Another study published in October 2021 by Ping Zhou et al., proposed the application
of a new deep-learning radiomics (DLR) model, based on images obtained by FDG-PET
integrated with clinical parameters (DLR + C) to improve diagnostic performance and
predict, according to the authors, the conversion of MCI to AD patients [25]. FDG PET/CT
brain data were collected, also from the ADNI database, for a total of 168 patients with
MCI who converted to AD within 3 years and 187 MCI patients without conversion within
3 years. In comparative experiments, the DLR + C method was compared with four other
methods: the standard absorption value ratio (SUVR) method, the Radiomics-ROI method,
the clinical method, and the clinical SUVR + method. The results obtained showed that
the DLR + C model produced the best performance in terms of recognition capacity of
the MCI to AD conversion with AC, SS, and SP values of 90.62 ± 1.16, 87.50 ± 0.00, and
93.39 ± 2.19%, respectively [25].

Finally, even more recently with an FDG PET study just published in January 2022,
Jiang et al. evaluated MCI-to-AD conversion prediction in a dataset of 884 subjects through
a radiomics- based predictive modelling (RPM) Cox model that demonstrated a better
performance than that of other Cox models [26].

In comparison with our preliminary study, none of the mentioned studies implemented
the analysis by comparing the results of the brain FDG PET/ CT scans in prediction of
amyloid-PET positivity and then integrating these data to create a reference standardfor
predicting the diagnosis of AD.

Brain FDG-PET is an established diagnostic tool for the evaluation of AD by defining
the functional damage and differentiate most of the neurodegenerative disease with a
crucial role in the management of patients. The implementation of AI applicated to brain
FDG-PET demonstrated in this study to potentially predict Amyloid-PET positivity and
AD condition with a possible future role of these methods from a prognostic tool to an
augmented-diagnostic approach for the improvement of the early diagnosis.

Nevertheless, the preliminary results in our study have several limitations. First of all,
the population described is unfortunately slightly inhomogeneous (MCI and prodromal
AD). To obtain the results presented in a single patient a long time is still required due to
the use of different software and statistical analysis, needing the involvement of informatic
engineers which makes the application currently not easily reproducible in clinical practice.
Furthermore, the study was limited to the comparison of FDG PET/CT with amyloid-PET
and the final diagnosis, as an overall judgment of a multidisciplinary report, without a
direct comparison with MRI findings, precise correlation/comparison with single clinical
variables such as scores, functional tests of cognitive performance or laboratory data
deriving from the analysis of CSF proteins.

5. Conclusions

The results obtained in this study, albeit still preliminary, support the potential experi-
mental development of this new automated learning approach based on the extraction and
selection of higher-order radiomics “features” obtained from FDG PET/CT brain images
for predicting the presence of beta-amyloid deposition and the final diagnosis of AD. The
preliminary results of the present study support the potential role of specific radiomics
features from FDG-PET images able to improve the prognostic stratification of patients
who could obtain real diagnostic benefits from amyloid-PET. Furthermore, our data sug-
gest that specific radiomics features may improve the diagnostic AC of PET/CT in the
early diagnosis of AD. We aim to increase our study cohort and the number of clinical-
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instrumental variables to improve the predictive models. Also, further developments in
this area could concern the stratification of patients with AD based on individual sensitivity
to new monoclonal therapies that are currently being validated and that could modify
clinical management.
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