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Chapter 1

Introduction

In nature, economics, and in science in general, a large number of events can be described by

differential equations of various types. There are many categories of differential equations

based on the type of interaction between the subjects under examination. We pass from the

ordinary differential equations, used for example in the evolutionary process of a popula-

tion, to the partial differential equations, used in phenomena that examine the interactions

between different variables, such as interactions between populations or a pollutant in a

river.

A partial differential equation (PDE) is an equation involving an unknown function of

two or more variables and some of its partial derivatives.

For the sake of simplicity let us introduce some notations.

• u = u(x1, . . . , xs) : Ω→ R is a s−variables function where Ω ⊆ Rs.

• Let be α = α1 + · · ·+ αs and k a nonnegative integer, a k− th order derivative of u is

so defined

Dku(x) :=
∂αu(x)

∂xα1
1 . . . ∂xαs

s

.

Definition 1.0.1 Given Ω ⊆ Rs and an unknown function u : Ω→ R, a scalar k− th order

partial differential equation is an expression of the form

H
(
Dk(u(x)), Dk−1(u(x)), . . . , D(u(x)), u(x), x

)
= 0 (1.0.1)

where H is a given function H : Rsk ×Rsk−1 × . . .Rs×R×Ω→ R and Dk(u(x)) is a k− th

derivatives of u.
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Chapter 1. Introduction

Find the solutions of a partial differential equation means determine the set of functions

u that verify the condition (1.0.1). Often, these functions are not uniquely defined but

vary according to different boundary conditions imposed on ∂Ω. In general, there is no

unique analytical methodology to solve any partial differential equation. However, a number

of analytical and numerical techniques have been developed to find one or more solutions

according to the boundary conditions [12, 29, 122, 123]. In this regard, it is appropriate to

distinguish the partial differential equations into 4 typology.

Definition 1.0.2 The partial differential equations could be differentiate into 4 families of

PDE: linear, semi-linear, quasi-linear and fully non-linear.

• A partial differential equation is said Linear if it is linear in the unknown function and

in all derivatives with coefficients dependent on independent variables. So if it has the

form
k∑
`=0

a`(x)D`(u(x)) = f(x),

where D0(u(x)) represents u(x). Notice that ` = 0, . . . , k in our case represents
∑s

i=1 li =

` ∈ {0, . . . , h}.

If f ≡ 0 the linear PDE is said homogeneous.

• A PDE is said semi-linear if it is linear in the maximum order derivatives with depen-

dent coefficients depending on the independent variables. It has the form

∑
`=k

a`(x)D`u+ a0(Dk−1u, . . . , Du, u, x
)

= 0.

• A PDE is said quasi-linear if it is linear in the maximum order derivatives with depen-

dent coefficients depend on the independent variables, the unknown function and the

derivatives of the function unknown. It has the form

∑
`=k

a`(D
k−1u, . . . , Du, u, x

)
D`u+ a0(Dk−1u, . . . , Du, u, x

)
= 0.

• A PDE is said fully non-linear if it depends non-linearly upon the highest order deriva-

tives.

A system of partial differential equations is a collection of several partial differential
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equation for different unknown functions but for the moment we will focus on a single

partial differential equation.

1.1 Scalar conservation laws

For sake of simplicity, let us consider the one-dimensional non-linear scalar conservation law

∂u

∂t
+
∂f(u)

∂x
= 0 (1.1.1)

where u = u(x, t) : R × R+ → R, u(x, 0) = u0(x), and f(u) = f(u(x, t)). Under enough

differentiable hypothesis for u and f(u), equation (1.1.1) can be expressed as

∂u

∂t
+ f ′(u)

∂u

∂x
= 0,

that, in literature, is named wave problem with a wave speed f ′(u). The characteristics x(t)

are given by
dx(t)

dt
= f ′(u),

with initial conditions x(0) = ξ0 ∈ R. Known that, the solution is constant along the

characteristics, i.e. u(x, t) = u0(x− f ′(u)t), and applying the Dini Theorem [31, 32], we find

∂u

∂x
= − u′0

1 + u′0f
′′(u)t

and
∂u

∂t
=

u′0f
′(u)

1 + u′0f
′′(u)t

.

Hence, in cases in which u′0f
′′(x) is negative (u′0f

′′(x) < 0), the derivatives become un-

bounded with t increasing. In particular, if f(u) is a convex function (f ′′(u) > 0), any initial

condition with a negative gradient (u′0 < 0), will result in the formation of a discontinuity

in finite time. The formation of the previous discontinuity is due to the crossing of the

characteristics related to different initial conditions ξ0. Fortunately, once the discontinuity

is formed and propagates, characteristics may again make sense and the discontinuity itself

will propagate along a characteristic.

From an analytic point of view, let us suppose that the discontinuity is located at position

x = 0, where for simplicity x ∈ [−L,L], and denoting ul and ur as left and right state of the

PhD Thesis, Chapter 1 3
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solution, we obtain

d

dt

∫ L

−L
u(x, t)dx =

∫ L

−L

∂

∂t
u(x, t)dx =

∫ L

−L
− ∂

∂x
f(u(x, t))dx = f(ul)− f(ur).

Furthermore, if we assume that the discontinuity propagates at the constant speed s, con-

servation of mass requires

∫ L

−L
u(x, t)dx = (L+ st)ul − (L− st)ur,

from which we recover

d

dt

∫ L

−L
u(x, t)dx = s(ul − ur) = f(ul)− f(ur).

As consequence of this phenomena, the following condition is satysfied

s[u] = [f ], in which [v] = vl − vr,

also known as the Rankine-Hugoniot (R-H) jump condition [64, 101]. From the R-H condi-

tions we obtain the speed of propagation for the discontinuity as

s =
[f ]

[u]
:=

f(ul)− f(ur)

ul − ur
.

Since a discontinuity is formed, the meaning of classical derivative and consequently classical

solution is loss and a new family of solutions, named weak solutions, may be considered.

1.1.1 Weak solutions

Let us consider the scalar non-linear conservation law and in particular the integral form

over the domain [a, b]× [t1, t2]

∫ b

a

u(x, t2)dx−
∫ b

a

u(x, t1)dx =

∫ t2

t1

(f(x1, t)− f(x2, t))dt. (1.1.2)

Definition 1.1.1 A locally integrable function u is a weak solution of (1.1.1) if

∫ b

a

∫ t2

t1

[ut + f(u)x]φ(x, t)dxdt = 0, (1.1.3)
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for every differentiable function with compact support φ ∈ C1
0([a, b]× [t1, t2]).

Integrating by parts we follow that

∫ b

a

∫ t2

t1

[Uφt + f(U)φx]dxdt = −
∫ b

a

u(x, 0)φ(x, 0)dx. (1.1.4)

Weak solutions are an appropriate generalization of the classical solutions for systems of con-

servation and balance laws. It could be proved that classical solutions are also weak solutions

and, if the solution is continuously differentiable, then weak solution implies classical one

[11, 38, 40, 107]. However, the connection between solution (1.1.2) and (1.1.4) is automatic

and we will refer to u(x, t) as a weak solution to the conservation law (1.1.1) provided that

satisfies (1.1.3) for all admissible test functions.

A numerical version of the Rankine-Hugoniot conditions [64, 101] can be found in [25,

58, 59]. These conditions are able to characterize the weak solution in terms of jumps and

discontinuity movements giving information about the behaviour of the conserved variables

close to the discontinuities.

With the introduction of this new family solution, i.e. weak solution, we are able to

transform the classical derivatives into the weak derivatives throughout the test functions

φ(x, t). However, this approach leads the uniqueness of the solution making necessary the

introduction of new hypotheses/conditions in order to obtain uniqueness.

1.1.2 Entropy conditions

To overcome the issue of multiple weak solutions, we need a criteria to determinate, if exists,

whether a solution is admissible. With this in mind let us introduce the Entropy condition

to guarantee the uniqueness of weak solution.

A natural condition of admissibility, called entropy condition [81], is given by

f(u)− f(ur)

u− ur
≤ s ≤ f(u)− f(ul)

u− ul
∀u ∈ (ul, ur), (1.1.5)

reflecting that the characteristics must run into the shock.

Condition (1.1.5) is called Lax’s E-condition [80]. There is also an entropy inequality for

entropy-entropy flux pairs, due also to Lax [80], which is closely linked to vanishing viscosity

solutions. There are other type of entropy conditions as Oleinik’s E-condition [95], Kruzkov’s

condition [73], Wendroff’s condition [126] or Liu’s condition [87].
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Theorem 1.1.1 Let u and v be piecewise smooth weak solutions to (1.1.1) with a convex

flux and assume that all discontinuities are shocks. Then

d

dt
‖u(t)− v(t)‖1 ≤ 0.

The property
d

dt
‖u(t)− v(t)‖1 ≤ 0

usually known as L1−contraction involves a list of immediate consequences as:

• If u is a weak solution to (1.1.1) with a convex flux and it satisfies an entropy condition,

the solution is unique.

• If a discontinuity violates the entropy condition, then there is a solution, v, such that

d

dt
‖u(t)− v(t)‖1 ≥ 0.

Even if, the combination of entropy condition and the Rankine-Hugoniot condition ensure

the uniqueness of the weak solution it may be too restrictive for a general initial condition

u0(x).

With this in mind following [57, 81], let us introduce the vanishing viscosity solution for the

conservation law (1.1.1) as the solution of the modified equation

∂uε
∂t

+
∂f(uε)

∂x
= ε

∂2uε
∂x2

(1.1.6)

with initial condition uε(x, 0) = u0(x).

Theorem 1.1.2 Let be f(u) a convex flux. In the limit of ε→ 0, the vanishing solution of

(1.1.6) is a weak solution of (1.1.1) and satisfies the entropy condition.

The key results in much of above discussion rely on the assumption of a convex flux,

thus limiting their validity to a scalar conservation laws in one-dimension. However, all the

results could be extended to more general entropy condition for multiple-dimensions [113]

and systems of conservation laws redefining the entropy condition appropriately for systems

of conservation and balance laws [6, 11, 30, 38, 47, 57, 60, 61, 76, 80, 82, 93, 113].
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1.2 Numerical Framework

Given a differential equation, in our case an hyperbolic conservation and balance law, a large

number of different methods could be developed to solve numerically the equation following

several different approaches based one the reconstruction strategy as: finite difference, finite

volume etc. In this elaborate we focus on finite difference and finite volume numerical

methods.

1.2.1 Finite Difference

Finite difference method techniques are based on approximations that allow the substitution

of differential equations in finite difference equations. These finite differences are generally

approximate in algebraic form; they relate the value of the dependent variable at a point

to the values of the neighboring points. Thus a finite differences solution involves several

stages:

• Divide the solution domain into a node grid, i.e. discretize the domain.

• At each node of the grid, the differential equation is approximate by replacing partial

derivatives with appropriate approximations, obtained in terms of values at the un-

known function, i.e. approximate the differential equation given in the equivalent finite

difference equation by connecting the unknown function at a point with the values of

its neighboring points.

• The result is an algebraic equation for each node, which contains the unknown in the

node itself and in some adjacent nodes, adding prescribed boundary conditions and/or

initial conditions.

The finite-difference method is defined dimension per dimension; this makes it easy to

increase the “element order” to get higher-order accuracy. If the simulation can fit in a

rectangular or box-shaped geometry using a regular grid, efficient implementations are much

easier than for finite-volume and other types of methods. Regular grids are useful for very-

large-scale simulations on supercomputers often used in meteorological, seismological, and

astrophysical simulations.

The finite-difference method may run into problems handling curved boundaries for the

purpose of defining the boundary conditions. Boundary conditions are needed to truncate
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the computational domain.

For computations that need high accuracy, the extra effort in making boundary-fitted meshes

and the associated complications of such meshes for the implementation may be worth it.

Such methods are arguably the first family of methods that have been proposed to solve

differential equations. The finite different approximation were known to Euler and the first

analysis of finite difference methods for initial value problems was presented by Courant,

Friedrichs and Lewy on 1928 [28] in which the CFL condition was introduced.

Crossing to numerical point of view, let us define the grid operators ∆+ and ∆− as

∆+f = f1 − f0 ∆−f = f0 − f−1,

and the difference operators D+
h , D

0
h and D−h as

D+
h =

∆+

h
D−h =

∆−

h
D0
h =

∆+ + ∆−

2h
,

where h = b−a
N

is the step grid based on the spatial grid xi = a+ ih for i = 0, . . . , N, defined

on the interval [a, b]. Observe that the interval [a, b] is discretize in N+1 points where x0 = a

and xN = b. In a similar way, we have the temporal grid tn = t0 + nk ∈ [t0, tf ], where t0, tf

are, respectively, the initial and final time and k is the step time, usually related to the space

step and CFL condition.

The difference operators can be applied in both space and time derivative to represent the

spatial and temporal derivatives.

The space and time derivatives may be approximated by the difference operators through

the Taylor expansion. Indeed,

D±h u(xi) = u′(xi)±
h

2
u′′(xi) +O(h2) D0

hu(xi) = u′(xi)±
h2

6
u(3)(xi) +O(h4)

Let us consider the scalar conservation law (1.1.1) and for simplicity periodic boundary

conditions. We define the space-time grid as the couple (xi, tn) = (a+ ih, t0 + nk), and the

numerical scheme

un+1
i = G(uni−q, . . . , u

n
i+p)

where uni ≈ u(xi, tn).

As numerical approximation, the idea under the finite difference methods is to generate
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a sequence of grid gradually finer that are an approximation of the exact solution. For this

reason, the main problem is to check consistency, stability and convergence of these sequence

through the analysis of local error.

For sake of simplicity, let us consider linear scalar conservation law and a 3-points nu-

merical scheme

un+1
i = G(uni−1, u

n
i , u

n
i+1).

Analytically,

u(xi, tn+1) = G(un)i + kτni

where τni is the truncation error defined as the difference between the exact solution and the

numerical one. Defining the local error as εn+1
i = u(xi, tn+1) − G(un)i, we have the related

initial condition error ε1
i = G(ε0)i + kτ 0

i , under the hypothesis the G is linear. In general,

εni = Gn(ε0)i + k
n−1∑
j=0

Gn−j−1(τ j)i

where Gn is the composition of n-time G.

Let be ‖ · ‖h,q the q-norm at discrete level with step h, we observe that

‖εn‖h,q ≤ ‖Gn(ε0)‖h,q + k
n−1∑
j=0

‖Gn−j−1(τ j)i‖h,q

≤ ‖Gn‖h,q‖ε0‖h,q + knmax
j
‖Gn−j−1‖h,q‖τ j‖h,q

where we are adopting the standard definition of the subordinate matrix norm.

We will say that the scheme is consistent if

lim
l→∞

‖ε
0‖hl,q

maxj ‖τ j‖hl,q
= 0.

Furthermore, we say that a scheme is of order (s, t) if ‖τ‖h,q = O(hs, kt).

A numerical methods is stable if there exist C > 0 such that

‖Gn‖h,q ≤ C

definitively in time [75, 103, 115].
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1.2.2 Finite Volume

The finite volume method is a discretization technique for partial differential equations,

especially those that arise from physical conservation laws. The finite volume method is a

method for representing and evaluating partial differential equations in the form of algebraic

equations [83].

The finite volume method makes use of the integral form of conservation equations and

also develops in several phases:

• The domain is divided into control volumes called also cells, and conservation equations

are applied to each volume.

• Usually the variable lies in the centre of the cell.

• Interpolations are used to express the values of the variables, or of the gradients, on the

cell surfaces, and it is necessary to approximate surface (flow) and volume integrals.

• As a result, an algebraic equation is obtained (by analogy with finite difference ) for

each cell, and then a system of equations.

In the finite volume method, volume integrals in a partial differential equation that

contain a divergence term are converted to surface integrals, using the Divergence Theorem

[46, 51, 104]. These terms are then evaluated as fluxes at the surfaces of each finite volume.

Because the flux entering a given volume is identical to that leaving the adjacent volume,

these methods are conservative by definition. Another advantage of the finite volume method

is that it is easily formulated to allow for unstructured meshes.

The finite-volume method’s strength is that it only needs to do flux evaluation for the cell

boundaries. This also holds for nonlinear problems, which makes it extra powerful for robust

handling of (nonlinear) conservation laws appearing in transport problems.

The local accuracy of the finite-volume method, such as close to a corner of interest, can be

increased by refining the mesh around that corner. However, the functions that approximate

the solution when using the finite-volume method cannot be easily made of higher order.

This is a disadvantage of the finite-volume methods compared to the finite-difference ones.

Let us consider again the space-time gride (xi, tn) = (hi, kn), where h and k are respec-
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tively the space and time step size. Let us consider also the space-time cell so defined

Ini = [xi− 1
2
, xi+ 1

2
]× [tn, tn+1] where xi± 1

2
= xi ±

1

2
h.

Integrating the scalar conservation laws (1.1.1) on the space-time cell Ini we obtain

∫ x
i+1

2

x
i− 1

2

[
u(x, tn+1)− u(x, tn)

]
dx =

∫ tn+1

tn

[
f(u(xi− 1

2
, t))− f(u(xi+ 1

2
, t))
]
dt.

Let be, ūni , the space cell average at time tn so defined

ūni =
1

h

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx,

and F n
i+ 1

2

the time cell average in position xi+ 1
2
as

F n
i+ 1

2
=

1

k

∫ tn+1

tn

f(u(xi+ 1
2
, t))dt. (1.2.1)

A finite volume method is written in the following form

ūn+1
i = ūni −

k

h
(F n

i+ 1
2
− F n

i− 1
2
).

The problem is then how to compute the flux at cell boundaries.

Differently from the finite difference method, the aim is previously to compute the approx-

imation of u at boundary cell, i.e. in position xi+ 1
2
at time tn, using the stencil points

ūni−q, . . . , ū
n
i+p. Reconstructed u∗i+ 1

2

as u∗
i+ 1

2

= R(ūni−q, . . . , ū
n
i+p) where R is usually a polyno-

mial reconstruction p(x) that satisfies theoretically the conservation

∫ x
j+1

2

x
l− 1

2

p(x)dx = ūni ∀j ∈ {i− q, . . . , i+ p},

the flux at cell boundaries is so computed F n
i+ 1

2

≈ f(u∗
i+ 1

2

)

Remark 1.2.1 Finite volume methods can be compared and contrasted with the finite dif-

ference methods, which approximate derivatives using nodal values and construct a global

approximation by stitching them together. In contrast a finite volume method evaluates exact

expressions for the average value of the solution over some volume, and uses this data to
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construct approximations of the solution within cells.

1.2.3 Numerical properties

As we have said before, the simplest way to approximate derivatives is by means of linear

finite differences. Unfortunately sometimes, finite differences methods do not yield a satis-

factory approximation of the partial derivative appearing in the equations when a singularity

solution is considered. Finite volume methods overcome this difficulty by resorting to weak

formulation that do not require derivatives of the unknowns.

However, there exists a simple requirement that we can impose on the numerical methods

to guarantee that they do not converge to non-solutions. The Lax-Wendroff’s theorem

guarantee the convergence to the theoretical solution for the conservative schemes.

Definition 1.2.1 Let us consider a non-linear scalar equation of balance law written in the

following form

ut + f(u)x = S.

A numerical method is said to be conservative if it can be written in the form

un+1
i = uni −

∆t

∆x
(Fi+ 1

2
− Fi− 1

2
) + ∆tSni , (1.2.2)

where

Fi− 1
2

= R(uni−p, . . . , ui+q−1) and Fi+ 1
2

= R(uni−p+1, . . . , ui+q)

in which p, q ∈ N with p, q ≥ 0. R in called numerical flux function, that for finite difference

methods is included in operator G.

As said before, the finite volume schemes are conservative by construction, however the aim

of the conservative schemes is to reproduce exactly, at discrete level, the conservation of the

physical quantities.

Definition 1.2.2 A numerical flux function of a conservative numerical method is consistent

with the conservation or balance laws if the numerical flux function R reduces to the exact

flux f when applied to constant flow, i.e.

R(u, . . . , u) = f(u).
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The Lax-Wendroff’s theorem proves that, given a conservative method that produces a

sequence of approximations that converges to some function u(x, t) as the grid is refined,

then this function will be a weak solution of the conservation or balance law [61, 76].

Theorem 1.2.1 Consider a sequence of grid indexed by ` = 1, 2, . . . with grid sizes respec-

tively ∆x` and ∆t` satisfying

lim
`→∞

∆x` = 0,

lim
`→∞

∆t` = 0.

Let {u`(x, t)} denote the piecewise constant function obtained by a conservative methods on

the `−th grid. If the total variation of the function u`(·, t) is uniformly bounded in ` and t,

i.e. sup`,t∈[0,T ] TV (u`(·, t)) <∞ and u`(x, t) converge in L1
loc to a function u(x, t) as `→∞,

then u is a weak solution of the conservation or balance law.

1.2.4 High-resolution conservative methods

The term high-resolution is generally applied to methods whose the local truncation error

has order higher than two. This strategy allows to obtain a numerical solution that has a

second or even higher order global errors in the region in which the solution is smooth; while

returns well-resolved non-oscillatory approximations near discontinuities.

Although, there are several high-order resolution techniques for conservative methods.

We will focus on the Approximate Taylor approach based on the Lax-Wendroff methods

which, unlike linear methods, reconstruct solutions in time and space at the same time.

Nevertheless, the method of lines, which refers to numerical methods for PDEs that, first

discretizes the spatial derivatives only and leaves the variables of continuous time. This lead

to a system of ordinary differential equation to which a numerical method can be applied

for ordinary equations of initial value. In chapter 3, we use for spatial reconstruction the

well-known scheme called Weighted Essentially Non-Oscillatory (WENO) methods [67] or

[88] in a conservative form. And for discretization in time, the high order TVD Runge-Kutta

methods is applied.

Finite difference WENO

The Essentially Non-Oscillatory reconstruction (ENO), for a given cell interface reconstruc-

tion, is obtained by choosing one of the different polynomial reconstructions of a fixed degree

PhD Thesis, Chapter 1 13



1.2. Numerical Framework

that can be constructed using stencils that contain one of the cells that define the given in-

terface. The stencil choice is based on the smoothness of the numerical solution defined on

the stencil and the obtained reconstructions are r − th order accurate when considering r

stencils (consecutive indexes) of length r containing the target cell, with the condition that

at least one of the stencils does not contain a singularity.

During the stencil selection procedure, the ENO method considers r possible stencils,

which in total contain 2r − 1 cells.

WENO reconstructions, introduced by Liu, Osher and Chan in [88], are based on the

idea of increasing the order of accuracy of the method in smooth regions by considering

a reconstruction found by a convex combination of the different polynomial reconstruction

candidates of the ENO scheme, with spatially varying weights designed to increase the

accuracy of the individual reconstructions corresponding to different stencils.

For sake of simplicity, since the WENO reconstructions have been adopted just for sys-

tems of conservation laws (Chapter 3), let us consider the scalar conservation law

ut + f(u)x = 0.

Let consider a uniform mesh of constant step h = ∆x and nodes {xi} and the following

notation will be used for the intercells

xi+ 1
2

= xi +
1

2
h, ∀i = 1, . . . , N,

where N represents the number of nodes.

The methods presented here was developed by Shu and Osher in [112]. In their approach,

the discretization of the derivative of the flux follows as:

f(u(x, t))x =
f̂(x+ 1

2
h)− f̂(x− 1

2
h)

h

that is exactly satisfied if f̂(x) is a function such that

1

h

∫ x+ 1
2
h

x− 1
2
h

f̂(σ)dσ = f(u(x, t)).

With this in mind, the semi-discrete method can be written in conservative form as follows:
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dui
dt

+
1

h

(
f̂i+ 1

2
− f̂i− 1

2

)
= 0, (1.2.3)

where

f̂i+ 1
2

= R(f(ui−r+1), . . . , f(ui+r)) (1.2.4)

is an approximation of f̂(xi+ 1
2
). Once, the procedure has been defined, let us focus on the

WENO reconstruction operator R. For this reason, let us consider the family of r possible

stencils containing r nodes

Sri+` = {xi+`−r+1, . . . , xi+`}

with ` = 0, . . . , r−1. From them, following the Essentially Non-Oscillatory (ENO) procedure,

r different polynomial reconstructions of degree at least r−1, pr`(x), can be constructed such

that satisfy

pr`(xi+ 1
2
) = f(u(xi+ 1

2
, t)) +O(hr)

for all time t and under sufficient regularity of f. Liu et al. in [88] provide that there is no

need of selecting just one of the possible stencils and, considering a combination of them,

better results could be obtained in smooth region. For this reason, a (2r − 1) − th order

reconstruction

p2r−1
r−1 (xi+ 1

2
) = f(u(xi+ 1

2
, t)) +O(h2r−1)

can be computed on stencil

S2r−1
i+r−1 = {xi−r+1, . . . , xi+r−1},

instead of the r − th order reconstruction obtain with the ENO procedure.

Considering the r candidate stencils of the ENO procedure, Sri+` = {xi+`−r+1, . . . , xi+`},

with ` = 0, . . . , r − 1, and the (r − 1)− th degree polynomial reconstructions pr`(x), related

to the stencil Sri+`, that satisfy

pr`(xi+ 1
2
) = f(u(xi+ 1

2
, t)) +O(hr),

the WENO reconstruction of f is fixed as the convex combination between the (r − 1)− th
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polynomials as:

f̂i+ 1
2

= R(f(ui−r+1), . . . , f(ui+r−1)) =
r−1∑
`=0

ω`p
r
`(xi+ 1

2
), (1.2.5)

where the weight are defined as:

ω` =
α`∑r−1
j=0 αj

, α` =
Cr
`

(ε+ I`)p

for all ` = 0, . . . , r− 1, where p ∈ N; Cr
` are the optimal weight, i.e. the positive coefficients

such that

p2r−1
r−1 (xi+ 1

2
) =

r−1∑
`=0

Cr
` p

r
`(xi+ 1

2
) and

r−1∑
`=0

Cr
` = 1;

I` = I`(h) is an smoothness indicator of f in stencil S` defined as

I` =
r−1∑
q=1

∫ x
i+1

2

x
i− 1

2

h2q−1
(
p

(q)
` (x)

)2

dx;

and ε is a small positive number to avoid null denominators.

High order TVD Runge-Kutta scheme

To achieve high order accuracy in time discretizations , one can use the Total Variation

Diminishing (TVD) Runge-kutta method, due they ensure that the total variation of the

solutions does not increase (under some time step restrictions) [49, 109].

The methods solve the semi-discretized system of ordinary differential equations ODEs

ut = L(u),

with a suitable initial conditions, resulting from a methods of lines approximation to a

hyperbolic conservation law:

ut = −f(u)x,

where, −f(u)x is approximate by some types of spatial discretizations. For this work, we
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consider the 3ª order 3 stages TVD Runge-Kutta method defined as:

u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

1
(u(1) + ∆tL(u(1)))

un+1 =
1

3
un +

2

3
(u(2) + ∆tL(u(2))),

with effective CFL= 0.33, which is known as the Shu-Osher method [111]. And the 4ª order

method with 10 stages and effective CFL= 0.6,

u(1) = un +
1

6
∆tf(un)

u(i+1) = u(i) +
1

6
∆tf(u(i)), i = 1, 2, 3

u(5) =
3

5
un +

2

5
(u(4) +

1

6
∆tf(u(4)))

u(i+1) = u(i) +
1

6
∆tf(u(i)), i = 5, 6, 7, 8

un+1 =
1

25
un +

9

25
(u(4) +

1

6
∆tf(u(4))) +

3

5
(u(9) +

1

6
∆tf(u(9))).

This method belongs to the family of Strong Stability Preserving Runge-Kutta schemes

(SSPRK) see [48].

1.3 Thesis Framework

This section, entirely discursive, outlines the motivations, the objectives and the structure

in which, the thesis, has been written.

1.3.1 Motivation

Lax-Wendroff type schemes for linear systems of conservation laws by construction are

strictly related to the Taylor expansions in time in which the time derivatives are replaced

by the spatial derivatives through the governing equations [76, 84, 120]. The spatial deriva-

tives are successfully discretized by means of centered high-order differentiation formulas.

This strategy allows to derive numerical methods of order R, where a selected centered

(R + 1)−point stencil must be used. In this case, the schemes are L2−stable under the

usual Courant-Friedrichs-Lewy (CFL) condition [28]. This thesis is mainly focused on the
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extension of Lax-Wendroff type methods to nonlinear systems of conservation and balance

laws emphasizing the well-balanced methods and deals with a work in progress developing

an IMEX strategy for the Exner model of shallow water with sedimentation.

About the first topic, LW-type schemes have already been considered in the literature,

as a possible alternative to multistep or multistage one-step methods such as the original

finite volume ENO schemes (see [56]) and the SSP Runge-Kutta schemes (see [49]). LW-type

approach was followed by E.F. Toro and collaborators in the design of the so-called ADER

(arbitrary high-order schemes utilizing higher order derivatives) methods: see [108, 118, 121].

The computation of time derivatives in these methods is based on the modified generalized

Riemann problem introduced by Toro in [119, 120]. A Lax-Wendroff, second order evolution,

Galerkin method for multidimensional hyperbolic systems was also introduced in [90]. More

recently (2003), in [99] this procedure has been used together with WENO reconstructions

for the spatial discretization. The main benefit, compared to RK time discretizations, is

that only one WENO reconstruction is needed at each spatial cell per time step. The main

difficulty to extend Lax-Wendroff methods to nonlinear problems comes from the transfor-

mation of time derivatives into spatial derivatives through the governing equations. A first

strategy to do this was given by the Cauchy-Kovalevskaya (CK) procedure, in which the

PDE is used to replace time derivatives by spatial derivatives. The main drawback of this

procedure comes from the increasing computational cost when an high order scheme is con-

sidered. In the context of ADER methods, this difficulty was accurately circumvented in

ADER-WENO methods (see [37]) by replacing the CK procedure by local space-time prob-

lems that are solved with a Galerkin method. The so-called PNPM methods introduced

in [35], that generalize ADER-WENO and DG methods, also follow this approach. These

methods can be applied both on structured and unstructured meshes with CFL-1 condition

for stability.

An alternative to both CK and local space-time problems has been recently proposed in

[132] based on an Approximate Taylor (AT) method: the time derivatives are approximated

using high-order centered differentiation formulas combined with Taylor approximations in

time that are computed in a recursive way. Unfortunately, AT schemes when applied to linear

systems do not recover classical Lax-Wendroff methods: indeed, they have (2R + 1)−point

stencils and worse linear stability properties than the original R−order ((R+1)−stencil) Lax-

Wendroff methods. Nevertheless, they can be stabilized by using one WENO reconstruction

per spatial cell and time step, as shown in [99] even for linear problem, and the resulting
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methods typically give good results under a CFL≤ 0.5 condition. In 2019, Carrillo and Parés,

developed a compact version of the AT schemes (CAT) that is a properly generalization

of the Lax-Wendroff methods (see Chapter 3) [15]. As it is well known, Lax-Wendroff-

type reconstructions produce spurious oscillations when a discontinuity appears at discrete

level [55]. Several strategies have been developed to reduce and damp these oscillations:

flux limiters [70, 116]; essentially non-oscillatory reconstructions like ENO [56] or WENO

[111, 112] or CWENO [85, 86]; MOOD approach [26]; order-adaptive approach [14].

About the second topic, the focus is to introduce an IMEX strategy to compute the

sediment evolution [9, 18] in the Exner model of sediment transport in shallow water in

order to improve improve both stability and efficiency. The Exner model is a system of

PDEs that coupled the shallow water equations with a tranport equation for the sediment,

in this work the Grass equation [50]. After some manipulation, the Exner model can be

written as a non-conservative hyperbolic system

∂U

∂t
+ A(U)

∂U

∂x
= 0.

This system is strictly hyperbolic if and only if the characteristic polynomial has three

distinct real roots λ1 < λ2 < λ3. Under the hypothesis of Froude number (Fr) less then 1

it is λ1 < 0 and λ3 > 0. Assuming that the interaction between the water and the sediment

is weak, it is λ2 ≤ min(|λ1|, |λ3|), i.e. the wave speed of the sediment is much smaller than

the water wave speeds. An explicit method implies a strong stability restriction due to

the velocity of the free-surface wave. This restriction involves in a very long computation

time that could be reduced neglecting the behaviour of the free-surface waves behaviour and

looking at the sediment evolution. The objective is to drastically improve the efficiency in

the computation of the evolution of the sediment by treating water waves implicitly, thus

allowing much larger time steps than the one allowed by standard CFL condition on explicit

schemes. Recently, Garres-Díaz et al. (2022) proposed a semi-implicit θ−method approach

for sediment transport models [44] by which, choosing θ > 1
2
in the semi-implicit method,

an increase in both efficiency and stability is obtained [22].

1.3.2 Perspectives of the thesis

The thesis has three principally objectives:
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1. To develop a limiter approach to reduce and damp the oscillations in the Compact

Approximate Taylor schemes for systems of conservation laws.

2. To extend the CAT methods to systems of balance laws emphasizing the non-oscillatory

well-balanced schemes.

3. To develop an IMEX strategy for the Exner model of sediment transport, which im-

proves stability and therefore efficiency, over explicit scheme.

1.3.3 Structure of the thesis

These topic have been considered in three papers. The first one, developed in collaboration

with Hugo Carrillo and Carlos Parés from University of Málaga (Spain), Giovanni Russo

from University of Catania (Italy) and David Zorío from University of Concepcíon (Chile)

entitled An order-adaptive compact approximate taylor method for systems of conservation

laws, has been published on Journal of Computational Physics, pp. 438-31 (2021) [14]. In this

article a new family of smoothness indicators has been developed by which a non-oscillatory

order-adaptive version of the CAT scheme (ACAT) is presented. The second one, developed

in collaboration with Hugo Carrillo and Carlos Parés from University of Málaga (Spain)

and Giovanni Russo from University of Catania (Italy) entitled An order-adaptive compact

approximate taylor method for systems of balance laws and relative well-balanced scheme,

has been submitted on Journal of Computational Physics (2002) [13] and is available at the

following link https://arxiv.org/abs/2202.02068. This article introduces the extension of the

ACAT scheme for systems of balance laws with a particular attention to the high-order well-

balanced schemes. The last one, still under development in collaboration with Manuel J.

Castro-Díaz from University of Málaga (Spain), Stavros Avgerinos and Giovanni Russo from

University of Catania (Italy), introduces a semi-implicit approach for the coupled system

shallow water and sediment equations. The aim is reduce the CFL-restrictions due to the

free-surface waves in order to increase stability and efficiency.

The thesis is so structured: after a narrative introduction and some preliminary aspects

discussed in this chapter, Chapter 2 contains the Approximate Taylor methods that are the

extension of the Lax-Wendroff scheme and the basis from which the CAT schemes have been

developed. In particular, firstly the Lax-Wendroff method, for linear and non-linear case,

is presented. Successively, the historical extensions of Lax-Wendroff schemes are presented,
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such as Mac-Cormack [91] and RitchMeyer [102] method. Then, the Lax-Wendroff-type

procedures developed by Qiu and Shu [99] and Zorìo, Baeza and Mulet [132] are presented

in detail.

Chapter 3 starts with the general formulation of the high-order Compact Approximate

Taylor method for systems of conservation laws. Then, the second-order method is presented,

emphasising and comparing the CAT2 scheme with the Lax-Wendroff-type procedures intro-

duced in Chapther 2. Afterwards, the details of CAT2P scheme are presented. Finally, the

order-adaptive strategy to avoid the spurious oscillations close the discontinuities for CAT2P

has been introduced. Some numerical tests were performed and compared with well-known

methods to check the performance of ACAT schemes. At the end, the 2D extension has been

presented with some numerical experiments. From this chapter the first paper was born.

Chapter 4 starts with the extension of the high-order Compact Approximate Taylor

method for systems of balance laws. Then, the order-adaptive strategy is modified to suit

the CAT methods for this extension. Successively, the well-balanced (WBCAT) schemes and

its order-adaptive version (WBACAT) are presented. Afterwards, several numerical tests,

compared with exact/reference solutions, were performed to check the properties of ACAT

and WBACAT schemes for systems of balance laws.

Chapter 5 starts with the extension on the two-dimensional case for the high-order Com-

pact Approximate Taylor method for systems of balance laws. Then, the order-adaptive

strategy is presented for this extension. Successively, the two-dimensional well-balanced

schemes and its order-adaptive version are presented. Finally, some numerical tests, com-

pared with exact/reference solutions, were performed to check the properties of 2D ACAT

and WBACAT schemes for two-dimensional systems of balance laws. From chapters 4-5 the

second submitted paper was born.

Chapter 6 starts with a one-dimensional semi-implicit approach for the coupled system

between the shallow water equations and the sediment equation. Next, an approximate

equation of quasi-stationary states is adopted to evolve the sedimentation in time (see Section

6.3). Some numerical tests to check the behaviour of the schemes are shown. Finally the

two-dimensional version with some numerical experiments are considered. The paper on this

topic is almost ready for submission.

Chapter 7 shows the thesis conclusions and some future perspectives.
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Chapter 2

Approximate Taylor Method

The content of this chapter is designed specifically to introduce the numerical schemes for

hyperbolic conservation laws based on the Taylor expansion in time. In particular, our objec-

tive is to present the second order Lax Wendroff method applied to linear scalar conservation

law and then move to the high order schemes for non-linear systems of conservation laws.

Numerical methods replace the continuous problem represented by the PDEs by a finite

set of discrete values. These are obtained, in our case, by first discretising the domain of

the PDEs on a mesh. Several discretization techniques are possible such as, for example,

finite difference, finite volume, finite element and disconinuous Galerkin discretization. In

our thesis we adopt the finite difference discretization in space, for which the discrete values

represent a pointwise approximation of the unkown function at grid points. Let consider the

initial boundary value problem for the linear advection equation in the doman [a, b]× [0, T ]

on the Oxt-Cartesian frame.

(IBV P ) =

PDE : ut + f(u)x = 0;

IC : u(x, 0) = u0(x);

(2.0.1)

Solving problem (2.0.1) means evolving the solution u(x, t) in time starting from the initial

condition u0(x) at time t = 0 and subject to boundary conditions [47].

2.1 Lax Wendroff Method

A scheme of historic as well as practical importance is that of Lax Wendroff introduced by

Peter Lax and Burton Wendroff in 1960 [59, 76, 77, 79, 120, 125]. It has been the most widely
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adopted scheme for aeronautical applications, up to the end of the 1980s under various form.

The original derivation of Lax and Wendroff was based on a Taylor expansion in time up

to second order, so as to achieve second order accuracy in time. Thus,

u(xi, t+ ∆t) = u(xi, t) + ∆tut(xi, t) +
∆t2

2
utt(xi, t) +O(∆t3) (2.1.1)

The scheme is then obtained by neglecting the higher order term in ∆t, using the governing

equation to replace time derivatives by space derivatives, and then discretising the space

derivatives by finite difference approximations.

2.1.1 Linear case

The idea under the Lax-Wendroff scheme is to keep the second time derivative in the dis-

cretization and replace all time derivatives by equivalent spatial derivatives through the

governing equation (2.0.1). Specifically, in the linear case, the governing equation becomes

ut + aux = 0 (2.1.2)

and the strategy is straightforward. In fact, for the first time derivative ut = −aux; while,

the second time derivative is obtained by taking the time derivative of the governing equation

(2.1.2). Indeed,

utt = −a(ux)t = −a(ut)x = a2uxx. (2.1.3)

Substituting eq (2.1.3) in eq (2.1.1) we obtain

u(xi, t+ ∆t) = u(xi, t)− a∆tux(xi, t) +
a2∆t2

2
uxx(xi, t) +O(∆t3) (2.1.4)

If we discretize all the space derivatives with second order central formulas in the mesh point

xi and neglect higher order terms in ∆t and ∆x, we get

un+1
i = uni −

a∆t

2∆x

(
uni+1 − uni−1

)
+
a2∆t2

2∆x2

(
uni+1 − 2uni + uni−1

)
, (2.1.5)

where {xi} are the nodes of a uniform mesh of step ∆x; uni is an approximation of the point

value of the solution at position xi at the time n∆t, in which ∆t is the time step.

A useful alternative formulation of the Lax Wendroff, written in conservative form, is the
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following

un+1
i = uni +

∆t

∆x

(
F LW
i− 1

2
− F LW

i+ 1
2

)
(2.1.6)

where

F LW
i+ 1

2
=
a

2

(
uni+1 + uni

)
− a2∆t

2∆x

(
uni+1 − uni

)
,

which emphasizes the conservative structure of the method.

2.1.2 Non-linear case

The Lax-Wendroff scheme for non-linear case gives rise to two families of schemes. The first

one contains the natural extension of the Lax-Wendroff one step scheme with the computa-

tion of the Jacobian matrix; while the second one contains the Jacobian free schemes.

Jacobian scheme

The derivation of the Lax-Wendroff scheme is not trivial for the non-linear case. Indeed,

although the idea is even the same, the governing equation is now

ut + f(u)x = 0. (2.1.7)

This involves that the first time derivative of u is the first space derivative of f(u), ut = −f(u)x;

while the second time derivative is obtained by taking the time derivative of the governing

equation (2.1.7). In practice,

utt = −(f(u)x)t = A(u)ux, (2.1.8)

where A(u) = ∇uf.

Substituting eq (2.1.8) in eq (2.1.1) we get

u(xi, t+ ∆t) = u(xi, t)−∆tf(u(xi, t))x +
∆t2

2
A(u)ux(xi, t) +O(∆t3) (2.1.9)

If we discretize all the space derivatives with second order central formulas in the mesh point
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xi at time tn we obtain

un+1
i = uni−

∆t

2∆x

(
f(uni+1)−f(uni−1)

)
+

∆t2

2∆x2

(
Ai+ 1

2

(
f(uni+1)−f(uni )

)
−Ai− 1

2

(
f(uni )−f(uni−1)

))
,

(2.1.10)

where Ai± 1
2
is the Jacobian matrix evaluated at ui+ 1

2
= 1

2
(uni + uni±1), or the average of A

between A(ui) and A(ui±1).

The alternative conservative formulation of the Lax Wendroff scheme is:

un+1
i = uni +

∆t

∆x

(
F LW
i− 1

2
− F LW

i+ 1
2

)
(2.1.11)

where

F LW
i+ 1

2
=

1

2

[
f(uni+1) + f(uni )− ∆t

∆x
Ai+ 1

2

(
f(uni+1)− f(uni )

)]
.

Jacobian free schemes

In order to avoid the Jacobian matrix evaluation, first Richtmyer [102] (1967) and successively

MacCormack [91] (1969) introduced some variant of the Lax-Wendroff scheme using a two

steps method.

The first step, in the Richtmyer two-step Lax-Wendroff method, computes values for

f(u(x, t)) at half time step tn+ 1
2
and half grid point xi+ 1

2
. In the second step, the values at

tn+1 depend on values computed at time tn+ 1
2
and tn. In practice, the first step or Lax step

are:

u
n+ 1

2

i+ 1
2

=
1

2

[
uni+1 + uni −

∆t

∆x

(
f(uni+1)− f(uni )

)]
; (2.1.12)

u
n+ 1

2

i− 1
2

=
1

2

[
uni + uni−1 −

∆t

∆x

(
f(uni )− f(uni−1)

)]
; (2.1.13)

while, the second step is:

un+1
i = uni +

∆t

∆x

(
f
(
u
n+ 1

2

i− 1
2

)
− f

(
u
n+ 1

2

i+ 1
2

))
. (2.1.14)

Following the same idea of the two step, the MacCormack’s method uses first forward

differencing and then backward differencing in this way:

u∗i = uni −
∆t

∆x

(
f(uni+1)− f(uni )

)
; (2.1.15)
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un+1
i =

1

2

[
uni + u∗i −

∆t

∆x

(
f(u∗i )− f(u∗i−1)

)]
; (2.1.16)

An alternative scheme is:

u∗i = uni −
∆t

∆x

(
f(uni )− f(uni−1)

)
; (2.1.17)

un+1
i =

1

2

[
uni + u∗i −

∆t

∆x

(
f(u∗i+1)− f(u∗i )

)]
. (2.1.18)

2.2 The High-Order Lax-Wendroff Method for Linear

Problems

Let us consider the linear scalar equation (2.1.2)

ut + aux = 0.

The high order Lax-Wendroff scheme is so set:

un+1
i = uni +

m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,ju
n
i+j, (2.2.1)

where xi are the nodes of a uniform mesh of step ∆x; uni is an approximation of the point

value of the solution at xi at the time n∆t, in which ∆t represents the time step; p ≥ 1 is a

natural number; c = a∆t
∆x

; and δkp,j are the coefficients of the centered formula for the numerical

approximation of the k−th derivative based on a (2p+ 1)−point stencil. In particular, these

coefficients uniquely define the following formula:

f (k)(xi) ' Dk
p(fi,∆x) =

1

∆xk

p∑
j=−p

δkp,jf(xi+j), (2.2.2)

such that

p
(k)
f (xi) =

1

∆xk

p∑
j=−p

δkp,jf(xi+j), ∀f,
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where pf is the Lagrange interpolation polynomial characterized by

p
(k)
f (xi+j) = f (k)(xi+j) j = −p, . . . , p.

In this case, f (k) represents the k−th derivative of a single-variable f and imposing f (0) = f.

The numerical method (2.2.1) is obtained replacing the time derivatives by space derivative

through the identities in numerical form

∂kt u = (−1)kak∂kxu, k = 1, 2, . . .

Remark 2.2.1 The coefficients of formulas (2.2.2) do not depend on position i but just on

∆x and order p. Of course, all coefficients need a uniform discretization.

More properties and remarks concerning formulas and coefficients are treated on Appendix

A-C.

2.3 Lax-Wendroff Approximate Taylor Scheme

The main difficulty to extend the Lax-Wendroff methods with high resolution to non-linear

problems comes from the transformation of the time derivatives into the spatial derivatives.

Many authors introduced different strategy to obtain high resolution in space and time. A

successful technique for the spatial semi discretization was introduced with the ENO, WENO

and CWENO approach [56, 67, 85, 86, 111, 112] which achieve arbitrarily high order spatial

accuracy with excellent results in term of accuracy and performance.

A commonly used technique to obtain high order time discretization is the implementa-

tion of the multistage one-step Strongly Stability Preserving Runge-Kutta schemes [48]. A

large class of numerical methods are introduced combining the ENO, WENO and CWENO

approach for the spatial discretization with the SSP Runge-Kutta approach for the time

discretization. Unfortunately, those combined methods are subjected to several restriction

due to the stability properties not considering the difficulties in getting high order for the

SSP Runge-Kutta schemes.

In order to simplify the formulation of high order accuracy in time, Qiu and Shu [99]

developed a new time discretization following a Lax-Wendroff-type procedure and based
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on the Cauchy-Kovaleskaya identity, where the numerical solution at a further time step is

computed by a Taylor expansion in time with the time derivatives transformed into spatial

derivatives trough the governing equation. The first important advantage of such scheme

compared to the Runge-Kutta methods is that only one ENO or WENO reconstruction

procedure flux splitting is necessary to be performed at each spatial position for each time

step, regardless of the order of the method, yielding an overall better performance.

An alternative to avoid the CK procedure and the multistep or multistage one-step

method, called Lax-Wendroff Approximate Taylor (LAT), has been proposed by Zorío, Mulet

and Baeza in [132] based on an Approximate Taylor (AT) method.

2.3.1 LAT method

For the sake of simplicity, let us consider the one-dimensional system of conservation law

Ut + f(U)x = 0, (2.3.1)

with initial condition U(x, 0) = U0(x); where x ∈ Rm and U(x, t) : Rm × [0,+∞)→ Rd is a

d−dimensional vector of conserved quantities.

Lax-Wendroff-type procedure

The generalized high order Lax-Wendroff method of order R for linear system of conservation

law adopts the Taylor expansion in time to compute the numerical solution. In practice,

Un+1
i = Un

i +
R∑
k=1

(∆t)k

k!
U

(k)
i +O

(
∆tR+1

)
, (2.3.2)

where {xi} are the nodes of a uniform mesh of step ∆x; Un
i ≈ U(xi, tn) is a pointwise

approximation of the solution at time tn = n∆t at position xi; U
(k)
i is an approximation of

∂kt U(xn, tn).

Notation 2.3.1 For this purpose, for every k > 0 let be:

U
(k)
i = ∂kt U(x, t)

∣∣∣t=tn
x=xi

+O
(

∆xR+1−k
)

f
(k)
i = ∂kt f(U(x, t))

∣∣∣t=tn
x=xi

+O
(

∆xR−k
)
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U solves the system of conservation law (2.3.1) then the time derivative can be written

in term of spatial derivative. In particular, if the solutions U are assumed to be smooth

enough

∂kt U = −∂x∂k−1
t f(U). (2.3.3)

Now, following the Faà di Bruno’s formula [39] there exist some functions Fk−1 depending

on previous time derivatives of U, Fk−1 = Fk−1(Un
i , U

(1)
i , . . . , U

(l)
i ) with l < k, such that

f
(k−1)
i = Fk−1.

Theorem 2.3.1 (Faà di Bruno’s formula) Let f : Rm → Rp and u : R → Rm q times

continuously differentiable functions. Then

dqf(u(t))

dtq
=
∑
s∈Pq

(
q

s

)
f (|s|)(u(t))Dsu(t), (2.3.4)

where Pq = {s ∈ Nq such that
∑j

j=1 qsj = q}, |s| =
∑q

j=1 sj, and D
su(t) is an m×|s| matrix

whose (
∑

l<j sl + i)− th column is given by

(Dsu(t))∑
l<j sl+i

=
1

j!
∂jtu(x), i = 1, . . . , sj, j = 1, . . . , q, (2.3.5)

and the action of the k-th derivative tensor of f on a m× k matrix A is given by

f (k)(u)A =
m∑

i1,...,ik

∂kf

∂ui1 , . . . , ∂uik
(u)Ai1,1 . . . Aik,k ∈ Rp. (2.3.6)

Thus, keeping in mind the Faà di Bruno‘s formula (2.3.4) and the Cauchy-Kovaleskaya

identity (2.3.3) the Lax-Wendroff-type procedure is so set

1. Let {Un
i }i be the pointwise data that approximate U(x, tn);

2. Let us compute the first time derivative of the solution U through the Cauchy-Kovalevskaya

identity Ut = −f(U)x. More specifically, looking for a scheme of order 2p we have

U
(1)
i = −[f(U)]x

∣∣∣t=tn
x=xi

= −
f̂n
i+ 1

2

− f̂n
i− 1

2

∆x
+O(∆x2p−1), (2.3.7)

where f̂n
i+ 1

2

= f̂(Un
i−p+1, . . . , U

n
i+p) is computed with the upwind WENO numerical

fluxes of order 2p− 1 in which p = dR+1
2
e [67];
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3. Let us compute the second time derivative of the solution U using the Cauchy-Kovaleskaya

identity and the Faà di Bruno’s formula. In practice,

U
(2)
i = −[f(U)t]x

∣∣∣t=tn
x=xi

= −
f

(1)
i+1 − f

(1)
i−1

2∆x
+O(∆x2p−2), (2.3.8)

where f (1)

i+ 1
2

= F1(Ui, U
(1)
i ) = f ′(Un

i )U
(1)
i ;

... and so on until the selected order R.

At the end, once all the needed computation have been obtained, we can advance in time

using the Taylor expansion in time and compute Un+1
i as in Eq (2.3.2).

Remark 2.3.1 A noteworthy observation is that the WENO method is needed only in Eq

(2.3.7) to reconstruct the flux function on the staggered grid points.

The Approximate Lax-Wendroff-type Procedure

Unfortunately, computationally speaking the Lax-Wendroff-type procedure is very expensive

when the order R increases and it requires a large symbolic computation for each Faà di

Bruno’s formula.

Zorío, Baeza and Mulet proposed in [132] an alternative Lax-Wendroff-type procedure

less expensive in computational sense and requiring only the knowledge of the flux function.

Indeed, the rationale of their proposal lies that the exact computation of ∂k−1
t f(U) in the

Lax-Wendroff-type procedure from Faà di Bruno’s formula requires the knowledge of all the

partial derivatives
∂lf

∂Ui1 . . . Uil
(U) for all l < k, but in general it is sufficient to know just

the approximations of ∂k−1
t f(U). In fact, knowing U (k)

i , trough the Taylor expansion and a

family of central differences formula, we can compute f (k)
i .

Notation 2.3.2 In order to simplify the readability, let us introduce some notation:

T k,ni (u) :=
k∑
j=0

u
(j)
i

j!
(t− tn)j;

∆p,q
ξ,i (u) :=

1

∆ξp

s∑
j=−s

βp,qj uj, where s =

⌊
p− 1

2

⌋
+ q.

ξ is the direction in which we are working, for instance in the one-dimensional case ∆ξ ∈ {∆x,∆t}.

In other words, T k,ni is the local Taylor expansion in time centered at t = tn; while ∆p,q
ξ,i is
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the local centered finite differences operator that approximates the p− th order derivatives to

order 2q on grid with spacing ∆ξ.

The Approximate Lax-Wendroff-type procedure proposed by Zorío, Baeza and Mulet

[132] for a scheme of order R is so defined:

1. Let {Un
i }i be the pointwise data that approximate U(xi, tn);

2. Let us compute the first time derivative of the solution U trough the Cauchy-Kovalevskaya

identity Ut = −f(U)x. More specifically, looking for a scheme of order 2p we have

U
(1)
i = −[f(U)]x

∣∣∣t=tn
x=xi

= −
f̂n
i+ 1

2

− f̂n
i− 1

2

∆x
+O(∆x2p−1), (2.3.9)

where f̂n
i+ 1

2

= f̂(Un
i−p+1, . . . , U

n
i+p) is computed with the upwind WENO numerical

fluxes of order 2p− 1 in which p = dR+1
2
e [33, 67, 112];

3 + k − 1. For all k = 1, . . . , R− 1 let us define the k − th order approximate Taylor polynomial

T k,ni as

T k,ni [U ](t) = Un
i + U

(1)
i (t− tn) + . . .+

1

k!
U

(k)
i (t− tn)k. (2.3.10)

Hence, the k − th order approximate time derivative of the flux is given by

f
(k)
i = ∆

k,dR−k
2
e

t,i f(T k,ni [U ](t)), (2.3.11)

4 + k − 1. One we know the local k − th order approximate time derivative of the flux, let us

compute the (k + 1) − th order time derivative of the solution U trough the Cauchy-

Kovalevskaya identity ∂k+1
t U = −f (k)(U)x. In practise, looking for a scheme of order

2p we have

U
(k+1)
i = −∆

1,dR−k
2 e

x,i (f
(k)
i+j) +O(∆x2p−1), (2.3.12)

where j = −p, . . . , p and p =
⌈
R−k

2

⌉
ever for all k = 1, . . . , R− 1.

Thus , the numerical scheme of order R is

Un+1
i = Un

i +
R∑
k=1

(∆t)k

k!
U

(k)
i . (2.3.13)

In order to simplify the aforementioned recursive procedure, we show in detail the numer-

ical scheme of order 5. For this reason, let us consider a discretization of the space direction
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using a uniform mesh grid of step ∆x and the pointwise data that approximate U(xi, tn),

{Un
i }; the first time derivative of the solution U of order 6 is given by:

U
(1)
i = −[f(U)]x

∣∣∣t=tn
x=xi

= −
f̂n
i+ 1

2

− f̂n
i− 1

2

∆x
+O(∆x5),

where f̂n
i+ 1

2

= f̂(Un
i−2, . . . , U

n
i+3) is being with the upwind WENO5 numerical fluxes [33, 67,

112].

Let us define the local first order Taylor approximation of U as

T 1,n
i [U ](t) = Un

i + U
(1)
i (t− tn),

then, the local first order approximate time derivative of the flux is

f
(1)
i =∆1,2

t,i f(T 1,n
i [U ](t)) =

=
f(T 1,n

i [U ](tn+2))− 8f(T 1,n
i [U ](tn+1)) + 8f(T 1,n

i [U ](tn−1))− f(T 1,n
i [U ](tn−2))

12∆t
.

The local second time derivative of the solution U of order 4 is so defined:

U
(2)
i = −∆1,2

x,i(f
(1)
i+j) +O(∆x3) = −

f
(1)
i−2 − 8f

(1)
i−1 + 8f

(1)
i+1 − f

(1)
i+2

12∆x
.

The local second order Taylor approximation of U is:

T 2,n
i [U ](t) = Un

i + U
(1)
i (t− tn) +

1

2
U

(2)
i (t− tn)2,

then, the local second order approximate time derivative of the flux is given by:

f
(2)
i = ∆2,2

t,i f(T 2,n
i [U ](t)) =

=
−f(T 2,n

i [U ](tn+2)) + 16f(T 2,n
i [U ](tn+1))− 3f(T 2,n

i [U ](tn)) + 16f(T 2,n
i [U ](tn−1))− f(T 2,n

i [U ](tn−2))

12∆t2
.

The local third time derivative of the solution U of order 4 is so defined:

U
(3)
i = −∆1,2

x,i(f
(2)
i+j) +O(∆x3) = −

f
(2)
i−2 − 8f

(2)
i−1 + 8f

(2)
i+1 − f

(2)
i+2

12∆x
.
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The third order Taylor approximation of U is:

T 3,n
i [U ](t) = Un

i + U
(1)
i (t− tn) +

1

2
U

(2)
i (t− tn)2 +

1

6
U

(3)
i (t− tn)3,

consequently, the local third order approximate time derivative of the flux is given by:

f
(3)
i =∆3,1

t,i f(T 3,n
i [U ](t)) =

=
f(T 3,n

i [U ](tn+2))− 8f(T 3,n
i [U ](tn+1)) + 8f(T 3,n

i [U ](tn−1))− f(T 3,n
i [U ](tn−2))

2∆t3
.

The fourth time derivative of the solution U of order 2 is so set:

U
(4)
i = −∆1,1

x,i(f
(3)
i+j) +O(∆x1) = −

f
(3)
i+1 − f

(3)
i−1

2∆x
.

The local fourth order Taylor approximation of U is so get:

T 4,n
i [U ](t) = Un

i + U
(1)
i (t− tn) +

1

2
U

(2)
i (t− tn)2 +

1

6
U

(3)
i (t− tn)3 +

1

24
U

(4)
i (t− tn)4,

thus, the fourth order approximate time derivative of the flux is defined as:

f
(4)
i = ∆4,1

t,i f(T 4,n
i [U ](t)) =

=
f(T 4,n

i [U ](tn+2))− 4f(T 4,n
i [U ](tn+1)) + 6f(T 4,n

i [U ](tn))− 4f(T 4,n
i [U ](tn−1)) + f(T 4,n

i [U ](tn−2))

∆t4
.

The last local time derivative of U is given by:

U
(5)
i = −∆1,1

x,i(f
(4)
i+j) +O(∆x1) = −

f
(4)
i+1 − f

(4)
i−1

2∆x
.

Finally, the LAT scheme of order 5 written in non conservative form is as follow:

Un+1
i = Un

i + ∆tU
(1)
i +

∆t2

2
U

(2)
i +

∆t3

6
U

(3)
i +

∆t4

24
U

(4)
i +

∆t5

120
U

(5)
i .

Zorío et al [132] proved that the LAT scheme defined by (2.3.13) is R− th order accurate.

Furthermore, in [132] is also proven that the scheme (2.3.13) could be written in conservative

form.

Remark 2.3.2 The LAT method (2.3.13) is not a properly generalization of the high order
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Lax-Wendroff scheme (2.3.2) in the sense that it is not reduced to linear Lax-Wendroff method

when f(U) = aU. In fact, let us consider R = 2 and a linear case f(U) = aU ; the first time

derivative of U is:

U
(1)
i = −

Un
i+1 − Un

i−1

2∆x
;

while

U
(2)
i = −

Un
i+2 − 2Un

i + Un
i−2

4∆x2
.

Then, the LAT scheme (2.3.13) of order 2 applied to the linear case return:

Un+1
i = Un

i −
a∆t

2∆x

(
Un
i+1 − Un

i−1

)
− a2∆t2

8∆x2

(
Un
i+2 − 2Un

i + Un
i−2

)
.

This method is different from the Lax-Wendroff scheme (2.1.5) and it adopt (4R+ 1)−points

losing the stability property of the standard Lax-Wendroff method. (see [84]), therefore it

uses a wider stencil of Lax-Wendroff type schemes of the same order.

As already mentioned, it is desirable to construct Taylor based methods with optimal stencil,

which reduce to the Lax-Wendroff schemes when applied to linear systems.
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Chapter 3

Adaptive Compact Approximate

Taylor Method for systems of

conservation law

As we have seen, the extension of the Lax-Wendroff methods to non-linear systems of con-

servation law is not immediately. Many authors have developed numerical methods that

use Lax-Wendroff-type approach for the time discretization as an alternative to multistep

or multistage one-step schemes like the SSP Runge-Kutta methods (see [48]): this is the

case of the original finite volume ENO schemes (see [56]); or the approach followed by Toro

and collaborators in the design of the so-called ADER (arbitrary high order schemes using

higher order derivatives) methods (see [108, 118, 121]); or the approach proposed by Qiu

and Shu in [99]. A numerical alternative to those methods has been proposed in [132] based

on an Approximate Taylor (AT) method. In this case, the time derivative are approximated

using the high-order centered differentiation formulas combined with Taylor approximations

in time that are computed in a recursive way. Nevertheless, AT schemes are not exactly a

generalization of Lax-Wendroff methods, indeed they have (4p+1)−point stencils and worse

linear stability properties than the original Lax-Wendroff schemes. Despite that, they can

be stabilized by using one WENO reconstruction for spatial cell and time step, as in [99] and

the resulting methods give good results usually under CFL= 0.5 condition. The focus of this

chapter is present an adaptive family of numerical methods, named ACAT schemes, for non-

linear systems of conservation law based on an approximate Taylor procedure that constitute

a proper generalization of Lax-Wendroff methods, i.e. that reduce to the standard high-order
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Lax-Wendroff methods when the flux is linear. Thus building a family of high-order numer-

ical methods L2−stable under CFL−1 condition. As it expected for Lax-Wendroff schemes,

such a family of methods would lead to spurious oscillations near discontinuity [55] and a

numerical technique would be required to avoid them as: flux limiters [70, 116]; essentially

non-oscillatory reconstructions like ENO [56] or WENO [111, 112] or CWENO [85, 86]; adap-

tive approach [14]; MOOD approach [26]; other shock capturing techniques. In particular,

we will focus on an order adaptive version that are able to avoid the spurious oscillations

according with a family of numerical high order smoothness indicators.

3.1 Compact Approximate Taylor Method

Carrillo and Parés in [15] designed a compact variant of the LAT scheme (2.3.13) that

properly generalize the Lax-Wendroff methods for linear systems (2.3.2). These methods

are based on the conservative expression of the LAT scheme with the difference that the

numerical flux F p

i+ 1
2

is computing using only the values

Un
i−p+1, . . . , U

n
i+p,

where 2p is the order of accuracy. In this way, the numerical solution Un
i is updated using

only the values at the centered (2p + 1)−point stencil. For this reason, let us consider the

one-dimensional system of conservation law

Ut + f(U)x = 0,

with initial condition U(x, 0) = U0(x), where U : R × [0,+∞) → Rd is a d−dimensional

vector of conserved quantities, and f : Rd → Rd is the flux function.

As we have seen on previous section, the generalized Lax-Wendroff method is used to update

the numerical solution:

Un+1
i = Un

i +
2P∑
k=1

(∆t)k

k!
U

(k)
i ,

where {xi} are the nodes of a uniform mesh of step ∆x; Un
i is an approximation of the value

of the exact solution U(x, t) at time tn = n∆t at position xi [58]; and U
(k)
i is an approxima-

tion of ∂kt U(xi, tn), where the k − thderivative in time of U are computed with a compact

numerical version of the Cauchy-Kovalesky procedure introduced by Carrillo and Parés in
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[15].

The final expression of the 2P−order Compact Approximate Taylor (CAT) method in con-

servative form is:

Un+1
i = Un

i +
∆t

∆x

(
F P
i− 1

2
− F P

i+ 1
2

)
, (3.1.1)

where the flux functions F P
i± 1

2

are computed, respectively, on stencil SP
i± 1

2

; in which

SP
i+ 1

2
= {Un

i−P+1, . . . , U
n
i+P};

Fi+ 1
2

=
2P∑
k=1

∆tk−1

k!
f

(k−1)

i+ 1
2

=
2P∑
k=1

∆tk−1

k!
A

0, 1
2

P

(
f

(k−1)
i,∗ ,∆x

)
(3.1.2)

and

f
(k−1)

i+ 1
2

= A
0, 1

2
P

(
f

(k−1)
i,∗ ,∆x

)
=

P∑
j=−P+1

γ
0, 1

2
P,j f

(k−1)
i+j

is an interpolatory formulas of order 2P − 1 based on 2P−point stencil.

In order to simplify the readability of the scheme, let focus on the second order (P = 1)

CAT2 method.

3.1.1 CAT2

In this case,

• The relative stencils are:

S1
i+ 1

2
= {Un

i , U
n
i+1} and S1

i− 1
2

= {Un
i−1, U

n
i };

• The flux reconstructions are:

F 1
i+ 1

2
= f

(0)

i+ 1
2

+
∆t

2
f

(1)

i+ 1
2

, (3.1.3)

F 1
i− 1

2
= f

(0)

i− 1
2

+
∆t

2
f

(1)

i− 1
2

; (3.1.4)

where

1. f (0)

i+ 1
2

= 1
2

(
fni + fni+1

)
and f (0)

i− 1
2

= 1
2

(
fni + fni−1

)
are the interpolations of the stage

values at time tn;
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2. f (1)

i+ 1
2

= 1
2

(
f

(1)
i +f

(1)
i+1

)
and f (1)

i− 1
2

= 1
2

(
f

(1)
i +f

(1)
i−1

)
are the interpolations of the first

time derivative of the flux at time tn;

a1. f (1)
i−1+j = 1

∆t

(
f
(
Un
i−1+j + ∆tU

(1)
i−1,j

)
− fni−1+j

)
for j = 0, 1 are the first time

derivatives of flux computed in point stencil S1
i− 1

2

;

a2. f (1)
i+j = 1

∆t

(
f
(
Un
i+j + ∆tU

(1)
i,j

)
− fni+j

)
for j = 0, 1 are the first time derivatives

of flux computed in point stencil S1
i+ 1

2

;

a3. U (1)
i−1,j = − 1

∆x

(
fni − fni−1

)
for j = 0, 1 are the first time derivatives of the

solution U at time tn for each position of stencil S1
i− 1

2

necessary to compute

the Taylor expansion truncated at first term;

a4. U (1)
i,j = − 1

∆x

(
fni+1 − fni

)
for j = 0, 1 are the first time derivatives of the

solution U at time tn for each position of stencil S1
i+ 1

2

necessary to compute

the Taylor expansion truncated at first term.

Finally, we find that the flux reconstructions are so defined:

F 1
i+ 1

2
=

1

4

(
fni + fni+1 + f

(
Un
i + ∆tU

(1)
i,0

)
+ f
(
Un
i+1 + ∆tU

(1)
i,1

))
; (3.1.5)

F 1
i− 1

2
=

1

4

(
fni + fni−1 + f

(
Un
i + ∆tU

(1)
i−1,1

)
+ f
(
Un
i−1 + ∆tU

(1)
i−1,0

))
. (3.1.6)

So the idea behind the algorithm is:

Step 1: Compute f (0)

i+ 1
2

adopting an interpolatory formula on stencil S1
i+ 1

2

;

Step 2: Compute the first derivatives in time through the numerical compact Cauchy-Kovalesky

∂tU = −∂xfn as done in step a3. and a4.;

Step 3: Compute the Taylor expansions truncated at first term U1,n+1
i,j = Un

i+j + ∆tU
(1)
i,j ;

Step 4: Compute the first time derivatives of flux using the first difference formulas

f
(1)
i,j = 1

∆t
(f(U1,n+1

i,j )− fni+j);

Step 5: Compute f (1)

i+ 1
2

through f (1)
i,j adopting an interpolatory formula on stencil S1

i+ 1
2

;

Step 6: Compute Fi+ 1
2
as Taylor expansion Fi+ 1

2
= f

(0)

i+ 1
2

+ ∆t
2
f

(1)

i+ 1
2

.

Figure 3.1.1 could help to have a graphic idea of the necessary stencil to compute the right

flux reconstruction F 1
i+ 1

2

.
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1D grid for the recursive algorithm of order 2

Figure 3.1.1: Local ghost grid for right flux reconstruction on CAT2

3.1.2 Numerical comparison between CAT2 and the Lax-Wendroff-

Richtmyer-McCormack schemes

In this section we focus on the behaviour of the CAT2 procedure applied to several 1D

problems: the 1D linear transport equation and Burgers equation,compared with the two-

step Lax-Wendroff extension: Ritchmyer and McCormack.

1D scalar transport equation

Let us consider the linear scalar transport equation

ut + ux = 0. (3.1.7)

We solve it with different types of initial conditions including smooth and no-smooth condi-

tion.

Test 1: We consider the transport equation (3.1.7) with smooth initial condition:

u0(x) =
1

2
sin(πx). (3.1.8)
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Figure 3.1.2: Test 1: Transport equation with initial condition (3.1.8). Exact and numerical
solutions at t = 1 obtained with CAT2, Lax-Wendroff, Ritchmyer and McCormack schemes.

CAT2 Lax-Wendroff Ritchmyer McCormack
Points Error Order Error Order Error Order Error Order
20 1.07E-2 - 1.07E-2 - 1.07E-2 - 1.07E-2 -
40 2.61E-3 2.03 2.61E-3 2.03 2.61E-3 2.03 2.61E-3 2.03
80 6.41E-4 2.02 6.41E-4 2.02 6.41E-4 2.02 6.41E-4 2.02
160 1.56E-4 2.04 1.56E-4 2.04 1.56E-4 2.04 1.56E-4 2.04

Table 3.1: Test 1: Transport equation with smooth initial condition (3.1.8). Errors and numerical
rates at t = 2 obtained with CAT2, Lax-Wendroff, Ritchmyer and McCormack schemes.

Test 2: We consider the transport equation (3.1.7) with non-smooth initial condition:

u0(x) =


2 if 1

5
< x <= 7

5
;

1 if 0 < x <= 1
5

7
5
< x <= 2;

0 otherwise.

. (3.1.9)

We solve numerically the scalar equation with smooth (3.1.8) and non-smooth (3.1.9)

initial condition in the interval [−2, 2], using 40 mesh point, CFL= 0.9, and periodic bound-

ary conditions. As we can see, Figures 3.1.2-3.1.3 and Table 3.1, prove that, even if we have

smooth or non-smooth initial conditions, all the methods are exactly the same and they are

an exact extension of the Lax-Wendroff scheme.
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Figure 3.1.3: Test 2: Transport equation with initial condition (3.1.9). Exact and numerical
solutions at t = 1 obtained with CAT2, Lax-Wendroff, Ritchmyer and McCormack schemes.

1D scalar Burgers equation

Let us consider the burgers scalar equation

ut +
1

2
(u2)x = 0. (3.1.10)

We solve it with different types of initial conditions including smooth and no-smooth condi-

tions.

Test 3: We consider the burgers equation (3.1.10) with smooth initial condition:

u0(x) =
1

2
sin(πx). (3.1.11)
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0.4

0.45

0.5

0.55

0.6
uCAT2

uRich

uMcCo

uLW
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b)

b)a)

a)

Figure 3.1.4: Test 3: Burgers equation with initial condition (3.1.11). Numerical solutions at
t = 0.8 obtained with CAT2, Lax-Wendroff, Ritchmyer and McCormack schemes.
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Test 4: We consider Burgers equation (3.1.10) with non-smooth initial condition:

u0(x) =


2 if 1

5
< x <= 7

5
;

1 if 0 < x <= 1
5

7
5
< x <= 2;

0 otherwise.

. (3.1.12)
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Figure 3.1.5: Test 4: Transport equation with initial condition (3.1.12). Numerical solutions at
t = 0.3 obtained with CAT2, Lax-Wendroff, Ritchmyer and McCormack schemes.

We solve numerically the burgers equation with smooth (3.1.11) and non-smooth (3.1.12)

initial conditions in the interval [−2, 2], using 80 mesh point, CFL= 0.9, and periodic bound-

ary conditions. As we can see, Figures 3.1.4-3.1.5, prove that, even if we have smooth or

non-smooth initial condition, the CAT2 reconstruction introduce less spourious oscillations

close to the discontinuities and in some part it is very similar to the Lax-Wendroff scheme.

3.1.3 CAT2P

As we have seen, equation (3.1.1) and (3.1.2) describe the 2P−order Compact Approximate

Taylor method in conservative form. This method was designed to be a properly extension

of the 2P−order Lax-Wendroff method for linear system what implies the linear stability for

these methods under the usual CFL−1 condition, see Appendix B.

Since the numerical differentiation formulas play a major role in the algorithm, let us

introduce some notation to describe the formulas that will be used. In the same way we have

quickly seen above, the operator Ak,qP represents the interpolatory formula of order 2P − k

that approximates the k−th derivative of a function at the point xi + q∆x using its values

at the 2P−point stencil S = {xbi+qc−P+1, . . . , xbi+qc+P}. For this reason, in order to make
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more readability the notation we will suppose |q| < 1, Ak,qP is so defined

f (k)(xi + q∆x) ≈ Ak,qP (f,∆x) =
1

∆xk

P∑
j=−P+1

γk,qP,jf(xi+j). (3.1.13)

In case k = 0, we have

f (0)(xi + q∆x) ≈ A0,q
P (f,∆x) =

P∑
j=−P+1

γ0,q
P,jf(xi+j)

that means the values at xi + q∆x of the Lagrange polynomial that interpolates the values

of f at time tn at the points xi−P+1, . . . , xi+P .

Remark 3.1.1 The coefficients γk,qP,j of the differential formulas can be computed by a recur-

sive procedure introduced in [15, 41, 42]. See also Appendix A-C for more details.

Continuing with notation, the following one

Ak,qP (f∗,∆x) =
1

∆xk

P∑
j=−P+1

γk,qP,jfi+j (3.1.14)

will be used to indicate that the formula is applied to some approximations fi of f and not

to its exact values f(xi). In case where there are two or more indices, the symbol ∗ will be

used to indicate with respect to which the differentiation formula is applied. Indeed, the

next approximations will be used, from now on, to computed the numerical fluxes:

∂kt U(xi+j, tn) ≈ −A1,j
P

(
f

(k)
i,∗ ,∆x

)
= − 1

∆x

P∑
`=−P+1

γ1,j
P,`f

(k)
i,` , (3.1.15)

∂kt f(U)(xi+j, tn) ≈ Ak,0P

(
fk,∗i,j ,∆t

)
=

1

∆tk

P∑
r=−P+1

γk,0P,rf
k,n+r
i,j , (3.1.16)

∂kt f(U)

(
xi +

∆x

2
, tn

)
≈ A

0, 1
2

P

(
f

(k)
i,∗ ,∆x

)
=

P∑
j=−P+1

γ
0, 1

2
P,j f

(k)
i,j . (3.1.17)

In (3.1.15), numerical differentiation in space is used to approximate the time derivative of the

solution at xi+j from the local approximations f (k)
i,` , ` = −P+1, . . . , P according to (2.3.3). In

(3.1.16), numerical differentiation in time is used to approximate the k−th time derivative

of f(U) in position xi+j at time tn from some approximations fk,n+r
i,j of f(U)(xi+j, tn+r),

r = −P + 1, . . . , P computed with the, respectively, Taylor expansion truncated at term k.
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Finally, in (3.1.17), Lagrange interpolation is used to approximate the value of the k−th

time derivative of f(U) at position xi + ∆x/2 at time tn from f
(k)
i,` , ` = −P + 1, . . . , P.

Adopting the above notation, the final expression of the right numerical flux of order 2P

is so get:

F P
i+ 1

2
=

2P∑
k=1

∆tk−1

k!
A

0, 1
2

P

(
f

(k−1)
i,∗ ,∆x

)
=

2P∑
k=1

∆tk−1

k!

P∑
j=−P+1

γ
0, 1

2
P,j f

(k−1)
i,j , (3.1.18)

where the high order time derivative of the flux are computed following and extending the

iterative algorithm presented for CAT2 in above section (see [13–15] for more details):

1. Define f (0)
i,j := f(Un

i+j) for all j = −P + 1, . . . , P ;

2. For every k = 1, . . . , 2P − 1 act in this way:

(a) Compute the k−th derivative of U at time step tn for each position xi+j with j =

−P + 1, . . . , P through the numerical compact version of the Cauchy-Kovalesky

identity (2.3.3) as:

U
(k)
i,j = −A1,j

P

(
f

(k−1)
i,∗ ,∆x

)
;

(b) Compute the Taylor expansion of U in time truncated at term k for all positions

xi+j with j = −P + 1, . . . , P at time tn+r with r = −P + 1, . . . , P as:

U(xi+j, tn+r) ≈ Uk,n+r
i,j = Un

i+j +
k∑

m=1

(r∆t)m

m!
U

(m)
i,j ;

(c) Compute the k−th time derivative of flux for each position xi+j with j = −P +

1, . . . , P at time tn as:

f
(k)
i,j = Ak,jP

(
fk,∗i,j ,∆t

)
,

where fk,∗i,j means that we are applying the A operator in time and in particular

we apply the differentiation formula to

fk,n−P+1
i,j , . . . , fk,n+P

i,j

in which fk,n+r
i,j represents f

(
Uk,n+r
i,j

)
for all j, r = −P + 1, . . . , P.

Remark 3.1.2 Observe that the computation of the numerical flux F P
i+ 1

2

requires the approx-

imation of U at the nodes of a space-time grid of 2P×2P points: Uk,n+r
i,j , j, r = −P+1, . . . , P
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(see Figure 3.1.6). The approximations of the solution u at times (n−P+1)∆t, . . . , (n−1)∆t

are different from the ones already computed in the previous steps: Un−P
i+j , . . . , Un−1

i+j . In other

words, the discretization in time is not based on a multistep method but in a one-step one:

in fact it can be interpreted as a RK method whose stages are Ũn+r
i,j , r = −P, . . . , P : see

[13–15].

Remark 3.1.3 These approximations are local in sense: let us suppose that i1+j1 = i2+j2 =

`, i.e. x` belongs to SPi1+ 1
2

and SP
i2+ 1

2

with local coordinates j1 and j2 respectively. Then, f (k)
i1,j1

and f (k)
i2,j2

are, in general, two different approximations of ∂kt f(U)(x`, tn).

Remark 3.1.4 All the properties concerning the CAT2P, i.e. stability, accuracy and con-

sistence, will be show in Appendix A and B.

CAT4

In order to help the readability of the general iterative algorithm used to compute the k−th

time derivative of flux, we will be shown also the practical way to apply CAT4 method.

Unlike the CAT2 method CAT4 scheme will give a clearer view of the high-order CAT

automatism by introducing in detail the development of the iterative procedure behind the

computing of the time derivatives of the flux. With this in mind, see Figure 3.1.6 to have a

graphic idea of the necessary stencil. The iterative CAT4 algorithm is so defined:

Step 1: Compute f (0)

i+ 1
2

adopting the interpolatory formula on stencil S2
i+ 1

2

as:

f
(0)

i+ 1
2

=
2∑

j=−1

γ
0, 1

2
2,j f

n
i+j;

Step 2: Compute the first time derivative of U at time tn at position xi+j with j = −1, . . . , 2

through the numerical compact Cauchy-Kovalesky identity (2.3.3) as:

U
(1)
i,j = − 1

∆x

2∑
s=−1

γ1,j
2,sf

n
i+s;

Step 3: Compute the Taylor expansion in time truncated at first term at time tn+r with r =
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1D grid for the recursive algorithm

0,1

-1,2

-1,1

-1,0

-1,-1 0,-1

0,0

0,2 1,2 2,2

1,1 2,1

2,0

2,-11,-1

1,0

Figure 3.1.6: Local space-time grid where approximations of U are computed to calculate FPi+1/2

with P = 2. For simplicity a pair j, r represents the point (xi+j , tn+r). Taylor expansions in time
are used to obtain these approximations following the blue lines. These Taylor expansions are
centered in the points lying on the black line.

−1, . . . , 2 for each position xi+j with j = −1, . . . , 2 as:

U1,n+r
i,j = Un

i+j + r∆tU
(1)
i,j ;

Step 4: Compute the first time derivative of f at time tn at position xi+j with j = −1, . . . , 2

using the four fluxes f 1,n+r
i,j as:

f
(1)
i,j =

1

∆t

2∑
r=−1

γ1,0
2,rf

1,n+r
i,j ;

Step 5: Compute f (1)

i+ 1
2

adopting the interpolatory formula on stencil S2
i+ 1

2

as:

f
(1)

i+ 1
2

=
2∑

j=−1

γ
0, 1

2
2,j f

(1)
i,j ;

Step 6: Compute the second time derivative of U at time tn and position xi+j with j = −1, . . . , 2

from the first time derivatives of f using the (2.3.3) as:

U
(2)
i,j = − 1

∆x

2∑
s=−1

γ1,j
2,sf

(1)
i,s ;
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Step 7: Compute the Taylor expansion in time truncated at second term at time tn+r with

r = −1, . . . , 2 for each position xi+j with j = −1, . . . , 2 as:

U2,n+r
i,j = Un

i+j + r∆tU
(1)
i,j +

(r∆t)2

2
U

(2)
i,j ;

Step 8: Compute the second time derivative of f at time tn at position xi+j with j = −1, . . . , 2

using the four fluxes f 2,n+r
i,j as:

f
(2)
i,j =

1

∆t2

2∑
r=−1

γ2,0
2,rf

2,n+r
i,j ;

Step 9: Compute f (2)

i+ 1
2

adopting the interpolatory formula on stencil S2
i+ 1

2

as:

f
(2)

i+ 1
2

=
2∑

j=−1

γ
0, 1

2
2,j f

(2)
i,j ;

Step 10: Compute the third time derivative of U at time tn and position xi+j with j = −1, . . . , 2

from the second time derivatives of f using the (2.3.3) as:

U
(3)
i,j = − 1

∆x

2∑
s=−1

γ1,j
2,sf

(2)
i,s ;

Step 11: Compute the Taylor expansion in time truncated at third term at time tn+r with

r = −1, . . . , 2 for each position xi+j with j = −1, . . . , 2 as:

U3,n+r
i,j = Un

i+j + r∆tU
(1)
i,j +

(r∆t)2

2
U

(2)
i,j +

(r∆t)3

6
U

(3)
i,j ;

Step 12: Compute the third (it is also the last derivative that we can compute) time derivative

of f at time tn at position xi+j with j = −1, . . . , 2 using the four fluxes f 3,n+r
i,j as:

f
(3)
i,j =

1

∆t3

2∑
r=−1

γ3,0
2,rf

3,n+r
i,j ;
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Step 13: Compute f (3)

i+ 1
2

adopting the interpolatory formula on stencil S2
i+ 1

2

as:

f
(3)

i+ 1
2

=
2∑

j=−1

γ
0, 1

2
2,j f

(3)
i,j ;

Step 14: Reconstruct F 2
i+ 1

2

from (3.1.2) as:

F 2
i+ 1

2
= f

(0)

i+ 1
2

+ ∆tf
(1)

i+ 1
2

+
∆t2

2
f

(2)

i+ 1
2

+
∆t3

6
f

(3)

i+ 1
2

3.2 Adptive Compact Approximate Taylor Method

The shock-capturing methods are a class of numerical techniques for computing inviscid

flows with shock waves. Computation of flow through shock waves is an extremely difficult

task because such flows results in sharp, discontinuous changes in flow variables pressure,

density, temperature, and velocity across the shock.

From an historical point of view, shock-capturing methods can be classified into two

general categories: classical methods and modern shock capturing methods (also called

high-resolution schemes). Modern shock-capturing methods are generally upwind based in

contrast to classical symmetric or central discretization. Upwind-type differencing schemes

attemp to discretize hyperbolic partial differential equation by using differencing biased in

the direction determined by the sign of the characteristic speeds. On the other hand, sym-

metric or central schemes do not consider any information about the wave propagation in

the discretization.

No matter what type of shock-capturing scheme is used, a stable calculation in presence of

shock wave requires a certain amount of numerical dissipation, in order to avoid the formation

of spurious numerical oscillation as could be observed in section 3.1.2 [55]. In the case of

classical shock capturing methods, numerical dissipation terms are usually linear and the

same amount is uniformly applied to all grid points. Classical shock-capturing methods only

exhibit accurate results in the case of smooth and weak-shock solution, but when strong shock

waves are present, non-linear instabilities and oscillations can arise across discontinuities.

Modern shock-capturing methods have, however, a non-linear numerical dissipation, with an

automatic feedback mechanism which adjust the amount of the dissipation in any cell of the

mesh, in accord with the gradients in the solution.
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3.2.1 Flux-Limiter schemes

As part of the classical shock-capturing family, the Flux-Limiter methods adopt a numerical

techniques to combine a low order method with an high order method and make the solution

a total variation diminishing solution [72, 124]. The main idea behind the construction of flux

limiter schemes is to limit the spatial derivatives to realistic values. They are used in high

resolution schemes for solving problems described by partial differential equations and only

come into operation when sharp wave fronts are present. From smoothly changing waves,

the flux limiters do not operate and the spatial derivative can be represented by higher order

approximation without introducing of spurious oscillation.

Let us consider the scalar conservation law (2.1.7). In particular, we will focus on the

1D scalar semi-discrete scheme below:

dui
dt

+
1

∆x

(
f(ui+ 1

2
)− f(ui− 1

2
)
)

= 0, (3.2.1)

where, f(ui± 1
2
), represent edge fluxes for the i−th cell. If these edge fluxes should be written

by a low and an high order reconstruction, then a flux limiter scheme can switch between

these reconstructions depending upon the gradients close to the particular cell, as follow,

F ∗
i+ 1

2
= ϕi+ 1

2
F 1
i+ 1

2
+ (1− ϕi+ 1

2
)F lo

i+ 1
2
, (3.2.2)

in which, F 1
i+ 1

2

is given by (3.1.5); F lo
i+ 1

2

is a first-order robust numerical flux; and ϕi+ 1
2
is a

standard flux limiter function, see [70, 83, 84, 119, 120].

In general, a classical flux limiter function depends on the gradients of the solution, i.e.

ϕi+ 1
2

= ϕ(ri+ 1
2
),

where

ri+ 1
2

=
∆upw

∆loc
=


r−
i+ 1

2

:=
uni −uni−1

uni+1−uni
if ai+ 1

2
> 0,

r+
i+ 1

2

:=
uni+2−uni+1

uni+1−uni
if ai+ 1

2
≤ 0;

(3.2.3)
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and ai+ 1
2
is an estimate of the wave speed, for instance Roe’s intermediate speed:

ai+ 1
2

=


f(uni+1)−f(uni )

uni+1−uni
if uni 6= uni+1,

f ′(uni ) otherwise.

An alternative to avoids the computation of an intermediate speed was introduced in [120]:

it consists in defining

ϕi+ 1
2

= min
(
ϕ(r−

i+ 1
2

), ϕ(r+
i+ 1

2

)
)
.

Remark 3.2.1 Note that, the flux limiter functions do not depend on the method used, even

if, it is finite difference or finite volume scheme. They reckon only the numerical data in the

local stencil.

Remark 3.2.2 Note that, even if the numerical schemes are 3-points methods, the flux

limiter functions need a 4-points stencil to be computed. This is due to the fact that is

impossible distinguish between a critical point or discontinuity adopting a 3-points stencil.

For the system of conservation law (2.3.1), the expression of the flux limiter function is

similar to the scalar case. Indeed, following the Toro’s idea [120], computed the flux limiter

functions for each variable of the system ϕ`
i+ 1

2

for all ` = 1, . . . ,m we set:

ϕi+ 1
2

= min
`=1,...,m

ϕ`
i+ 1

2
. (3.2.4)

As we have seen, given ri+ 1
2
, there are several ways to define the operator ϕ(ri+ 1

2
), we will

focus on two different flux limiter functions: Minmod and SuperBee, respectively,

ϕminmod
i+ 1

2
=


1 if ri+ 1

2
> 1

r if 0 < ri+ 1
2
≤ 1

0 otherwise

(3.2.5)

ϕsuperbee

i+ 1
2

=



2 if ri+ 1
2
> 2

r if 1 < ri+ 1
2
≤ 2

1 if 1
2
< ri+ 1

2
≤ 1

2r if 0 < ri+ 1
2
≤ 1

2

0 otherwise

(3.2.6)
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In order to show the difference between Minmod and SuperBee function two simple numeri-
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8

Exact solution

uCAT2

uLF

uFluxLimiter

Figure 3.2.1: Transport equation with smooth initial condition. Numerical solutions at time
t = 8 obtained with CAT2, Lax-Friedrichs and Flux Limiter methods using a 50−points mesh
and CFL= 0.9. left the flux limiter solutions with Minmod function (3.2.5); right the flux limiter
solutions with SuperBee function (3.2.6).
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Figure 3.2.2: Transport equation with no-smooth initial condition. Numerical solutions at time
t = 8 obtained with CAT2, Upwind and Flux Limiter methods using a 50−points mesh and
CFL= 0.9. left the flux limiter solutions with Minmod function (3.2.5); right the flux limiter
solutions with SuperBee function (3.2.6).

cal examples are tested. For this reason, let us consider the scalar transport equation (2.1.2)

and two different initial conditions:

1. smooth initial condition

u0(x) =
1

8
sin(2πx)

defined on [0, 2], adopting a 50−points mesh, CFL= 0.9, periodic boundary conditions

and final time t = 8;

2. double jump initial condition

u0(x) =

1 if 0 ≤ x ≤ 1.5

0 otherwise,

defined on [0, 3], adopting a 80−points mesh, CFL= 0.9, periodic boundary conditions

and final time t = 8;
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Figure 3.2.1 and Figure 3.2.2 show the behaviour of the Minmod and SuperBee flux limiter

functions. In particular, the Minmod function gives better results close to a discontinuity

but is more diffusive near a critical point. Instead the SuperBee function gives better results

close a critical point but introduce some spurious numerical oscillations near a discontinuity.

These behaviours should be reduced using different flux limiter functions but they cannot

be eliminated [72]. To avoid these problems an high order smoothness indicators should be

used and it will be focus of next section.

3.2.2 High order smoothness indicators

In this section a new family of local smoothness indicators ψp
i+ 1

2

, p ≥ 2, for scalar conservation

laws and their properties will be introduced.

In particular, fixed the nodal approximations fi = f(xi) of a function f at the stencil

Sp
i+ 1

2

, p ≥ 2, centered at xi+ 1
2
, first define the lateral weights:

Ip,L :=
−1∑

j=−p+1

(fi+1+j − fi+j)2 + ε, Ip,R :=

p−1∑
j=1

(fi+1+j − fi+j)2 + ε, (3.2.7)

where ε is a small quantity that is added to prevent that the lateral weights vanish when

the function is constant. Next, compute the quantity:

Ip :=
Ip,LIp,R
Ip,L + Ip,R

. (3.2.8)

Finally, define the smoothness indicator of the stencil of Sp
i+ 1

2

by

ψpi+1/2 :=

(
Ip

Ip + τp

)2

, (3.2.9)

where

τp :=
(
∆2p−1
i−p+1f

)2
. (3.2.10)

Here, ∆2p−1
i−p+1f denotes the undivided difference of {fi−p+1, . . . , fi+p}:

∆2p−1
i−p+1f =(2p− 1)!

p∑
j=−p+1

γ
2p−1,1/2
p,j fi+j. (3.2.11)
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Before going into technical details, let us give a motivation of this choice. In fact, if data in

the stencil Sp
i+ 1

2

are smooth, then

Ip,L = O(∆x2), Ip,R = O(∆x2), τp = O(∆x4p).

Since
1

Ip
=

1

Ip,L
+

1

Ip,R

then Ip = O(∆x2) and thus

ψpi+1/2 =
Ip

Ip + τp
=

O(∆x2)

O(∆x2) +O(∆x4p)
,

so that ψp
i+ 1

2

is expected to be close to 1. On the other hand, if there is an isolated discon-

tinuity in the stencil then

τp = O(1)

and, one between left or right lateral weights presents the discontinuity implying that:

Ip,L = O(1), Ip,R = O(∆x2)

or

Ip,L = O(∆x), Ip,R = O(1).

In both cases Ip = O(∆x2) and thus:

ψpi+1/2 =
Ip

Ip + τp
=

O(∆x2)

O(∆x2) +O(1)
,

so that ψp
i+ 1

2

is expected to be close to 0. Nevertheless, in general it is not true that

O(∆x2)

O(∆x2) +O(∆x4p)
≈ 1,

O(∆x2)

O(∆x2) +O(1)
≈ 0,

and a careful analysis is required. In the case of smooth data, special care has to be taken

if there is a critical point in the stencil, since in this case the order of Ip depends on the

order of the critical point, what can prevent the smoothness indicator to be close to 1, as it

will be seen in Propositions 3.2.1-3.2.3 below. The following definition is assumed in these

results: a point x is said to be a critical point of f of order n if f (j)(x) = 0, j = 1, . . . , n and
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f (n+1) 6= 0.

Before analysing the smoothness indicators, let us introduce some definitions and nota-

tion, taken from [2]: we refer to Section 2.1 of this reference for further details.

Given α ∈ R+ and f : (0, h∗) 7→ R with h∗ ∈ (0,∞], the notation f(h) = O(hα) means,

as usual, that

lim sup
h→0+

∣∣∣∣f(h)

hα

∣∣∣∣ < +∞,

and the notation f(h) = O(hα) means that

lim sup
h→0+

∣∣∣∣f(h)

hα

∣∣∣∣ < +∞ and lim inf
h→0+

∣∣∣∣f(h)

hα

∣∣∣∣ > 0.

If f, g : (0, h∗) 7→ R and α, β are two positive real numbers, the following relations hold:

f(h) = O(hα), g(h) = O(hβ) =⇒ f(h)g(h) = O(hα+β);

f(h) = O(hα), g(h) = O(hβ) =⇒ f(h)g(h) = O(hα+β);

f > 0, f(h) = O(hα) =⇒ f(h)−1 = O(h1/α).

Lemma 3.2.1 Assume that a function ϕ ∈ Cn+2 satisfies ϕ(k)(0) = 0 for k = 1, . . . , n and

ϕ(n+1)(0) 6= 0. Then ϕ(h) = O(hn+1)

Proof. The Taylor expansion of ϕ truncated at order n+ 1 is so set:

ϕ(h) =
ϕ(n+1)(0)

(n+ 1)!
hn+1 +O(hn+2),

which implies

lim
h→0

ϕ(h)

hn+1
=
ϕ(n+1)(0)

(n+ 1)!
6= 0.

Then, ϕ(h) = O(hn+1).

�

Lemma 3.2.2 Let c, d, z ∈ R. Assume that f (j)(z) = 0 for j = 1, . . . , k, f (k+1)(z) 6= 0, and f ∈ Ck+2 if c+ d 6= 0;

f (2j−1)(z) = 0 for j = 1, . . . , n, f (2n+1)(z) 6= 0, and f ∈ C2n+2 if c+ d = 0.
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Then

f(z + dh)− f(z + ch) = O(hs),

where

s =

 k + 1 if c+ d 6= 0;

2n+ 1 if c+ d = 0.

From this lemma, whose proof follows from Lemma 3.2.1 more details in [2], one can

deduce that, given the values fj = f(xj), j = i − p + 1, . . . , i + p, of a smooth enough

function f in the stencil Sp
i+ 1

2

, the following estimates hold:

fj+1 − fj = O(h), j = i− p+ 1, . . . , i+ p− 1

if the stencil does not contain any critical point of f ;

fj+1 − fj = O(hk+1), j = i− p+ 1, . . . , i+ p− 1, (3.2.12)

if the stencil contains a critical point x∗ of even order k or a critical point of odd order that

is not located at the center of any sub-interval of the stencil.

Finally, if there exists i0 such that x∗ = 0.5(xi0 + xi0+1), x∗ is a critical point of odd

order, then (3.2.12) holds for every j 6= i0 and

fi0+1 − fi0 = O(h2n+1) (3.2.13)

where 2n+ 1 is the first odd number such that

f (2n+1)(x∗) 6= 0.

Let us analyze the behavior of the smoothness indicators (3.2.9) assuming that ε = 0

(the role of ε is only relevant for the implementation of the method not for the analysis).

Proposition 3.2.1 Let fj = f(xj), j = i− p+ 1, . . . , i+ p be the values of a function f in

the stencil Sp
i+ 1

2

, with p > 2. The following estimates hold:

ψpi+1/2 =

1−O(∆x4(p−1)−2k) if f ∈ Cmax(2p−1,k+2);

O(∆x2(k+1)) if f is piecewise Ck+2 and Sp
i+ 1

2

contains an isolated jump discontinuity of f ;
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where k = 0 if there is no critical point of f in Sp or k equal to the order of the critical point

if there is one.

Proof. If f ∈ C2p−1 there exists ξ such that

∆2p−1
i−p+1f = (2p− 1)!f (2p−1)(ξ)∆x2p−1,

and thus

∆2p−1
i−p+1f = O(∆x2p−1),

what implies

τp = O(∆x4p−2).

On the other hand, if Sp
i+ 1

2

contains an isolated jump discontinuity, then

∆2p−1
i−p+1f = O(1),

and thus

τp = O(1).

From the discussion above, the estimate

fj+1 − fj = O(∆xk+1),

holds for every j ∈ i − p + 1, . . . , i + p − 1 with the exception of at most one index i0, in

which the order is higher.

Nevertheless, since both Ip,L and Ip,R are the sum of at least two terms of the form

(fj+1 − fj)2, we can conclude that

Ip,L = O(∆x2+2k), Ip,R = O(∆x2+2k).

Hence:

Ip =
Ip,LIp,R
Ip,L + Ip,R

=
O(∆x2+2k)O(∆x2+2k)

O(∆x2+2k) +O(∆x2+2k)
=
O(∆x4+4k)

O(∆x2+2k)
= O(∆x2+2k).

Now, if Sp
i+ 1

2

contains a discontinuity, then, by construction, there exists a side α ∈ {L,R}

such that Ip,α = O(1) (the side that contains the discontinuity) while the other side, β ∈
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{L,R} \ {α}, satisfies Ip,β = O(∆x2+2k). Therefore

Ip =
Ip,LIp,R
Ip,L + Ip,R

=
Ip,αIp,β
Ip,α + Ip,β

=
O(1)O(∆x2+2k)

O(1) +O(∆x2+2k)
=
O(∆x2+2k)

O(1)
= O(∆x2+2k).

Combining the above results, we have that, if f is smooth:

ψpi+1/2 =
Ip

Ip + τp
=

1

1 +
τp
Ip

=
1

1 +
O(∆x4p−2)

O(∆x2+2k)

=
1

1 +O(∆x4(p−1)−2k)
= 1−O(∆x4(p−1)−2k).

On the other hand, if Sp
i+ 1

2

contains a discontinuity, then

ψpi+1/2 =
Ip

Ip + τp
=

1

1 +
τp
Ip

=
1

1 +
O(1)

O(∆x2+2k)

=
1

1 +O(∆x−2(k+1))
= O(∆x2(k+1)),

which finishes the proof. �

Observe that the indicator ψp
i+ 1

2

is able to detect smoothness in the presence of a critical

point whose order is lower than 2(p− 1).

In the case p = 2 similar arguments lead to the following estimates:

Proposition 3.2.2 Let fj = f(xj), j = i− 1, . . . , i+ 2 be the values of a function f in the

stencil S2
i+ 1

2

. The following estimates hold:

ψ2
i+1/2 =

1−O(∆x4−2k) if f ∈ C3;

O(∆x2(k+1)) if f is piecewise Ck+2 and S2
i+ 1

2

contains an isolated jump discontinuity of f ;

where k = 0 if there is no critical point of f in S2
i+ 1

2

and k = 1 if there is a critical point x∗

of order 1 such that f (3)(x∗) 6= 0 or such that x∗ 6= 0.5(xj + xj+1) for j = i− 1, i+ 1.

Nevertheless, the estimate cannot be proved when S2
i+ 1

2

includes a critical point of order 1

located at 0.5(xi−1 + xi) or 0.5(xi+1 + xi+2) and such that f (3)(x∗) 6= 0: the argument in the

proof of Proposition 3.2.1 cannot be used since there is only one term in the definition of

the local weights. This is not a limitation in many applications, since this situation is very

specific and, even if it happens, unless there is a discontinuity close to the critical point,

smoothness will be detected by at least one of the indicators ψp
i+ 1

2

with p > 2 so that the

stencil Sp
i+ 1

2

will be used to update the solution. In any case, the smoothness indicator for

PhD Thesis, Chapter 3 59



3.2. Adptive Compact Approximate Taylor Method

p = 2 can be modified to properly handle these situations as follows: compute the couple of

lateral weights:

I1
2,L := (fi − fi−1)2 + ε, I1

2,R := (fi+1 − fi)2 + (fi+2 − fi+1)2 + ε, (3.2.14)

I2
2,L := (fi − fi−1)2 + (fi+1 − fi)2 + ε, I2

2,R := (fi+2 − fi+1)2 + ε. (3.2.15)

Next, compute:

Ij2 :=
Ij2,LI

j
2,R

Ij2,L + Ij2,R
, j = 1, 2. (3.2.16)

and then, the smoothness indicator of the stencil S2
i+ 1

2

is given by

ψ̃2
i+1/2 := max

(
I1

2

I1
2 + τ2

,
I2

2

I2
2 + τ2

)
. (3.2.17)

The following estimate can be then proved:

Proposition 3.2.3 Let fj = f(xj), j = i− 1, . . . , i+ 2 be the values of a function f in the

stencil S2
i+ 1

2

. The following estimates hold:

ψ̃2
i+1/2 =

1−O(∆x4−2k) if f ∈ C3;

O(∆x2(k+1)) if f is piecewise Ck+2 and S2
i+ 1

2

contains an isolated jump discontinuity of f ;

where k = 0 if there is no critical points of f in S2
i+ 1

2

or k = 1 if there is a critical point x∗

or order 1.

Proof. The arguments of the proof of Proposition 3.2.1 are used again. The difference

comes from the case in which there is a critical point of order 1 located at at 0.5(xi−1 + xi)

or 0.5(xi+1 + xi+2) and such that f (3)(x∗) = 0. In this case, there exists j ∈ {1, 2} (the one

in which the sub-interval with the critical point and the central sub-interval are considered

together in the same lateral weight) such that

Ij2
Ij2 + τ2

= 1−O(∆x2).

Using this estimate the proof is concluded as in Proposition 3.2.1 �

Remark 3.2.3 The smoothness indicators (3.2.9) and (3.2.17) have the following homoth-
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etic invariance property: given a function f and two positive numbers α, β, define

g(x) = αf(βx).

Then the smoothness indicator of f at the stencil Sp
i+ 1

2

centered at xi+ 1
2
in a mesh with step

∆x is equal to the smoothness indicator of g at the stencil Sp
i+ 1

2

centered at βxi+ 1
2
in a mesh

with step β∆x. This property is very important in order to construct smoothness indicators

whose behaviour do not depend on ∆x and scaling factors of f.

3.2.3 ACAT2P

As we have seen on previous section, the Compact Approximate Taylor (CAT) schemes

introduce spurious oscillations close to a discontinuity of the solution under the usual CFL

condition, as it happens for the Lax-Wendroff method: see [15, 26, 55, 56]. A shock-capturing

technique, based on a family of high-order smoothness indicators, is considered here to

prevent this behaviour, developed in [14]. The idea is as follows: once the approximations

at time tn have been computed, the candidate stencils to compute FA
i+ 1

2

are

Sp
i+ 1

2

= {xi−p+1, . . . , xi+p}, p = 1, . . . , P.

The selected stencil is the one with maximal length among those in which the solution at time

tn is smooth, according to smoothness indicators (3.2.9) ψp
i+ 1

2

for p = 1, . . . , P introduced

on previous section. If a discontinuity is detected in the stencil S1
i+ 1

2

a robust first-order

numerical method is used.

In order to select the stencil, the smoothness indicators (3.2.9) ψp
i+ 1

2

, p = 1, . . . , P are

computed such that:

ψp
i+ 1

2

≈

 1 if {uni } is ’smooth’ in Sp
i+ 1

2

,

0 otherwise.
(3.2.18)

Define now:

A = {p ∈ {1, . . . , P} such that ψp

i+ 1
2

≈ 1}.
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The idea is to define:

FA
i+ 1

2
=

F
lo
i+ 1

2

if A = ∅;

F ps
i+ 1

2

where ps = max(A) otherwise;

where F ps
i+ 1

2

is the numerical flux of CAT2ps and F lo
i+ 1

2

is a robust first order numerical flux.

Nevertheless, it is not possible to determine if the solution is smooth or not in the stencil

S1
i+ 1

2

where only two values uni , uni+1 are available. Therefore in practice, will be defined:

A = {p ∈ {2, . . . , P} such that ψp

i+ 1
2

≈ 1}. (3.2.19)

and then:

FA
i+ 1

2
=

F
∗
i+ 1

2

if A = ∅;

F ps
i+ 1

2

where ps = max(A) otherwise;
(3.2.20)

where F ∗
i+ 1

2

is the numerical flux reconstruction obtained through the flux-limiter scheme

that combine a first robust method with CAT2 as (3.2.2) (that uses the stencil S1
i+ 1

2

as well).

The expression of the Adaptive Compact Approximate Taylor Method (ACAT2P ) of

maximal order 2P for a scalar conservation law is given by:

un+1
i = uni +

∆t

∆x

(
FA
i− 1

2
− FA

i+ 1
2

)
. (3.2.21)

The numerical fluxes FA
i+ 1

2

are defined by (3.2.19)-(3.2.20). For p = 2, in order to avoid

problems to select correctly the smoothness of the solution, in presence of critical point,

(3.2.9) can be replaced by (3.2.17).

Observe that, by definition, FA
i+ 1

2

reduces to:

• a first order flux if ψ1
i+ 1

2

= 0 and ψp
i+ 1

2

= 0 for all p = 2, . . . , P ;

• a second order flux if ψ1
i+ 1

2

= 1 and ψp
i+ 1

2

≈ 0 for all p = 2, . . . , P ;

• 2ps-order flux if ψps
i+ 1

2

≈ 1.

Furthermore, if ps = P , then ACAT2P coincides with CAT2P which has 2P -order accu-

racy and is L2-stable under CFL≤ 1.

Proposition 3.2.4 The local accuracy of the method close to a critical point is always 2P

with the only exception of critical points of order 2P − 2 : in that case, the order of accuracy
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will be reduced by one.

Proof. Let us suppose that f is smooth and has an isolated critical point x∗ of order k in

S1
i+ 1

2

= {xi, xi+1}. Then:

• If k < 2(P−1) the smoothness indicator ψP
i+ 1

2

is close to one and the maximum allowed

stencil SP is used, so that the local accuracy of the method is 2P .

• If k > 2(P−1) then all the smoothness indicators fail, so that the first order robust nu-

merical method will be used. Nevertheless in this case, f (j)(x∗) = 0 for j = 1, . . . , 2P−1

so that, when the local error of the first order method is estimated through Taylor ex-

pansions, only terms of order O(∆x2P ) or bigger will remain. Therefore, in this case

the local accuracy of the method is again 2P .

• If k = 2(P−1) again the smoothness indicators fail and the first order robust numerical

method will be used. Since in this case, f (j)(x∗) = 0 for j = 1, . . . , 2P − 2 the local

error of the first order method is of order 2P − 1. �

This order reduction should be avoided by introducing optimal smoothness indicators in

the spirit of [2, 3].

High order smoothness indicators for systems of conservation laws

For systems of conservation laws (2.3.1) with d equations, the expression of the ACAT2P

method is the same as in the scalar case: the only difference is the computation of the

smoothness indicators. In the case of systems, smoothness indicators are first computed for

every variable:

ψ`,p
i+ 1

2

, p = 1, . . . , P,

where

• ψ`,1
i+ 1

2

= ϕ`
i+ 1

2

is an usual the flux limiter (3.2.4) computed following the Toro’s idea

[120] for each `−th component of the numerical solutions {u`,ni };

• ψ`,p
i+ 1

2

, p > 2 is obtained by applying the smoothness indicator (3.2.9) to the `−th

component of the numerical solutions {u`,ni };

• ψ`,2
i+ 1

2

is obtained by applying the smoothness indicator (3.2.9) or (3.2.17) to the `−th

component of the numerical solutions {u`,ni }.
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Once these scalar smoothness indicators have been computed, we define

ψp
i+ 1

2

= min
`=1,...,d

ψ`,p
i+ 1

2

,

so that the selected stencil is the one of maximal length among those in which all the variables

are smooth.

3.2.4 Numerical experiments

In this section we focus on the behaviour of the ACAT2P procedure applied to several 1D

problems: the linear transport equation, Burgers equation, and the Euler equation for gas

dynamic. As flux limiter function, for the Flux-Limiter techniques (ACAT2), the Super Bee

flux limiter [105] is used; and the smoothness indicators (3.2.9), for ACAT2P, are used for

p ≥ 2: no loss of precision for first order critical points has been observed in any of the

test problems considered here due to the use of ψ1
i+1/2. Fornberg’s algorithm [41, 42] is used

to compute iteratively the coefficients of the numerical differentiation formulas. ACAT2P,

for p = 2, 4, 6, methods will be compared with the Lax-Friedrichs (LF), HLL first order

schemes and with WENO(2p + 1) finite difference methods based on the Lax-Friedrichs

splitting in Chapter 1 (see [110]) combined with SSPRK3 in Chapter 1 (see [48]) for the

time discretization. The number of points of their stencils and the relative theoretical order

in 1D are recalled in Table 3.2. Since ACAT2P reduces to CAT2P in smooth region and the

order of accuracy of the latter has been checked in [15], no other test order for the systems

of conservation laws will be considered here.

Method Stencil Order

LF 3 1 in space and time

HLL 3 1 in space and time

FL-CAT2 or ACAT2 3 2 in space and time

ACAT2P 2P + 1 2P in space and time

WENO(2p+ 1)-RK3 2p+ 1 2p+ 1 in space and 3 in time

Table 3.2: Numerical methods: number of points of the stencil and order of accuracy for 1D
problems.

In practice, on equation (3.2.18) we impose ψp
i+ 1

2

≈ 1. The following criterion to check

the proximity of ψp
i+ 1

2

to 1 has been implemented in order to define the admissible set of
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indices (3.2.19) as:

A = {p ∈ {2, . . . , P} s.t. ψp
i+ 1

2

≥ 0.9}. (3.2.22)

1D scalar transport equation

Let us consider the linear scalar transport equation

ut + ux = 0. (3.2.23)

We solve it with different type of initial condition including smooth and no-smooth condi-

tions.

Test 1: We consider the transport equation (3.2.23) with smooth initial condition:

u0(x) =
1

2
sin(πx). (3.2.24)
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Figure 3.2.3: Transport equation with initial condition (3.2.24). Numerical solutions at t = 3:
general view (left-top); order of accuracy for ACAT6 (sub-frame); consecutive zooms close to the
local maximum ( left-bottom, right-top and right-bottom).

We solve numerically this problem (3.2.23) in the interval [0, 2], using 160 mesh points,

CFL= 0.9, and periodic boundary conditions. Figure 3.2.3 and 3.2.4 show the numerical

solutions at time t = 3 and t = 40 respectively. Zooms of an interest area are included,

in which the loss of accuracy with time for the lower order methods can be clearly seen.

As it can be observed, the numerical solutions of ACAT4 and ACAT6 match the exact

solution at both times while ACAT2 is more diffusive near the critical points. This loss of
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Figure 3.2.4: Transport equation with initial condition (3.2.24). Numerical solutions at t = 40:
general view (left-top); local order of accuracy for ACAT6 (sub-frame);consecutive zooms close to
the local maximum ( left-bottom, right-top and right-bottom).

accuracy close to the critical points are related to the Flux-Limiter method and in particular

how the flux limiter functions are computed; indeed, this method are not able to distinguish

between critical or discontinuity points. This behaviour can also be observed for WENO-RK

methods, although, in this case, this drawback can be overcome by using optimal weights in

the WENO reconstructions: see [2, 3].
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Figure 3.2.5: Transport equation with initial condition (3.2.25). Numerical solution obtained
with ACAT6 at time t = 3 (top) and plot of the smoothness indicators ψsb, ψ2 and ψ3 (bottom).

Furthermore, the loss of accuracy of ACAT2 close to the critical points compared to
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ACAT4 or 6 is due to the fact that, while the smoothness indicators ψ2
i+ 1

2

and ψ3
i+ 1

2

are

always close to one, the Superbee flux limiter ψ1
i+ 1

2

= ϕsb
i+ 1

2

detects a discontinuity instead

of a critical points and the first order method is then locally used. In order to emphasyze

this behaviour, Figure 3.2.5 (top) shows the solution obtained with ACAT6 at time t = 3

for (3.2.23) with initial condition

u0(x) =
1

2
sin(2πx) (3.2.25)

in the interval [0, 2] using 160 mesh points, CFL= 0.9, and periodic boundary conditions.

Figure 3.2.5 (bottom) exhibits the graph of the three smoothness indicators, the flux-limiter

function ψsb and the second and fourth order smoothness indicators.

Finally, we notice that, for long time, the ACAT2 solution tents to be squared in the

neighborhood of the critical points, see Figure 3.2.4. This behaviour is consequence, again,

of the flux-limiter function ϕ1
i+ 1

2

. Indeed, as it shown on Figure 3.2.5, ϕsb is close to 0 in

the critical points but there exist an interval ]xc − ε, xc[, with ε > 0 and xc = critical point,

where the flux-limiter function is bigger than 1.

Test 2: We consider again the transport equation (3.2.23) with a piecewise continuous initial

condition

u0(x) =


1 if 1

2
≤ x ≤ 1;

0 if 0 ≤ x < 1
2

or 3
2
< x ≤ 2;

−1 if 1 < x ≤ 3
2
.

(3.2.26)

We solve numerically this problem in the spatial interval [0, 2], using again 160 mesh

points, CFL= 0.9, and periodic boundary conditions.

Figure 3.2.6 shows the solutions from ACAT2P , P = 2, 4, 6 and WENOq−RK3, q = 3, 5

at time t = 2 and t = 20. We can observe that ACAT2P produce less diffusive solutions

than WENOq−RK3 in proximity of the shocks and this behaviour is emphasized when the

methods are applied to a large time interval. Furthermore, the sub-frames show that larger

is the time interval smaller is the 6th−order region.

Figures 3.2.7 and 3.2.8 show the errors vs CPU time plot with different initial conditions

and different CFL-conditions. In practice, on Figure 3.2.7 can be seen that, in case of smooth

initial condition, ACAT2P, p = 1, 2, WENOq-RK3, q = 3, 5, and Lax-Friedrichs methods

are very similar in computational time vs errors sense but ACAT6 is faster and with lower
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Figure 3.2.6: Transport equation with initial condition (3.2.26). Numerical solutions at t = 2
(a)) and at t = 20 (b)). Zooms of the numerical solutions close to the shock at time t = 2 (c))
and t = 20 (d)). Sub-frames: local order of accuracy for ACAT6.
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Figure 3.2.7: Error vs CPU time for the transport equation with smooth initial condition (3.2.24).
Numerical solutions at t = 4 using CFL= 0.5 (top) and CFL= 0.9 (bottom).

error even for CFL ∈ {0.5, 0.9}. This behaviour is not maintained when they are applied

to no-smooth initial condition because ACAT2P, for p = 2, 3, reduce to ACAT2 close to

a discontinuity due to the adaptive procedure. Finally, Tables 3.3-3.6 display the errors in

L1-norm provided by the numerical solutions of WENO3-RK3, WENO5-RK3, LF, ACAT2,

ACAT4 and ACAT6 methods supposing: t = 4; initial conditions smooth (3.2.25) and

no-smooth (3.2.26); periodic boundary conditions; N = {50, 100, 200, 400, 800, 1600} point

meshes; and CFL ∈ {0.5, 0.9}. The reference solution is the exact one.

The following conclusions can be drawn:

• For smooth solutions: as expected, the errors decrease with the order of the methods.
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N W3RK3 W5RK3 LF ACAT2 ACAT4 ACAT6
50 4.6e-2 1.1e-4 2.1e-1 1.8e-2 5.2e-2 1.7e-7
100 1.1e-2 1.1e-5 1.1e-1 6.4e-3 1.2e-3 2.7e-9
200 2.7e-3 1.4e-6 6.0e-2 1.8e-3 2.4e-4 4.2e-11
400 6.3e-4 1.7e-7 3.1e-2 4.8e-4 4.9e-5 5.0e-13
800 1.4e-4 2.1e-8 1.5e-2 1.2e-4 6.8e-6 4.0e-13
1600 3.1e-5 2.6e-9 7.9e-3 3.1e-5 1.9e-7 1.2e-13

Table 3.3: Errors in L1-norm for the transport equation (3.2.23) at time t = 4; smooth initial
condition (3.2.24) and CFL= 0.5.

N W3RK3 W5RK3 LF ACAT2 ACAT4 ACAT6
50 6.2e-2 5.4e-4 4.9e-2 5.7e-3 2.1e-3 3.6e-8
100 1.5e-2 6.4e-5 2.5e-2 1.5e-3 4.6e-4 5.0e-10
200 3.8e-3 8.0e-6 1.2e-2 4.0e-4 9.5e-5 5.5e-11
400 8.6e-4 1.0e-6 6.3e-3 1.0e-4 1.7e-5 2.7e-13
800 1.9e-4 1.2e-7 3.2e-3 2.5e-5 3.4e-6 2.1e-13
1600 4.0e-5 1.5e-8 1.6e-3 6.4e-6 4.3e-7 1.7e-13

Table 3.4: Errors in L1-norm for the transport equation (3.2.23) at time t = 4; smooth initial
condition (3.2.24) and CFL= 0.9.

N W3RK3 W5RK3 LF ACAT2 ACAT4 ACAT6
50 4.7e-1 2.5e-1 8.3e-1 1.4e-1 1.4e-1 1.4e-1
100 2.6e-1 1.4e-1 6.3e-1 7.1e-2 7.1e-2 7.1e-2
200 1.5e-1 8.1e-2 4.5e-1 3.5e-2 3.5e-2 3.5e-2
400 9.5e-2 4.5e-2 3.2e-1 1.7e-2 1.7e-2 1.7e-2
800 5.7e-2 2.5e-2 2.2e-1 8.9e-3 8.9e-3 8.9e-3
1600 3.4e-2 1.4e-2 1.6e-1 4.4e-3 4.4e-3 4.4e-3

Table 3.5: Errors in L1-norm for the transport equation (3.2.23) at time t = 4; smooth initial
condition (3.2.26) and CFL= 0.5.

N W3RK3 W5RK3 LF ACAT2 ACAT4 ACAT6
50 5.4e-1 3.1e-1 4.0e-1 1.2e-1 1.2e-1 1.2e-1
100 2.9e-1 2.8e-1 2.8e-1 6.6e-2 6.7e-2 6.8e-2
200 1.7e-1 2.4e-1 2.0e-1 3.5e-2 3.6e-2 3.6e-2
400 1.0e-1 1.7e-1 1.4e-1 1.8e-2 1.9e-2 1.9e-2
800 5.9e-2 1.3e-1 1.0e-1 9.3e-3 9.8e-3 9.5e-3
1600 3.4e-2 9.0e-2 7.2e-2 4.7e-3 5.0e-3 4.7e-3

Table 3.6: Errors in L1-norm for the transport equation (3.2.23) at time t = 4; smooth initial
condition (3.2.26) and CFL= 0.9.
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Figure 3.2.8: Error vs CPU time for the transport equation with no-smooth initial condition
(3.2.26). Numerical solutions at t = 4 using CFL= 0.5 (top) and CFL= 0.9 (bottom).

Nevertheless, there is one exception: the second-order ACAT2 gives always lower errors

than the third-order WENO3-RK3. The change of CFL from 0.5 to 0.9 does not

significantly influence the behavior of the errors.

• For discontinuous solutions: ACAT methods give always lower errors than WENO-RK

schemes. The errors corresponding to ACAT4 and ACAT6 are equal to those given by

ACAT2 due to the fact since they both reduce to ACAT2 at the discontinuities due

to the adaptive technique. WENO methods give bigger errors for CFL = 0.9 than for

CFL = 0.5 due to the spurious oscillations appearing with the former value.

• The most efficient methods are ACAT6 for smooth solutions and ACAT2 for discon-

tinuous ones.

Burgers equation

Let us consider the Burgers equation

ut +

(
u2

2

)
x

= 0, (3.2.27)

with smooth initial condition (3.2.24). The problem is numerically solved in the interval

[0, 2] using a uniform mesh of 160 points, CFL= 0.9, and periodic boundary conditions.

Figures 3.2.9 and 3.2.10 show respectively the general view and the critical part zoom of

the numerical solutions obtained with the different methods at times t = {0.25, 0.5, 1, 10}.

On sub-frames, the local order of accuracy of ACAT6 is also displayed: as it can be seen,

this method reduces to first order only at the shock once it has been generated.
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Figure 3.2.9: Burgers equation with smooth condition (3.2.24). Numerical solutions obtained
at times t = 0.25 (left-top), t = 0.5 (right-top), t = 1 (left-bottom), and t = 10 (right-bottom).
Sub-frames: local accuracy order for ACAT6.
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Figure 3.2.10: Burgers equation with smooth initial condition (3.2.24). Zoom of the numerical
solutions obtained at times t = 0.25 (a)), t = 0.5 (b)), t = 1 (c)), and t = 10 (d)).

Figure 3.2.11 exhibits the errors vs CPU time plot with different CFL-conditions. We can

observe that ACAT procedures are faster and with lower error than WENO-RK schemes,

recording also that ACAT2P, P = 2, 3, reduce to ACAT2 in the region in which the discon-

tinuity has been generated. Furthermore, Tables 3.7-3.8 show the errors in L1-norm corre-

sponding to the numerical solutions of WENO3-RK3, WENO5-RK3, LF, ACAT2, ACAT4

and ACAT6 methods supposing: t = 4; smooth initial condition (3.2.24); periodic boundary

conditions; N = {50, 100, 200, 400, 800, 1600} point meshes; and CFL ∈ {0.5, 0.9}. A refer-
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N W3RK3 W5RK3 LF ACAT2 ACAT4 ACAT6
50 1.1e-2 8.0e-3 1.0e-2 4.5e-4 3.7e-4 2.9e-4
100 1.2e-3 6.4e-4 5.1e-3 1.3e-4 1.3e-4 1.3e-4
200 6.4e-4 3.1e-4 2.6e-3 4.6e-5 4.5e-5 4.5e-5
400 3.3e-4 1.6e-4 1.3e-3 2.7e-5 2.7e-5 2.7e-5
800 1.8e-4 9.5e-5 6.5e-4 2.2e-5 2.2e-5 2.2e-5
1600 1.0e-4 8.6e-6 3.1e-4 2.1e-5 2.0e-5 2.0e-5

Table 3.7: Errors in L1-norm for the Burgers equation with smooth initial condition (3.2.24).
Numerical solutions at t = 4 using CFL= 0.5.

ence solution has been computed with 3200 mesh points, so that the numerical solution is

compared with a reference solution on grid points with the same abscissa. The reference

solution plotted in Figures 3.2.9 and 3.2.10 has been computed with 1400 grid points. The

conclusions are similar to those obtained for Test 2.

1D Euler equations

Let us now skip to systems of conservation laws. In particular, we will focus on the 1D Euler

equations for gas dynamics

Ut + f(U)x = 0, (3.2.28)
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N W3RK3 W5RK3 LF ACAT2 ACAT4 ACAT6
50 1.3e-2 1.0e-2 8.3e-3 5.8e-4 2.2e-4 2.0e-5
100 1.2e-3 6.4e-4 4.2e-3 1.1e-4 4.6e-5 4.5e-5
200 6.5e-4 3.1e-4 2.1e-3 2.9e-5 2.5e-5 2.5e-5
400 3.3e-4 1.7e-4 1.0e-3 2.0e-5 2.3e-5 2.3e-5
800 1.8e-4 9.5e-5 5.4e-4 2.0e-5 2.1e-5 2.1e-5
1600 1.0e-4 5.8e-5 2.6e-4 2.1e-5 2.0e-5 2.0e-5

Table 3.8: Errors in L1-norm for the Burgers equation with smooth initial condition (3.2.24).
Numerical solutions at t = 4 using CFL= 0.9.

with

U =


ρ

ρv

E

 , f(U) =


ρv

p+ ρv2

v(E + p)

 , (3.2.29)

where ρ is the density measured in kg/m3; v, the velocity in m/s; E the total energy per

unit volume in Kg/(ms2); and p is the pressure in Pascal Pa. We assume an ideal gas with

the equation of state

p(ρ, e) = (γ − 1)ρe,

being γ the ratio of specific heat capacities of the gas taken as 1.4 and e is the internal

energy per unit mass related to E by:

E = ρ(e+ 0.5v2).

We consider four Riemann problems for (3.2.28): the Sod problem [114]; the Einfeldt problem

[36]; the right blast wave Woodward and Colella problem [128]; and the Shu-Osher problem

[112]. In the first three cases: the initial discontinuity is placed at x = 0.5 and the equations

are numerically solved at the spatial interval [0, 1]. For the Shu-Osher problem the initial

discontinuity is set at x = −4 and the equations are solved numerically on the interval [−5, 5].

In all cases the exact solution is provided by the HE-E1RPEXACT solver introduced in [120];

the CFL parameter is set to 0.8 and outflow-inflow boundary conditions are considered.

The Sod problem:

(ρ, v, p) =

 (1, 0, 1) if x < 1/2,

(0.125, 0, 0.1) if x > 1/2.
(3.2.30)

The solution involves a rarefaction wave, a contact discontinuity and a shock. We compare
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Figure 3.2.12: 1D Euler equations: the Sod problem. Numerical solutions at t = 0.25 using
CFL= 0.8 and 200 points: density (left-top), velocity (right-top), internal energy (left-bottom),
pressure (right-bottom). Sub-frames: local order of accuracy for ACAT6.

the numerical solutions with the exact one: see [120]. Figure 3.2.12 shows the solutions

provided by ACAT2P, P = 1, 2, 3, WENOq−RK3, q = 3, 5, and HLL for density, velocity,

internal energy and pressure p, using 200 mesh points. The local accuracy of ACAT6 is

also shown. Zooms of the behaviour of the numerical densities can be observed in Figure

3.2.13. As it can be seen in zooms a and b, WENO5-RK3 gives sharper but more oscillatory

solutions than ACAT methods. Moreover, increasing the accuracy order for ACAT methods

we obtain sharper results. Similar conclusions for the internal energy can be drawn: see

Figure 3.2.14.

ρ ρv E ρ ρv E ρ ρv E
N W3RK3 W5RK3 LF
50 1.6e-2 1.4e-2 3.7e-2 1.2e-2 1.0e-2 2.7e-2 3.0e-2 2.8e-2 7.0e-2
100 8.5e-3 8.2e-3 1.9e-2 6.5e-3 6.5e-3 1.5e-2 1.9e-2 1.8e-2 4.1e-2
200 4.3e-3 4.2e-3 9.4e-3 3.2e-3 3.2e-3 7.5e-3 1.2e-2 1.1e-2 2.0e-2
400 2.1e-3 2.0e-3 4.6e-3 1.5e-3 1.5e-3 3.7e-3 7.3e-3 6.7e-3 1.2e-2
800 9.5e-4 9.6e-4 2.2e-3 7.6e-4 7.7e-4 1.8e-3 4.4e-3 4.0e-3 8.2e-3
1600 4.7e-4 4.2e-4 9.4e-4 4.7e-4 4.4e-4 9.1e-4 2.5e-3 2.3e-3 4.5e-3

Table 3.9: 1D Euler equations: Sod problem. Errors in L1-norm for ρ, ρv and E computed with
WENOq-RK3, q = 3, 5, and Lax-Friedrichs at time t = 0.25 using CFL= 0.5.

Tables 3.9-3.10 exhibit the error in L1−norm for density ρ, momentum ρv and energy E

computed with ACAT2P, P = 1, 2, 3, WENOq−RK3, q = 3, 5, and HLL first order method
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Figure 3.2.13: 1D Euler equations: the Sod problem. Numerical densities at t = 0.25 using
CFL= 0.8 and 200 points: general view and zooms close to the points a,b, c and d.
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Figure 3.2.14: 1D Euler equations: the Sod problem. Numerical internal energies at t = 0.25
using CFL= 0.8 and 200 points: general view and zooms close to the points a,b, c and d.

at time t = 0.25 adopting CFL= 0.5. What we can seen is that ACAT methods produce

similar error as WENO procedure that seems to be in contrast with density and Energy

plots, but in this table the CFL is set to 0.5 than the WENO reconstructions do not produce

spurious oscillations.

Figure 3.2.15 shows the errors vs CPU times and errors in L1-norm respectively corre-

sponding to the numerical solutions of WENO3-RK3, WENO5-RK3, LF, ACAT2, ACAT4

and ACAT6 methods for the Sod problem using: t = 0.25; N = {50, 100, 200, 400, 800, 1600}
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Figure 3.2.15: Error vs CPU time for the Sod problem. Numerical solutions at t = 0.25 using
CFL= 0.5.

ρ ρv E ρ ρv E ρ ρv E
N ACAT2 ACAT4 ACAT6
50 1.5e-2 1.3e-2 3.2e-2 1.5e-2 1.3e-2 3.2e-2 1.5e-2 1.3e-2 3.2e-2
100 8.5e-3 7.9e-3 1.7e-2 8.4e-3 7.9e-3 1.7e-2 8.4e-3 7.9e-3 1.7e-2
200 4.3e-3 4.0e-3 8.8e-3 4.2e-3 3.9e-3 8.8e-3 4.2e-3 3.9e-3 8.8e-3
400 2.1e-3 1.9e-3 4.4e-3 2.0e-3 1.9e-3 4.4e-3 2.0e-3 1.9e-3 4.4e-3
800 9.9e-4 9.5e-4 2.2e-3 9.5e-4 9.2e-4 2.2e-3 9.4e-4 9.1e-4 2.2e-3
1600 4.5e-4 4.0e-4 9.4e-4 4.6e-4 4.1e-4 9.3e-4 3.9e-4 3.8e-4 9.3e-4

Table 3.10: 1D Euler equations: Sod problem. Errors in L1-norm for ρ, ρv and E computed with
ACAT2P, p = 1, 2, 3, at time t = 0.25 using CFL= 0.5.

point meshes; and CFL = 0.5. The reference solution is the exact one provided by the

HE-E1RPEXACT algorithm. The following conclusions can be drawn:

• The errors given by all the methods are comparable under CFL= 0.5.

• ACAT2 is the most efficient method, followed by WENO3-RK3; the efficiencies of

ACAT4 and WENO5-RK3 are comparable; ACAT6 is the least efficient method in

this case. Please note first of all that a more restricted CFL-condition is adopted;

sencondly, due to the adaptivity property, the ACAT2P reduce to ACAT2 close a

discontinuity; finally, a non-optimized Matlab implementation of the methods has been

used to compute the numerical solutions. ACAT methods are highly parallelisable and

do not need the storage of intermediate temporal stages, so that an optimized parallel

implementation can lead to very different conclusions.

The 123 Einfeldt problem:
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The solution of this problem involves two strong rarefaction waves and an intermediate state

that is close to vacuum, what makes this problem a hard test for numerical methods.

(ρ, v, p) =

 (1.0,−2.0, 0.4) if x < 1/2,

(1.0, 2.0, 0.4) if x > 1/2.
(3.2.31)
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Figure 3.2.16: 1D Euler equations: the 123 Einfeldt problem. Numerical solutions at ts = 0.15
using CFL= 0.8 and 200 points. Density obtained with ACAT6 and graph of the smoothness
indicator ψ3 for t = ts/4 (left-top); ts/2 (right-top); 3ts/4 (left-bottom); ts (right-bottom).
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Figure 3.2.17: 1D Euler equations: the 123 Einfeldt problem. Numerical solutions at t = 0.15
using CFL= 0.8 and 200 points: general view (left-top). Zooms close to the points a (left-bottom),
b(right-top), and c (right-bottom).

ACAT methods give stable solutions under CFL≤ 1 condition: Figure 3.2.16 shows the
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time evolution of the numerical results obtained with ACAT6. The smoothness indicators

ψ3
i+ 1

2

is also depicted: it can be seen how the discontinuities of the first order derivatives

are correctly captured. It can be also observed that, while at the rarefaction waves order

6 is selected, lower accuracy is used at the constant regions close to the boundaries: this

order reduction is due to the numerical oscillations produced by the 6th order method. A

comparison of ACAT2P, P = 1, 2, 3, with different methods, WENOq−RK3, q = 3, 5, and

HLL first order, at time t = 0.15 is shown in Figure 3.2.17 using 200 mesh points, where

ACAT methods provide similar stable solutions. Although WENO solutions are stable, the

third-order one is diffusive and the fifth-order one is oscillatory.

The right blast wave problem of Woodward & Colella:

The solution of this problems involves a rarefaction waves and two strong shock that make

this an hard test for the numerical schemes.

(ρ, v, p) =

 (1.0, 0.0, 1000) if x < 1/2,

(1.0, 0.0, 0.01) if x > 1/2.
(3.2.32)
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Figure 3.2.18: 1D Euler equations: right blast wave of the Woodward & Colella problem. Nu-
merical solutions at time t = 0.012 using CFL= 0.8 and 450 points (left). Zooms close to the shocks
(center and right).

For this tests we use 450 mesh points. The solution involves two strong shocks. Figure

3.2.18 shows the numerical densities obtained at time t = 0.012 with ACAT2P, P = 1, 2, 3,

WENOq−RK3, q = 3, 5, and HLL schemes. It can be observed that WENO methods

produce oscillating solutions, while ACAT methods give stable solutions whose accuracy
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increase with the order. In particular, this behavior is emphasized on the two zooms close

to the shocks.

The Shu-Osher problem: The solution of this problem concerns a strong shock with a

wavelike initial condition that increases the difficulty of the problem numerically.

(ρ, v, p) =

 (27/7, 2.629369, 10 + 1/3) if x < −4,

(1 +
1

5
sin(5πx), 0.0, 1) if x > −4.

(3.2.33)
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Figure 3.2.19: 1D Euler equations: Shu-Osher problem. Numerical solutions at time t = 1 using
CFL= 0.8 and 450 points (left). Zooms close to the shock and wavelike parts (center and right).

Figure 3.2.19 shows the solution provided by ACAT2P, P = 1, 2, 3, WENOq−RK3,

q = 3, 5, 7 and HLL methods for density using 450 mesh points. We observe that first order

HLL is very diffusive in the wavelike region; ACAT procedures present some diffusion close

the undulating part and it seems that WENO5−7 gives better result but they also overshoot

the exact solution.

3.3 2D Adaptive Compact Approximate Taylor Method

In this section we focus on the extension of ACAT methods to non-linear two-dimensional

systems of hyperbolic conservation laws

Ut + f(U)x + g(U)y = 0. (3.3.1)
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The following multi-index notation will be used:

i = (i1, i2) ∈ Z× Z,

and

0 = (0, 0), 1 = (1, 1),
1

2
= (

1

2
,
1

2
), e1 = (1, 0), e2 = (0, 1).

We consider Cartesian meshes with nodes

xi = (i1∆x, i2∆y).

Using this notation, the general form of the CAT2p method will be as follows:

Un+1
i = Un

i +
∆t

∆x

[
F p

i− 1
2
e1
− F p

i+ 1
2
e1

]
+

∆t

∆y

[
Gp

i− 1
2
e2
−Gp

i+ 1
2
e2

]
, (3.3.2)

where the numerical fluxes F p

i+ 1
2
e1
, Gp

i+ 1
2
e2

will be computed using the values of the numerical

solution Un
i in the p2-point stencil centered at xi+1

2
= ((i1 + 1

2
)∆x, (i2 + 1

2
)∆y)

Sp
i+1

2

= {xi+j, j ∈ Ip},

where

Ip = {j = (j1, j2) ∈ Z× Z, −p+ 1 ≤ jk ≤ p, k = 1, 2}.

See Figure 3.3.1 for an idea of the 2D meshes for p = 2.

Figure 3.3.1: Stencil S2
i+1

2

centered in x1
2

= 1
2(∆x,∆y)
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3.3.1 2D CAT2

In order to show the extension of CAT2P procedure let us start with the expression of the

CAT2. In particular taking in mind Figure 3.3.1, the numerical fluxes are constructed as

follows:

F 1
i+ 1

2
e1

=
1

4

(
f 1,n+1
i,0 + f 1,n+1

i,e1
+ fni + fni+e1

)
, (3.3.3)

G1
i+ 1

2
e2

=
1

4

(
g1,n+1
i,0 + g1,n+1

i,e2
+ gni + gni+e2

)
, (3.3.4)

where

f 1,n+1
i,j = f

(
Un
i+j + ∆tU

(1)
i,j

)
,

g1,n+1
i,j = g

(
Un
i+j + ∆tU

(1)
i,j

)
,

for j = 0, e1 in the x direction, and j = 0, e2 in the y direction.

Remark 3.3.1 Despite what happen for the 1D reconstruction, the first time derivative of

U, U
(1)
i,j , does not coincide in the 2D-grid points. Indeed, observe that U (1)

i,0 6= U
(1)
i,e1

and

U
(1)
i,0 6= U

(1)
i,e2
.

Note that, in the 1D case, U (1)
i,0 = U

(1)
i,1 as in step 2.

Hence, the first time derivatives U (1)
i,j are so defined:

U
(1)
i,0 = − 1

∆x

(
fni+e1

− fni
)
− 1

∆y

(
gni+e2

− gni
)
,

U
(1)
i,e1

= − 1

∆x

(
fni+e1

− fni
)
− 1

∆y

(
gni+1 − gni+e1

)
,

U
(1)
i,e2

= − 1

∆x

(
fni+1 − fni+e2

)
− 1

∆y

(
gni+e2

− gni
)
,

where

fni+j = f(Un
i+j), gni+j = g(Un

i+j), ∀j.

Finally, the 2D CAT2 method is so get:

Un+1
i = Un

i +
∆t

∆x

[
F 1
i− 1

2
e1
− F 1

i+ 1
2
e1

]
+

∆t

∆y

[
G1

i− 1
2
e2
−G1

i+ 1
2
e2

]
, (3.3.5)

PhD Thesis, Chapter 3 81



3.3. 2D Adaptive Compact Approximate Taylor Method

3.3.2 2D CAT2P

The high order CAT2p iterative procedure are computed as following:

1. Define

f
(0)
i,j = fni+j, g

(0)
i,j = gni+j, j ∈ Ip.

2. For k = 2, . . . , 2p:

(a) Compute

U
(k−1)
i,j = −A1,j1

p (f
(k−2)
i,(∗,j2),∆x)− A1,j2

p (g
(k−2)
i,(j1,∗),∆y), j ∈ Ip.

(b) Compute

fk−1,n+r
i,j = f

(
Un
i+j +

k−1∑
l=1

(r∆t)l

l!
U

(l)
i,j

)
, j ∈ Ip, r = −p+ 1, . . . , p.

(c) Compute

f
(k−1)
i,j = Ak−1,0

p (fk−1,∗
i,j ,∆t), j ∈ Ip.

3. Compute

F p

i+ 1
2
e1

=

2p∑
k=1

∆tk−1

k!
A0,1/2
p (f̃

(k−1)
i,(∗,0) ,∆x), (3.3.6)

Gp

i+ 1
2
e2

=

2p∑
k=1

∆tk−1

k!
A0,1/2
p (g̃

(k−1)
i,(0,∗),∆y). (3.3.7)

The notation used for the approximation of the spacial partial derivatives is the following:

Ak,qp (fi,(∗,j2),∆x) =
1

∆xk

p∑
l=−p+1

γk,qp,l fi,(l,j2)

Ak,qp (gi,(j1,∗),∆y) =
1

∆yk

p∑
l=−p+1

γk,qp,l gi,(j1,l)

Remark 3.3.2 In the last step of the algorithm above the set Ip can be replaced by its

(2p− 1)-point subset

I0
p = {j = (j1, j2) such that j1 = 0 or j2 = 0}
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since only the corresponding values of f̃ (k−1)
i,j are used to compute the numerical fluxes (3.3.6)

and (3.3.7).

3.3.3 2D ACAT2P

Once the numerical flux of the CAT2p method has been introduced, the numerical flux

ACAT2 is extended to the two-dimensional problems through the flux-limiter scheme as

follows:

F ∗
i+ 1

2
e1

= ϕi+ 1
2
e1
F 1
i+ 1

2
e1

+ (1− ϕ1i+ 1
2
e1

)F lo
i+ 1

2
e1
, (3.3.8)

G∗
i+ 1

2
e2

= ϕi+ 1
2
e2
G1

i+ 1
2
e2

+ (1− ϕi+ 1
2
e2

)Glo
i+ 1

2
e2
, (3.3.9)

where, F lo
i+ 1

2
e1

and Glo
i+ 1

2
e2

are some robust first order methods; ϕi+ 1
2
e1

and ϕi+ 1
2
e2

are the

flux limiters computed dimension by dimension.

Finally, the expression of the ACAT2P method for two-dimensional problems is

Un+1
i = Un

i +
∆t

∆x

(
FA1

i− 1
2
e1
− FA1

i+ 1
2
e1

)
+

∆t

∆y

(
GA2

i− 1
2
e2
−GA2

i+ 1
2
e2

)
, (3.3.10)

where the numerical fluxes are so defined:

firstly, let us consider the sets

A1 = {p ∈ {2, . . . , P} such that ψp
i+ 1

2
e1
≈ 1}, (3.3.11)

A2 = {p ∈ {2, . . . , P} such that ψp
i+ 1

2
e2
≈ 1}, (3.3.12)

where ψp
i+ 1

2
e1
, ψp

i+ 1
2
e2

are the smoothness indicators introduced in Section 3.2.2 computed

dimension by dimension. Then define:

FA1

i+ 1
2
e1

=

F
∗
i+ 1

2
e1

ifA1 = ∅;

F p1
i+ 1

2
e1

where p1 = max(A1) otherwise;
(3.3.13)

GA2

i+ 1
2
e2

=

G
∗
i+ 1

2
e2

if A2 = ∅;

Gp2
i+ 1

2
e2

where p2 = max(A2) otherwise.
(3.3.14)

Observe that, since the smoothness indicators are computed dimension by dimension, a
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rectangular stencil

Sp1,p2
i+1

2

= {xi,j, i1 − p1 + 1 ≤ j1 ≤ i1 + p1, i2 − p2 + 1 ≤ j2 ≤ i2 + p2},

is used in practice to compute the numerical fluxes F p1
i+ 1

2
e1
, Gp2

i+ 1
2
e2
. The extension of CAT

methods to such rectangular stencils is straightforward.

3.3.4 Numerical experiments

In this section we focus on the behaviour of the ACAT2P procedure applied to 2D problem:

scalar transport equation and the 2D Euler equation for gas dynamic. As flux limiter func-

tion, for 2D ACAT2 method, the minmod flux limiter [120] is used direction by direction;

and the smoothness indicators (3.2.9) are considered direction by direction. ACAT2P is

again compared with WENO(2p + 1) finite difference methods based on the Lax-Friedrichs

splitting techniques (see [110]) combined with SSPRK3 [48] for the time reconstruction.

2D Transport equation

Let us consider the 2D transport equation

ut + aux + buy = 0, (3.3.15)

with initial condition

u =

 1 if x+ y ≤ 1/4,

0 otherwise.
(3.3.16)

We solve (3.3.15) on the spatial domain [0, 2]× [0, 2], using: a, b = 1, 100×100-point grid,

CFL= 0.5, free boundary conditions and t = 1. Figure 3.3.2 shows a 1D cut over the first

diagonal y = x of the numerical solutions obtained with ACAT2, ACAT4, WENO3-RK3

and WENO5-RK3 at time t = 1.

2D Euler equations

Let us consider the two-dimensional Euler equations for gas dynamics

Ut + f(U)x + g(U)y = 0, (3.3.17)
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Figure 3.3.2: 2D Transport equation. Solutions obtained with ACAT2, ACAT4, WENO3-RK3
and WENO5-RK3 at time t = 1: cut with a vertical plane passing through the line y = x . Subplot:
zoom close to the discontinuity

where

U =


ρ

ρv

ρw

E

 , f(U) =


ρv

ρv2 + p

ρvw

v(E + p)

 , g(U) =


ρw

ρvw

ρw2 + p

w(E + p)

 .

Here, ρ is the density; v, w are the components of the velocity in the x and y directions; E,

the total energy per unit volume; p, the pressure. We consider the equation of state

p(ρ, v, w,E) = (γ − 1)(E − ρ

2
(v2 + w2)), (3.3.18)

and γ is the ratio of specific heat capacities of the gas taken as 1.4.

We solve numerically (3.3.17) using ACAT2 and ACAT4 for two of the nineteen config-

urations of the 2-D Riemann problems presented in [78] whose initial conditions are given

in Table 3.11. These initial conditions consist of constant states at every quadrant of the

spatial domain that are chosen so that the 1D Riemann problems corresponding to two ad-

jacent states consist of only one one-dimensional simple wave: a shock S, a rarefaction wave

R, or a slip line i.e. a contact discontinuity with discontinuous tangential velocity J. The

sub-indexes (l, r) ∈ {(2, 1), (3, 2), (3, 4), (4, 1)} indicate the involved quadrants. For shocks

and rarefaction waves an over-arrow indicate the direction (backward or forward). And for

contact discontinuities a sign +/− is used (instead of the over-arrow), to denote whether it
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is a positive or negative slip line.

Test 1 Lax configuration 6
p2 = 1.0 ρ2 = 2.0 p1 = 1.0 ρ1 = 1.0
v2 = 0.75 w2 = 0.5 v1 = 0.75 w1 = −0.5 J−2,1
p3 = 1.0 ρ3 = 1.0 p4 = 1.0 ρ4 = 3.0 J+

3,2 J+
4,1

v3 = −0.75 w3 = 0.5 v4 = −0.75 w4 = −0.5 J−3,4
Test 2 Lax configuration 8
p2 = 1.0 ρ2 = 1.0 p1 = 0.4 ρ1 = 0.5197

v2 = −0.6259 w2 = 0.1 v1 = 0.1 w1 = 0.1
←−
R 2,1

p3 = 1.0 ρ3 = 0.8 p4 = 1.0 ρ4 = 1.0 J−3,2
←−
R 4,1

v3 = 0.1 w3 = 0.1 v4 = 0.1 w4 = −0.6259 J−3,4

Table 3.11: 2D Euler equations: initial conditions.

These Riemann problems are numerically solved using a (400× 400)-point grid and free

boundary conditions. The CFL condition used to set the time steps is the following

∆t = CFL min

(
∆x

smax
x

,
∆y

smax
y

)
,

where

smax
x = max

i,j
{
∣∣vni,j∣∣+ ci,j}, smax

y = max
i,j
{
∣∣wni,j∣∣+ ci,j},

with

c =

√
γp

ρ
.

The CFL parameter is set to 0.4 and time simulation t = {0.3, 0.25} respectively.

Figures 3.3.3 and 3.3.5 show the numerical solutions for the density given by ACAT2,

ACAT4, WENO3-RK3, and WENO5-RK5. In addition for each case the smoothness indi-

cators ψ1
x, ψ1

y , ψ2
x, ψ2

y are shown in figures 3.3.4 and 3.3.6. In all cases, the solutions are

stable and similar to those obtained in [74] with a finite volume method. However, the

computational cost increases with the order more than for 1D problems.

Tables 3.12-3.13 show the error in L1-norm corresponding to the solutions provided by

ACAT2, ACAT4, WENO3-RK3 and WENO5-RK3 methods. The reference solution is com-

puted using a 1600× 1600-point mesh and CFL= 0.4.
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Figure 3.3.3: 2D Euler equations: Lax configuration 6. Contour plots of the density at time t =
0.3 obtained with ACAT2 (left-top), ACAT4 (right-top), WENO3-R3 (left-bottom) and WENO5-R3
(right-bottom)

Figure 3.3.4: 2D Euler equations: Lax configuration 6. Contour plots of the smoothness indicators
for ACAT2 and ACAT4. ψ1

x and ψ1
y (left). ψ2

x and ψ2
y (right).
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Figure 3.3.5: 2D Euler equations: Lax configuration 8. Contour plots of the density at time t =
0.25 obtained with ACAT2 (left-top), ACAT4 (right-top), WENO3-R3 (left-bottom) and WENO5-
R3 (right-bottom)

Figure 3.3.6: 2D Euler equations: Lax configuration 8.Contour plots of the smoothness indicators
for ACAT2 and ACAT4. ψ1

x and ψ1
y (left). ψ2

x and ψ2
y (right).
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WENO3-RK3 ACAT2
N ρ ρv ρw E ρ ρv ρw E
50 9.8e-2 9.3e-2 6.9e-2 9.1e-2 1.1e-1 1.1e-1 8.0e-2 8.9e-2
100 6.3e-2 6.0e-2 4.3e-2 6.2e-2 7.7e-2 7.7e-2 5.2e-2 6.8e-2
200 3.7e-2 3.2e-2 2.6e-2 3.8e-2 4.8e-2 4.6e-2 3.2e-2 4.0e-2
400 2.2e-2 1.6e-2 1.4e-2 2.1e-2 2.8e-2 2.6e-2 2.0e-2 2.7e-2

Table 3.12: 2D Euler equations: Lax configuration 6. Errors in L1-norm for ρ, ρv, ρw and E,
using CFL= 0.4 and t = 0.3.

WENO5-RK3 ACAT4
ρ ρv ρw E ρ ρv ρw E

50 8.1e-2 8.0e-2 5.9e-2 7.0e-2 7.8e-2 8.3e-2 5.9e-2 7.1e-2
100 5.0e-2 4.9e-2 3.5e-2 5.2e-2 6.0e-2 5.3e-2 5.0e-2 3.3e-2
200 2.8e-2 2.6e-2 2.3e-2 3.2e-2 3.8e-2 2.4e-2 2.6e-2 2.0e-2
400 1.4e-2 1.3e-2 1.8e-2 1.7e-2 2.0e-2 1.3e-2 1.2e-2 1.6e-2

Table 3.13: 2D Euler equations: Lax configuration 6. Errors in L1-norm for ρ, ρv, ρw and E,
using CFL= 0.4 and t = 0.3.

PhD Thesis, Chapter 3 89



3.3. 2D Adaptive Compact Approximate Taylor Method

PhD Thesis, Chapter 3 90



Chapter 4

Adaptive Compact Approximate

Taylor Method for systems of balance

laws and well-balanced property

This chapter is designed to extend the ACAT scheme for hyperbolic nonlinear systems of

balance laws

Ut + f(U)x = S(U)Hx, (4.0.1)

with initial condition U(x, 0) = U0(x), where U : R × [0,+∞) → Rd; f : Rd → Rd is the

flux function; S : Rd → Rd is the source term; and H : R → R is a known function. PDE

systems of this form appear in many fluid models in different contexts: shallow water models,

multiphase flow models, gas dynamic, elastic wave equations, etc.

More precisely, we focus on the extension of high-order Lax-Wendroff methods to systems

(4.0.1).

Following the strategy in [45] (see also [13, 34]), (4.0.1) is first written in conservative

form through the definition of a ‘combined flux’ formed by the sum of flux function f and

the indefinite integral of the source term: more precisely, let us introduce the function F

given by

F(U)(x, t) = f(U(x, t))−
∫ x

−∞
S(U(σ, t))Hx(σ) dσ, (4.0.2)

assuming that the integral is finite. Then, the equality

F(U)x = f(U)x − S(U)Hx,
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allows one to write the system of balance laws (4.0.1) in the form

Ut + F(U)x = 0. (4.0.3)

4.1 Compact Approximate Taylor Method for Balance

Law

The formal expression of CAT2P for systems of balance law (4.0.3) is given by:

Un+1
i = Un

i +
∆t

∆x

(
FP
i− 1

2
− FP

i+ 1
2

)
, (4.1.1)

where,

FP
i+ 1

2
=

2P∑
k=1

∆tk−1

k!
A

0,1/2
P

(
F (k−1)
i,∗

)
. (4.1.2)

Here, F (k)
i,j are local approximation of ∂(k)

t F(U)(xi+j, tn) that are computed by adapting the

algorithm described in Section 3.1 to system (4.0.3). Formally, the algorithm is as follows:

• Define

F
(0)
i,j := f(Un

i+j), j = −P + 1, . . . , P ;

I
(0)
i,j :=

∫ xi+j

−∞
S(U(x, tn))Hx(x) dx, j = −P + 1, . . . , P.

• For k = 1, . . . , 2P − 1 :

– Compute for all j = −P + 1, . . . , P

U
(k)
i,j = −A1,j

P

(
F

(k−1)
i,∗ ,∆x

)
+ A1,j

P

(
I

(k−1)
i,∗ ,∆x

)
.

– Define for all j, r = −P + 1, . . . , P

In+r
i,j :=

∫ xi+j

−∞
S(U(x, tn+r))Hx(x) dx,

F k,n+r
i,j := f

(
Uk,n+r
i,j

)
,

where Uk,n+r
i,j is the approximation of U(xi+j, tn+r) given by the Taylor expansion

PhD Thesis, Chapter 4 92



4.1. Compact Approximate Taylor Method for Balance Law

in time:

Uk,n+r
i,j = Un

i+j +
k∑

m=1

(∆t)m

m!
U

(m)
i,j .

– Compute for all j = −P + 1, . . . , P

F
(k)
i,j = Ak,0P

(
F k,∗
i,j ,∆t

)
, I

(k)
i,j = Ak,0P

(
I∗i,j,∆t

)
.

The ’numerical fluxes’ are then defined by:

FP
i+ 1

2
= F P

i+ 1
2
− IP

i+ 1
2

(4.1.3)

where

F P
i+ 1

2
=

2P∑
k=1

∆tk−1

k!
A

0,1/2
P (F

(k−1)
i,∗ ,∆x), (4.1.4)

IP
i+ 1

2
=

2P∑
k=1

∆tk−1

k!
A

0,1/2
P (I

(k−1)
i,∗ ,∆x). (4.1.5)

4.1.1 CAT2P for balance law

The CAT2P algorithm for balance laws, shown previously, is formal; since it requires the com-

putation of integrals that depend on the exact solution in intervals of the form (−∞, xi+j].

In order to be computationally implementable, let us first rewrite it using only integrals in
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bounded intervals. To do that, the key point is the following chain of equalities:

A1,j
P

(
I

(k−1)
i,∗ ,∆x

)
=

1

∆x

P∑
s=−P+1

γ1,j
P,sI

(k−1)
i,s

=
1

∆x

P∑
s=−P+1

γ1,j
P,sA

k−1,0
P

(
I∗i,s,∆t

)
=

1

∆x∆tk−1

P∑
s=−P+1

γ1,j
P,s

P∑
r=−P+1

γk−1,0
P,r Ik,n+r

i,s

=
1

∆x∆tk−1

P∑
r=−P+1

γk−1,0
P,r

P∑
s=−P+1

γ1,j
P,s

∫ xi+s

−∞
S(U(x, tn+r))Hx(x) dx

=
1

∆x∆tk−1

P∑
r=−P+1

γk−1,0
P,r

P∑
s=−P+1

γ1,j
P,s

(∫ xi+s

−∞
S(U(x, tn+r))Hx(x) dx

−
∫ xi−P+1

−∞
S(U(x, tn+r))Hx(x) dx

)
=

1

∆x∆tk−1

P∑
r=−P+1

γk−1,0
P,r

P∑
s=−P+1

γ1,j
P,s

∫ xi+s

xi−P+1

S(U(x, tn+r))Hx(x) dx

where the equality
P∑

s=−P+1

γ1,j
P,s = 0, j = −P + 1, . . . , P,

has been used. Remember that, an interpolatory formula of numerical differentiation that

uses 2P points is exact at least for polynomials of degree 2P − 1 and thus it is exact for

constant polynomials. Therefore, if the formula is applied to the constant polynomial p ≡ 1,

we have

0 = p′(xi+j) = A1,j
P (p,∆x) =

P∑
s=−P+1

γ1,j
P,sp(xi+s) =

P∑
s=−P+1

γ1,j
P,s.

By introducing the notation

Imi,j,l :=

∫ xi+l

xi+j

S(U(x, tm))Hx(x) dx,

I
(k−1)
i,j,l := Ak−1,0

P

(
I∗i,j,l,∆t

)
,
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we obtain

A1,j
P

(
I

(k−1)
i,∗ ,∆x

)
=

1

∆x∆tk−1

P∑
r=−P+1

γk−1,0
P,r

P∑
s=−P+1

γ1,j
P,sI

n+r
i,−P+1,s

=
1

∆x

P∑
r=−P+1

γk−1,0
P,r I

(k−1)
i,−P+1,r

= A1,j
P

(
I

(k−1)
i,−P+1,∗,∆x

)
,

where only integrals in intervals of the form [xi−P+1, xi+s] appear for all s = −P + 1, . . . , P.

Observe that I(k)
i−P+1,i−P+1 = 0 for all k.

Concerning the expression of the numerical method, observe that:

IP
i+ 1

2
− IP

i− 1
2

=
2P∑
k=1

∆tk−1

k!

(
A

0,1/2
P (I

(k−1)
i,∗ ,∆x)− A0,1/2

P (I
(k−1)
i−1,∗ ,∆x)

)
=

2P∑
k=1

∆tk−1

k!

P∑
j=−P+1

γ
0,1/2
P,j

(
I

(k−1)
i,j − I(k−1)

i−1,j

)
=

2P∑
k=1

∆tk−1

k!

P∑
j=−P+1

γ
0,1/2
P,j Ak−1,0

P

(
I∗i,j − I∗i−1,j,∆t)

)
.

Since

In+r
i,j − In+r

i−1,j = In+r
i,j−1,j =

∫ xi+j

xi+j−1

S(U(x, tn+r))Hx(x) dx, (4.1.6)

if we define

I(k−1)
i,j = Ak−1,0

P

(
I∗i,j−1,j,∆t

)
, (4.1.7)

we have

IP
i+ 1

2
− IP

i− 1
2

=
2P∑
k=1

∆tk−1

k!
A

0,1/2
P (I(k−1)

i,∗ ,∆x),

so that (4.1.1) can be written in equivalent form

Un+1
i = Un

i +
∆t

∆x

(
F P
i− 1

2
− F P

i+ 1
2

+ SPi

)
, (4.1.8)

where

SPi =
2P∑
k=1

∆tk−1

k!
A

0,1/2
P (I(k−1)

i,∗ ,∆x). (4.1.9)

Observe that only integrals (4.1.6) in intervals of length ∆x appear in the expression of the
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numerical source term.

Quadrature formulas

Furthermore, in order to have an implementable algorithm, all the integrals appearing in

source term (4.1.9) might be approximated using quadrature formulas combined with the

approximations Uk,n+r
i,j of the exact solution that are available at every stage. To do this,

given i and j = −P + 2, . . . , P , we consider at [xi+j−1, xi+j] the interpolatory quadrature

formula ∫ xi+j

xi+j−1

f(x) dx ≈ ∆x
P∑

s=−P+1

ai,jP,sf(xi+s)

whose nodes are xi+s, s = −P + 1, . . . , P . This formula will be used to approximate the

integrals appearing at the k−th stage of the algorithm as follows: given two indices j1 < j2

Imi,j1,j2 ≈ Ĩk,mi,j1,j2 := ∆x

j2∑
s=j1+1

P∑
l=−P+1

ai,sP,lS(Uk,m
i,l )Hx(xi+l).

Taking into account these approximations of the integral terms, the algorithm is finally

as follows:

• Compute

F
(0)
i,j = f(Un

i+j), j = −P + 1, . . . , P ;

Ĩ
(0)
i,j−1,j = ∆x

P∑
l=−P+1

ai,jP,lS(Un
i+l)Hx(xi+l), j = −P + 2, . . . , P ;

Ĩ
(0)
i,−P+1,−P+1 = 0;

Ĩ
(0)
i,−P+1,j =

j∑
s=−P+2

Ĩ
(0)
i,s−1,s, j = −P + 2, . . . , P.

• For k = 1, . . . , 2P − 1 :

– Compute for all j = −P + 1, . . . , P

U
(k)
i,j = −A1,j

P

(
F

(k−1)
i,∗ ,∆x

)
+ A1,j

P

(
I

(k−1)
i,−P+1,∗,∆x

)
.
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– Compute for all j, r = −P + 1, . . . , P

Uk,n+r
i,j = Un

i+j +
k∑

m=1

(∆t)m

m!
U

(m)
i,j .

– Compute for all j, r = −P + 1, . . . , P

F k,n+r
i,j = f

(
Uk,n+r
i,j

)
,

– Compute for all r = −P + 1, . . . , P , j = −P + 2, . . . , P

Ĩk,n+r
i,j−1,j = ∆x

P∑
l=−P+1

ai,jP,lS(Uk,n+r
i,l )Hx(xi+l).

– Compute for all j = −P + 2, . . . , P

Ĩ
(k)
i,j−1,j = Ak,0P

(
Ĩk,∗i,j−1,j,∆t

)
.

– Compute

F
(k)
i,j = Ak,0P

(
F k,∗
i,j ,∆t

)
, j = −P + 1, . . . , P ;

Ĩ
(k)
i,−P+1,−P+1 = 0;

Ĩ
(k)
i,−P+1,j =

j∑
s=−P+2

Ĩ
(k)
i,s−1,s j = −P + 2, . . . , P.

Once the algorithm has been executed, the integrals already computed can be used to

approximate the source term as follows:

• For k = 1, . . . , 2P define

Ĩ(k−1)
i,j =


Ĩ

(k−1)
i−1,j,j+1 if j = −P + 1, . . . , 0;

Ĩ
(k−1)
i,j−1,j if j = 1, . . . , P .

• Compute

S̃Pi =
2P∑
k=1

∆tk−1

k!
A

0,1/2
P (Ĩ(k−1)

i,∗ ,∆x).
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Observe that the first P integral terms I(k−1)
i,j appearing in the expression of the numerical

source term (4.1.9) are approximated with the values I(k−1)
i−1,j,j+1, used to compute the flux at

the intercell i − 1
2
, and the P last ones by I(k−1)

i,j−1,j, used to compute the flux at the intercell

i+ 1
2
.

The final expression of the numerical method is then

Un+1
i = Un

i +
∆t

∆x

(
F P
i− 1

2
− F P

i+ 1
2

+ S̃Pi

)
, (4.1.10)

where F P
i+ 1

2

is given by (4.1.4).

4.1.2 CAT2 for balance law

Let us illustrate the above numerical method in the easiest case P = 1. In this case, the

quadrature formula used to compute integrals in intervals of length ∆x is the trapezoidal

rule: ∫ xi+1

xi

f(x) dx ≈ ∆x

2

(
f(xi) + f(xi+1)

)
.

The numerical method is then as follows: for every i

• Compute

U
(1)
i,j = − 1

∆x

(
f(Un

i+1)− f(Un
i )
)

+
1

2

(
S(Un

i )Hx(xi) + S(Un
i+1)Hx(xi+1)

)
, j = 0, 1.

• Compute

U1,n+1
i,j = Un

i+j + ∆t U
(1)
i,j , j = 0, 1.

Then, define

F 1
i+ 1

2
:=

1

4

(
f(Un

i ) + f(Un
i+1) + f(U1,n+1

i,0 ) + f(U1,n+1
i,1 )

)
(4.1.11)

S̃1
i :=

∆x

8

(
(S(Un

i−1) + S(U1,n+1
i−1,0 ))Hx(xi−1) + (S(Un

i ) + S(U1,n+1
i−1,1 ))Hx(xi) (4.1.12)

+(S(Un
i ) + S(U1,n+1

i,0 ))Hx(xi) + (S(Un
i+1) + S(U1,n+1

i,1 ))Hx(xi+1)
)
.

The numerical method is then (4.1.10) with P = 1.
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4.2 Adaptive Compact Approximate Taylor Method

for Balance Law

As we have seen, the Compact Approximate Taylor (CAT) schemes (3.1.1) for systems

of conservation laws are linearly stable in the L2−sense under the usual CFL condition.

Unfortunately, spurious oscillations may appear close to a discontinuity of the solution, as it

happens for the Lax-Wendroff method: see [15]. Then, following the same idea of Chapter

3, we use an extended version of the shock-capturing technique introduced in [14] based on a

family of high-order smoothness indicators adapted to systems of balance laws. The idea is

as follows: once the approximations at time tn have been computed, the candidate stencils

to compute F p

i+ 1
2

are

Sp
i+ 1

2

= {xi−p+1, . . . , xi+p}, p = 1, . . . , P.

The selected stencil is the one with maximal length among those in which the solution at

time tn is smooth, according to some smoothness indicators ψp
i+ 1

2

for p = 1, . . . , P . If a

discontinuity is detected in the stencil S1
i+ 1

2

a robust first-order numerical method is used.

The ingredients of this strategy are described below: a robust first order method; a family

of smoothness indicators and CAT2P scheme for systems of balance laws.

First-order numerical method

As first-order robust scheme to be combined with CAT2P methods for balance laws, we

select the Lax-Friedrichs method applied to (4.0.3) what leads to the formal expression:

Un+1
i = Un

i +
∆t

∆x

(
FLF
i− 1

2
− FLF

i+ 1
2

+ S̃LFi

)
(4.2.1)

where

FLF
i+ 1

2
=

1

2

(
f(Un

i ) + f(Un
i+1)
)
− ∆x

2∆t

(
Un
i+1 − Un

i

)
, (4.2.2)

S̃LFi = ∆xS(Un
i )Hx(xi), (4.2.3)

in which the mid-point rule has been used to approximate the integral corresponding to the

source term.
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ACAT2 for balance law

The expression of the ACAT2 or Flux Limiter numerical method is based on a flux limiter

(see [83, 84, 120]). Its expression is as follows:

Un+1
i = Un

i +
∆t

∆x

(
F ∗
i− 1

2
− F ∗

i+ 1
2

+ S̃∗i

)
(4.2.4)

where

F ∗
i+ 1

2
= ϕ1

i F
1
i+ 1

2
+ (1− ϕ1

i )F
LF
i+ 1

2
, (4.2.5)

S̃∗i = ϕ1
i S̃

1
i + (1− ϕ1

i )S̃
LF
i , (4.2.6)

where F 1
i+ 1

2

and S̃1
i are given by (4.1.11) and (4.1.12) respectively; FLF

i+ 1
2

and S̃LFi are given

by (4.2.2) and (4.2.3) respectively;

ϕ1
i = min(ϕ1

i− 1
2
, ϕ1

i+ 1
2
),

where ϕ1
i+ 1

2

is a flux limiter, i.e.

ϕ1
i+ 1

2
≈

1 if {Un
i−1, . . . , U

n
i+2} are ’smooth’;

0 otherwise.
(4.2.7)

Remark 4.2.1 Unfortunately, using a 3−point stencil, is not possible to distinguish between

critical point and discontinuity. For this reason, on equation (4.2.7), with smooth we mean

smooth without critical point, (see [2, 3, 70, 116]).

ACAT2P for balance law

The final expression of the adaptive CAT2P method for systems of balance laws is as follows:

Un+1
i = Un

i +
∆t

∆x

(
FAi

i,i− 1
2

− FAi

i,i+ 1
2

+ S̃Ai
i

)
, (4.2.8)

where

FA
i,i+ 1

2
=

F
∗
i,i+ 1

2

if Ai = ∅;

F ps
i,i+ 1

2

where ps = max(Ai) otherwise;
(4.2.9)
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and

S̃Ai =

S̃
∗
i if Ai = ∅;

S̃psi where ps = max(Ai) otherwise.
(4.2.10)

Here, Ai is the set of indices given by

Ai = {p ∈ {2, . . . , P} such that ψp

i− 1
2

≈ 1 and ψp

i+ 1
2

≈ 1}; (4.2.11)

F ∗
i+ 1

2

and S̃∗i are the ACAT2 numerical flux and source terms given by (4.2.5), (4.2.6); F ps
i+ 1

2

and S̃psi are the ACAT2ps numerical fluxes and source terms defined in (4.1.4), (4.1.9).

4.3 Well Balanced Compact Approximate Taylor Method

for Balance Law

Systems of balance laws (4.0.1) have non-trivial stationary solutions that satisfy the ODE

system

f(U)x = S(U)Hx. (4.3.1)

The objective of well balanced schemes is to preserve exactly or with machine precision

some of these steady state solutions. For instance, in the context of Shallow water equations

Bermúdez and Vázquez-Cendón introduced in [5] the condition called C-property: a scheme

is said to satisfy this condition if it preserves the water at rest solutions. Since then, many

different numerical methods that satisfy this property have been introduced in the literature:

see [10, 19, 20, 54, 106, 129] and their references. In the framework of finite difference

methods, high-order schemes that satisfy the C-property were introduced in [16] and [130]:

while the former was based on the formal writing of the system in conservative form based

on the above mentioned technique, the latter relied on the expression of the source term as

a function of variables that are constants for the stationary solutions to be preserved: see

[131].

In [97] a general technique to derive high-order well-balanced finite-difference methods for

systems of balance laws was developed. The idea, inspired on the general technique for finite

volume methods discussed in [21], was as follows: let Ui be the numerical approximation of

the solution U(xi, t) at the node xi at time t and let U∗i be the stationary solution satisfying
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the Cauchy problem: 
f(U∗i )x = S(U∗i )Hx,

U∗i (xi) = Ui.

(4.3.2)

Then, if U∗i can be found, one has trivially

S(Ui)Hx(xi) = S(U∗i (xi))Hx(xi) = f(U∗i (xi))x. (4.3.3)

Therefore, locally the system of balance laws can be written in conservation form as follows

Ut + (f(U)− f(U∗i (x)))x = 0.

For this reason the goal of this section is to derive a well-balanced version of the CAT2P

methods introduced previously following the strategy above explained. The idea is as follows:

let us suppose that the initial condition is given by

U(x, 0) = U∗(x),

where U∗ is a stationary solution of (4.0.1). Let us introduce then the function F̃ given by

F̃(U)(x, t) =F(U)(x, t))−F(U∗)(x) =

=f(U(x, t))− f(U∗(x))−
∫ x

−∞

(
S(U(σ, t))− S(U∗(σ))

)
Hσ(σ)dσ. (4.3.4)

Hence, observing that

F̃(U)x = f(U)x − f(U∗)x − (S(U)− S(U∗))Hx = f(U)x − S(U)Hx,

the system of balance laws (4.0.1) can be formally written in the form

Ut + F̃(U)x = 0. (4.3.5)

Since, obviously F̃(U∗) = 0, a numerical method based on the discretization of this conser-

vative form is expected to exactly preserve U∗.

In practice, this strategy is applied as follows: once the approximation Un
i has been
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obtained, we consider the local stationary solution U∗i that satisfies

U∗i (xi) = Un
i ,

i.e. U∗i solves the Cauchy problem  f(U)x = S(U)Hx

U(xi) = Un
i .

(4.3.6)

Let us assume for simplicity that this Cauchy problem has a unique solution that is explicitly

known. Then, the system of balance laws is locally rewritten in the form

Ut + F̃i(U)x = 0. (4.3.7)

where

F̃i(U)(x, t) =F(U)(x, t))−F(U∗i )(x) =

=f(U(x, t))− f(U∗i (x))−
∫ x

−∞

(
S(U(σ, t))− S(U∗i (σ))

)
Hx(σ) dσ (4.3.8)

and the CAT2P method is then applied:

Un+1
i = Un

i +
∆t

∆x

(
F̃P
i;i− 1

2
− F̃P

i;i+ 1
2

)
, (4.3.9)

where,

F̃P
i;i+ 1

2
=

2P∑
k=1

∆tk−1

k!
A

0,1/2
P

(
F̃ (k−1)
i;i,∗

)
, (4.3.10)

F̃P
i;i− 1

2
=

2P∑
k=1

∆tk−1

k!
A

0,1/2
P

(
F̃ (k−1)
i;i−1,∗

)
. (4.3.11)

Here F̃ (k)
i;l,j is an approximation of ∂(k)

t F̃i(U)(xl+j, tn).

Remark 4.3.1 Observe that, in this case, two numerical fluxes have to be computed at

every inter-cell xi+1/2, F̃Pi;i+ 1
2

and F̃P
i+1;i+ 1

2

, whose computation are based respectively on the

stationary solutions U∗i (that satisfies U∗i (xi) = Un
i ) and U∗i+1 (that satisfies U∗i+1(xi+1) =

Un
i+1).
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Remark 4.3.2 Observe that, if the initial condition U0 is a stationary solution, then at time

t = 0, U∗i = U0 for all i, so that

F̃i(U0) = F(U0)−F(U∗i ) = F(U0)−F(U0) = 0, ∀i,

and the numerical method is expected to preserve exactly the initial condition.

4.3.1 WBCAT2 for balance law

In order to simplify the derivation of the well-balanced Compact Approximate Taylor scheme,

let us illustrate the second order numerical method, i.e. P = 1. For every i :

• Compute the solution U∗i of the Cauchy problem (4.3.6).

• Compute

U
(1)
i;i,j = − 1

∆x

(
f(Un

i+1)− f(Un
i )− f(U∗i (xi+1)) + f(U∗i (xi))

)
+

1

2

(
(S(Un

i )− S(U∗i (xi)))Hx(xi) + (S(Un
i+1)− S(U∗i (xi+1)))Hx(xi+1)

)
, j = 0, 1;

U
(1)
i;i−1,j = − 1

∆x

(
f(Un

i )− f(Un
i−1)− f(U∗i (xi)) + f(U∗i (xi−1))

)
+

1

2

(
(S(Un

i−1)− S(U∗i (xi−1)))Hx(xi−1) + (S(Un
i )− S(U∗i (xi)))Hx(xi)

)
, j = 0, 1.

• Compute

U1,n+1
i;i,j = Un

i+j + ∆t U
(1)
i;i,j, j = 0, 1,

U1,n+1
i;i−1,j = Un

i+j + ∆t U
(1)
i−1;i,j, j = 0, 1.
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• Define

F 1
i;i+ 1

2
:=

1

4

(
f(Un

i ) + f(Un
i+1) + f(U1,n+1

i;i,0 ) + f(U1,n+1
i;i,1 )− 2f(U∗i (xi))− 2f(U∗i (xi+1))

)
,(4.3.12)

F 1
i;i− 1

2
:=

1

4

(
f(Un

i−1) + f(Un
i ) + f(U1,n+1

i;i−1,0) + f(U1,n+1
i;i−1,1)− 2f(U∗i (xi−1))− 2f(U∗i (xi))

)
,(4.3.13)

S̃1
i :=

∆x

8

(
(S(Un

i−1) + S(U1,n+1
i−1,0 )− 2S(U∗i (xi−1)))Hx(xi−1) (4.3.14)

+(S(Un
i ) + S(U1,n+1

i;i−1,1)− 2S(U∗i (xi)))Hx(xi)

+(S(Un
i ) + S(U1,n+1

i;i,0 )− 2S(U∗i (xi)))Hx(xi)

+(S(Un
i+1) + S(U1,n+1

i;i,1 )− 2S(U∗i (xi+1)))Hx(xi+1)
)
.

Hence, the second order numerical method WBCAT2 is so defined:

Un+1
i = Un

i +
∆t

∆x

(
F 1
i;i− 1

2
− F 1

i;i+ 1
2

+ S̃1
i

)
. (4.3.15)

4.3.2 WBCAT2P for balance law

The algorithm for the high order case is as follows. For every i :

• Compute the solution U∗i of the Cauchy problem (4.3.6).

• Compute

F
(0)
i;i,j = f(Un

i+j)− f(U∗i (xi+j)), j = −P + 1, . . . , P ;

F
(0)
i;i−1,j = f(Un

i−1+j)− f(U∗i (xi−1+j)), j = −P + 1, . . . , P ;

Ĩ
(0)
i;i,j−1,j = ∆x

P∑
l=−P+1

ai,jP,l
(
S(Un

i+l)− S(U∗i (xi+l))
)
Hx(xi+l), j = −P + 2, . . . , P ;

Ĩ
(0)
i;i,−P+1,−P+1 = 0;

Ĩ
(0)
i;i,−P+1,j =

j∑
s=−P+2

Ĩ
(0)
i;i,s−1,s, j = −P + 2, . . . , P ;

Ĩ
(0)
i;i−1,j−1,j = ∆x

P∑
l=−P+1

ai−1,j
P,l

(
S(Un

i−1+l)− S(U∗i (xi−1+l))
)
Hx(xi−1+l), j = −P + 2, . . . , P ;

Ĩ
(0)
i;i−1,−P+1,−P+1 = 0;

Ĩ
(0)
i;i−1,−P+1,j =

j∑
s=−P+2

Ĩ
(0)
i;i−1,s−1,s, j = −P + 2, . . . , P.

• For k = 1, . . . , 2P − 1 :
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– Compute for all j = −P + 1, . . . , P

U
(k)
i;i,j = −A1,j

P

(
F

(k−1)
i;i,∗ ,∆x

)
+ A1,j

P

(
I

(k−1)
i;i,−P+1,∗,∆x

)
;

U
(k)
i;i−1,j = −A1,j

P

(
F

(k−1)
i;i−1,∗,∆x

)
+ A1,j

P

(
I

(k−1)
i;i−1,−P+1,∗,∆x

)
.

– Compute for all j, r = −P + 1, . . . , P

Uk,n+r
i;i,j = Un

i+j +
k∑

m=1

(∆t)m

m!
U

(m)
i;i,j ,

Uk,n+r
i;i−1,j = Un

i+j−1 +
k∑

m=1

(∆t)m

m!
U

(m)
i;i−1,j.

– Compute for all j, r = −P + 1, . . . , P

F k,n+r
i;i,j = f

(
Uk,n+r
i;i,j

)
and F k,n+r

i;i−1,j = f
(
Uk,n+r
i;i−1,j

)
.

– Compute for all r = −P + 1, . . . , P , j = −P + 2, . . . , P

Ĩk,n+r
i;i,j−1,j = ∆x

P∑
l=−P+1

ai,jP,lS(Uk,n+r
i;i,l )Hx(xi+l),

Ĩk,n+r
i;i−1,j−1,j = ∆x

P∑
l=−P+1

ai−1,j
P,l S(Uk,n+r

i;i−1,l)Hx(xi−1+l).

– Compute for all j = −P + 2, . . . , P

Ĩ
(k)
i;i,j−1,j = Ak,0P

(
Ĩk,∗i;i,j−1,j,∆t

)
, Ĩ

(k)
i;i−1,j−1,j = Ak,0P

(
Ĩk,∗i;i−1,j−1,j,∆t

)
.
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– Compute

F
(k)
i;i,j = Ak,0P

(
F k,∗
i;i,j,∆t

)
, j = −P + 1, . . . , P ;

Ĩ
(k)
i;i,−P+1,−P+1 = 0;

Ĩ
(k)
i;i,−P+1,j =

j∑
s=−P+2

Ĩ
(k)
i;i,s−1,s j = −P + 2, . . . , P ;

F
(k)
i;i−1,j = Ak,0P

(
F k,∗
i;i−1,j,∆t

)
, j = −P + 1, . . . , P ;

Ĩ
(k)
i;i−1,−P+1,−P+1 = 0;

Ĩ
(k)
i;i−1,−P+1,j =

j∑
s=−P+2

Ĩ
(k)
i;i−1,s−1,s j = −P + 2, . . . , P.

Once the algorithm has been executed, the integrals already computed can be used to ap-

proximate the source term as follows:

• For k = 1, . . . , 2P define

Ĩ(k−1)
i,j =


Ĩ

(k−1)
i;i−1,j,j+1 if j = −P + 1, . . . , 0;

Ĩ
(k−1)
i;i,j−1,j if j = 1, . . . , P .

• Compute

S̃Pi =
2P∑
k=1

∆tk−1

k!
A

0,1/2
P (Ĩ(k−1)

i,∗ ,∆x). (4.3.16)

The final expression of the high order numerical method is then

Un+1
i = Un

i +
∆t

∆x

(
F P
i;i− 1

2
− F P

i;i+ 1
2

+ S̃Pi

)
, (4.3.17)

where F P
i;i± 1

2

are given by

F P
i;i+ 1

2
=

2P∑
k=1

∆tk−1

k!
A

0,1/2
P (F

(k−1)
i;i,∗ ,∆x), (4.3.18)

F P
i;i− 1

2
=

2P∑
k=1

∆tk−1

k!
A

0,1/2
P (F

(k−1)
i;i−1,∗,∆x). (4.3.19)
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Remark 4.3.3 Observe that this algorithm can be used to update the solution at the point

xi at time tn only if the Cauchy problem (4.3.6) has a solution that is defined in the cells of

the stencils SP
i± 1

2

whose analytic expression is known. Therefore:

• If (4.3.6) has no solution, the CAT2P method will be used instead. Please note that

this choice does not spoil the well-balanced character of the numerical method: in this

case, the cell values in the stencil cannot be the point values of a stationary solution

(otherwise there would be at least one solution of (4.3.6)) and thus there is no local

equilibrium to preserve.

• If (4.3.6) has more than one solution, a criterion is needed to select one of them: this

is the case for the shallow water and Euler with gravity system that will be discussed

in Section 4.5.

• If (4.3.6) has a solution defined in the stencils but it is not possible to find its expression

by analytic procedures, it is possible to apply an ODE solver to approximate it, like it

has been done in [19] for finite-volume methods. In all the problems considered in

Section 4.5 the analytic expression of the stationary solutions is available either in

explicit or implicit form.

Well-balanced property

Numerical method (4.3.17) is fully well-balanced in the following sense:

Theorem 4.3.1 Let U∗ be a continuous stationary solution of (4.0.1). Thus, if the numer-

ical method (4.3.17) is applied to the initial condition

U0
i = U∗(xi), ∀i,

we obtain

Un
i = U0

i , ∀i, n.

Proof. Observe first that U∗ solves any Cauchy problem (4.3.6) for n = 0. Therefore, at

the first step, the solution of (4.3.6) is given by

U∗i = U∗, ∀i.
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Therefore, for every i:

F
(0)
i;i,j = F

(0)
i;i−1,j = 0, j = −P + 1, . . . , P ;

Ĩ
(0)
i;i,j−1,j = Ĩ

(0)
i;i−1,j−1,j = 0, j = −P + 2, . . . , P ;

Ĩ
(0)
i;i,−P+1,j = Ĩ

(0)
i;i−1,−P+1,j = 0, j = −P + 1, . . . , P ;

and thus

U
(1)
i;i,j = U

(1)
i;i−1,j = 0, j = −P + 1, . . . , P.

As a consequence:

U1,r
i;i,j = U0

i+j, F 1,r
i;i,j = f

(
U0
i+j

)
, j, r = −P + 1, . . . , P ;

U1,r
i;i−1,j = U0

i−1+j, F 1,r
i;i−1,j = f

(
U0
i−1+j

)
, j, r = −P + 1, . . . , P

Ĩ1,r
i;i,j−1,j = ∆x

P∑
l=−P+1

ai,jP,lS(U0
i+l)Hx(xi+l),

Ĩ1,r
i;i−1,j−1,j = ∆x

P∑
l=−P+1

ai−1,j
P,l S(U0

i−1+l)Hx(xi−1+l).

Notice that the values of all these quantities do not depend on r. Therefore, when numerical

differentiation in time is applied we obtain:

F
(1)
i;i,j = F

(1)
i;i−1,j = 0, j = −P + 1, . . . , P ;

Ĩ
(1)
i;i,j−1,j = Ĩ

(1)
i;i−1,j−1,j = 0, j = −P + 2, . . . , P ;

Ĩ
(1)
i;i,−P+1,j = Ĩ

(1)
i;i−1,−P+1,j = 0, j = −P + 1, . . . , P.

Therefore

U
(2)
i;i,j = U

(2)
i;i−1,j = 0, j = −P + 1, . . . , P.

Repeating the reasoning we obtain

F
(k)
i;i,j = F

(k)
i;i−1,j = 0, j = −P + 1, . . . , P, k = 0, . . . , 2P ;

Ĩ
(k)
i;i,j−1,j = Ĩ

(k)
i;i−1,j−1,j = 0, j = −P + 2, . . . , P, k = 0, . . . , 2P ;

Ĩ
(1)
i;i,−P+1,j = Ĩ

(1)
i;i−1,−P+1,j = 0, j = −P + 1, . . . , P, k = 0, . . . , 2P.
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Hence,

F P
i;i+ 1

2
= F P

i,i− 1
2

= SP
i+ 1

2
= 0,

with consequence that

U1
i = U0

i , ∀i,

as we wanted to prove. �

Remark 4.3.4 The strategy described in Subsection 4.3 should be adapted to obtain schemes

that only preserve a specified set of stationary solutions: for instance, this would be the case

if the set that must be preserved is a k-parameter family of stationary solutions,

U∗(x;C1, . . . , Ck),

with k < d and d is the number of variables. If it is the case, instead of looking at a solution

of (4.3.6), one looks to a solution of the following nonlinear system:

Find Ci
1, . . . , C

i
k such that:

u∗jl(xi;C
i
1, . . . , C

i
k) = ui,jl , l = 1, . . . , k, (4.3.20)

where u∗j , ui,j denote respectively the jth component of U∗ and Ui and {j1, . . . , jk} is a set

of k indices that is predetermined to have the same number of unknowns and equations in

(4.3.20). These indices j1, . . . , jk are chosen so that systems of equations (4.3.20) have a

unique solution, when it is possible. Once the problem has been solved, the numerical fluxes

and source terms must be computed as in Section 4.3 with the choice

U∗i (x) = U∗(x,Ci
1, . . . , C

i
k).

4.4 AdaptiveWell Balanced Compact Approximate Tay-

lor Method for Balance Law

Unfortunately, the oscillatory behaviour of CAT procedure is maintained also for the well-

balanced extension. For this reason the shock-capturing technique introduce above will be

employed even in this case.
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4.4. Adaptive Well Balanced Compact Approximate Taylor Method for Balance Law

First-order well-balanced numerical method for balance law

As we have seen, the flux limiter method need a first order numerical scheme to be combined

with the high order well-balanced CAT2P methods then a well-balanced version of the Lax-

Friedrichs methods is proposed. The formal expression of the well-balanced Lax-Friedrichs

method applied to systems (4.3.7) is:

Un+1
i = Un

i +
∆t

∆x

(
FLF
i− 1

2
− FLF

i+ 1
2

+ S̃LFi

)
(4.4.1)

where

FLF
i+ 1

2
=

1

2

(
F (Un

i ) + F (Un
i+1)
)
− ∆x

2∆t

(
Un
i+1 − Un

i

)
, (4.4.2)

and

S̃LFi = FLF,∗
i;i+ 1

2

− FLF,∗
i;i− 1

2

, (4.4.3)

in which,

FLF,∗
i;i+ 1

2

=
1

2
(F (U∗i (xi)) + F (U∗i (xi+1)))− ∆x

2∆t
(U∗i (xi+1)− U∗i (xi)) (4.4.4)

and U∗i is the stationary solution that satisfies

U∗i (xi) = Un
i .

(4.4.3) is a consistent approximation of the integral of the source term, since

FLF,∗
i;i+ 1

2

− FLF,∗
i;i− 1

2

≈ ∆xF (U∗)x(xi) = ∆xS(U∗i (xi))Hx(xi) = ∆xS(Un
i )Hx(xi).

WBACAT2 for balance law

The well-balanced version of the ACAT2 method has the form

Un+1
i = Un

i +
∆t

∆x

(
F ∗
i;i− 1

2
− F ∗

i;i+ 1
2

+ S̃∗i

)
(4.4.5)
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where

F ∗
i;i± 1

2
= ϕ1

i F
1
i;i± 1

2
+ (1− ϕ1

i )F
LF
i+ 1

2
, (4.4.6)

S̃∗i = ϕ1
i S̃

1
i + (1− ϕ1

i )S̃
LF,∗
i = ϕ1

i S̃
1
i − (1− ϕ1

i )
(
FLF,∗
i;i+ 1

2

− FLF,∗
i;i− 1

2

)
, (4.4.7)

where F 1
i;i± 1

2

are given by (4.3.12)-(4.3.13); FLF,∗
i;i± 1

2

is given by (4.4.4); and S̃1
i is given by

(4.3.14).

WBACAT2P for balance law

Analogously to the adaptive strategy to conservation law, let be

Ai = {p ∈ {2, . . . , P} s.t. ψp
i− 1

2

≈ 1 and ψp
i+ 1

2

≈ 1}; (4.4.8)

then, the expression of the well-balanced adaptive CAT2P method is as follows:

Un+1
i = Un

i +
∆t

∆x

(
FAi

i;i− 1
2

− FAi

i;i+ 1
2

+ S̃Ai
i

)
, (4.4.9)

where

FAi

i;i+ 1
2

=

F
∗
i;i+ 1

2

if Ai = ∅;

F ps
i;i+ 1

2

where ps = max(Ai) otherwise;
(4.4.10)

and

S̃Ai
i =

S̃
∗
i if Ai = ∅;

S̃psi where ps = max(Ai) otherwise;
(4.4.11)

where F ∗
i;i± 1

2

and S̃∗i are the WBACAT2 numerical fluxes and source terms given by (4.4.6),

(4.4.7); F ps
i;i+ 1

2

and S̃psi are WBCAT2ps numerical fluxes and source term given by (4.3.19),

(4.3.18), (4.3.16) with P = ps.

4.5 Numerical experiments

In this section we apply ACAT2P and WBACAT2P , P = 1, 2 methods to several problems:

the linear transport equation and Burgers equation with source term, the 1D shallow water

system and the 1D Euler equation with gravity. The Minmod flux limiter [105] is used in

ACAT2 and the smoothness indicators (3.2.9) are used for ACAT4: no loss of precision for
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4.5. Numerical experiments

first order critical points has been observed in any of the test problems considered here due

to the use of ψ2
i+ 1

2

. Fornberg’s algorithm [41, 42] is used to compute the coefficients of the

numerical differentiation formulas.

4.5.1 Linear Equation

We consider the linear scalar balance law

ut + ux = u, (4.5.1)

that has the form (4.0.1) with H(x) = x. The analytic solution of the initial value problem

with condition

u(x, 0) = u0(x)

is given by:

u(x, t) = u0(x− t)et. (4.5.2)

The stationary solutions solve the ODE

ux = u.

Hence, the set of stationary solutions is

u∗(x) = Cex, C ∈ R.

Order test

Following [97], we consider (4.5.1) with initial condition

u0(x) =


0 if x < 0;

p(x) if 0 ≤ x ≤ 1;

1 if x > 1;

(4.5.3)

where p(x) is the polynomial that satisfies p(0) = 0, p(1) = 1, pk(0) = pk(1) = 0,

PhD Thesis, Chapter 4 113



4.5. Numerical experiments

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

u
0
 a

n
d
 u

e
x
a

1

Initial condition

Exact solution

0 0.5 1 1.5 2

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

u
-u

e
x
a

1

WBACAT2-u
exa

WBACAT4-u
exa

ACAT2-u
exa

ACAT4-u
exa

Figure 4.5.1: Test 4.5.1. (Order test). Initial condition and exact solution (left); differences
between the numerical solutions and the exact one computed with CAT2, CAT4, WBCAT2 and
WBCAT4 at t = 1 using a mesh of 41 points (right) on the interval [−0.2, 2] and CFL= 0.9.

k = 1, . . . , 5:

p(x) = x6
( 5∑
k=0

(−1)k
(

5 + k

k

)
(x− 1)k

)
(see Figure 6.4.1). The methods ACAT2, ACAT4, WBACAT2, WBACAT4 have been ap-

plied to (4.5.1) with initial condition (4.5.3) in the spatial interval [−0.2, 2], with CFL= 0.9.

Dirichlet boundary conditions are considered to the left and free boundary conditions to the

right based on the use of ghost cells. Figure 4.5.1 shows the numerical solutions obtained at

time t = 1 on the interval [−0.2, 2] using 40 mesh points.

Tables 4.1-4.2 show the L1-errors and the empirical order of convergence corresponding

to the standard and Adaptive CAT2P and WBCAT2P with P = 1, 2. As it can be seen,

all the schemes keep the expected order and the errors corresponding to methods of the

same order are almost identical. In the first case, the smoothness indicators of ACAT2P

and WBACAT2P have been fixed to 1, hence, the Adaptive CAT2P coincides exactly with

the standard CAT2P scheme; regarding the second case, no restrictions are imposed on

the smoothness indicators, requiring an increase in the number of points to capture the

theoretical order. No further restrictions are required for the time step.
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CAT2 WBCAT2 CAT4 WBCAT4
Points Order Error Order Error Order Error Order Error

6 - 1.79E-1 - 1.80E-1 - 6.03E-2 - 6.03E-2
11 1.57 6.00E-2 1.56 6.05E-2 2.86 8.31E-3 2.86 8.31E-3
21 1.91 1.60E-2 1.92 1.60E-2 3.58 6.94E-4 3.58 6.94E-4
41 2.02 3.93E-3 2.02 3.94E-3 3.88 4.69E-5 3.89 4.69E-5
81 2.03 9.63E-4 2.02 9.66E-4 4.01 2.90E-6 4.00 2.90E-7

Table 4.1: Test 4.5.1: (Order test). Errors in L1−norm and convergence rates for CAT2, CAT4,
WBCAT2 and WBCAT4 at time t = 1.

ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
16 - 2.00E-1 - 1.99E-1 - 1.57E-2 - 1.61E-2
31 1.51 7.01E-2 1.50 7.04E-2 3.01 1.95E-3 2.99 2.02E-3
61 1.85 1,94E-2 1.86 1.94E-2 3.62 1.58E-4 3.60 1.67E-4
121 2.19 4.25E-3 2.19 4.25E-3 8.10 5.71E-7 8.20 5.71E-7
241 2.00 1.05E-3 2.00 1.06E-3 3.99 3.57E-8 4.00 3.56E-8
481 2.00 2.64E-4 2.00 2.64E-4 4.00 2.22E-9 4.00 2.22E-9

Table 4.2: Test 4.5.1: (Order test). Errors in L1−norm and convergence rates for ACAT2,
ACAT4, WBACAT2 and WBACAT4 at time t = 1.

A moving discontinuity linking two stationary solutions

As a second experiment we consider (4.5.1) with initial condition

u0(x) =

4ex if x < 0;

ex otherwise.

(4.5.4)

The exact solution consists of a discontinuity linking two stationary solutions that moves

with speed 1 in the following way:

u(x, t) =

4ex if x < t;

ex otherwise.

(4.5.5)

We solve numerically (4.5.1) with initial condition (4.5.4) with ACAT2, ACAT4, WBA-

CAT2, WBACAT4 in the spatial interval [−1
2
, 2], using a 100 mesh points, and CFL= 0.9.

Dirichlet boundary conditions to the left and free boundary conditions to the right are con-
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Figure 4.5.2: Test 4.5.1 (A moving discontinuity linking two stationary solutions). Exact and
numerical solutions computed with ACAT2-4 (top) and WBACAT2-4 (bottom) at t = 1 using a
mesh of 100 points.
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Figure 4.5.3: Test 4.5.1 (A moving discontinuity linking two stationary solutions). Zoom of
the left and right differences between the numerical solutions and the exact solution for the no
well-balanced (top) and well-balanced (bottom) methods.

sidered.

What we can observe in Figure 4.5.2 is that all the method are able to evolve the discontinu-

ity but, due to the order adaptive nature, they tent to coincide close to the discontinuity and

it seems that all the methods are the same. Figure 4.5.3, that shows the differences between

the numerical solutions and the exact one, exhibits that, even if they are very similar close

to the discontinuity, the error in the smooth region, i.e. the region in which the order is

not reduced by the smoothness indicators, is in accordance with the theoretical order. As
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expected, far from the discontinuity the well-balanced methods are able to preserve the left

and right stationary solution with machine precision.

4.5.2 Burgers Equation

In this section we consider the scalar Burgers equation with source term:

ut +
(u2

2

)
x

= u2Hx(x). (4.5.6)

The stationary solutions solve now the ODE

ux = uHx(x)

whose general solution is

u∗(x) = CeH(x), C ∈ R.

Preservation of a stationary solution with linear H

Let us consider H(x) = x, so that the stationary solutions become u∗(x) = Cex. We solve

(4.5.6) with initial condition

u0(x) = ex

in the interval [−1, 1] using 100 mesh points and CFL= 0.9. As boundary conditions, the

stationary solution is imposed at ghost cells.

ACAT2 WBACAT2
Points Order Error Error
100 - 3.16E-3 7.69E-16
200 2.02 7.78E-4 1.81E-15
400 2.01 1.93E-4 1.07E-15
800 2.00 4.81E-5 1.59E-15
1600 2.00 1.19E-5 2.43E-15

Table 4.3: Test 4.5.2 (Preservation of a stationary solution with linear H). Errors in L1−norm
and convergence rates at time t = 8 : ACAT2 and WBACAT2.

Figure 4.5.4 shows the differences between the exact and the numerical solutions obtained

with ACAT2P , WBACAT2P , p = 1, 2 at time t = 8. While the non well-balanced schemes

give accurate solutions according to their order, the well-balanced methods capture the
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Figure 4.5.4: Test 4.5.2 (Preservation of a stationary solution with linear H). Differences between
the exact and the numerical solutions at time t = 8 using a mesh of 100 points and CFL= 0.9 :
ACAT2 (top), ACAT4 (center), WBACAT2 and WBACAT4 (bottom).

ACAT4 WBACAT4
Points Order Error Error
100 - 1.81E-7 7.19E-16
200 4.02 1.12E-8 2.16E-15
400 4.01 6.91E-10 3.68E-15
800 4.00 4.31E-11 5.59E-15
1600 3.99 2.71E-12 3.45E-15

Table 4.4: Test 4.5.2 (Preservation of a stationary solution with linear H). Errors in L1−norm
and convergence rates at time t = 8 : ACAT4 and WBACAT4.

stationary solution with machine precision. This behaviour is also shown on Tables 4.3-4.4

where the L1-errors and the empirical order of convergences, corresponding to ACAT2P and

WBACAT2P with P = 1, 2, at time t = 8 are exhibited, emphasizing the good properties of

the well-balanced schemes.

Perturbation of a stationary solution with linear H

Let us consider equation (4.5.6) with H(x) = x and initial condition a small perturbation of

the stationary solution (see Figure 4.5.5):

u0(x) = ex + 0.0002e−200(x+0.7)2 (4.5.7)

The problem is solved in the interval [−1, 1] at time t = 1 using 100 mesh points and
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Figure 4.5.5: Test 4.5.2 (Perturbation of a stationary solution with linear H). Initial condition
and stationary solution (left). Differences between numerical solution and stationary one at initial
and final time (right). The perturbation of the initial condition (left) is amplified by 1000 times in
order to see clearly the perturbation. The reference solution is computed with WBACAT4 adopting
a 2000 mesh points and CFL= 0.9 at time t = 1.
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Figure 4.5.6: Test 4.5.2 (Perturbation of a stationary solution with linear H). Differences between
the reference solution obtained by WBACAT4 using a 2000 mesh points and the numerical solutions
computed at time t = 1 using 100 mesh points and CFL = 0.9 : ACAT2-4 (top) and WBACAT2-4
(bottom).

CFL= 0.9. As boundary conditions, the stationary solution is imposed at ghost cells.

As it can be seen, Figure 4.5.6 shows the difference between a reference solution com-

puted with WBACAT4 adopting a 2000 mesh point and the numerical solutions provided

by ACAT2P and WBACAT2P, with P = 1, 2. All the schemes are able to evolve the initial

perturbation in accordance with their order. In particular, it can be observed that the well-
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ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
25 - 2.76E-2 - 8.95E-5 - 8.91E-4 - 6.91E-5
50 1.99 6.93E-3 0.79 5.18E-5 2.17 1.98E-4 1.90 1.85E-5
100 2.00 1.73E-3 1.31 2.09E-5 3.45 1.80E-5 3.43 1.71E-6
200 2.00 4.31E-4 1.76 6.15E-6 3.90 1.21E-6 3.89 1.15E-7
400 2.01 1.07E-4 1.93 1.61E-6 3.99 7.62E-8 3.98 7.29E-9

Table 4.5: Test 4.5.2: (Perturbation of a stationary solution with linear H). Errors in L1−norm
and empirical convergence rates for ACAT2, ACAT4, WBACAT2 and WBACAT4 at time t = 1
and CFL= 0.9.

balanced solutions have an smaller error than the non well-balanced version. This behaviour,

and the computation of empirical convergence rates, could be also checked in Table 4.5.

In this experiment we have checked the well-balanced property and the order accuracy

choosing H linear. Our new question is what happen if we consider a non-linear expression

for H?

Preservation of a stationary solution with non-linear H

To answer to the previous question, let us consider the Burgers equation (4.5.6) with a

non-linear H

H(x) = x+ 0.1 sin(10x).

Figure 4.5.7 shows the differences between the exact and the numerical solutions obtained

with ACAT2P , WBACAT2P , P = 1, 2 at time t = 8. While the non well-balanced schemes

give accurate solutions according to their order, the well-balanced methods capture the

stationary solution with machine precision.

The first step is to check the well-balanced property. Indeed, we solve (4.5.6) with initial

condition the stationary solution

u0(x) = eH(x)

in the interval [−1, 1] using 100 mesh points and CFL= 0.9. As boundary conditions, the

stationary solution is imposed at ghost cells.

Table 4.6 shows the L1-errors and the empirical order of convergences corresponding to

ACAT2P , and the errors of WBACAT2P methods, with P = 1, 2 at time t = 8. While the

non well-balanced schemes give accurate solutions according to their order, the well-balanced

methods capture the stationary solution with machine precision.
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Figure 4.5.7: Test 4.5.2. Differences between the exact and the numerical solutions at time
t = 8 using a mesh of 100 points and CFL= 0.9: ACAT2 (top), ACAT4 (center), WBACAT2 and
WBACAT4 (bottom).

ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Error Order Error Error
100 - 1.82E-3 2.66E-17 - 1.93E-5 3.99E-17
200 2.05 4.32E-4 3.11E-17 4.09 1.13E-6 6.21E-17
400 2.03 1.07E-4 2.44E-17 4.05 6.84E-8 2.22E-17
800 2.01 2.63E-5 2.78E-17 4.03 4.19E-9 3.55E-17
1600 2.00 6.55E-6 1,99E-17 4.01 2.59E-10 5.21E-17

Table 4.6: Test 4.5.2. (Preservation of a stationary solution with non-linear H). Errors in L1−norm
and convergence rates at time t = 8 for ACAT2-4. The errors for WBACAT2-4 are due to round-off.

Checked that the well-balanced property for the Burgers equation with non-linear H

is satisfied, we will now focus on some experiment to test the accuracy of the numerical

solutions where different types of initial conditions are considered.

Perturbation of a stationary solution with non-linear H

Let us consider (4.5.6) with oscillatory H given by

H(x) = x+ 0.1 sin(10x)

and initial condition

u0(x) = eH(x) + 0.02e−200(x+0.7)2 , (4.5.8)
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that is a small smooth perturbation of the stationary solution u∗(x) = eH(x): see Figure

4.5.8. We solve the problem in the interval [−1, 1] using 200 mesh points and CFL= 0.9. As
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Figure 4.5.8: Test 4.5.2. (Perturbation of a stationary solution with non-linear H). Initial condi-
tion and stationary solution (left). Differences between reference and stationary solution at initial
and final time (right). The perturbation of the initial condition (left) is amplified by 10 times in
order to see clearly the perturbation. The reference solution is computed with WBACAT4 using
1000 mesh points and CFL= 0.9 at time t = 1.2.

boundary conditions the stationary solution is imposed at left ghost point and free boundary

at right.
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Figure 4.5.9: Test 4.5.2. (Perturbation of a stationary solution with non-linear H). Differences
between numerical solutions computed with ACAT2P (top) and WBCAT2P, (bottom) P = 1, 2,
and reference solution at t = 1.2 using a mesh of 200 points and CFL= 0.9. For the reference
solution the WBACAT4 is adopted with a mesh of 1000 points.
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Figure 4.5.9 shows that, all the schemes are able to evolve the perturbation in according

with the order. Nevertheless, the well-balanced methods, WBACAT2 and WBACAT4, are

able to capture more precisely the evolution of the perturbation with a smaller error than

the relative non well-balanced schemes.

For the errors in L1−norm and convergence rates, we adopt as initial condition

u0(x) = eH(x) + 0.2e−200(x+0.7)2 ,

in other word, a bigger perturbation is considered reducing the final time to t = 0.2.

Table 4.7 shows that the non well-balanced methods introduce a bigger error in comparison

with the well-balanced approach but an increasing of points is necessary to achieve the theo-

retical order. This phenomenon is partly attributable to reconstruction partly to smoothness

indicators, because they fail to detect the theoretical regularity.

ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
80 - 6.44E-2 - 1.07E-2 - 1.53E-3 - 1.17E-4
160 1.15 2.88E-2 1.74 3.21E-3 2.11 3.10E-4 2.03 2.86E-5
320 1.45 1.05E-2 1.89 8.61E-4 4.28 1.59E-5 4.45 1.31E-6
640 1.62 3.42E-3 1.96 2.21E-4 4.14 8.99E-7 3.85 8.99E-8
1280 1.86 9.41E-4 1.99 5.58E-5 4.01 5.57E-8 3.96 5.76E-9

Table 4.7: Test 4.5.2: (Perturbation of a stationary solution with non-linear H). Errors in
L1−norm and convergence rates for ACAT2, ACAT4, WBACAT2 and WBACAT4 at time t = 0.2
and CFL= 0.9.

This experiment is very interesting because, on the one hand it shows that the well-

balanced methods work well near the stationary solution even in case H is non-linear, on

the other hand, it happens that a small perturbation of the initial state, although rather

smooth, may result in a loss of accuracy in the adaptive order reconstruction when a not fine

mesh grid is adopted. To emphasize this behaviour, a non-linear oscillatory H is considered

in next experiments.

Preservation of a stationary solution with oscillatory H

Following [97], we consider (4.5.6) with

H(x) = x+
1

10
sin(100x), (4.5.9)
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and we take as initial condition the stationary solution

u∗(x) = eH(x)

(see Figure 4.5.10). We solve the problem in the interval [−1, 1] using 100 mesh points and
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Figure 4.5.10: Test 4.5.2. (Preservation of a stationary solution with oscillatory H). Initial
condition (top) and H (down).

CFL= 0.9. With this choice of mesh points, the period of the oscillations of H is close to

∆x. As boundary conditions the stationary solution is imposed again at ghost points.
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Figure 4.5.11: Test 4.5.2. (Preservation of a stationary solution with oscillatory H). Exact and
numerical stationary solutions computed with ACAT2P and WBCAT2P at t = 1 using a mesh of
100 points and CFL= 0.9: non well-ballanced (top) and well-balanced (bottom).
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Figure 4.5.12: Test 4.5.2. (Preservation of a stationary solution with oscillatory H). Top: differ-
ences between the exact and the numerical stationary solutions computed with ACAT2P , P = 1, 2,
at time t = 1 using 100 mesh points and CFL = 0.9. Bottom: differences between the exact and
the numerical solutions computed with WBACAT2P , P = 1, 2, at time t = 1 using 100 mesh points
and CFL= 0.9.

Figure 4.5.11 shows that, while WBACAT2 and WBACAT4 capture the stationary so-

lution with machine precision, this is not the case for ACAT2 and ACAT4. Figure 4.5.12

displays the differences between the numerical solutions and the stationary solution obtained

at time t = 1 (top). In this case, the results provided by WBACAT2 and WBACAT4 (bot-

tom) are very similar and they are able to capture the machine precision; while, the results

provided by ACAT2 and ACAT4 (top) show that the non well-balanced methods are not

able to detect the stationary solution with high precision even if a 4 order method is applied.

Perturbation of a stationary solution with oscillatory H

We consider again (4.5.6) with oscillatory H given by (4.5.9) (see Figure 4.5.10) and initial

condition a small perturbation of the stationary solution

u0(x) = eH(x) + 0.0002e−200(x+0.7)2 . (4.5.10)

We solve the problem in the interval [−1, 1] at time t = 1.25 adopting a 200 mesh points

and CFL= 0.9. As boundary conditions the stationary solution is imposed at ghost points.

Figure 4.5.13 shows the stationary solution and the perturbation of the stationary solution,

amplified by 1000 times, (left); the initial and the final signal (right). The reference solution
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Figure 4.5.13: Test 4.5.2 (Perturbation of a stationary solution with oscillatory H). Initial
condition and stationary solution (left). Differences between reference and stationary solution at
initial and final time (right). The perturbation of the initial condition (left) is amplified by 1000
times in order to see clearly the perturbation. The reference solution is computed with WBACAT4
using 8000 mesh points and CFL= 0.9 at time t = 1.25.
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Figure 4.5.14: Test 4.5.2 (Perturbation of a stationary solution with oscillatory H). Differences
between the reference and numerical solutions computed with ACAT2P (top) and WBCAT2P
(bottom), P = 1, 2, at t = 1.25 using a 200 mesh points and CFL= 0.9. The reference solution is
computed with WBACAT4 using 8000 mesh points and CFL= 0.9 at time t = 1.25.

has been computed with WBACAT4 using a 8000 mesh points and CFL= 0.9.

Figure 4.5.14 shows the difference between the numerical solution computed with ACAT2P

(top) and WBACAT2P (bottom), with P = 1, 2, adopting a 200 mesh points and the ref-

erence solution. As it can be observed, the well-balanced schemes are able to capture the

correct solution with a lower error than the non well-balanced one. Nevertheless, there is
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Figure 4.5.15: Test 4.5.2 (Perturbation of a stationary solution with oscillatory H). Differences
between the reference and numerical solutions computed with ACAT2P (top) and WBCAT2P
(bottom), P = 1, 2, at t = 1.25 using a 800 mesh points and CFL= 0.9. The reference solution is
computed with WBACAT4 using 8000 mesh points and CFL= 0.9 at time t = 1.25.

ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
125 - 1.89E0 - 1.88E-4 - 1.89E0 - 1.88E-4
250 -1.47 5.24E0 0.74 1.12E-4 -1.34 4.78E0 0.74 1.12E-4
500 2.40 9.95E-1 0.99 5.65E-5 3.55 4.08E-1 2.07 2.67E-5
1000 1.85 2.76E-1 1.33 2.25E-5 3.12 4.69E-2 3.31 2.68E-6
2000 1.80 7.94E-2 1.17 9.97E-6 5.04 1.43E-3 9.29 4.26E-9
4000 1.84 2.22E-2 1.41 3.76E-6 15.09 4.08E-8 5.73 8.01E-11

Table 4.8: Test 4.5.2: (Perturbation of a stationary solution with oscillatory H). Errors in
L1−norm and numerical convergence rates for ACAT2, ACAT4, WBACAT2 and WBACAT4 at
time t = 1.25 and CFL= 0.9.

almost no difference between the solution obtained with WBACAT2 and WBACAT4. This

behaviour is due to the smoothness indicators because, with a low fine mesh, they are not

able to capture the theoretical smoothness and, as consequence, there is an order reduction

in the adaptive strategy. This attitude is also reproduced by the non well-balanced scheme.

As it can be seen in Figure 4.5.15, the order reduction phenomenon should be circumvent

adopting a finer mesh points that is also confirmed by Table 4.8. In particular, crossing

between the 1000 mesh points and the 2000 one, an important decreasing in the error is ob-

served because, from now on, the smoothness indicators capture, as expected, the regularity

of the numerical data.

As final comment is remarkable that, at least, all the method should converge to the expected
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theoretical order under the hypothesis that the numerical data are smooth enough and in

accordance with the smoothness indicators. Nonetheless, the non-well balanced schemes

introduce a bigger error compared with the mesh size making, in this cases, the use of

well-balanced methods are extremely necessary.

As a final check we consider the behaviour of the methods in the case of an initial

condition of class C5 which is far from the stationary solution.

Burgers Order Test

Let us consider (4.5.6) with H(x) = x and initial condition (3.2.24) (see Figure 4.5.16)

u0(x) =


0 if x < 0;

p(x) if 0 ≤ x ≤ 1;

1 if x > 1;

(4.5.11)

where

p(x) = x6
( 5∑
k=0

(−1)k
(

5 + k

k

)
(x− 1)k

)
.

We solve the problem in the interval [−0.2, 2] using 80 mesh points and CFL= 0.9. As

boundary conditions free boundary is imposed at ghost points.
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Figure 4.5.16: Test 4.5.2 (Burgers Order Test). Initial condition and reference solution obtained
with WBACAT4 using a 2560 mesh points and CFL= 0.9 at time t = 0.5.

Figure 4.5.17 and Table 4.9 show us how all the methods manage to produce solutions

in agreement with each other obtaining the expected order.
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Figure 4.5.17: Test 4.5.2 (Burgers Order Test). Differences between numerical solutions computed
with ACAT2P and WBCAT2P , P = 1, 2, and the reference solution at t = 0.5 using a mesh of 80
points and CFL= 0.9. For the reference solution a mesh of 2560 points has been adopted.

ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
80 - 1.74E-3 - 1.91E-3 - 2.41E-4 - 2.42E-4
160 1.93 4.11E-4 1.92 5.05E-4 2.40 4.56E-5 2.41 4.57E-5
320 1.93 1.08E-4 1.94 1.32E-4 3.17 5.05E-6 3.18 5.06E-6
640 1.98 2.74E-5 1.98 3.34E-5 3.68 3.95E-7 3.68 3.94E-7
1280 1.99 6.91E-6 1.99 8.41E-6 3.91 2.60E-8 3.92 2.61E-8
2560 2.00 1.73E-6 2.00 2-11E-6 3.98 1.65E-9 3.98 1.65E-9

Table 4.9: Test 4.5.2: (Burgers Order Test) Errors in L1−norm and convergence rates for ACAT2,
ACAT4, WBACAT2 and WBACAT4 at time t = 0.5 and CFL= 0.9.

This experiment shows that, when the initial condition is far from the stationary solution,

well-balanced and non well-balanced methods produce essentially the same results, with the

expected order of accuracy.

4.5.3 Shallow water model

In this section we will focus on the one-dimensional hyperbolic shallow water model
ht + qx = 0

qt +

(
q2

h
+
g

2
h2

)
x

= ghHx,
(4.5.12)
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that can be written in the form (4.0.1) with

U =

h
q

 , f(U) =

 q

q2

h
+
g

2
h2

 , S(U) =

 0

gh

 .
The variable x makes reference to the axis of the channel and t is time; q(x, t) and h(x, t)

represent the mass-flow and the thickness; g, the acceleration due to gravity; H(x), the

depth measured from a fixed level of reference; furthermore, the following relation is verified

q(x, t) = h(x, t)u(x, t), with u the depth average horizontal velocity. The eigenvalues of the

Jacobian matrix J(U) of the flux f(U) are

λ1 = u−
√
gh and λ2 = u+

√
gh.

The Froude number is defined by

Fr =
|u|√
gh
.

The flow is said to be supercritical if Fr > 1, critical if Fr = 1, and subcritical if Fr < 1.

The stationary solution of the shallow water system (4.5.12) are implicitly given by

q = C1 and
1

2

q2

h2
+ gh− gH = C2, (4.5.13)

where C1 and C2 are arbitrary constants [17, 20]. In order to implement the well-balanced

methods, given Un
i = [hni , q

n
i ]T one has to find the stationary solution U∗i = [q∗i , h

∗
i (x)]T that

solves (4.3.6): it is implicitly given by

q∗i (x) = qni ,
1

2

(qni )2

h∗i (x)2 + gh∗i (x)− gH = Ci, ∀x,

with

Ci =
1

2

(qni )2

(hni )2
+ ghni − gH(xi).

Therefore, at a point xj of the stencil, one has q∗i (xj) = qni and h∗i (xj) has to be a positive

root of the polynomial:

Pi,j(h) = h3 −
(
Ci
g

+ gH(xj)

)
h2 +

1

2g
(qni )2.
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This polynomial can have two, one, or zero positive roots. In the first case, one of the

roots corresponds to a supercritical state and the other one to a subcritical state: a criterion

is necessary to select one root or the other. We follow here a similar criterion to the one

chosen in [20] in the context of finite volume methods: the solution whose regime (sub or

supercritical) is the same as the one of Un
i is selected [1]. A careful implementation is needed

to capture transcritical stationary solutions: see for instance the discussion in [20] or [97].

Preservation of a subcritical stationary solution

Let us consider the shallow water model in the space interval [−3, 3] with bottom depth

given by

H(x) =

−0.25(1 + cos(5πx)) if − 0.2 ≤ x ≤ 0.2;

0 otherwise;

(4.5.14)

and initial condition given by the subcritical stationary solution U∗ that satisfies

q∗ = 2.5, h∗(−3) = 2

(see Figure 4.5.18). The numerical methods are applied to this problem using 200 mesh

points and CFL= 0.8. At the boundaries, the stationary solution is imposed at ghost points.
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Figure 4.5.18: Test 4.5.3. (Preservation of a subcritical stationary solution). Discrete initial
condition with 100 mesh points. Free surface and bathymetry.

Figure 4.5.20 shows the differences between the exact and the non well-balanced numerical

solutions obtained at time t = 4. As it can be seen in Figure 4.5.19, the well-balanced
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Figure 4.5.19: Test 4.5.3. (Preservation of a subcritical stationary solution). Differences between
the numerical solutions for second order (top) and fourth order (bottom) obtained with well-
balanced, WBACAT, methods and the exact stationary one, at time t = 4 using 100 mesh points
and CFL= 0.8.
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Figure 4.5.20: Test 4.5.3. (Preservation of a subcritical stationary solution). Differences between
the numerical solutions for h (top) and q (bottom) obtained with ACAT methods and the exact
stationary one, at time t = 4 using 200 mesh points and CFL= 0.8.

methods capture the stationary solution to machine accuracy even with a not fine mesh

grid. This behaviour is confirmed by Table 4.10 that shows the L1−errors corresponding to

WBACAT2P , P = 1, 2, using 50, 100, 200 and 400 mesh points at time t = 4. Unfortunately,

the introduction of spurious oscillations with the not well-balanced schemes involves a order

reduction since the high order smoothness indicators are not able to detect a priori the real

smoothness of the solution. This behaviour is highlighted in the next experiments.
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WBACAT2 WBACAT4
Points h q u h q u
50 2.93E-16 1.07E-16 2.66E-16 2.39E-16 5.32E-17 1.87E-16
100 3.46E-16 7.99E-17 1.86E-16 2.13E-16 0 1.20E-16
200 3.40E-16 0 2.46E-16 3.99E-17 0 1.99E-17
400 1.77E-16 0 1.20E-16 0 5.99E-17 2.98E-17

Table 4.10: Test 4.5.3. (Preservation of a subcritical stationary solution). Errors in L1−norm for
WBACAT2P , P = 1, 2, at time t = 4.

Perturbation of a subcritical stationary solution

The setting of this test is similar to the previous one but now the initial condition is a smooth

perturbation of the subcritical stationary solution U∗ (see Figure 4.5.21) considered there:

U0 =

h∗ + 0.006e(−20(x+1)2)

q∗

 .
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Figure 4.5.21: Test 4.5.3. (Perturbation of a subcritical stationary solution). Initial condition
and reference solution obtained with WBACAT4 computed at time t = 0.4 using 2000 mesh points
and CFL= 0.8 : h (left); q (right). In the plot of q there appear the left and right traveling waves,
as well as a small left moving reflected wave.

The numerical solutions are computed on the interval [−3, 3] using 200 mesh points at

time t = 0.4 with CFL = 0.8. As boundary conditions the subcritical stationary solution is

imposed at ghost points.

Figures 4.5.22 and 4.5.23 show the errors obtained by the differences between reference
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ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
50 - 2.18E-3 - 1.64E-5 - 2.07E-4 - 1.81E-5
100 0.98 1.10E-3 1.95 4.22E-6 1.11 9.61E-5 2.25 3.79E-6
200 1.23 4.96E-4 1.94 1.09E-6 1.59 3.19E-5 4.72 1.44E-7
400 1.48 1.68E-4 1.97 2.77E-7 1.84 8.87E-6 4.33 8.22E-9
800 1.53 5.82E-5 1.97 7.07E-8 1.93 2.31E-6 4.07 6.54E-10

Table 4.11: Test 4.5.3: (Perturbation of a subcritical stationary solution). Errors in L1−norm and
convergence rates related to h for ACAT2, ACAT4, WBACAT2 and WBACAT4 at time t = 0.15
and CFL= 0.8.

ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
50 - 8.21E-3 - 5.54E-5 - 7.85E-4 - 6.15E-5
100 1.00 4.11E-3 1.63 1.79E-5 1.22 3.35E-4 2.86 1.69E-5
200 1.25 1.73E-3 1.94 4.68E-6 1.67 1.05E-4 4.78 6.17E-7
400 1.51 6.06E-4 1.98 1.19E-6 1.87 2.86E-5 4.31 4.65E-8
800 1.54 2.08E-4 1.98 3.01E-7 1.98 7.31E-6 4.05 1-41E-9

Table 4.12: Test 4.5.3: (Perturbation of a subcritical stationary solution). Errors in L1−norm and
convergence rates related to q for ACAT2, ACAT4, WBACAT2 and WBACAT4 at time t = 0.15
and CFL= 0.8.
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Figure 4.5.22: Test 4.5.3. (Perturbation of a subcritical stationary solution). Differences between
reference and numerical solutions obtained with WBACAT2P , P = 1, 2, computed at time t = 0.4
using 200 mesh points and CFL= 0.8 : h (top); q (bottom). The reference solution is computed
with WBACAT4 adopting a 2000 mesh points.
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Figure 4.5.23: Test 4.5.3. (Perturbation of a subcritical stationary solution). Differences between
reference and numerical solutions obtained with ACAT2P , P = 1, 2, computed at time t = 0.4 using
200 mesh points and CFL= 0.8 : h (top); q (bottom). The reference solution is computed with
WBACAT4 adopting a 2000 mesh points

solution and the numerical solutions computed with well-balanced and not well-balanced

methods at time t = 0.4. The reference solution considered is WBACAT4 adopting a 2000

mesh points. As expected, WBACAT2P , P = 1, 2, capture better the waves generated by

the initial perturbation than ACAT2P , P = 1, 2. In addition, Tables 4.11-4.12 show how

well-balanced methods manage to reach the expected order, behavior not respected by non

well-balanced methods. In this case, as seen above, this phenomenon is partly attributable
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to not well-balanced reconstruction partly to smoothness indicators. In fact, the not well-

balanced methods at first step introduce a spurious error which implies a loss of numerical

smoothness resulting in degradation of the order.

Smooth initial condition with flat bottom

We now check that, in the case of flat bottom and smooth solution, well-balanced and non

well-balanced schemes give the same result, all with the expected order of accuracy. In order

to obtain these results we consider the Shallow water equation (4.5.12) with flat bottom and

smooth initial condition (3.2.24) (see Figure 4.5.24):

U0(x) =

h0(x)

q0(x)

 , (4.5.15)

where

h0(x) = q0(x) =


0 if x < 0;

p(x) if 0 ≤ x ≤ 1;

1 if x > 1;

and

p(x) = x6
( 5∑
k=0

(−1)k
(

5 + k

k

)
(x− 1)k

)
.
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Figure 4.5.24: Test 4.5.3. (Smooth initial condition with flat bottom). Initial condition and
reference solution obtained by WBACAT4 at time t = 0.2 using 3200 mesh points and CFL= 0.8;
h (top); q (bottom).
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Figure 4.5.25: Test 4.5.3. (Smooth initial condition with flat bottom). Differences between
numerical solutions obtained with ACAT2P and WBACAT2P , P = 1, 2, computed at time t = 0.2
using 100 mesh points and CFL= 0.8 and the reference solution. h (top); q (bottom). For the
reference solution a 3200 mesh points has been adopted.

ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
200 - 7.27E-5 - 7.25E-5 - 2.25E-6 - 2.25E-6
400 2.01 1.80E-5 2.01 1.80E-5 3.98 1.42E-7 3.98 1.42E-7
800 2.00 4.50E-6 2.00 4.50E-6 3.99 8.91E-9 3.99 8,91E-9
1600 2.00 1.13E-6 2.00 1.13E-6 4.00 5.56E-10 4.00 5.57E-10

Table 4.13: Test 4.5.3: (Smooth initial condition with flat bottom). Errors in L1−norm and
convergence rates related to h for ACAT2, ACAT4, WBACAT2 and WBACAT4 at time t = 0.2
and CFL= 0.9.

The numerical solutions are computed on the interval [−2, 4] using 100 mesh points and

CFL = 0.9 at time t = 0.1, while for the reference solution WBACAT4 with a 3200 mesh

points is adopted. As boundary conditions free boundary is imposed at ghost points.

Figure 4.5.25 and Table 4.13-4.14 show that all methods have a similar behavior by

reproducing similar results. In particular, all schemes are accurate as expected.

With this experiment we have proven that all methods, both well-balanced and not, have

a similar behavior when they are far from the stationary condition; while, well-balanced

reconstructions reproduce better results, both in accuracy and numerical convergence, when

we are close to the stationary solution.
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ACAT2 WBACAT2 ACAT4 WBACAT4
Points Order Error Order Error Order Error Order Error
200 - 8.75E-4 - 8.74E-4 - 2.67E-5 - 2.67E-5
400 2.01 2.17E-4 2.01 2.17E-4 3.98 1.69E-6 3.98 1.69E-6
800 2.00 5.42E-5 2.00 5.42E-5 3.99 1.06E-7 3.99 1.06E-7
1600 2.00 1.35E-5 2.00 1.35E-5 4.00 6.61E-9 4.00 6.61E-9

Table 4.14: Test 4.5.3: (Smooth initial condition with flat bottom). Errors in L1−norm and
convergence rates related to q for ACAT2, ACAT4, WBACAT2 and WBACAT4 at time t = 0.2
and CFL= 0.9.

4.5.4 Euler system with gravity

Let us consider the system of compressible Euler equations of gas dynamics with a gravita-

tional potential in one space dimension
ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = −ρHx

Et + (u(E + p))x = −ρuHx

(4.5.16)

Here, ρ is the density, u is the velocity, p is the pressure, E is the energy per unit volume

excluding the gravitational energy, and H(x) is the gravitational potential (see [23, 52, 53,

69, 71]). We assume the gas is polytropic, so the pressure is given by

p = (γ − 1)
[
E − 1

2
ρu2
]
, γ =

cp
cv
> 1,

where γ is the ratio of specific heats at constant pressure and volume, which is taken to be

constant, in our cases γ = 1.2. This system can be written in the form (4.0.1) with

U =


ρ

ρu

E

 , f(U) =


ρu

ρu2 + p

u(E + p)

 , S(U) =


0

−ρ

−ρu

 .

The hydrostatic stationary solutions of (4.5.16) satisfy

px = −ρHx. (4.5.17)
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For hydrostatic equilibrium, u = 0, and the profiles of pressure and density have to satisfy

only condition (4.5.17), therefore there are infinite solutions that depend on an arbitrary

function. Here we consider isothermal profiles, for which the gas temperature T is assumed

to be constant.

For such perfect gas it is

p(x) = RTρ(x)

then the differential relation (4.5.17) becomes

RT
ρx
ρ

= −Hx

with solution

ρ(x) = ρ̄e−
H(x)
RT .

Choosing R and T such that RT = 1, a family of isothermal hydrostatic stationary solutions

[21, 127] is given by

ρ∗(x) = C1e
−H(x) ≥ 0; p∗(x) = ρ∗(x) ≥ 0; u∗(x) = 0; E∗(x) =

p∗(x)

γ − 1
. (4.5.18)

In order to design numerical methods that preserve the stationary solutions of this family,

the technique described in Remark 4.3.4 will be applied: given Un
i = [ρni , ρ

n
i u

n
i , E

n
i ]T , the

solution U∗i of the family

ρ∗i (x) = ρni e
−(H(x)−H(xi)), (4.5.19)

p∗i (x) = ρni e
−(H(x)−H(xi))

u∗i (x) = 0,

E∗i (x) =
p∗i (x)

γ − 1
,

i.e. the constant C1 is chosen so that that ρ∗(xi) = ρni .
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Preservation of an isothermal stationary solution with linear H

Let us consider the Euler equations (4.5.16) in the space interval [−1, 1] with gravitational

potential H(x) = x and initial condition

ρ(x, 0) = e−x; u(x, 0) = 0; p(x, 0) = e−x, (4.5.20)

(see [21])
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Figure 4.5.26: Test 4.5.4 (Preservation of an isothermal stationary solution with linear H).
Differences between the exact and the numerical solutions obtained at time t = 5 with WBACAT2-
4 for density (top) and velocity (bottom) using 100 mesh points and CFL= 0.8.

ρ u p E
Points Error Order Error Order Error Order Error Order
50 2.16E-2 - 8.11E-2 - 9.74E-2 - 2.44E-2 -
100 5.35E-3 2.01 1.98E-2 2.03 2.42E-2 2.01 6.05E-3 2.01
200 1.33E-4 2.00 1.22E-3 2.02 1.51E-3 2.00 3.77E-4 2.00

Table 4.15: Test 4.5.4 (Preservation of an isothermal stationary solution with linear H). Errors
in L1−norm and convergence rate for ACAT2 at time t = 5.

The numerical solutions are computed on the interval [−1, 1] using 100 mesh points and

CFL= 0.8. As boundary conditions the exact stationary solution (4.5.20) is imposed at ghost

points.

Figure 4.5.26 and Tables 4.15-4.17 show the differences between the numerical solutions at
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ρ u p E
Points Error Order Error Order Error Order Error Order
50 9.15E-6 - 3.45E-5 - 4.13E-5 - 1.03E-5 -
100 5.69E-7 4.01 2.11E-6 4.03 2.58E-6 4.00 6.44E-7 4.00
200 3.55E-8 4.00 1.30E-7 4.00 1.61E-7 4.02 4.02E-8 4.00

Table 4.16: Test 4.5.4 (Preservation of an isothermal stationary solution with linear H). Errors
in L1−norm and convergence rate for ACAT4 at time t = 5.

WBACAT Order 2 WBACAT Order 4
Points ρ u p E ρ u p E
50 1.79E-15 2.18E-15 2.11E-15 8.46E-15 2.05E-15 1.89E-15 1.43E-15 5.74E-15
100 1.54E-15 3.06E-15 1.27E-15 5.09E-15 1.13E-15 4.33E-15 2.49E-15 9.97E-15
200 3.53E-15 3.70E-15 9.89E-15 3.95E-15 8.19E-14 2.94E-15 1.17E-14 4.67E-14
400 5.14E-15 4.99E-15 1.45E-14 6.81E-15 6.89E-14 8.34E-14 1.97E-14 7.89E-14
800 1.57E-14 1.60E-14 4.25E-14 1.69E-14 6.05E-14 6.29E-14 4.72E-14 1.87E-13

Table 4.17: Test 4.5.4 (Preservation of an isothermal stationary solution with linear H). Errors
in L1−norm for WBACAT2-4 methods at time t = 5.

time t = 5 and stationary solution computed with, respectively, not well-balanced ACAT2-

4 and well-balanced WBACAT2-4. As expected, the well-balanced methods capture the

stationary solution with machine precision, confirmed by Tables 4.17. Nevertheless, the error

in L1−norm for the non well-balanced schemes decrease in accordance with the theoretical

order, see in Tables 4.15-4.16.

As we have seen, the non well-balanced methods produce an error in accordance with

their formal order of accuracy, while well-balanced methods capture the stationary solution

with error of the order of machine precision. Now, we want to check what happens when a

perturbation of the hydrostatic solution is used as initial condition and how the gravitational

potential H plays an important role in the evolution of the perturbation.

Perturbation of an isothermal stationary solution with constant H

Let us consider the Euler equations (4.5.16) with a constant gravitational potential. This

means that we are solving the Euler equations without source term. For the setting of this

experiment we consider H ≡ 1, the interval [−0.5, 1.5] and the initial conditions

ρ(x, 0) = e−H + 0.1e−200(x−0.5)2 ; u(x, 0) = 0; p(x, 0) = e−H + 0.1e−200(x−0.5)2 (4.5.21)
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which is a perturbation of the isothermal equilibrium (see Figure 4.5.27).
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Figure 4.5.27: Test 4.5.4 (Perturbation of an isothermal stationary solution with constant H).
Initial conditions: pressure (left); velocity (right).
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Figure 4.5.28: Test 4.5.4 (Perturbation of an isothermal stationary solution with constant H).
Differences between the numerical solutions and the isothermal equilibrium obtained with ACAT2P
and WBACAT2P , P = 1, 2, at time t = 0.5 with CFL= 0.7 and a 200 mesh points.

The numerical solutions are computed on the interval [−0.5, 1.5] using 200 mesh points

and CFL= 0.7 at time t = 0.5. As boundary conditions the exact stationary solution is

imposed at ghost points.

In Figure 4.5.28 the differences between the stationary solution and the numerical ones

obtained with ACAT2P and WBACAT2P , P = 1, 2, is shown. Since the perturbation is

not so small and the gravitational potential H is constant, all the methods, well-balanced
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and non well-balanced, produce similar results in accordance with the theoretical order.

Furthermore, due to the constant gravitational potential, we observe that the perturbation

in position 0.5 is symmetrically split in two perturbation that evolve in both direction.

With the next experiments, following [4, 68, 117], we would like to check the perturbation

evolution in presence of linear and non-linear gravitational potential. In particular, in the

second case we will adopt a non-linear gravitational potential that presents a singularity

near the computational domain.

Perturbation of an isothermal stationary solution with linear H

Let us consider the Euler equations (4.5.16) with a linear gravitational potential. For this

experiment we consider H(x) = x, the interval [−0.5, 1.5] and the initial conditions

ρ(x, 0) = e−H(x)+0.1e−200(x−0.5)2 ; u(x, 0) = 0; p(x, 0) = e−H(x)+0.1e−200(x−0.5)2 (4.5.22)

which is a perturbation of the isothermal equilibrium as shown in Figure 4.5.29.
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Figure 4.5.29: Test 4.5.4 (Perturbation of an isothermal stationary solution with linearH). Initial
conditions (left); Initial perturbations (right).

The numerical solutions are computed in the interval [−0.5, 1.5] using 200 mesh points

and CFL= 0.7 at time t = 0.5. As boundary conditions the exact stationary solution is

imposed at ghost points.

We remark that the overdetermined boundary conditions compatible with the stationary

solutions can be imposed as far as the signal does not reach the boundary, which is the case
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Figure 4.5.30: Test 4.5.4 (Perturbation of an isothermal stationary solution with linear H).
Differences between the numerical solutions and the isothermal equilibrium obtained with ACAT2P ,
P = 1, 2, at time t = 0.5 with CFL= 0.7 and a 200 mesh points.
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Figure 4.5.31: Test 4.5.4 (Perturbation of an isothermal stationary solution with linearH). Differ-
ences between the numerical solutions and the isothermal equilibrium obtained with WBACAT2P ,
P = 1, 2, at time t = 0.5 with CFL= 0.7 and a 200 mesh points.

in the tests performed in this section.

Figures 4.5.30-4.5.31 show the difference between the stationary solution and the numer-

ical ones obtained with ACAT2P and WBACAT2P , P = 1, 2. Since the perturbation is not

small enough the difference between well-balanced and non well-balanced schemes is not so

remarkable. Indeed, all the methods produce similar results in accordance with the theo-

retical order. Nevertheless, we could observe that, in the region in which the signal is not

arrived, the well-balanced methods are able to preserve the stationary solution, behaviour
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Pressure
Points ACAT2 ACAT4 WBACAT2 WBACAT4
125 7.78E-3 - 6.72E-3 - 4.10E-3 - 3.68E-3 -
250 3.75E-3 1.05 3.01E-3 1.16 1.88E-3 1.13 1.16E-3 1.66
500 1.55E-3 1.27 3.74E-4 3.01 7.16E-4 1.39 3.22E-4 1.85
1000 5.75E-4 1.43 2.48E-5 3.91 2.59E-4 1.47 2.11E-5 3.93

Table 4.18: Test 4.5.4 (Perturbation of an isothermal stationary solution with linear H). Errors
in L1−norm and convergence rates for pressure at time t = 0.5.

that is not followed by the non well-balanced schemes. Furthermore, due to the linear gravi-

tational potential, we observe that the pressure perturbation in position 0.5 is split into two

perturbations that evolve in both direction where the right signal amplitude decrease and

the left one increases. Table 4.18 shows the error in L1−norm and the numerical convergence

rates. As expected, due to the adaptive order strategy and consequently to the smoothness

indicators, a really fine mesh is required to obtain the theoretical order.

To complete this series of experiments concerning the perturbation of isothermal equilib-

rium, a non-linear gravitational potential H with a singularity close to the left boundary of

the domain is adopted.

Perturbation of an isothermal stationary solution with non-linear H

Let us consider the Euler equations (4.5.16) with a non-linear gravitational potential. For

this experiment we consider H(x) = 1
x+0.7

, the interval [−0.5, 1.5] and the initial conditions

ρ(x, 0) = e−H(x)+0.1e−200(x−0.5)2 ; u(x, 0) = 0; p(x, 0) = e−H(x)+0.1e−200(x−0.5)2 (4.5.23)

which is a perturbation of the isothermal equilibrium as exhibited in Figure 4.5.32.

The numerical solutions are computed on the interval [−0.5, 1.5] using 200 mesh points

and CFL= 0.7 at time t = 0.5. As boundary conditions the exact stationary solution is

imposed at ghost points.

Figures 4.5.33-4.5.34 show the differences between the stationary solution and the nu-

merical ones obtained with ACAT2P and WBACAT2P , P = 1, 2. Even if the perturbation

is not too small, the difference between well-balanced and non well-balanced schemes is very

remarkable. In fact, all the methods are able to evolve the perturbation, but we could observe

that, in the region in which the signal has not arrived, the well-balanced methods are able
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Figure 4.5.32: Test 4.5.4 (Perturbation of an isothermal stationary solution with non-linear H).
Gravitational potential H (left); Initial condition (right).
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Figure 4.5.33: Test 4.5.4 (Perturbation of an isothermal stationary solution with non-linear
H). Differences between the numerical solutions and the isothermal equilibrium obtained with
ACAT2P , P = 1, 2, at time t = 0.5 with CFL= 0.7 and a 200 mesh points.

to preserve the stationary solution, behaviour that is not followed by the non well-balanced

schemes. Furthermore, due to the non-linear singular gravitational potential, we observe

that the pressure perturbation in position 0.5 is split into two perturbations that evolve in

both direction where the right signal amplitude are bigger than the left one. This behaviour

is a direct consequence of the singularity in position x = 0.7.

We will finish the numerical experiments of this section with two very different tests. In

the first one we consider a very small perturbation of the pressure where the signal amplitude

is comparable with the acoustic regime; in the second one we consider the classic Shock Tube

PhD Thesis, Chapter 4 146



4.5. Numerical experiments

-0.5 0 0.5 1 1.5
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

p
w

b
-p

*

Pressure

pWBACAT2-p*

pWBACAT4-p*

-0.5 0 0.5 1 1.5
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

u
w

b
-u

*

Velocity

uWBACAT2-u*

uWBACAT4-u*

Figure 4.5.34: Test 4.5.4 (Perturbation of an isothermal stationary solution with non-linear
H). Differences between the numerical solutions and the isothermal equilibrium obtained with
WBACAT2P , P = 1, 2, at time t = 0.5 with CFL= 0.7 and a 200 mesh points.

problem with constant and linear gravitational potential.

Acoustic regime

Let us consider the Euler equations (4.5.16) with a non-linear gravitational potential H(x) =

1
x+0.7

on the interval [−0.5, 1.5] and the initial conditions

ρ(x, 0) = e−H(x) + εe−200(x−0.5)2 ; u(x, 0) = 0; p(x, 0) = e−H(x) + εe−200(x−0.5)2 (4.5.24)

which is a small perturbation of the isothermal equilibrium, in the acoustic regime with

amplitude ε = 10−6 (see Figure 4.5.35).

The numerical solutions are computed in the interval [−0.5, 1.5] using 200 mesh points

and CFL= 0.7 at time t = 0.5. As boundary conditions the exact stationary solution is

imposed at ghost points.

Figures 4.5.36-4.5.37 show the difference between the stationary solution and the nu-

merical ones obtained with ACAT2P and WBACAT2P , P = 1, 2, in the acoustic regime.

In this case the non well-balanced reconstructions introduce errors that are much larger

than the initial signal amplitude making it impossible to numerically reconstruct the sig-

nal. Furthermore, due to the non-linear singular gravitational potential, we observe that

the well-balanced pressure perturbation in position 0.5 is split into two perturbations that

evolve in both directions where the right signal amplitude are bigger than the left one. This
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Figure 4.5.35: Test 4.5.4 (Acoustic regime). Pressure initial perturbation.
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Figure 4.5.36: Test 4.5.4 (Acoustic regime). Differences between the numerical solutions and the
isothermal equilibrium obtained with ACAT2P , P = 1, 2, at time t = 0.5 with CFL= 0.7 and a
200 mesh points.

behaviour is a direct consequence of the singularity in position x = 0.7.

Shock tube problem for Euler with gravity

In order to check if the well-balanced schemes give good results even when the solution to

approximate is far from equilibrium, we consider the shock-tube problem see [24] in the space

interval [−0.5, 1.5] for (4.5.16) with the gravitational potential H1 ≡ 1 and H2(x) = x. The

initial conditions are now
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Figure 4.5.37: Test 4.5.4 (Acoustic regime). Differences between the numerical solutions and the
isothermal equilibrium obtained with WBACAT2P , P = 1, 2, at time t = 0.5 with CFL= 0.7 and
a 200 mesh points.
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Figure 4.5.38: Test 4.5.4 (Shock tube problem for Euler with gravity). Initial conditions and ref-
erence solution computed with ACAT4 using 2000 mesh points and CFL= 0.5 for the gravitational
potential H1 ≡ 1.

[ρ(x, 0), u(x, 0), p(x, 0)]T =

[1, 0, 1]T if x ≤ 1
2

[0.125, 0, 0.1]T if x > 1
2
,

(4.5.25)

The numerical solutions are computed on the interval [−0.5, 1.5] using 200 mesh points and

CFL= 0.5. Dirichlet conditions are imposed at the boundaries. The reference solution is

computed with ACAT4 using a 2000 mesh points.
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Figure 4.5.39: Test 4.5.4 (Shock tube problem for Euler with gravity). Reference and numerical
solutions computed with well-balanced and non well-balanced ACAT2-4 at time t = 0.5 using 200
mesh points and CFL= 0.5 : pressure (left), velocity (center) and density (right) with gravitational
potential H1 ≡ 1. The subframes show the indicators for ACAT2 and ACAT4. The reference
solution is computed with ACAT4 using 2000 mesh points and CFL= 0.5
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Figure 4.5.40: Test 4.5.4 (Shock tube problem for Euler with gravity). Initial conditions and ref-
erence solution computed with ACAT4 using 2000 mesh points and CFL= 0.5 for the gravitational
potential H2(x) = x.

Figures 4.5.39-4.5.41 show the reference and the numerical solutions at time t = 0.5

computed with ACAT2P and WBACAT2P, P = 1, 2, with gravitational potential H1 and

H2. As it can be seen, the quality of the results obtained with well-balanced and not well-

balanced methods are similar. Figures 4.5.38-4.5.40 exhibit the initial conditions and the
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Figure 4.5.41: Test 4.5.4 (Shock tube problem for Euler with gravity). Reference and numerical
solutions computed with well-balanced and non well-balanced ACAT2-4 at time t = 0.5 using 200
mesh points and CFL= 0.5 : pressure (left), velocity (center) and density (right) with gravitational
potential H2(x) = x. The subframes show the indicators for ACAT2 and ACAT4. The reference
solution is computed with ACAT4 using 2000 mesh points and CFL= 0.5

reference solution computed with ACAT4 adopting a 2000 mesh points. The subframes show

the smoothness indicators for order 2 and 4 relative to ACAT2 and ACAT4.

From a careful evaluation it is noted that in Figure 4.5.39 the ACAT2 and WBACAT2

schemes have a behavior attributable to the Lax-Friedrichs method near the shocks. In our

case, this phenomenon is mainly due to the second order fluxlimiter adopted. In fact, as can

be seen from the subframes, the second order indicator is not able to capture the regularity

in the right part of the shock, therefore applying the first order method which, in our case,

is the Lax-Friedrichs scheme.
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Chapter 5

2D Adaptive Compact Approximate

Taylor Method for systems of balance

law and well-balanced properties

The extension of ACAT scheme to non-linear two-dimensional systems of hyperbolic balance

laws is shown in this section. For this reason, let us consider the 2D systems of hyperbolic

balance laws so written:

Ut + f(U)x + g(U)y = S1(U)Hx + S2(U)Hy. (5.0.1)

As we did for the 1D systems (4.0.1), let us introduce the functions F and G as:

F(U)((x, y), t) = f(U(x, y, t))−
∫ x

−∞
S1(U(σ))Hσ(σ, y)dσ; (5.0.2)

G(U)((x, y), t) = g(U(x, y, t))−
∫ y

−∞
S2(U(τ))Hτ (x, τ)dτ, (5.0.3)

assuming that the integrals are finite. Then, the identities

F(U)x = f(U(x, y, t))x − S1(U(x, y))Hx(x, y)

and

G(U)y = g(U(x, y, t))y − S2(U(x, y))Hy(x, y)
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allow us one to write the 2D system of balance laws (5.0.1) in the equivalent conservative

form

Ut + F(U)x + G(U)y = 0. (5.0.4)

The idea is now extend the ACAT2P schemes to 2D systems written in the form (5.0.4).

5.1 2D Adaptive Compact Approximate Taylor Method

for Systems of Balance Law

Following the notation used for the 2D systems of conservation laws, this multi-index notation

will be used:

i = (i1, i2) ∈ Z× Z,

and

0 = (0, 0) 1 = (1, 1)
1

2
= (1/2, 1/2), e1 = (1, 0), e2 = (0, 1).

We consider Cartesian meshes with nodes

xi = (i1∆x, i2∆y).

Using this notation, CAT2P methods for systems of balance laws can be extended as follows:

Un+1
i = Un

i +
∆t

∆x

[
F P
i− 1

2
e1
− F P

i+ 1
2
e1

+ S̃P1,i

]
+

∆t

∆y

[
GP

i− 1
2
e2
−GP

i+ 1
2
e2

+ S̃P2,i

]
(5.1.1)

where the numerical fluxes F P
i+ 1

2
e1
, GP

i+ 1
2
e2

and the source terms S̃Pj,i, j = 1, 2 are computed

using the values of the numerical solution Un
i in the P 2−point stencil centered at xi+1

2
=

((i1 + 1
2
)∆x, (i2 + 1

2
)∆y)

SP
i+1

2
= {xi+j, j ∈ IP},

where

IP = {j = (j1, j2) ∈ Z× Z, −P + 1 ≤ jk ≤ P, k = 1, 2}.

See Figure 3.3.1 for an example with P = 2 in the one-dimensional case.
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5.1.1 2D CAT2 for balance laws

Let us illustrate the extension of the 2D CAT procedure for systems of balance laws start-

ing from the easiest case P = 1. In order to have a second order scheme, the quadrature

formula used to compute integrals, dimension by dimension, in intervals of length ∆σ is the

trapezoidal rule: ∫ σi+1

σi

f(σ) dσ ≈ ∆σ

2

(
f(σi) + f(σi+1)

)
.

The numerical fluxes of second order are then as follows:

F 1
i+ 1

2
e1

=
1

4

(
f 1,n+1
i,0 + f 1,n+1

i,e1
+ fni + fni+e1

)
, (5.1.2)

G1
i+ 1

2
e2

=
1

4

(
g1,n+1
i,0 + g1,n+1

i,e2
+ gni + gni+e2

)
, (5.1.3)

where

f 1,n+1
i,j = f

(
Un
i+j + ∆tU

(1)
i,j

)
,

g1,n+1
i,j = g

(
Un
i+j + ∆tU

(1)
i,j

)
,

for j = 0, e1 in the x-direction and j = 0, e2 in the y-direction. Meanwhile, the source

contribution is so computed:

S̃1
1,i =

∆x

8

(
(S1(Un

i−e1) + S1(U1,n+1
i−e1,0))Hx(xi−e1) + (S1(Un

i ) + S1(U1,n+1
i−e1,e1))Hx(xi)(5.1.4)

+(S1(Un
i ) + S1(U1,n+1

i,0 ))Hx(xi) + (S1(Un
i+e1

) + S1(U1,n+1
i,e1

))Hx(xi+e1)
)

;

S̃1
2,i =

∆x

8

(
(S2(Un

i−e2) + S2(U1,n+1
i−e2,0))Hy(xi−e2) + (S2(Un

i ) + S2(U1,n+1
i−e2,e2))Hy(xi)

+(S2(Un
i ) + S2(U1,n+1

i,0 ))Hy(xi) + (S2(Un
i+e2

) + S2(U1,n+1
i,e2

))Hy(xi+e2)
)
.

On previous equations (5.1.4) we use the notation Ui−j,j instead of Ui−m,(j−l,k) to emphasize

the different space positions according with dimension and notation introduced for CAT2P

procedure for conservation laws. In particular, (l, k) are a single coordinate, respectively in

dimension x or y but a double index is necessary to fix the reconstruction sides.
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U1,n+1
i,(j−l,k) or U

1,n+1
(i−m,k),j−l are the first order Taylor series computed as:

U1,n+1
i,j = Un

i,j + U
(1)
i,j

for j = 0, e1 in x dimension and j = 0, e2 in y dimension where the first time derivatives

U
(1)
i;i,j are so defined:

U
(1)
i,0 = − 1

∆x

(
f(Un

i+e1
)− f(Un

i )
)
− 1

∆y

(
g(Un

i+e2
)− g(Un

i )
)

+
1

2

(
S1(Un

i )Hx(xi) + S1(Un
i+e1

)Hx(xi+e1) + S2(Un
i )Hy(xi)

+ S2(Un
i+e2

)Hy(xi+e2)
)

;

U
(1)
i,e1

= − 1

∆x

(
f(Un

i+e1
)− f(Un

i )
)
− 1

∆y

(
g(Un

i+e1+e2
)− g(Un

i+e1
)
)

+
1

2

(
S1(Un

i )Hx(xi) + S1(Un
i+e1

)Hx(xi+e1) + S2(Un
i+e1+)Hy(xi+e1)

+ S2(Un
i+e1+e2

)Hy(xi+e1+e2)
)

;

U
(1)
i,e2

= − 1

∆x

(
f(Un

i+e1+e2
)− f(Un

i+e2
)
)
− 1

∆y

(
g(Un

i+e2
)− g(Un

i )
)

+
1

2

(
S1(Un

i+e2
)Hx(xi+e2) + S1(Un

i+e1+e2
)Hx(xi+e1+e2) + S2(Un

i )Hy(xi)

+ S2(Un
i+e2

)Hy(xi+e2)
)
.

The local expression of the second order numerical method is so get:

Un+1
i = Un

i +
∆t

∆x

[
F 1
i− 1

2
e1
− F 1

i+ 1
2
e1

+ S̃1
1,i

]
+

∆t

∆y

[
G1

i− 1
2
e2
−G1

i+ 1
2
e2

+ S̃1
2,i

]
. (5.1.5)

5.1.2 2D CAT2P for balance laws

In order to be more readability let us introduce

MP = {j ∈ I such that − P + 2 ≤ j1 ≤ P}

and

NP = {j ∈ I such that − P + 2 ≤ j2 ≤ P}.

The following algorithm will be used to compute the numerical fluxes F P
i+ 1

2
e1
, GP

i+ 1
2
e2

and the

source terms S̃Pj,i, j = 1, 2 of 2D CAT2P method:
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• Define

F
(0)
i,j := f(Un

i+j), j ∈ IP ;

G
(0)
i,j := g(Un

i+j), j ∈ IP ;

I
(0)
i,j−e1,j := ∆x

P∑
q=−P+1

ai1,j1P,q S1(Un
i+qe1

)Hx(xi+qe1), j ∈MP ;

I
(0)
i,(−P+1,j2),(−P+1,j2) = 0, j2 = −P + 1, . . . , P ;

I
(0)
i,(−P+1,j2),j =

j1∑
s=−P+2

I
(0)
i,(s−1,j2),(s,j2) j ∈MP ;

J
(0)
i,j−e2,j := ∆y

P∑
q=−P+1

ai2,j2P,q S2(Un
i+qe2

)Hy(xi+qe2), j ∈ NP ;

J
(0)
i,(j1,−P+1),(j1,−P+1) = 0, j1 = −P + 1, . . . , P ;

J
(0)
i,(j1,−P+1),j =

j2∑
s=−P+2

J
(0)
i,(j1,s−1),(j1,s)

j ∈ NP ;

• For k = 1, . . . , 2P − 1 :

– Compute for all j ∈ IP

U
(k)
i,j = −A1,j1

P

(
F

(k−1)
i,(∗,j2),∆x

)
+ A1,j1

P

(
I

(k−1)
i,(−P+1,j2),(∗,j2),∆x

)
−A1,j2

P

(
G

(k−1)
i,(j1,∗),∆y

)
+ A1,j2

P

(
J

(k−1)
i,(j1,−P+1),(j1,∗),∆y

)
.

– Compute for all j ∈ IP and for all r = −P + 1, . . . , P

Uk,n+r
i,j = Un

i+j +
k∑

m=1

(r∆t)m

m!
U

(m)
i,j .

– Compute for all j ∈ IP and for all r = −P + 1, . . . , P

F k,n+r
i,j = f(Uk,n+r

i,j ) and Gk,n+r
i,j = g(Uk,n+r

i,j ).
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– Compute for all j ∈MP and for all r = −P + 1, . . . , P

Ik,n+r
i,j−e1,j = ∆x

P∑
q=−P+1

ai1,j1P,q S1(Un
i+qe1

)Hx(xi+qe1);

I
(k)
i,j−e1,j = Ak,0P

(
Ik,∗i,j−e1,j,∆t

)
.

– Compute for all j ∈ NP and for all r = −P + 1, . . . , P

Jk,n+r
i,j−e2,j = ∆y

P∑
q=−P+1

ai2,j2P,q S2(Un
i+qe2

)Hy(xi+qe2);

J
(k)
i,j−e2,j = Ak,0P

(
Jk,∗i,j−e2,j,∆t

)
.

– Compute

F
(k)
i,j = Ak,0P

(
F k,∗
i,j ,∆t

)
, j ∈ IP ;

G
(k)
i,j = Ak,0P

(
Gk,∗

i,j ,∆t
)
, j ∈ IP ;

I
(k)
i,(−P+1,j2),(−P+1,j2) = 0, j2 = −P + 1, . . . , P ;

I
(k)
i,(−P+1,j2),j =

j1∑
s=−P+2

I
(k)
i,(s−1,j2),(s,j2) j ∈MP ;

J
(k)
i,(j1,−P+1),(j1,−P+1) = 0, j1 = −P + 1, . . . , P ;

J
(k)
i,(j1,−P+1),j =

j2∑
s=−P+2

I
(k)
i,(j1,s−1),(j1,s)

j ∈ NP ;

• Compute

F P
i+1

2
e1

=
2P∑
k=1

∆tk−1

k!
A

0, 1
2

P

(
F

(k−1)
i,(∗,0) ,∆x

)
; (5.1.6)

GP
i+1

2
e2

=
2P∑
k=1

∆tk−1

k!
A

0, 1
2

P

(
G

(k−1)
i,(0,∗),∆y

)
(5.1.7)

Once the algorithm has finished, the integrals will have already been computed and

can be used to approximate the source terms as follows:
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• For k = 1, . . . , 2P define

I(k−1)
i,j1

=

I
(k−1)
i−e1,j1e1,(j1+1)e1

if j1 = −P + 1, . . . , 0;

I
(k−1)
i,(j1−1)e1,j1e1

if j1 = 1, . . . , P.

J (k−1)
i,j2

=

J
(k−1)
i−e2,j2e2,(j2+1)e2

if j2 = −P + 1, . . . , 0;

J
(k−1)
i,(j2−1)e2,j2e2

if j2 = 1, . . . , P.

• Compute

S̃P1,i =
2P∑
k=1

∆tk−1

k!
A

0, 1
2

P

(
I(k−1)
i,∗ ,∆x

)
; (5.1.8)

S̃P2,i =
2P∑
k=1

∆tk−1

k!
A

0, 1
2

P

(
J (k−1)

i,∗ ,∆y
)
. (5.1.9)

5.1.3 2D ACAT2P for balance laws

The extension of the adaptive CAT2P (5.0.1) is similar to conservation case (3.3.1). Follow-

ing what has been done for ACAT2P in 1D we define A, the indices set used to select the

squared stencils according with the smoothness of numerical data, as:

Ai = {p ∈ {2, . . . , P} such that ψp
i± 1

2
e1
≈ 1 and ψp

i± 1
2
e2
≈ 1} (5.1.10)

where ψp
i+ 1

2
e1
, ψp

i+ 1
2
e2

are the smoothness indicators introduced in Subsection 3.2.2 computed

direction by direction. Then the 2D adaptive CAT2P are so defined:

FAi

i+ 1
2
e1

=

F
∗
i+ 1

2
e1

if Ai = ∅;

F ps
i+ 1

2
e1

where ps = max(Ai) otherwise;
(5.1.11)

GAi

i+ 1
2
e2

=

G
∗
i+ 1

2
e2

if Ai = ∅;

Gps
i+ 1

2
e2

where ps = max(Ai) otherwise;
(5.1.12)

and

S̃Ai
j,i =

S̃
∗
j,i if Ai = ∅;

S̃psj,i where ps = max(Ai) otherwise.
(5.1.13)
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F ∗
i+ 1

2
e1
, G∗

i+ 1
2
e2
, and S̃∗j,i are the ACAT2 numerical fluxes and source terms given by 1D

(4.2.5), (4.2.6); F ps
i+ 1

2
e1
, Gps

i+ 1
2
e2

and S̃psj,i are the CAT2ps numerical fluxes and source terms

defined in (5.1.6), (5.1.8).

Using this notation, ACAT2P methods may be defined as follows:

Un+1
i = Un

i +
∆t

∆x

[
FAi

i− 1
2
e1
− FAi

i+ 1
2
e1

+ S̃Ai
1,i

]
+

∆t

∆y

[
GAi

i− 1
2
e2
−GAi

i+ 1
2
e2

+ S̃Ai
2,i

]
(5.1.14)

Remark 5.1.1 Observe that, since the smoothness indicators are computed dimension by

dimension, a rectangular stencil

Sp1,p2
i+1

2

= {xi,j, i1 − p1 + 1 ≤ j1 ≤ i1 + p1, i2 − p2 + 1 ≤ j2 ≤ i2 + p2},

could be used to compute the numerical fluxes F p1
i+ 1

2
e1
, Gp2

i+ 1
2
e2
. Unfortunately, a lot of mod-

ification are necessary to the quadrature rule increasing the computational cost without any

immediately advantage.

5.2 2D AdaptiveWell Balanced Compact Approximate

Taylor Method for Balance Law

In the case of the well-balanced methods WBCAT2P, there is an important difference: if the

algorithm described in Subsection 4.3 (adopting the 2D above notation) wants to be used,

the first step, to update the numerical solution at the point xi at time tn, would be find a

solution of the problem  f(U)x + g(U)y = S1(U)Hx + S2(U)Hy

U(xi) = Un
i .

(5.2.1)

This problem is obviously much more difficult to solve, either exactly or numerically, than

(4.3.6) since it is about a nonlinear PDE system instead an ODE system. Moreover in this

case there may exist infinitely many stationary solutions satisfying the condition at only one

point xi: some extra conditions have to be imposed to determine one of them.

Nevertheless, if the stationary solutions to be preserved constitute a k-parameter family,

U∗(x, y;C1, . . . , Ck),
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with k < d, then the numerical strategy described in Remark 4.3.4 can be followed: this

strategy will be used in Subsection 5.3 to preserve a family of stationary solutions of the 2D

Euler system with gravity.

Following the same idea of 1D well-balanced ACAT methods and 2D schemes for balance

laws, let us introduce the functions F̃ and G̃ as:

F̃(U)((x, y), t) = f(U(x, y, t))− f(U∗(x, y))−
∫ x

−∞
(S1(U(σ))− S1(U∗(σ)))Hσdσ; (5.2.2)

G̃(U)((x, y), t) = g(U(x, y, t))− g(U∗(x, y))−
∫ y

−∞
(S2(U(τ))− S2(U∗(τ)))Hτdτ, (5.2.3)

assuming that the integrals are finite. Then, the identities

F(U)x = f(U(x, y, t))x − f(U∗(x, y))x − (S1(U(x, y, t))− S1(U∗(x, y)))Hx(x, y)

and

G(U)y = g(U(x, y, t))y − g(U∗(x, y))y − (S2(U(x, y, t))− S2(U∗(x, y)))Hy(x, y)

allow us to rewrite the 2D system of balance laws (3.3.1) in the equivalent conservative form

Ut + F̃(U)x + G̃(U)y = 0. (5.2.4)

The main is extend the well-balanced strategy adopted for the one-dimensional case to 2D

systems written in the form (5.2.4).

Remark 5.2.1 Differently from the one-dimensional case, the two-dimensional case or more

does not verify the, one-dimensional (direction by direction), stationary condition f(U)x −

S1(U)Hx = 0. In fact, in general, it happens that f(U)x−S1(U)Hx = g(U)y−S2(U)Hy that

should be different from zero. Nevertheless, F̃(U∗)x + G̃(U∗)y = 0

5.2.1 2D WBCAT2 for balance laws

The extension of the 2D well-balanced CAT procedure for systems of balance laws starts from

the easiest case P = 1. In order to have a second order scheme, the quadrature formula used

to compute integrals, dimension by dimension, in intervals of length ∆σ is the trapezoidal
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rule: ∫ σi+1

σi

f(σ) dσ ≈ ∆σ

2

(
f(σi) + f(σi+1)

)
.

The numerical well-balanced reconstructions of second order are then as follows:

F 1
i;i+ 1

2
e1

=
1

4

(
f 1,n+1
i;i,0 + f 1,n+1

i;i,e1
+ fni + fni+e1

− 2f(U∗i (xi))− 2f(U∗i (xi+e1))
)
, (5.2.5)

F 1
i;i− 1

2
e1

=
1

4

(
f 1,n+1
i;i−e1,0 + f 1,n+1

i;i−e1,e1 + fni−e1 + fni − 2f(U∗i (xi))− 2f(U∗i (xi−e1))
)
, (5.2.6)

G1
i;i+ 1

2
e2

=
1

4

(
g1,n+1
i;i,0 + g1,n+1

i;i,e2
+ gni + gni+e2

− 2f(U∗i (xi))− 2f(U∗i (xi+e2))
)
, (5.2.7)

G1
i;i− 1

2
e2

=
1

4

(
g1,n+1
i;i−e2,0 + g1,n+1

i;i−e2,e2 + gni + gni−e2 − 2f(U∗i (xi))− 2f(U∗i (xi−e2))
)
, (5.2.8)

where

f 1,n+1
i;i,j = f

(
Un
i+j + ∆tU

(1)
i;i,j

)
, f 1,n+1

i;i−e1,j = f
(
Un
i−e1+j + ∆tU

(1)
i;i−e1,j

)
,

g1,n+1
i;i,j = g

(
Un
i+j + ∆tU

(1)
i;i,j

)
, g1,n+1

i;i−e2,j = g
(
Un
i−e2+j + ∆tU

(1)
i;i−e2,j

)
,

for j = 0, e1 in the x-direction and j = 0, e2 in the y-direction. Meanwhile, the source

contributions are computed direction by direction as follows:

S̃1
1,i =

∆x

8

[(
S1(Un

i−e1) + S1(U1,n+1
i;i−e1,0)− 2S1(U∗i (xi−e1)

)
Hx(xi−e1) (5.2.9)

+
(
S1(Un

i ) + S1(U1,n+1
i;i−e1,e1)2S1(U∗i (xi)

)
Hx(xi)

+
(
S1(Un

i ) + S1(U1,n+1
i;i,0 )− 2S1(U∗i (xi)

)
Hx(xi)

+
(
S1(Un

i+e1
) + S1(U1,n+1

i;i,e1
)− 2S1(U∗i (xi+e1)

)
Hx(xi+e1)

]
;

S̃1
2,i =

∆x

8

[(
S2(Un

i−e2) + S2(U1,n+1
i;i−e2,0)− 2S2(U∗i (xi−e2)

)
Hy(xi−e2) (5.2.10)

+
(
S2(Un

i ) + S2(U1,n+1
i;i−e2,e2)2S2(U∗i (xi)

)
Hy(xi)

+
(
S2(Un

i ) + S2(U1,n+1
i;i,0 )− 2S2(U∗i (xi)

)
Hy(xi)

+
(
S2(Un

i+e2
) + S2(U1,n+1

i;i,e2
)− 2S2(U∗i (xi+e2)

)
Hy(xi+e2)

]
;

On previous equations (5.2.9)-(5.2.10) we use the notation Ui;i−j,j for Ui;i−m,(j−l,k) to em-

phasize the different space positions according with dimension and notation introduced for

CAT2P procedure for conservation and balance laws. In particular, (l, k) are a single coordi-

nate, respectively in dimension x or y but a double index is necessary to fix the reconstruction
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sides.

U1,n+1
i;i,(j−l,k) or U

1,n+1
i;(i−m,k),j−l are the first order Taylor series computed as:

U1,n+1
i;i,j = Un

i,j + U
(1)
i;i,j

U1,n+1
i;i−e1,j = Un

i−e1,j + U
(1)
i;i−e1,j
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for j = 0, e1 in x dimension and j = 0, e2 in y dimension where the first time derivatives

U
(1)
i;i,j and U

(1)
i;i−e1,j are so defined:

U
(1)
i;i,0 = − 1

∆x

(
f(Un

i+e1
)− f(Un

i )
)
− 1

∆y

(
g(Un

i+e2
)− g(Un

i )
)

+
1

2

[(
S1(Un

i )− S1(U∗i (xi))
)
Hx(xi) +

(
S1(Un

i+e1
)− S1(U∗i (xi+e1))

)
Hx(xi+e1)

+
(
S2(Un

i )− S2(U∗i (xi))
)
Hy(xi) +

(
S2(Un

i+e2
)− S2(U∗i (xi+e2))

)
Hy(xi+e2)

]
;

U
(1)
i;i,e1

= − 1

∆x

(
f(Un

i+e1
)− f(Un

i )
)
− 1

∆y

(
g(Un

i+e1+e2
)− g(Un

i+e1
)
)

+
1

2

[(
S1(Un

i )− S1(U∗i (xi))
)
Hx(xi) +

(
S1(Un

i+e1
)− S1(U∗i (xi+e1))

)
Hx(xi+e1)

+
(
S2(Un

i+e1
)− S2(U∗i (xi+e1))

)
Hy(xi+e1)

+
(
S2(Un

i+e1+e2
)− S2(U∗i (xi+e1+e2))

)
Hy(xi+e1+e2)

]
;

U
(1)
i;i,e2

= − 1

∆x

(
f(Un

i+e1+e2
)− f(Un

i+e2
)
)
− 1

∆y

(
g(Un

i+e2
)− g(Un

i )
)

+
1

2

[(
S1(Un

i+e2
)− S1(U∗i (xi+e2))

)
Hx(xi+e2)

+
(
S1(Un

i+e1+e2
)− S1(U∗i (xi+e1+e2))

)
Hx(xi+e1+e2)

+
(
S2(Un

i )− S2(U∗i (xi))
)
Hy(xi) +

(
S2(Un

i+e2
)− S2(U∗i (xi+e2))

)
Hy(xi+e2)

]
;

U
(1)
i;i−e1,0 = − 1

∆x

(
f(Un

i )− f(Un
i−e1)

)
− 1

∆y

(
g(Un

i+e2−e1)− g(Un
i−e1)

)
+

1

2

[(
S1(Un

i−e1)− S1(U∗i (xi−e1))
)
Hx(xi−e1)

+
(
S1(Un

i )− S1(U∗i (xi))
)
Hx(xi) +

(
S2(Un

i−e1)− S2(U∗i (xi−e1))
)
Hy(xi−e1)

+
(
S2(Un

i+e2−e1)− S2(U∗i (xi+e2−e1))
)
Hy(xi+e2−e1)

]
;

U
(1)
i;i−e1,e1 = − 1

∆x

(
f(Un

i )− f(Un
i−e1)

)
− 1

∆y

(
g(Un

i+e2
)− g(Un

i )
)

+
1

2

[(
S1(Un

i−e1)− S1(U∗i (xi−e1))
)
Hx(xi−e1)

+
(
S1(Un

i )− S1(U∗i (xi))
)
Hx(xi)

+
(
S2(Un

i+)− S2(U∗i (xi))
)
Hy(xi) +

(
S2(Un

i+e2
)− S2(U∗i (xi+e2))

)
Hy(xi+e2)

]
;

U
(1)
i;i−e1,e2 = − 1

∆x

(
f(Un

i+e2
)− f(Un

i+e2−e1)
)
− 1

∆y

(
g(Un

i−e1+e2
)− g(Un

i−e1)
)

+
1

2

[(
S1(Un

i−e1+e2
)− S1(U∗i (xi−e1+e2))

)
Hx(xi−e1+e2)

+
(
S1(Un

i+e2
)− S1(U∗i (xi+e2))

)
Hx(xi+e2) +

(
S2(Un

i−e1)− S2(U∗i (xi−e1))
)
Hy(xi−e1)

+
(
S2(Un

i−e1+e2
)− S2(U∗i (xi−e1+e2))

)
Hy(xi−e1+e2)

]
.
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The second order well-balanced numerical method is then defined as:

Un+1
i = Un

i +
∆t

∆x

[
F 1
i;i− 1

2
e1
− F 1

i;i+ 1
2
e1

+ S̃1
1,i

]
+

∆t

∆y

[
G1

i;i− 1
2
e2
−G1

i;i+ 1
2
e2

+ S̃1
2,i

]
. (5.2.11)

5.2.2 2D Adaptive well-balanced CAT2P

The 2D adaptive well-balanced CAT2P scheme is similar to the non well-balanced method

(5.1.14). In practise, following what has been done for 2D ACAT2P for conservation and

balance laws, we define A, the indices set used to select the squared stencils according with

the smoothness of numerical data, as:

Ai = {p ∈ {2, . . . , P} s.t. ψp
i± 1

2
e1
≈ 1 and ψp

i± 1
2
e2
≈ 1} (5.2.12)

where ψp
i+ 1

2
e1
, ψp

i+ 1
2
e2

are the smoothness indicators introduced in Section 3.2.2 computed

direction by direction. For this reason, the 2D adaptive well-balanced CAT2P writes as

follows:

Un+1
i = Un

i +
∆t

∆x

[
FAi

i;i− 1
2
e1
− FAi

i;i+ 1
2
e1

+ S̃Ai
1,i

]
+

∆t

∆y

[
GAi

i;i− 1
2
e2
−GAi

i;i+ 1
2
e2

+ S̃Ai
2,i

]
, (5.2.13)

where

FAi

i;i+ 1
2
e1

=

F
∗
i;i+ 1

2
e1

if Ai = ∅;

F ps
i;i+ 1

2
e1

where ps = max(Ai) otherwise;
(5.2.14)

GA
i;i+ 1

2
e2

=

G
∗
i;i+ 1

2
e2

if Ai = ∅;

Gps
i;i+ 1

2
e2

where ps = max(Ai) otherwise;
(5.2.15)

and

S̃Ai
ji =

S̃
∗
j,i if Ai = ∅;

S̃psj,i where ps = max(Ai) otherwise.
(5.2.16)

Here, F ∗
i;i+ 1

2
e1
, G∗

i;i+ 1
2
e2
, and S̃∗j,i are the ACAT2 numerical fluxes and source terms given by

1D (4.4.6),(4.4.7); F ps
i;i+ 1

2
e1
, Gps

i;i+ 1
2
e2

and S̃psj,i are the ACAT2ps numerical fluxes and source

terms defined in 1D (4.3.18), (4.3.16).

PhD Thesis, Chapter 5 165



5.3. Numerical experiments

5.3 Numerical experiments

Let us consider the 2D system of compressible Euler equations with a gravitational potential



ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = −ρHx,

(ρv)t + (ρuv)x + (ρv2 + p)y = −ρHy,

Et + (u(E + p))x + (v(E + p))y = −ρuHx − ρvHy.

(5.3.1)

Here, ρ is the density; u, the velocity in x−direction; v, the velocity in y−direction; p, the

pressure; E, the energy per unit volume excluding the gravitational energy; and H(x, y), the

gravitational potential [71]. The pressure is supposed to satisfy the equation of state

p = (γ − 1)
(
E − 1

2
ρ(u2 + v2)

)
,

where γ is the ratio between specific heats at constant pressure and volume, which is taken

to be constant. System (5.3.1) can be written in the form (5.0.1) with

U =


ρ

ρu

ρv

E

 , f(U) =


ρu

ρu2 + p

ρuv

u(E + p)

 , g(U) =


ρv

ρuv

ρv2 + p

v(E + p)

 , S(U) =


0

−ρHx

−ρHy

−ρuHx − ρvHy

 ,

S(U) = S1(U)Hx + S2(U)Hy where

S1(U) =


0

−ρ

0

−ρu

 , and S2(U) =


0

0

−ρ

−ρv

 .

Hydrostatic stationary solutions satisfy

u = 0, v = 0, ∇p = −ρ∇H.

So following the 1D cases [52, 69] two-parameter family of isothermal stationary solution is
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given by

ρ∗(x) = C1e
−H(x) ≥ 0; p∗(x) = C2ρ

∗(xi) ≥ 0; u∗ = v∗ = 0; E∗ =
p∗

γ − 1
. (5.3.2)

Given

Un
i = [ρni , ρ

n
i u

n
i , ρ

n
i v

n
i , E

n
i ]T ,

the stationary solution U∗i , selected applying the technique described in Remark 4.3.4, is

given by

ρ∗i (x) = ρni e
−(H(x)−H(xi)); p∗i (x) = ρni e

−(H(x)−H(xi)); u∗i = v∗i = 0; E∗i =
p∗i

γ − 1
. (5.3.3)

5.3.1 Preservation of a continuous stationary solution

Following [53, 69, 71] we consider Euler equations in the 2D domain [0, 1] × [0, 1] with two

different gravitational potentials

H1(x, y) = x+ y, H2(x, y) =
1√

(x− 1
3
)2 + (y + 1

2
)2

and initial conditions

ρ(x, 0) = e−H(x); p(x, 0) = e−H(x); u(x, 0) = v(x, 0) = 0. (5.3.4)

2D density
2D ACAT2 2D ACAT4 2D WBACAT2 2D WBACAT4

Points Error Order Error Order Error Error
20×20 4.87E-6 - 7.85E-9 - 2.72E-17 2.96E-18
40×40 1.91E-6 1.35 1.01E-9 2.95 2.19E-17 2.39E-18
80×80 5.62E-7 1.76 8.54E-11 3.56 1.82E-17 2.39E-18
160×160 1.43E-7 1.98 5.61E-12 3.93 2.37E-18 2.64E-18

Table 5.1: Test 5.3.1: (Preservation of a continuous stationary solution). 2D Euler equations with
gravity and gravitational potential H1. Errors in L1−norm for density at time t = 0.3.

We solve numerically the equations using a (21 × 21)−point mesh and CFL= 0.9. As

boundary conditions the exact solution is imposed to all sides through the ghost points.

Tables 5.1 and 5.2 exhibit the errors in L1−norm for ACAT2P , WBACAT2P , P = 1, 2
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2D density
2D ACAT2 2D ACAT4 2D WBACAT2 2D WBACAT4

Points Error Order Error Order Error Error
20×20 3.85E-5 - 3.87E-5 - 2.50E-17 3.77E-17
40×40 1.58E-5 1.28 5.16E-6 2.91 3.23E-17 3.59E-17
80×80 4.78E-6 1.72 4.45E-7 3.53 3.33E-17 3.33E-17
160×160 1.23E-6 1.96 2.89E-8 3.95 3.15E-17 3.23E-17

Table 5.2: Test 5.3.1: (Preservation of a continuous stationary solution). 2D Euler equations with
gravity and gravitational potential H2. Errors in L1−norm for density at time t = 0.3.

corresponding to H = H1 and H = H2 respectively. As it can be seen, the differences

between the solutions given by well-balanced and no well-balanced methods are bigger for

H = H2: please note that, when linear potential H1 is considered, the stationary solution

is essentially 1D while this is not true for H = H2. In this case, we observe that ACAT2-4

cannot produce accurate solutions as in previous case therefore requiring the use of well-

balanced scheme to preserve the stationary isothermal equilibrium.

We have checked that all the methods achieve the expected order, nevertheless we would

see what happens when a small perturbation of the stationary solution is applied. The idea

is that only the well-balanced reconstruction should be able to maintain the hydrostatic

profile and the non well-balanced one should introduce some spurious errors that may lead

the smoothness indicators with a consequence order reduction in the adaptive strategy.

5.3.2 Perturbation of a continuous stationary solution

For this reason we consider now the Euler equations in the 2D domain [0, 1] × [0, 1] with

the gravitational potential H2 and an initial condition that represents a perturbation of the

hydrostatic stationary considered in the previous test case:

ρ(x, 0) = e−H(x) + 0.008e−200(x−0.5)2−200(y−0.5)2 ; p(x, 0) = e−H(x) + 0.008e−200(x−0.5)2−200(y−0.5)2 ;

u(x, 0) = v(x, 0) = 0. (5.3.5)

Table 5.3 shows errors in L1−norm and convergence rates for the numerical solutions

obtained with ACAT2P and WBACAT2P and the reference solution at time t = 0.2, with

P = 1, 2. As happened for Shallow water, in case that a small perturbation of the stationary

solution is considered as initial condition, the well-balanced schemes manage to capture the
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2D density
2D ACAT2 2D ACAT4 2D WBACAT2 2D WBACAT4

Points Error Order Error Order Error Order Error Order
20×20 4.49E-5 - 5.93E-6 - 8.27E-6 - 4.28E-7 -
40×40 2.47E-5 0.86 1.71E-6 1.79 4.41E-6 0.91 4.92E-8 2.71
80×80 1.21E-5 1.03 4.37E-7 1.97 2.08E-6 1.08 7.05E-9 2.80
160×160 5.45E-6 1.15 9.85E-8 2.15 8.13E-7 1.36 9.47E-10 2.90
320×320 2.43E-6 1.17 2.13E-8 2.21 2.45E-7 1.73 1.22E-10 2.96

Table 5.3: Test 5.3.2: (Perturbation of a continuous stationary solution). 2D Euler equations
with gravity and gravitational potential H2. Errors in L1−norm for density at time t = 0.2.

solution with a better accuracy than standard methods. This phenomena is shown on Tables

5.3.

5.3.3 Acoustic propagation

As last experiment we consider the Euler equations in the 2D domain [0, 2]× [0, 2] with the

gravitational potential H3,

H3(x, y) =
1√

(x− 0.4)2 + (y + 0.1)2
,

and an initial condition that represents a very small perturbation of the hydrostatic station-

ary considered in the previous test case:

ρ(x, 0) = e−H(x) + 0.000001e−200(x−1)2−200(y−1)2 ; p(x, 0) = ρ(x, 0); u(x, 0) = v(x, 0) = 0.

(5.3.6)

Figures 5.3.2 shows the differences between the numerical solutions and the stationary

solution computed at time t = 0.75 with WBACAT2 a using 101 × 101 mesh points and

CFL= 0.8. As expected, the singularity of the gravitational potential modifies the thickness

of the corona relative to the signal propagation, thinning it close to the singularity. H3 has

a singularity on position (0.4,−0.1).

As we can see in Figure 5.3.3, the non well-balanced method ACAT2 is not able to capture

the evolution of the wave generated by the initial perturbation, since the numerical errors

are much bigger than the wave amplitude: one would need a space step at least two orders of

magnitude lower in order to have a truncation error of the same order of the signal, making
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Figure 5.3.1: Test 5.3.3 (Acoustic propagation): 2D Euler equations with gravitational potential
H3. Initial perturbation using a 101× 101 mesh points.

Figure 5.3.2: Test 5.3.3 (Acoustic propagation): 2D Euler equations with gravitational potential
H3. Differences between the numerical solutions and the stationary solution computed at time
t = 0.75 with WBACAT2 using 101× 101 mesh points and CFL= 0.8.

computation with non well-balanced method absolutely impractical.

Furthermore, in order to check the behaviour of the well-balanced reconstruction in pres-

ence of discontinuous initial condition we consider the Euler equations in the 2D domain

[0, 2]× [0, 2] with the gravitational potential H3,

H3(x, y) =
1√

(x− 0.4)2 + (y + 0.1)2
,

and an initial condition that represents a very small discontinuous perturbation of the hy-
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Figure 5.3.3: Test 5.3.3 (Acoustic propagation): 2D Euler equations with gravitational potential
H3. Difference between the density and the stationary solution computed at time t = 0.75 with
ACAT2 using 101× 101 mesh points and CFL= 0.8.

drostatic stationary considered in the previous test case:

ρ(x, 0) = e−H(x) +

10−6 if (x, y) ∈ [0.9, 1.1]× [0.9, 1.1]

0 otherwise

(5.3.7)

p(x, 0) = ρ(x, 0); u(x, 0) = v(x, 0) = 0. (5.3.8)

Figures 5.3.4 shows the differences between the numerical solutions and the stationary

solution computed at different times: initial condition (left-up); solution at time t ≈ 0.15

(righ-up); solution at time t ≈ 0.35 (left-down) and solution at time t = 0.5. with WBACAT2

a using 101×101 mesh points and CFL= 0.7. The gravitational potentialH3 has a singularity

on position (0.4,−0.1).

As we can see, the well-balanced method ACAT2 is able to capture the evolution of the wave

generated by the initial perturbation even if a discontinuous pertirbation is considered.
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Figure 5.3.4: Test 5.3.3 (Acoustic propagation): 2D Euler equations with gravitational potential
H3. Numerical solutions for pressure obtained with WBACAT2 using a 101 × 101− mesh points,
CFL= 0.7 at different times: initial condition (left-up); solution at time t ≈ 0.15 (righ-up); solution
at time t ≈ 0.35 (left-down) and solution at time t = 0.5.
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Chapter 6

Semi-Implicit Exner model

The aim of this chapter is introduce an IMEX strategy to compute the sediment evolution

[9, 18] in the Exner model of sediment transport in shallow water and improve both stability

and efficiency. As expected, the velocity related to the sediment is very low respect to the

free-surface wave. Unfortunately, as known, an explicit method implies a strong stability

restriction due to the velocity of the free-surface wave. This restriction involves in a very

long computation time that could be reduced neglecting the free-surface waves behaviour

and looking at the sediment evolution. The objective is to drastically improve the efficiency

in the computation of the evolution of the sediment by treating water waves implicitly, thus

allowing much larger time steps than the one allowed by standard CFL condition on explicit

schemes.

Recently, Garres-Díaz et al. (2022) proposed a semi-implicit Θ−method approach for

sediment transport models [44] by which, choosing θ > 1
2
in the semi-implicit method, an

increasing in both efficiency and stability is obtained [22]. Differently from this paper we

want check an IMEX strategy and a long time evolution such that the sediment initial

dune moves 10 times the amplitude of the same. Furthermore, a reasonable approximation,

under some conditions (see Section 6.3), consists in monitoring the sediment evolution on a

sequence of quasi-stationary states increasing drastically the efficiency, in computation, of

the method as it a scalar equation may be solved instead of a system of equations.
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6.1 1D Exner Model

Let us consider the one-dimensional hyperbolic shallow water equation with bathymetry
ht + qx = 0

qt +

(
q2

h
+
g

2
h2

)
x

= −ghbx,
(6.1.1)

where x makes reference to the axis of the channel and t is time; q(x, t) and h(x, t) represent

y

x

Figure 6.1.1: Shallow water equations: water-flow h(x) and bottom topography b(x).

the water-flow (discharge) and the thickness; g, the acceleration due to gravity; b(x), the

bottom topography; furthermore, the following relation holds q(x, t) = h(x, t)u(x, t), with u

the depth average horizontal velocity as shown in Figure 6.1.1.

The system of equations used in this work is obtained by coupling shallow water equation

(6.1.1) and the sediment equation:

(zb)t + (qb)x = 0 (6.1.2)

where zb(x, t) represents the height of sediment layer and qb(h, q)(x, t), the solid transport

discharge, in our case computed by the Grass model [18, 50, 98]

qb = ξAgu|u|m−1 (6.1.3)

with m ∈ [1, 4]∩N, Ag ∈]0, 1[ and ξ =
1

1− ρ0

where ρ0 is the porosity of the sediment layer.
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In this way, the Exner 1D system of balance laws is given by:
ht + qx = 0,

qt + ( q
2

h
+ 1

2
gh2)x = −gh(b+ zb)x,

(zb)t + (qb)x = 0.

(6.1.4)

Note that, if S is defined as S(x, t) = b(x) + zb(x, t), we have
∂S

∂t
=
∂zb
∂t
, so system (6.1.4)

could be rewritten as 
ht + qx = 0,

qt + ( q
2

h
+ 1

2
gh2)x = −gh(S)x,

St + (qb)x = 0.

(6.1.5)

Observe that, system (6.1.4) can be written as a hyperbolic system with a non-conservative

term
∂U

∂t
+
∂F (U)

∂x
= B(U)

∂U

∂x
, (6.1.6)

where

U =


h

q

S

 F =


q

q2

h
+ 1

2
gh2

qb

 B(U) =


0 0 0

0 0 −gh

0 0 0

 ,
and qb is given by eq. (6.1.3).

Given J = ∇UF and A(U) = J(U) − B(U), the system (6.1.6) could be rewritten as a

non-conservative hyperbolic system

∂U

∂t
+ A(U)

∂U

∂x
= 0, (6.1.7)

where,

A(U) =


0 1 0

gh− u2 2u gh

α β 0

 ,

in which α =
∂qb
∂h

= −ξAg
u3

h
and β =

∂qb
∂q

= 2ξAg
u2

h
and m = 3 is selected in the

grass equation (6.1.3). This system is strictly hyperbolic if and only if the characteristic
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polynomial:

pλ(λ) = −λ((u− λ)2 − gh) + gh(βλ+ α)

has three distinct real roots λ1 < λ2 < λ3.

Remark 6.1.1 When Ag → 0,

α =
∂qb
∂h

= −ξAg
u3

h
→ 0 and β =

∂qb
∂q

= 2ξAg
u2

h
→ 0.

Then, in the limit, pλ(λ) = −λ((u− λ)2 − gh) with distinct eigenvalues λ± = u±
√
gh and

λ0 = 0, where λ− < λ0 < λ+. For this reason is not far suppose λ2 → 0.

In our case, by assuming that the interaction between the water and the sediment is weak

or Ag << 1, we are looking for the smallest eigenvalue (in absolute value). The wave speed

of the sediment is much smaller than the water waves speed, therefore we assume that the

eigenvalues corresponding to the sediment transport is the intermediate root λ2 and that it

is close to zero.

The idea behind this part is, under the hypothesis of Fr = u√
gh
<< 1, to use a semi-implicit

method by which surface waves are treated implicitly while the sediment wave explicitly.

The root λ2, that could be found by a root finding algorithm such as Newton method etc.,

plays an important role since it could be used in a local Lax-Friedrichs flux based on the

sediment wave, while the other waves are treated implicitly.

Finally, let us rewrite the 1D Exner model (6.1.4) in function of η where η(x, t) = h(x, t) +

b(x)+zb(x, t) represents the elevation of the undisturbed water surface. In particular, system

(6.1.5) with a non-conservative term will be:
ηt + (q + qb)x = 0

qt + (qu)x + gh(η)x = 0

(zb)t + (qb)x = 0

(6.1.8)

(see Figure 6.1.2.)
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x

y

Figure 6.1.2: 1D Exner model: water surface η(x); water-flow h(x); sedimental layer zb(x) and
bottom topography b(x).

6.2 Semi implicit scheme

In this section, we will focus on the introduction of a scheme derived from an implicit

treatment of the surface water waves, while the slow wave corresponding to the sediment

evolution is treated explicitly. In particular, we will illustrate the first and second order

semi-implicit schemes.

Let us consider a partition of the interval [a, b] in cell defined by Ii = [xi− 1
2
, xi+ 1

2
], with

i ∈ N0. For the sake of simplicity, from now on we suppose that all the cells have the same

length ∆x and xi = a+i∆x are the cell centers. Let be ∆t the time step such that tn = n∆t.

Definitely, we denote by Un
i an approximation on the mean value of U over cell Ii at time

t = tn,

Un
i
∼=

1

∆x

∫ x
i+1

2

x
i− 1

2

U(x, tn)dx.

6.2.1 First order scheme

Let us consider the system in non-conservative form (6.1.8). A semi-discrete in time first

order semi-implicit scheme can be written as:
ηn+1 = ηn −∆tD̂x(q

n
b )−∆tDx(q

n+1),

qn+1 = qn −∆tD̂x(q
nun)−∆tghnDx(η

n+1),

zn+1
b = znb −∆tD̂x(q

n
b ),

(6.2.1)

where the differential operators Dx and D̂x are respectively defined as:
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• Dx(fi) =
f
i+1

2
−f

i− 1
2

∆x
, in which fi± 1

2
is suitably defined on cell edges;

• D̂x(fi) =
F
i+1

2
−F

i− 1
2

∆x
, where Fi+ 1

2
= 1

2

(
f(v−

i+ 1
2

) + f(v+
i+ 1

2

) − αi+ 1
2

(
v+
i+ 1

2

− v−
i+ 1

2

))
is the

Rusanov flux and αi+ 1
2
is related to the eigenvalues of the explicit sub system. As we

shall see, in our case α ≈ |u| << max(|λ1|, |λ3|).

For the sake of simplicity, let us rewrite systems (6.2.1) to distinguish explicit part from

implicit one as: 

q∗ = qn −∆tD̂x(q
nun);

η∗ = ηn −∆tD̂x(q
n
b )−∆tD̂x(q

∗);

ηn+1 = η∗ + g∆t2Dx(h
nDx(η

n+1));

qn+1 = q∗ −∆tghnDx(η
n+1);

zn+1
b = znb −∆tD̂x(q

n
b ),

(6.2.2)

The procedure to solve system (6.2.1) and consequently (6.2.2) is:

1. solve explicitly q∗ = qn −∆tD̂x(q
nun) as

q∗i = qni −
∆t

∆x

(
Hn
i+ 1

2
−Hn

i− 1
2

)
,

where Hi± 1
2
are the Rusanov flux, previously defined, related to the second equation;

2. solve explicitly η∗ = ηn −∆tD̂x(q
n
b )−∆tD̂x(q

∗) as

η∗i = ηni −
∆t

∆x

(
Ln
i+ 1

2
− Ln

i− 1
2

)
− ∆t

∆x

(
Q∗
i+ 1

2
−Q∗

i− 1
2

)
,

in which the spatial reconstruction Li± 1
2
and Q∗

i± 1
2

are computed with the related

Rusanov reconstruction;

3. fixed k = g
(∆t

∆x

)2

, solve implicitly ηn+1 = η∗ + g∆t2Dx(h
nDx(η

n+1)) in the following

way

ηn+1
i

(
1 + k(hn

i+ 1
2

+ hn
i− 1

2
)

)
− ηn+1

i+1 kh
n
i+ 1

2
− ηn+1

i−1 kh
n
i− 1

2
= η∗i for all i = 1, . . . , N.

This is an invertible tridiagonal linear system which can be solved to detect ηn+1 =

[ηn+1
1 , . . . , ηn+1

N ];
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4. solve explicitly qn+1 = q∗ −∆tghnDx(η
n+1)

qn+1
i = q∗i −

g∆t

∆x
hni

(
ηn+1
i+ 1

2

− ηn+1
i− 1

2

)
,

where ηn+1
i± 1

2

= 1
2

(
ηn+1
i±1 + ηn+1

i

)
;

5. solve explicitly zn+1
b = znb −∆tD̂x(q

n
b ) as

zn+1
bi

= znbi −
∆t

∆x

(
Ki+ 1

2
−Ki− 1

2

)
,

where Ki± 1
2
are computed with the Rusanov flux, in general Ki± 1

2
6= Li± 1

2
;

6. compute hn+1
i = ηn+1

i − bi − zn+1
bi

.

6.2.2 Second order scheme

Let us consider the system in non-conservative form (6.1.8), following the idea proposed in

[8] in which an IMEX second order Runge-Kutta method is presented. Let us write system

(6.1.8) in the partitioned ODE form in which the first component is related to the explicit

terms and the second component to the implicit part:

U ′ = H(U,U). (6.2.3)

In our case, U = [η, q, zb]
T and H(U,U) is so define:

H(U,U) =


−(q + qb)x

−(qu)x − gh(η)x

−(qb)x

 (6.2.4)

The partitioned ODE, distinguished between explicit and implicit part, will become:

H(UE, UI) =


−D̂x((qB)E) −Dx(qI)

−D̂x((qu)E) −ghEDx(ηI)

−D̂((qb)E)

 . (6.2.5)
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With this in mind, we consider 2 different Butcher tableau: one related to the explicit and

one to the implicit reconstruction, as:

0

c c 0

1− γ γ

γ γ

1 1− γ γ

1− γ γ

(6.2.6)

where γ = 1− 1√
2
and c = 1

2γ
.

Remark 6.2.1 Observe that the Butcher tableau (6.2.6) have identical b coefficients allowing

only one final reconstruction.

The general procedure to update the numerical solution from time tn to tn+1 is as follows:

Step 1: Compute explicitly U (i)
E for all i = 1, . . . , s as:

U
(i)
E = Un + ∆t

i−1∑
j=1

aEi,jH(U
(j)
E , U

(j)
I );

Step 2: Compute implicitly U (i)
I for all i = 1, . . . , s as:

U
(i)
I = Un + ∆t

i−1∑
j=1

aIi,jH(U
(j)
E , U

(j)
I ) + aIi,iH(U

(i)
E , U

(i)
I );

Step 3: Un+1 = UI(s).

In our case, applying the scheme defined by (6.2.6) we have:

1. U (1)
E = Un;

2. U (1)
I = Un + ∆tγH(U

(1)
E , U

(1)
I );

3. U (2)
E = Un + ∆tcH(U

(1)
E , U

(1)
I );

4. U (2)
I = Un + ∆t(1− γ)H(U

(1)
E , U

(1)
I ) + ∆tγH(U

(2)
E , U

(2)
I );

5. Un+1 = U
(2)
I .
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Remark 6.2.2 Let observe that U (2)
E , U

(2)
I and U (1)

I have a common term, thus, step 3 and

4 may be rewritten as:

U
(2)
E = (1− c

γ
)Un +

c

γ
U

(1)
I ;

U
(2)
I = (1− 1− γ

γ
)Un +

1− γ
γ

U
(1)
I + ∆tγH(U

(2)
E , U

(2)
I ).

6.3 Scalar Equation for 1D Exner Model

For weak coupling, i.e. for small values of the parameter Ag, the motion of the sediment

takes place on a much longer time scale than surface waves. For such a reason, surface waves

move over a bathimetry given by the bottom and the sediment, which is almost constant in

time. We can therefore imagine that to detect the slow motion of the sediment, a reasonable

approximation consists in monitoring the sediment motion on a sequence of quasi-stationary

states. This is obtained by setting to zero the time derivative in the first two equations of

the Exner model. Our starting point is therefore the following
(q + qb)x = 0

(qu)x + gh(h+ zb + b)x = 0

(zb)t + (qb)x = 0

(6.3.1)

From the first equation of (6.3.1) we get q + qb = Q hence, with the choice m = 3 and

assuming u > 0,

h =
Q

u
− Agu2 (6.3.2)

where, in this section for the sake of simplicity, we include the coefficient ξ in the parameter

Ag.

Let us focus on the second equation of system (6.3.1) we have

(qu)x + gh(h+ zb + b)x = 0. (6.3.3)
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We can suppose q 6= 0. In fact, if q = 0 we directly obtain u = 0 and zb constant in time.

Then multiply (6.3.3) by
u

q
we have:

u

q
(qu)x + g(h+ zb + b)x = 0. (6.3.4)

Let us define G(u) a function such that

∂G

∂x
=
u

q
(qu)x; (6.3.5)

∂G

∂x
=
dG

du
ux hence

u

q
(qu)x = G′ux and therefore

G′(u)ux =
u

q
(q′u+ q)ux ⇒ G′(u) =

q′

q
u2 + u. (6.3.6)

As a consequence of the first equation of system (6.3.1) q′ = −q′b = −3Agu
2, then G′ takes

the form

G′(u) =
Q− 4Agu

3

Q− Agu3
u. (6.3.7)

From equation (6.3.4) we obtain G+ g(h+ zb + b) = C, where C is a constant, consequently

zb =
(C −G)

g
−h− b. Furthermore, from the third equation of (6.1.4) z′but + q′bux = 0 which

implies

z′b = −G
′

g
+
Q

u2
+ 2Agu. (6.3.8)

Finally, linking all the results obtained, we find the non-linear scalar equation

ut + λ(u)ux = 0 (6.3.9)

where

λ(u) =
3Agu

2

2Agu+ Q
u2
− G′

g

. (6.3.10)
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6.3.1 Second order numerical scheme

In order to solve numerically equation (6.3.9) we adopt the Lax-Wendroff scheme applied to

equation in form (6.3.9) [96]. In particular, the Lax-Wendroff method is:

u(xi, tn + k) = uni + kut

∣∣∣∣t=tn
x=xi

+
k2

2
utt

∣∣∣∣t=tn
x=xi

. (6.3.11)

ut is immediately computed from the governing equation, ut = −λ(u)ux, while utt is defined

as follow:

utt = λ(u)
[
λ′(u)u2

x +
(
λ(u)ux

)
x

]
. (6.3.12)

The space derivative of u at position xi at time tn is computed with the second order central

derivative:

ux

∣∣∣∣t=tn
x=xi

=
uni+1 − uni−1

2∆x
;

at the same time the space derivative of λ(u)ux at position xi and time tn is computed in

the following way:

(
λ(u)ux

)
x

∣∣∣∣t=tn
x=xi

=
λn
i+ 1

2

(
uni+1 − uni

)
− λn

i− 1
2

(
uni − uni−1

)
∆x2

(6.3.13)

with λn
i± 1

2

= 1
2

(
λ(uni ) + λ(uni±1)

)
.

At the end, the Lax-Wendroff scheme (6.3.11) becomes

un+1
i =uni −∆tλ(uni )

(uni+1 − uni−1

2∆x

)
+

+
∆t2

2
λ(uni )

[
λ′(uni )

(uni+1 − uni−1

2∆x

)
+
λn
i+ 1

2

(
uni+1 − uni

)
− λn

i− 1
2

(
uni − uni−1

)
∆x2

]
.

(6.3.14)

We plan to integrate the equation only in conditions in which the solution remains smooth,

and for this reason we shall not use any limiter.
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6.4 Numerical experiment

When large time steps are used, we should check whether we are able to correctly follow the

sediment evolution even if the details on the fast water waves are lost. For this reason, we

check the ability of the scheme, presented in previous section, to compute the bathymetry

evolution. The main purpose is increase the CFL-condition as much as possible in order to

reduce the computational cost using the IMEX strategy described before.

6.4.1 1D Exner test

In this section we will compare the solutions obtained by the second order explicit scheme,

first and second order semi-implicit schemes applied to system (6.1.8) and first and second

order explicit scheme applied to the scalar equation (6.3.9). With this purpose in mind,

for the scalar equation (6.3.9), explicit scalar schemes require a standard CFL condition as

CFLscal = 0.9; for the second order explicit scheme applied to (6.1.8) we use CFLexpl = 0.4;

finally, for the semi-implicit methods a larger CFL condition could be used, however, since the

term qu (6.2.1) is treated explicitly, the semi-implicit CFL condition could not be arbitrary

larger and a material CFL condition must be satysfied. In our case CFLIMEX = 15 is

adopted. The common settings of this experiment are: [−2, 4] the interval; Ag = 0.1 as we

have said only in section 6.3 ξ is included in Ag; ρ0 = 0.2; tfin = 1400; and, since in Section

6.3 all the variables are written depending on the velocity u, initial conditions are so set:

b(x) = 0, h0(−2) = 0.5,

u0(x) = 0.1 + 0.006e−
(x−0.4)2

0.42 (6.4.1)

and zb(−2) = 0.1. The constant Q is obtained through Q = q0(−2) + qb(−2); while C is

computed as C = G(u0(−2)) + g(h0(−2) + zb(−2) + b(−2)) where G is a solution of (6.3.7).

Free boundary conditions for left and right part are imposed at ghost points.

Figure 6.4.1 shows the initial condition of the height sediment layer zb (center), the

thickness η (top) and velocity u (down). The initial condition of thickness marks out by

equation (6.3.2) while the initial condition of sediment layer comes out from zb = C−G(u0)
g
−

h0(x)− b(x). Figure 6.4.2 exhibits the time evolution of thickness η (top); sediment layer zb

(center); and velocity u (down) at final time t = 1400. The zoom of critical parts are shown

in Figure 6.4.3. Table 6.1 proves that all the methods are able to keep the expected order

refining the mesh-grid. The final time is set in order to not introduce a shock on velocity,
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Figure 6.4.1: Test 6.4.1: (1D Exner test). Initial condition of thickness (top), sediment layer
(center) and velocity (down) for the Exner model on the interval [−2, 4] using a 200−mesh points.

Figure 6.4.2: Test 6.4.1: (1D Exner test). Numerical solutions of thickness (top), sediment layer
(center) and velocity (down) for the Exner model on the interval [−2, 4] using a 200−mesh points
at time t = 1400 with, respectively, CFLscal = 0.9, CFLexpl = 0.4 and CFLIMEX = 15.

otherwise, the scalar solutions and the explicit one introduce spurious fluctuation not related

with the modeling.

As we expected, there is very good agreement between the solution of the scalar equation

and the full system, because the energy associated to fast waves is negligible.

Verified that the semi-implicit strategy leads to results similar to explicit and scalar

approximations methods and confirmed that these results, in addition to being similar, are

accurate with respect to the expected order, we want to explore the behavior and the results

obtained in case a continuous waves group is imposed in the left boundary domain of the
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Figure 6.4.3: Test 6.4.1: (1D Exner test). Zoom of critical parts for numerical solutions of
thickness (top), sediment layer (center) and velocity (down) for the Exner model at time t = 1400
with, respectively, CFLscal = 0.9, CFLexpl = 0.4 and CFLIMEX = 15.

h IMEX or1 IMEX or2 Scal or1 Scal or2 Expl or2
Points Order Error Order Error Order Error Order Error Order Error
200 - 4.41E-4 - 5.34E-4 - 1.31E-4 - 3.09E-5 - 8.00E-5
400 0.78 2.58E-4 1.64 1.71E-4 0.91 6.99E-5 1.98 7.85E-6 1.94 2.01E-5
800 0.84 1.44E-4 2.31 3.44E-5 0.96 3.58E-5 2.02 1.94E-6 2.02 5.16E-6
1600 0.90 7.70E-5 2.29 1.83E-6 0.98 1.83E-6 2.01 4.83E-7 2.00 1.29E-6

Table 6.1: Test 6.4.1: (1D Exner test). Errors in L1−norm and convergence rates related to
the sediment zb for scalar, explicit and semi-implicit scheme at time t = 1400 with, respectively,
CFLscal = 0.9, CFLexpl = 0.4 and CFLIMEX = 15.

velocity u.

6.4.2 1D waves group

Let us consider the one-dimensional Exner system (6.1.8) and the second order semi-implicit

method developed before. We want to verify, on the one hand, the temporal evolution of the

sediment for very long times, for instance, a final time such that the initial dune has moved

10 times the initial amplitude; on the other hand, whether the presence of fast surface waves

under-resolved has a significant effect in the evolution of the initial dune. In this way, we

have three different time scales. The slowest one related to the velocity of the dune evolution

3ξAgu
2 due to the Grass equation (6.1.3) if m = 3 [50]; the second one related to the water

velocity u; the fastest one related to the waves group of order u+
√
gh.
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Figure 6.4.4: Test 6.4.1: (1D waves group). Initial condition of sediment for the Exner model on
the interval [−2, 26] using a 2000−mesh points.
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Figure 6.4.5: Test 6.4.1: (1D waves group). Numerical solutions of discharge (top), velocity
(center-up), sediment layer (center-down) and thickness (down) for the Exner model on the interval
[−2, 26] using a 2000−mesh points at time t = 17500 with CFL= 9.

The settings of this test are: [−2, 26] the space domain; Ag = 0.1; ξ = 1
1−ρ0 where

ρ0 = 0.2; g = 9.81; b(x) ≡ 0; h0(−2) = 1; u0(−2) = 0.15;

zb0(x) = 0.1 + 0.1e−
(x+1)2

0.42 . (6.4.2)
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As left side of boundary condition the follow quantities are imposed at ghost points:
hL

qL

zbL

 =


h(−2) + 1/g(dsig∆x+ 0.5((u(−2))2 − sig2))

sig ∗ hL
zb(−2)


where sig and dsig are respectively the waves group sig = 0.15 + amp ∗ (sin(frq ∗ t)) and

dsig = d sig
dt
, in which amp and frq are amplitude and frequency of the waves in our case set

to 0.01 and 150 respectively.

Figures 6.4.4-6.4.5 show the initial and the numerical solutions for discharge, velocity,

sediment layer and thickness obtained with the second-order semi-implicit scheme developed

in the previous sections in which the stability condition is set CFL= 9 on the interval [−2, 26]

adopting a 2000−mesh points at time t = 17500.
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Figure 6.4.6: Test 6.4.1: (1D waves group). Numerical solutions of discharge (top), velocity
(center-up), sediment layer (center-down) and thickness (down) for the Exner model on the interval
[−2, 8] using a 2000−mesh points at time t = 5500 adopting CFL= 0.9 and CFL= 9.

Since we are imposing a very high-frequency signal to the left part of the domain, the

water waves observed are not the real one. In fact, since the period of oscillations is T =

2π
frq

= 0.042 and ∆t 0.038 (with this settings), the ratio T
∆t

= 1.09 which suggests that, more

or less, at each time step a wave is inserted from the signal, so the visible waves on the graph

are not the real waves but an understatement of them. To see clearly them a CFL reduction

is necessary in order to have more time steps for each wave. Nevertheless, in Figure (6.4.6)

we observe that, even if a shock appeared and the free-surface vawes are not resolved, the
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semi-implicit method with a low restriction in the stability condition (CFL= 9) is able to

capture and properly evolve the sedimentation. Furthermore, we can see how the surface

waves group have an active role on the sedimentation but still not affect its evolution. In

particular, the solutions obtained resolving the free-surface waves are perfectly in agreement

with the solutions obtained with CFL= 9 emphasizing the accuracy of the IMEX strategy.

6.5 2D Exner Model

Let us consider the two-dimensional hyperbolic Shallor water equations
ht + (hu)x + (hv)y = 0

(hu)t + (hu2 + 1
2
gh2)x + (hvu)y = −gh ∂b

∂x

(hv)t + (huv)x + (hv2 + 1
2
gh2)y = −gh ∂b

∂y
,

(6.5.1)

where (x, y) refers to the Cartesian plane Oxy and t is the time; h(x, y, t), the thickness;

u(x, y, t) and v(x, y, t), the horizontal and vertical velocity components; g, the acceleration

due to gravity; b(x, y), the bottom topography. In particular, defining the momentum,

m = hu and n = hv, we get:
ht + (m)x + (n)y = 0

(m)t + (mu+ 1
2
gh2)x + (mv)y = −ghbx

(n)t + (nu)x + (nv + 1
2
gh2)y = −ghby.

(6.5.2)

The system of equations used in this section is obtained by coupling 2D shallow water

equation (6.5.2) and the 2D sediment equation:

(zb)t + (qx,b)x + (qy,b)y = 0 (6.5.3)

where zb(x, y, t) represents the height of the sediment layer and, qx,b(u, v)(x, y, t) and qy,b(u, v)(x, y, t),

the solid transport discharge parameters, in our case computed by the 2D Grass model
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[50, 63, 94]

qx,b =ξAgu(u2 + v2)
m−1

2 (6.5.4)

qy,b =ξAgv(u2 + v2)
m−1

2 , (6.5.5)

with m ∈ [1, 4]∩N, Ag ∈]0, 1[ and ξ =
1

1− ρ0

where ρ0 is the porosity of the sediment layer.

In this way, the 2D Exner system of balance laws is so get:



ht + (m)x + (n)y = 0

(m)t + (mu+ 1
2
gh2)x + (mv)y = −gh(b+ zb)x

(n)t + (nu)x + (nv + 1
2
gh2)y = −gh(b+ zb)y

(zb)t + (qx,b)x + (qy,b)y = 0.

(6.5.6)

Observe that, assuming flat bottom topography b(x, y) ≡ 0, the system (6.5.6) could be

written in the following way:

∂tU + A1(U)∂xU + A2∂yU = 0

where

U =


h

m

n

zb

 ; A1(U) =


0 1 0 0

gh− u2 2u 0 gh

−uv v u 0

αx βx γx 0

 ; A2(U) =


0 0 1 0

−uv v u 0

gh− v2 0 2v gh

αy βy γy 0

 ;

in which the terms αs, βs and γs, with s ∈ {x, y}, represent the qs,b derivatives respect to

h,m and n, i.e. for s ∈ {x, y}

αs =
∂qs,b
∂h

, βs =
∂qs,b
∂m

, γs =
∂qs,b
∂n

.

System (6.5.6) is hyperbolic if and only if the characteristic polynomials related to A1(U)
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and A2(U) :

pλ(λ) = (u− λ)
[
−λ
(

(u− λ)2 − gh
)

+ gh
(
βxλ+ αx + γxv

)]
pµ(µ) = (v − µ)

[
−µ
(

(v − µ)2 − gh
)

+ gh
(
γyµ+ αy + βyu

)]
have four distinct root, assuming λ4 = u and µ4 = v, such as λ1 < λ2 < λ3 and µ1 < µ2 < µ3

respectively. In our case, assuming that the interaction between the water and the sediment

is weak, we are looking for a numerical scheme that are able to capture accurately the

evolution of the sediment when the interactions are small. For this reason, we suppose that

the corresponding numerical viscosity terms for the LLF fluxes in the x and y direction are

the eigenvalues closer to zero, i.e. λ2 and µ2. In order to compute these eigenvalues, we use

an iterative root finding algorithm, such as Newton method etc., and used the numerical

viscosity parameter for the corresponding sediment transport equation (6.5.4)-(6.5.5).

At the end, let us rewrite the 2D Exner system (6.5.6) in function of η where η(x, y, t) =

h(x, y, t) + b(x, y) + zb(x, y, t) represents the elevation of the undisturbed water surface. In

practise, system (6.5.6) becomes:



ηt + (m+ qx,b)x + (n+ qy,b)y = 0

(m)t + (mu)x + (mv)y + gh(η)x = 0

(n)t + (nu)x + (nv)y + gh(η)y = 0

(zb)t + (qx,b)x + (qy,b)y = 0.

(6.5.7)

6.6 2D semi implicit scheme

In this section, we will present the extension of the 1D semi implicit scheme for the non-

conservative Exner model (6.1.8) to the 2D Exner model (6.5.7). We will aim at an implicit

treatment of the surface water waves while the corresponding slow sediment wave is treated

explicitly. As we have done in Section 6.2, we will just emphasize the first and second order

reconstruction in space and time.

Let us consider a partition of the rectangular [a1, b1] × [a2, b2] in cells defined by Ii,j =

[xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], with i, j ∈ N. For sake of simplicity, we adopt a uniform Cartesian

mesh direction by direction with mesh spacing, respectively, ∆x and ∆y, i.e. xi = a1 + (i−
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1
2
)∆x and yj = a2 + (j − 1

2
)∆y. As previously, ∆t is the time step such that tn = n∆t.

Finally, we denote by Un
i,j an approximation on the mean value of U over cell Ii,j at time

t = tn as:

Un
i,j
∼=

1

∆x∆y

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

U(x, y, tn)dydx.

6.6.1 First order scheme

Let us consider the system in non-conservative form (6.5.7). A semi-discrete in time first

order semi implicit method could be written as:



ηn+1 = ηn −∆tD̂x(q
n
x,b)−∆tD̂y(q

n
y,b)−∆tDx(m

n+1)−∆tDy(n
n+1),

mn+1 = mn −∆tD̂x(m
nun)−∆tD̂y(m

nvn)−∆tghnDx(η
n+1),

nn+1 = nn −∆tD̂x(n
nun)−∆tD̂y(n

nvn)−∆tghnDy(η
n+1),

zn+1
b = znb −∆tD̂x(q

n
x,b)−∆tD̂y(q

n
y,b),

(6.6.1)

where the differential operators Dx, Dy, D̂x and D̂y are defined as in Section 6.2 direction by

direction.

For the sake of simplicity, let us rewrite system (6.5.7) into (6.6.1) to emphasize the

explicit from implicit part in the following way:



m∗ = mn −∆tD̂x(m
nun)−∆tD̂y(m

nvn);

n∗ = nn −∆tD̂x(n
nun)−∆tD̂y(n

nvn);

η∗ = η −∆tD̂x(q
n
x,b)−∆tD̂y(q

n
y,b)−∆tD̂x(m

∗)−∆tD̂y(n
∗);

ηn+1 = η∗ + g∆t2Dx(h
nDx(η

n+1)) + g∆t2Dy(h
nDy(η

n+1));

mn+1 = m∗ − g∆thnDx(η
n+1);

nn+1 = n∗ − g∆thnDy(η
n+1);

zn+1
b = znb −∆tD̂x(q

n
x,b)−∆tD̂y(q

n
y,b).

(6.6.2)

The procedure to solve system (6.6.1), hence (6.6.2), is:

1. solve explicitly m∗ = mn −∆tD̂x(m
nun)−∆tD̂y(m

nvn) as

m∗i,j = mn
i,j −

∆t

∆x

(
F 1
i+ 1

2
,j
− F 1

i− 1
2
,j

)
− ∆t

∆y

(
G1
i,j+ 1

2
−G1

i,j− 1
2

)
,
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where F 1 and G1 are computed direction by direction with the corresponding Rusanov

reconstruction defined on Section 6.2;

2. solve explicitly n∗ = nn −∆tD̂x(n
nun)−∆tD̂y(n

nvn) as

n∗i,j = nni,j −
∆t

∆x

(
F 2
i+ 1

2
,j
− F 2

i− 1
2
,j

)
− ∆t

∆y

(
G2
i,j+ 1

2
−G2

i,j− 1
2

)
,

where F 2 and G2 are computed direction by direction with the Rusanov flux;

3. solve explicitly η∗ = η −∆tD̂x(q
n
x,b)−∆tD̂y(q

n
y,b)−∆tD̂x(m

∗)−∆tD̂y(n
∗) as

η∗i,j = ηi,j−
∆t

∆x

(
F 3
i+ 1

2
,j
− F 3

i− 1
2
,j

)
− ∆t

∆y

(
G3
i+ 1

2
,j
−G3

i− 1
2
,j

)
+

−∆t

∆x

(
F 4
i+ 1

2
,j
− F 4

i− 1
2
,j

)
− ∆t

∆y

(
G4
i+ 1

2
,j
−G4

i− 1
2
,j

)
,

where F 3 and G3 are the Rusanov operators referred to qx,b and qy,b; while F 4 and G4

are related to m∗ and n∗;

4. fixed kx = g( ∆t
∆x

)2 and ky = g( ∆t
∆y

)2, solve implicitly ηn+1 = η∗+g∆t2Dx(h
nDx(η

n+1))+

g∆t2Dy(h
nDy(η

n+1)) as

ηn+1
i,j

(
1− kx(hi,j− 1

2
+ hi,j+ 1

2
)− ky(hi− 1

2
,j + hi+ 1

2
,j)
)

+

+ηn+1
i,j−1

(
kx(hi,j− 1

2

)
+ ηn+1

i,j+1

(
ky(hi,j+ 1

2

)
+

+ηn+1
i−1,j

(
kx(hi− 1

2
,j

)
+ ηn+1

i+1,j

(
ky(hi+ 1

2
,j

)
= η∗i,j.

This is an invertible linear system which can be solved to detect ηn+1 = [ηn+1
i,j ] for all

i = 1, . . . , Nx and j = 1, . . . , Ny;

5. solve explicitly mn+1 = m∗ − g∆thnDx(η
n+1) as

mn+1
i,j = m∗i,j − g

∆t

∆x
hni,j

(
ηn+1
i+ 1

2
,j
− ηn+1

i− 1
2
,j

)
,

where ηn+1
i± 1

2
,j

= 1
2

(
ηn+1
i,j + ηn+1

i±1,j

)
for all j = 1, . . . , Ny;

6. solve explicitly nn+1 = n∗ − g∆thnDy(η
n+1) as

nn+1
i,j = n∗i,j − g

∆t

∆y
hni,j

(
ηn+1
i,j+ 1

2

− ηn+1
i,j− 1

2

)
,
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where ηn+1
i,j± 1

2

= 1
2

(
ηn+1
i,j + ηn+1

i,j±1

)
for all i = 1, . . . , Nx;

7. solve explicitly zn+1
b = znb −∆tD̂x(q

n
x,b)−∆tD̂y(q

n
y,b) as

zn+1
bi,j

= zn+1
bi,j
− ∆t

∆x

(
F 5
i+ 1

2
,j
− F 5

i− 1
2
,j

)
− ∆t

∆y

(
G5
i+ 1

2
,j
−G5

i− 1
2
,j

)
,

in which F 5 and G5 are computed direction by direction with the Rusanov reconstruc-

tion;

8. compute hn+1
i,j = ηn+1

i,j − bi,j − zn+1
bi,j

, for all i = 1, . . . , Nx and for all j = 1, . . . , Ny.

6.6.2 Second order scheme

Let us consider the system in non-conservative form (6.5.7), the second order reconstruction

in time is obtained with a 2D IMEX second order Runge-Kutta method [7, 8]. For this

reason, let us rewrite the system (6.5.7) in the partitioned ODE form in which the first

component is treated explicitly and the second component implicitly. The ODE system is

then so defined:

U ′ = H(U,U), (6.6.3)

where, in the 2D case, U = [η,m, n, zb]
T and H(U,U) is defined as:

H(U,U) =


−(qx,b +m)x − (qy,b + n)y

−(mu)x − gh(η)x − (mv)y

−(nu)x − (nv)y − gh(η)y

−(qx,b)x − (qy,b)y

 (6.6.4)

that, differentiating between explici and implicit part, the partitioned system is:

H(UE, UI) =


−D̂x((qx,b)E)− D̂y((qy,b)E) −Dx(mI)−Dy(nI)

−D̂x((mu)E)− D̂y((mv)E) −ghEDx(ηI)

−D̂x((nu)E)− D̂y((nv)E) −ghEDy(ηI)

−D̂x((qx,b)E)− D̂y((qy,b)E)

 . (6.6.5)

Following the same reconstruction used for the 1D model, the procedure to update the

numerical solution for (6.6.3) is:

1. U (1)
E = Un;
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2. U (1)
I = Un + ∆tγH(U

(1)
E , U

(1)
I );

3. U (2)
E = (1− c

γ
)Un + c

γ
U

(1)
I ;

4. U (2)
I = (1− 1−γ

γ
)Un + 1−γ

γ
U

(1)
I + ∆tγH(U

(2)
E , U

(2)
I );

5. Un+1 = U
(2)
I .

6.7 2D Exner numerical experiments

In this section we check the semi-implicit scheme for the 2D Exner model with two different

initial conditions: a parabolic and a conical sediment.

6.7.1 Parabolic Sediment

With this purpose in mind, let us consider the 2D Exner model (6.5.7) where initial conditions

are so set: η0(x, y, 0) = 0.6, b(x, y) = 0, m(x, y) = 0.1, n(x, y) = 0.01 and

zb0(x, y) = 0.1 + 0.006e−
(x−0.4)2

0.42 (6.7.1)

a one-dimensional parabolic sediment. Free boundary conditions are imposed at ghost points,

see Figure 6.7.1. The numerical results are obtained with the second order semi-implicit

Figure 6.7.1: Test 6.7.1: (2D Exner parabolic sediment). Initial condition of sediment layer (top-
left), thickness (top-right) and velocity (down) for the 2D Exner model on the square [−2, 6]×[−2, 6]
using a 100× 100 mesh points.
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Figure 6.7.2: Test 6.7.1: (2D Exner parabolic sediment). Numerical solution for sediment layer
(top-left), thickness (top-right) and velocity (down) for the 2D Exner model on the square [−2, 6]×
[−2, 6] using a 100× 100 mesh points at time t = 450 with CFL= 6.

scheme introduced on Section 6.6.2 on the square [−2, 6]× [−2, 6] adopting a 100×100 mesh

points, CFL= 9 at time t = 450. As it shown in Figure 6.7.2, the numerical results are in

accordance with the one-dimensional one.

6.7.2 Conical Sediment

As last experiment we consider a fully two-dimensional conical sediment. For this reason, let

us consider the 2D Exner model (6.5.7) where initial conditions are so set: η0(x, y, 0) = 0.6,

b(x, y) = 0, m(x, y) = 0.1, n(x, y) = 0 and

zb0(x, y) = 0.1 + 0.006e−
(x−0.4)2

0.42
−(y−3)2 (6.7.2)

a conical sediment, see Figure 6.7.3. Free boundary conditions are imposed at ghost points.

The numerical results are obtained with the second order semi-implicit scheme introduced

on Section 6.6.2 on the square [−2, 6]× [−2, 6] adopting a 100× 100 mesh points, CFL= 6

at time t = 450. Figure 6.7.4 shows the numerical results for bathymetry, free-surface and

velocity in both directions. Particular attention was paid to sediment evolution in Figure

6.7.5. The second order semi-implicit scheme is able to perform the sedimental evolution as

expected.
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Figure 6.7.3: Test 6.7.2: (2D Exner conical sediment). Initial condition of sediment layer (top-
left), thickness (top-right) and velocity (down) for the 2D Exner model on the square [−2, 6]×[−2, 6]
using a 100× 100 mesh points.

Figure 6.7.4: Test 6.7.2: (2D Exner conical sediment). Numerical solution for sediment layer (top-
left), thickness (top-right) and velocity (down) for the 2D Exner model on the square [−2, 6]×[−2, 6]
using a 100× 100 mesh points at time t = 450 with CFL= 6.
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Figure 6.7.5: Test 6.7.2: (2D Exner conical sediment). Numerical solution for the sediment layer
on the square [−2, 6]× [−2, 6] using a 100× 100 mesh points at time t = 450 with CFL= 6.
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Chapter 7

Conclusion

This work deals mainly with the construction, analysis, implementation and testing of high-

order shock-capturing Adaptive Compact Approximate Taylor (ACAT) methods to the treat-

ment of hyperbolic systems of conservation and balance laws and their well-balanced version.

These methods were previously developed as an order adaptive version of the Compact Ap-

proximate Taylor Methods for hyperbolic systems of conservation laws, introduced in [14],

in which the solution at every point is updated using the stencil of maximal length for which

the solution is smooth [15]. Successively, an extension to systems of balance laws has been

introduced [13]. The starting point for systems of balance laws is to rewrite the systems as

conservation laws, by subtracting to the flux a primitive of the the source term. Meanwhile,

the well-balanced property has been obtained rewriting the systems as conservation laws, by

subtracting to the standard flux the one corresponding to the stationary solution, and adding

to the primitive of the source the source computed at the stationary solution. The methods

are developed for systems in one and two space dimensions, and could be extended to 3D. In

principle the procedure allows the construction of well-balanced schemes of arbitrary order,

although the computational complexity quickly increases with the order of accuracy. We

prove that the constructed schemes are exactly fully well-balanced because they are able to

preserve any stationary solutions.

Concerning the one-dimensional and two-dimensional systems of conservation laws (Chap-

ter 3), the heuristic analysis and the details of Compact Approximate Taylor methods and

the corresponding order-adaptive technique to avoid the spurious oscillations close the dis-

continuities were presented. Several numerical results, obtained with the new family of

methods (ACAT), have been compared with the corresponding WENO-RK methods (Finite
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Differences WENO reconstructions in space, TVD-RK in time). The linear transport equa-

tion, Burgers equation, the 1D and 2D compressible Euler equations have been considered.

For CFL ≤ 0.5 all the numerical solutions work as expected, and the results obtained with

WENO or ACAT methods are similar. For CFL∈ [0.5) WENO schemes may introduce os-

cillations, while the ACAT is generally oscillation-free. The possibility of using larger CFL

condition and consequently larger time steps, compensate the extra computational cost of

ACAT. When the solution is not sufficiently regular, or when high order accuracy is not

required, the most cost-effective ACAT scheme is the second order one.

Concerning the one-dimensional (Chapter 4) and two-dimensional (Chapter 5) systems of

balance laws, the developments and the details of well-balanced and non well-balanced CAT

schemes and its order-adaptive strategy to avoid the introduction of spurious oscillations were

presented. A set of numerical results obtained with the well-balanced and non well-balanced

schemes have been compared with exact or reference solutions. The linear transport equation

with source, the Burgers equation with source, the 1D Shallow-Water equations, the 1D and

2D compressible Euler equations with gravity have been considered. The use of suitable

limiters allow an effective treatment of discontinuous solutions. In all cases we observe that

stationary solutions are preserved within machine precision, allowing very accurate results

when the solution is a small deviation from equilibrium or an initial condition far from the

stationary solution is considered. The numerical solutions and the errors are in accordance

with the expected order, nevertheless the well-balanced schemes are able to preserve the

stationary solutions with machine precision and return better solutions compared with the

non well-balanced methods when a small perturbation of the stationary solution has been

considered as initial condition. Some order reduction phenomena have been observed more

frequently in the non well-balanced reconstructions to be associated mainly with the family

of smoothness indicators examined to capture the regularity of the numerical solutions.

The main advantage of the ACAT method for systems of conservation and balance

laws consists in its generality: it allows the automatic construction of very high order

well-balanced schemes for multi-dimensional systems. The main disadvantage is the ex-

tra computational cost due to the evaluations of the Taylor expansion terms. This drawback

could be alleviated by parallel implementation that would have a significant decrease in the

computational cost because of the local nature of the method.

The last part of the thesis (Chapter 6) concerns a work in progress on the development of

semi-implicit schemes for the 1D and 2D Exner model of shallow water with sedimentation.
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The objective was to drastically improve the efficiency in the computation of the evolution of

the sediment by treating water waves implicitly, thus allowing much larger time steps than

the one permotted by standard CFL condition on explicit schemes. This procedure has a

theoretical basis in the following wording. After some manipulation, the Exner model can

be written as a non-conservative hyperbolic system

∂U

∂t
+ A(U)

∂U

∂x
= 0.

This system is strictly hyperbolic if and only if the characteristic polynomial has three

distinct real roots λ1 < λ2 < λ3. Under the hypothesis of Froude number (Fr) less then 1

it is λ1 < 0 and λ3 > 0. Assuming that the interaction between the water and the sediment

is weak, it is λ2 ≤ min(|λ1|, |λ3|), i.e. the wave speed of the sediment is much smaller than

the water wave speeds. An explicit method implies a strong stability restriction due to

the velocity of the free-surface wave. This restriction involves in a very long computation

time that could be reduced neglecting the behaviour of the free-surface waves behaviour and

looking at the sediment evolution. We want to check that even if we do not resolve the

small time scale of the waves, still the semi-implicit method is able to correctly capture the

sediment evolution. To this purpose, a simplified model in which the flow is quasi-stationary

has been considered. As expected, there is very good agreement between the solution of the

scalar equation and the full system, because in this case the energy associated to fast waves

is negligible. Successively,the long-term behaviour of the sediment must be checked even in

the presence of under-resolved fast water waves and, if necessary, the effects of these on the

sediment must be analysed. This exploration is subject of current investigation.

There are still a few things that require improvement and generalization:

• Optimal implementation of CAT methods in GPU architectures. The implementation

of ACAT or WBACAT methods for systems of conservation and balance laws carried

out to compute the numerical results shown in this work is not optimal and does not

take advantage of the potentiality of these methods: they are highly parallelizable and

do not need the storage of intermediate temporal stages. Therefore, the comparisons

of computational costs or efficiency curves shown in the previous chapters lead only to

partial conclusions. Next developments include the implementation of the methods in

GPU architectures and the systematic comparison between them.
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• Combination of CAT methods with a new adaptive non a priori strategy. In fact,

instead of using a priori smoothness indicators to cure the spurious oscillations close to

discontinuities, a posteriori analysis of the updated numerical solution could be used

such as MOOD approach see [26, 27, 89]. This analysis is performed at every time step

and it is followed by a local recalculation of the solution where it is necessary using

a more robust numerical method. Besides the spurious oscillations, this methodology

allows one to control aspects such as the positivity of the numerical method. CAT

methods are excellent candidates to be combined with this technique, due to their

good stability properties and the minimal size of their stencils. The idea would be

to update the numerical solutions at every time step with CAT2P. Then, this first

numerical solution is analyzed and the cells were wrong solutions are detected are

marked. Next, the numerical solutions at the marked cells are computed again using

now CAT2(P − 1). This new numerical solution is then analyzed and the procedure

follows in a recursive way. In the worst-case scenario, the numerical solution will

be updated in part of the domain with a robust first order numerical method. This

strategy may lead to efficient and robust high-order numerical methods.

• ACAT-IMEX coupling. An open problem is how to couple ACAT methodology with

implicit-explicit method for the treatment of problems with stiff source. In order to

obtain, on the one hand, a computationally more expensive method that is able to

solve problems with stiff source without introducing limitations on the CFL stability

condition.

• More realistic Exner models. Other equations for the evolution of the sediment can be

considered making the simulations more sophisticated and obtaining numerical results

that are more consistent with the experimental data.

• Semi-Implicit schemes for multi-layer shallow water. A multi-layer semi-implicit ap-

proach could be explored to couple an implicit treatment of the free-surface waves in

the top layer and an explicit treatment for the sediment evolution in the bottom layer.
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Appendix A

A.1 Numerical Differential Formulas

Let us define two operators D and A such that, given a variable z, we compute the k−th

numerical derivatives using respectively (2p+ 1) and 2p−stencil point as follows:

Dk
P (z∗,∆x) =

1

∆xk

p∑
j=−p

δkp,jzi+j

AkP (z∗,∆x) =
1

∆xk

p∑
j=−p+1

γkp,jzi+j.

In practise, D is the operator that compute the k−th numerical derivative centered at

position xi using (2p + 1)−point stencil; while, A is the operator that compute the k−th

numerical derivative centered at position xi+ 1
2
using 2p−point stencil. Observe that the

symbol ∗ indicates with respect to which the operator is applied and, for all j = −p, . . . , p,

zi+j is an approximation of z(xi + j∆x). We will also define the k−th derivatives in space

or time at position q using 2p−point stencil as:

∂kxu(xi + q∆x, tn) ' Ak,qp (uni,∗,∆x) =
1

∆xk

p∑
j=−p

δk,qp,jui+j

∂kxu(xi, tn + q∆t) ' Ak,qp (u∗i ,∆t) =
1

∆xk

p∑
r=−p+1

γk,qp,ru
n+r
i .

For the sake of simplicity, remembering that δ and γ do not depend on i and ∆x, let us

suppose i = 0, x0 = 0 and ∆x = 1. For this reason, we consider the k−th derivative of f
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A.1. Numerical Differential Formulas

centered in position 0 and q respectively adopting (2p+ 1) and 2p−point stencil as

f (k)(0) ' Dk
p(f, 1) =

p∑
j=−p

δkp,jf(j), (A.1.1)

f (k)(q) ' Ak,qp (f, 1) =

p∑
j=−p+1

δk,qp,j f(j). (A.1.2)

Observe that eq. (A.1.1) is the interpolatory formulas of (2p + 1)−points, then it is exact

for all polynomials of degree ≤ 2p. Thus applying operator (A.1.2) to xs, with s = 0, . . . , 2p

at position x = 0, the δ coefficients must satisfy the Vandermonde condition, see Section 6.1

[62] or [43, 92],

p∑
j=−p

jkδkp,j = k!,

p∑
j=−p

jsδkp,j = 0, s 6= k 0 ≤ s, k ≤ 2p. (A.1.3)

In similar way, working with 2p−points, the γ coefficients must satisfy

p∑
j=−p+1

jkγkp,j = k!,

p∑
j=−p+1

jsγkp,j = 0, s 6= k 0 ≤ s, k ≤ 2p− 1. (A.1.4)

In practice, we find:
p∑

j=−p+1

jkγkp,j =

1 if k = 1,

0 otherwise.

(A.1.5)

Let us consider a generic function f and (2p + 1)−points, the Lagrange polynomial

[65, 66, 100] L (x) that interpolate f on (2p+ 1)−points is:

L (x) =

p∑
j=−p

f(xi+j)`p,j(x),

where `p,j(x) represents the Lagrange basis

`p,j(x) =

p∏
r=−p,r 6=j

x− r
j − r

, −p ≤ j ≤ p. (A.1.6)

The k−th derivatives of lagrangian basis `p,j represent the γkp,j coefficients. In fact, it is

enough write `p,j as:

`p,j =

p∏
r=−p,r 6=j

x− r
j − r

=

2p∑
k=0

δkp,j
k!
xk,
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where the last equality is guaranteed by Taylor expansion at x = 0.

Proposition A.1.1 The coefficients δkp,j introduced on (A.1.1) satisfy:

δkp,j = (−1)kδkp,−j; (A.1.7)

δkp = 0 if k is odd; (A.1.8)
p∑

j=−p

δkp,jj
(2p+1) = 0 if k is even; (A.1.9)

p∑
j=−p

δkp,jj
(2p+2) = 0 if k is odd. (A.1.10)

Proof. (A.1.7) comes out from:

`p,−j(x) = `p,j(−x).

(A.1.8) follows from (A.1.7). (A.1.9) can be written as

p∑
j=−p

δkp,jj
(2p+1) =

−1∑
j=−p

δkp,jj
(2p+1) +

p∑
j=1

δkp,jj
(2p+1) = 0

since k is even and 2p+ 1 is odd. In similar way (A.1.10). �

An important property to written the numerical scheme in conservative form is the next

proposition.

Proposition A.1.2 For k ≥ 1 the following relations are satisfied:

δkp,p = γ
k−1, 1

2
p,p ; (A.1.11)

δkp,j = γ
k−1, 1

2
p,j − γk−1, 1

2
p,j+1 j = −p+ 1, . . . , p− 1; (A.1.12)

δkp,−p = −γk−1, 1
2

p,−p+1. (A.1.13)

Proof. First of all, let us observe that given a polynomial g of degree 1,

g′(0) = g
(1

2

)
− g
(
−1

2

)
.
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Now, considering the following formulas:

f (k−1)
(1

2

)
' A

k−1, 1
2

p

(
f, 1
)

=

p∑
j=−p+1

γ
k−1, 1

2
p,j f(j); (A.1.14)

f (k−1)
(
−1

2

)
' A

k−1, 1
2

p

(
f−1, 1

)
=

p∑
j=−p+1

γ
k−1, 1

2
p,j f(j − 1). (A.1.15)

These formulas are the interpolatory formulas adopting 2p nodes hence the degree are 2p−1.

Then, formulas (A.1.14) and (A.1.15) are exactly when applied to polynomial with degree

less or equal then 2p− 1. Let us consider f a polynomial of degree 2p,

f (k)(0) = f (k−1)
(1

2

)
− f (k−1)

(
−1

2

)
= A

k−1, 1
2

p

(
f, 1
)
− Ak−1, 1

2
p

(
f−1, 1

)
. (A.1.16)

Then,

f (k)(0) = γ
k−1, 1

2
p,p f(p) +

(
γ
k−1, 1

2
p,p−1 − γ

k−1, 1
2

p,p

)
f(p− 1) + . . .

+
(
γ
k−1, 1

2
p,−p+1 − γ

k−1, 1
2

p,−p+2

)
f(−p+ 1)− γk−1, 1

2
p,−p+1f(−p).�

Proposition A.1.3 Given 1 ≤ k ≤ 2p− 1 and 0 ≤ s ≤ k we get that:

p∑
j=−p+1

γs,qp,jγ
k−s,j
p,l = γk,qp,l , l = −p+ 1, . . . , p. (A.1.17)

Proof. The proof is similar to the one of the preceding Proposition A.1.2. Indeed, let us

consider the following formula

f (k) '
p∑

j=−p+1

γs,qp,jf
(k−s)
j ,

where

f
(k−s)
j =

p∑
l=−p+1

γk−s,jp,l f(l).

Hence,

f (k)(q) '
p∑

l=−p+1

(
p∑

j=−p+1

γs,qp,jγ
k−s,j
p,l

)
f(l).�
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B.1 Compact Approximate Taylor properties

Lemma B.1.1 Let be k > 1 and f (k−1)
i,j defined as in Section 3.1.3. Then f (k−1)

i,j = aU
(k−1)
i,j

when f(U) = aU.

Proof.

f
(k−1)
i,j =

1

∆tk−1

P∑
r=−P+1

γk−1,0
P,r fk−1,n+r

i,j =

=
a

∆tk−1

P∑
r=−P+1

γk−1,0
P,r

(
Un
i+j +

k−1∑
`=1

(r∆t)`

`!
U

(`)
i,j

)
=

=
a

∆tk−1

(( P∑
r=−P+1

γk−1,0
P,r

)
Un
i+j +

k−1∑
`=1

∆t`

`!

( P∑
r=−P+1

γk−1,0
P,r r`

)
U

(`)
i,j

)
= aU

(k−1)
i,j ,

where the last identity is satisfied from (A.1.4). �

Theorem B.1.1 The Compact Approximate Taylor method is a properly generalization of

the high order Lax-Wendroff scheme (2.2.1) for linear systems of conservation laws.

Proof. In order to prove that CAT2P is a properly generalization of the 2P−order Lax-

Wendroff method we have to prove that CAT2P reduces to (2.2.1) when applied to systems
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(2.1.2). For this reason, given k > 1, f
(k−1)
i,j = aU

(k−1)
i,j (Lemma B.1.1). On the other side,

U
(k)
i,j = − 1

∆x

P∑
s=−P+1

γ1,j
P,sU

(k−1)
i,s =

= − a

∆x

P∑
s=−P+1

γ1,j
P,sU

(k−1)
i,s =

=
a2

∆x2

P∑
s=−P+1

γ1,j
P,s

P∑
`=−P+1

γ1,s
P,`U

(k−2)
i,`

=
a2

∆x2

P∑
s=−P+1

γ2,j
P,sU

(k−2)
i,s = . . . =

=
(−1)kak

∆xk

P∑
s=−P+1

γk,jP,sU
n
i+j,

where Proposition A.1.3 has been used. In addition,

A
0, 1

2
P

(
f

(k−1)
i,∗ ,∆x

)
=

1

∆x

P∑
j=−P+1

γ
0, 1

2
P,j f

(k−1)
i,j =

= − a

∆x

P∑
j=−P+1

γ
0, 1

2
P,j U

(k−1)
i,j =

=
(−1)k−1ak

∆xk

P∑
j=−P+1

γ
0, 1

2
P,j

P∑
s=−P+1

γk−1,j
P,s Un

i+s =

=
(−1)k−1ak

∆xk

P∑
s=−P+1

( P∑
j=−P+1

γ
0, 1

2
P,j γ

k−1,j
P,s

)
Un
i+s =

=
(−1)k−1ak

∆xk

P∑
s=−P+1

γ
k−1, 1

2
P,s Un

i+j =

=
(−1)k−1ak

∆xk
A
k−1, 1

2
P Un

∗ ,

where Proposition A.1.3 has been used. In this way, the flux reconstruction of order 2P

(3.1.2) becomes:

F P
i+ 1

2
=

2P∑
k=1

∆tk−1

k!
A

0, 1
2

P

(
f

(k−1)
i,∗ ,∆x

)
=

=
2P∑
k=1

(−1)k−1a
k∆tk−1

k!
A
k−1, 1

2
P

(
Un
∗ ,∆x

)
.

�
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Remark B.1.1 As consequence of Theorem B.1.1, the Compact Approximate Taylor Method

(CAT2P ) properly extends the 2P− order Lax-Wendroff scheme when applied to linear sys-

tems of conservation laws. Thus, the CAT method is linearly stable (in the L2 sense) under

the usual CFL-condition (see also [82]-[84])

max
i

(|f ′(Ui)|)
∆t

∆x
≤ 1.

Theorem B.1.2 The Compact Approximate Taylor scheme is a 2P−order method.

Proof. In order to prove that CAT has order 2P, let us consider an exact solution U(x, t)

sufficiently smooth. The idea is to perform a step of the method starting from a generic

point value at time tn, U(xi, tn), and prove that the difference of the approximation of the

exact solution with two consecutive time step has order 2P. For this reason, let us consider

an approximation of the first time derivative U (1)
i,j for all j = −P + 1, . . . , P,

U
(1)
i,j = −A1,j

P

(
f

(0)
i,∗ ,∆x

)
= −∂xf(U)(xi+j, tn) +O(∆x2P−1) =

= ∂xf(U)(xi+j, tn) +O(∆x2P−1).

Let be P 1
i,j(s) the Taylor expansion polynomial truncated at first term P 1

i,j(s) = U(xi+j, tn)+

sU
(1)
i,j . For construction,

f 1,n+r
i,j = f

(
U(xi+j, tn) + r∆tU

(1)
i,j

)
= f

(
P 1
i,j(r∆t)

)
+O(∆x2P ).
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The approximation of the first time derivative of flux has order O(∆x2P−1). Indeed,

f
(1)
i,j = A1,0

P

(
f 1,∗
i,j ,∆t

)
=

=
1

∆t

P∑
r=−P+1

γ1,0
P,jf

1,n+r
i,j =

=
1

∆t

P∑
r=−P+1

γ1,0
P,jf

(
P 1
i,j(r∆t)

)
+O(∆x2P ) =

=
1

∆t

P∑
r=−P+1

γ1,0
P,j

2P−1∑
k=0

1

k!
dk(f ◦ P 1

i,j)(tn)rk∆tk +O(∆x2P ) =

=
1

∆t

2P−1∑
k=0

1

k!
dk(f ◦ P 1

i,j)(tn)∆tk
P∑

r=−P+1

γ1,0
P,jr

k +O(∆x2P ) =

= d1(f ◦ P 1
i,j)(tn) +O(∆x2P ) =

= ∂tf(U)(xi+j, tn) +O(∆x2P ),

where (A.1.4) has been used. The previous idea should be extend to every k between 1 and

2P − 1 in the following way:

f
(k)
i,j = ∂kt f(U)(xi+j, tn) +O(∆x2P−1).
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Linking all the results we obtain:

U(xi+j,tn+1)− U(xi+j, tn) +
∆t

∆x

(
F P
i+ 1

2
− F P

i− 1
2

)
=

= U(xi+j, tn+1)− U(xi+j, tn) +
1

∆x

2P∑
k=1

∆tk

k!

(
A

0, 1
2

P

(
f

(k−1)
i,∗ ,∆x

)
− A0, 1

2
P

(
f

(k−1)
i−1,∗ ,∆x

)
=

= U(xi+j, tn+1)− U(xi+j, tn)

+
1

∆x

2P∑
k=1

∆tk

k!

(
A

0, 1
2

P

(
∂k−1
t f(U),∆x

)
− A0, 1

2
P

(
∂k−1
t f(U),∆x

)
+O(∆x2P+1) =

= U(xi+j, tn+1)− U(xi+j, tn) +
1

∆x

2P∑
k=1

∆tk

k!
D1
P

(
∂k−1
t f(U),∆x

)
+O(∆x2P+1) =

= U(xi+j, tn+1)− U(xi+j, tn) +
1

∆x

2P∑
k=1

∆tk

k!
∂k−1
t f(U)(xi, tn) +O(∆x2P+1) =

= U(xi+j, tn+1)− U(xi+j, tn)− 1

∆x

2P∑
k=1

∆tk

k!
∂kt U(xi, tn) +O(∆x2P+1) =

= O(∆x2P+1).

�
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Appendix C

C.1 Numerical Coefficients

The coefficients δk,qP,j and γ
k,q
P,j of the differentiation formulas (A.1.2) and (A.1.11)-(A.1.13) for

P = 1, 2, 3 are shown in Figures C.1.1 and C.1.2 respectively. Algorithms to compute those

coefficients can be found in [41] and [15].

q k j = -2 j = -1 j = 0 j = 1 j = 2 j = 3

1/2 0 1/2 1/2

1 -1 1

1/2 0 -0 4/7 4/7 -0

1 0 - 5/4 1 1/4 -0

2 1/2 - 1/2 - 1/2 1/2

3 -1 3 -3 1

1/2 0 - 1/7 5/8 5/8 - 1/8 0

-0 1/7 -1 1/3 1 1/3 - 1/7 0

- 1/8 7/8 - 3/4 - 3/4 7/8 - 1/8

1/6 -1 5/6 4 2/3 -4 2/3 1 5/6 - 1/6

1/2 -1 1/2 1 1 -1 1/2 1/2

-1 5 -10 10 -5 1

p 
= 

1
p 

= 
2

p 
= 

3

Figure C.1.1: The δk,qP,j coefficients of the differentiation formula (A.1.2) for P = 1, 2, 3.
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C.1. Numerical Coefficients

q k j = 0 j = 1 q k j = -2 j = -1 j = 0 j = 1 j = 2 j = 3

0 0 1 0 -2 0 1 0 0 0 0 0

1 -1 1 1 - 137/60  5/1 - 5/1  10/3 - 5/4  1/5

1 0 0 1 2  15/4 - 77/6  107/6 - 13/1  61/12 - 5/6

1 -1 1 3 - 17/4  71/4 - 59/2  49/2 - 41/4  7/4

4 3 -14 26 -24 11 -2

q k j = -1 j = 0 j = 1 j = 2 5 -1 5 -10 10 -5 1

-1 0 1 0 0 0 -1 0 0 1 0 0 0 0

1 - 11/6 3 - 3/2  1/3 1 - 1/5 - 13/12  2/1 - 1/1  1/3 - 1/20

2 2 -5 4 -1 2  5/6 - 5/4 - 1/3  7/6 - 1/2  1/12

3 -1 3 -3 1 3 - 7/4  25/4 - 17/2  11/2 - 7/4  1/4

0 0 0 1 0 0 4 2 -9 16 -14 6 -1

1 - 1/3 - 1/2 1 - 1/6 5 -1 5 -10 10 -5 1

2 1 -2 1 0 0 0 0 0 1 0 0 0

3 -1 3 -3 1 1  1/20 - 1/2 - 1/3  1/1 - 1/4  1/30

1 0 0 0 1 0 2 - 1/12  4/3 - 5/2  4/3 - 1/12 0

1  1/6 - 1/1  1/2  1/3 3 - 1/4 - 1/4  5/2 - 7/2  7/4 - 1/4

2 0 1 -2 1 4 1 -4 6 -4 1 0

3 -1 3 -3 1 5 -1 5 -10 10 -5 1

2 0 0 0 0 1 1 0 0 0 0 1 0 0

1 - 1/3  3/2 - 3/1  11/6 1 - 1/30  1/4 -1  1/3  1/2 - 1/20

2 -1 4 -5 2 2 0 - 1/12  4/3 - 5/2  4/3 - 1/12

3 -1 3 -3 1 3  1/4 - 7/4  7/2 - 5/2  1/4  1/4

4 0 1 -4 6 -4 1

5 -1 5 -10 10 -5 1

2 0 0 0 0 0 1 0

1  1/20 - 1/3 1 - 2/1  13/12  1/5

2  1/12 - 1/2  7/6 - 1/3 - 5/4  5/6

3 - 1/4  7/4 - 11/2  17/2 - 25/4  7/4

4 -1 6 -14 16 -9 2

5 -1 5 -10 10 -5 1

3 0 0 0 0 0 0 1

1 - 1/5  5/4 - 10/3  5/1 - 5/1  137/60

2 - 5/6  61/12 - 13/1  107/6 - 77/6  15/4

3 - 7/4  41/4 - 49/2  59/2 - 71/4  17/4

4 -2 11 -24 26 -14 3

5 -1 5 -10 10 -5 1

P = 3

P = 2

P = 1

Figure C.1.2: The γk,qP,j coefficients of the differentiation formulas (A.1.11)-(A.1.13) for P = 1, 2, 3.
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