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The nearly Gorenstein property for numerical duplications and semitrivial
extensions

by DANNY TROIA

In this thesis we present and study the ideal duplication, a new construction within
the class of the relative ideals of a numerical semigroup S, that, under specific as-
sumptions, produces a relative ideal of the numerical duplication S ⋊⋉b E, for some
ideal E of S. We prove that every relative ideal of the numerical duplication can be
uniquely written as the ideal duplication of two relative ideals of S; this allows us
to better understand how the basic operations of the class of the relative ideals of
S ⋊⋉b E work. In particular, we characterize the ideals E such that S ⋊⋉b E is nearly
Gorenstein. With the aim to generalize this construction to commutative rings with
unity, we introduce the semitrivial ideal extension, a construction that, starting with
an ideal of a commutative ring R with unity and a submodule of a module M over R,
under specific assumptions, produces an ideal of the semitrivial extension R ⋉ϕ M.
Using this tool we characterize a certain family of prime ideals of the semitrivial ex-
tension and we completely describe the family of the maximal ideals. Similarly as
it was done for the numerical duplication, using the semitrivial ideal extension, we
characterize the modules M such that R ⋉ϕ M is nearly Gorenstein.
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1

Introduction

Since the second half of the last century Gorenstein rings (and their generalizations)
have been one of the most interesting and studied class of rings both in commutative
algebra and algebraic geometry. One important aspect of the rings in this class is
that every finitely generated module over a zero-dimensional Gorenstein ring R has
the property that HomR(HomR(M, R), R) ∼= M. Note that this property is true in
the category of finitely generated vector spaces, but not for the category of finitely
generated modules over a local Cohen-Macaulay ring.

A useful way to introduce Gorenstein rings is through the canonical module. Let
R be a local Cohen-Macaulay ring; a canonical module is an R-module C such that
HomR(·, C) is a dualizing functor of the category of the finitely generated modules
over R. For zero-dimensional rings such module exists and it is isomorphic to the
injective envelope of the residue class field of R (see Proposition 1.16). For local
Cohen-Macaulay rings of positive Krull dimension, the canonical module may not
exist; however, if it does exists, then it is unique up to isomorphism (see Corollary
1.31) and the ring is said to be Gorenstein if it is a canonical module over itself.

In recent years, many authors introduced classes of Cohen-Macaulay rings which
are close to be Gorenstein under some respects. In [5], the authors introduced the
notion of almost Gorenstein rings for analytically unramified rings, subsequently
in [13], the authors generalize this notion for any ring. Nearly Gorenstein rings
were originally introduced in [14], and the definition is given through the trace of
the canonical module. Any Gorenstein ring is both almost Gorenstein and nearly
Gorenstein, moreover any one-dimensional almost Gorenstein ring is nearly Goren-
stein.

Let R be a commutative ring with unity and M an R-module; the idealitazion,
also called trivial extension, is a classical construction introduced by Nagata (see
[p. 2, 18], [Chapter VI, Section 25, 15] and [10]) that produces a new ring containing
an ideal isomorphic to M. Another more recent construction is the amalgamated
duplication (see [7]) that, starting with a ring R and an ideal I, produces a new ring
that, if M = I, has many properties coinciding with the idealization (e.g., they have
the same Krull dimension and if I is a canonical ideal of a local Cohen–Macaulay
ring, both of them give a Gorenstein ring). In [3], the authors unify these two con-
structions, by presenting them as particular quadratic quotients of the Rees algebra
associated to I. More precisely, given a monic polynomial t2 + at + b ∈ R[t], and
denoting R+ the Rees algebra associated to the ideal I, that is R+ =

⊕
n≥0 Intn, in

[3], the authors study the ring R(I)a,b = R+/I2(t2 + at + b), where I2(t2 + at + b) is
the contraction to R+ of the ideal generated by t2 + at + b in R[t]. Moreover, if R is
local, some relevant properties, such as Gorensteinness, almost Gorensteinness and
Cohen-Macaulay type, coincide for any member of the family cited above, depend-
ing only on R and I (see [4]).

If R is an algebroid branch with valuation semigroup v(R) = S, and b ∈ R is
an element of odd valuation, then R(I)0,−b is an algebroid branch whose valuation
semigroup is a numerical semigroup strongly linked to S, called the numerical du-
plication (see [Theorem 3.6, 3]).



2 Contents

The numerical duplication is a construction introduced in [8] that, starting with
a numerical semigroup S and a semigroup ideal E ⊂ S, produces a new numerical
semigroup, denoted by S ⋊⋉b E (where b is any odd integer belonging to S). In [8]
the authors give a characterization of the ideals producing a symmetric or an almost
symmetric semigroup respectively; this characterization is essentially a specializa-
tion of the condition found for the family of the quotients of the Rees algebra and,
as expected, does not depend on the integer b used to define the numerical dupli-
cation. A natural question that arises is if it is possible to find analogue results for
nearly Gorenstein rings. More precisely, is it true that the nearly Gorenstein prop-
erty for R(I)a,b is independent of a and b? Is it possible to characterize the ideals I
such that R(I)a,b is nearly Gorenstein? Our approach to these questions started from
numerical duplications, in order to get hints for the ring case. However, as we will
see, our approach for numerical duplications proved to be efficient to answer the
question also in a different class of rings, the so-called semitrivial extensions. This
class contains the class of quadratic quotients of the Rees algebra of the form R(I)0,b.

More precisely, in [20] we provided a systematical study of the relative ideals of a
numerical duplication; this was done through a similar construction for relative ide-
als, that is called ideal duplication: given a numerical semigroup S, an odd number
b ∈ S and an ideal E, the ideal duplication starting from two relative ideals E1, E2 of
S, under specific assumptions, produces a relative ideal E1 ⋊⋉b E2 of the numerical
duplication S ⋊⋉b E. We proved that every relative ideal of the numerical duplication
can be written, in a unique way, as the ideal duplication of two relative ideals of the
semigroup (see Theorem 3.9).

The knowledge of the relative ideals of a numerical duplication allows to better
understand its properties; in particular, it is possible to describe the trace of the
numerical duplication (see Theorem 3.17) and, by this result, we characterize those
ideals E, such that S ⋊⋉b E is nearly Gorenstein (see Corollary 3.18).

With the aim to generalize the ideal duplication and its applications to the ring
case, the most natural way to do so is within a particular ring construction: the
semitrivial extension (see [19] or [22]). The semitrivial extensions are a generaliza-
tion of Nagata’s idealization: let R be a commutative ring with unity (note that we
do not need the commutative property to give the definition), M a module over R
and ϕ ∈ HomR(M ⊗R M, R) such that ϕ is symmetric and associative, that is,

ϕ(m ⊗ m)′ = ϕ(m′ ⊗ m)

and
mϕ(m′ ⊗ m′′) = ϕ(m ⊗ m′)m′′

for every m, m′, m′′ ∈ M. Then, the semitrivial extension of R by M and ϕ, denoted
by R ⋉ϕ M, is defined as the ring obtained from the abelian additive group R ⊕ M
with product:

(r, m)(r′, m′) = (rr′ + ϕ(m ⊗ m′), rm′ + r′m).

Note that, if ϕ = 0, then R ⋉ϕ M coincides with the trivial extension of R by M. It is
not surprising that the assumption ϕ ̸= 0 gives more restrictions on the module M;
hence the ring structure of R ⋉ϕ M is bound to be more subtle and complicated than
the case of the Nagata’s idealization (e.g. 0⊕ M is not an ideal of R⋉ϕ M). However,
more interesting examples are obtained through this construction. In particular, if
I is an ideal of R and ϕ is the multiplication by some element b ∈ R, then R ⋉ϕ

I = R(I)0,−b (see Example 4.18); also, under specific assumptions, R ⋉ϕ M can be a
domain (see Theorem 4.25) and it can even be a field (see Theorem 4.26).
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Let I be an ideal of R and N a submodule of M. If I ⊕ N is an ideal of R⋉ϕ M, then
we will write I ⊕ N = I ⋉ϕ N and we will call it the semitrivial ideal extension of I
by N and ϕ. The semitrivial ideal extension is quite a powerful tool, in fact it allows
to characterize and describe the prime ideals which are the semitrivial extension of
some prime ideal of R (see Proposition 4.36 and Theorem 4.43). Moreover, we give
a precise description of all the maximal ideals of R ⋉ϕ M (see Theorem 4.44).

Finally, we characterize the modules M such that R ⋉ϕ M is generically Goren-
stein and, since the trace of a Z2-graded module over R ⋉ϕ M is a semitrivial ideal
extension (see Proposition ??), we characterize the module M such that R ⋉ϕ M is
nearly Gorenstein.

The structure of the thesis is the following: in Chapter 1, we present some basic
results about injective modules; for example, we see how every module can be in-
jected to an injective module (see Corollary 1.7) and we define the injective envelope
(see Definition 1.10) which is an important tool that will be used to define the canon-
ical module for zero-dimensional rings. Subsequently, after giving the definition
of maximal Cohen-Macaulay modules, we define the canonical module for a local
Cohen-Macaulay ring of any dimension (see Definition 1.23). In the last section, we
define the trace of a module and we use it to define the class of nearly Gorenstein
rings.

In Chapter 2, we give a brief overview about numerical semigroups and their
properties. We specialize the notions of canonical module and trace for the nu-
merical semigroup case, consequently we give the definition of nearly Gorenstein
semigroups (see Definition 2.11 ).

In Chapter 3, we define the ideal duplication and we study its properties; after-
wards we prove that every ideal of the numerical duplication can be written as the
ideal duplication of two ideals of the starting numerical semigroup (see Theorem
3.9). In the last section, we give the conditions such that the numerical duplication
is nearly Gorenstein (see Corollary 3.18).

In Chapter 4, since semitrivial extensions are essentially Z2-graded rings, we
give some basic informations about this ring structure and we fix the notation that
will be useful for the rest of the chapter. Therefore, after studying some general facts
about semitrivial extensions (see e.g. Theorem 4.25), we define the semitrivial ideal
extension and prove some basic results (see e.g. Proposition 4.29). Afterwards, we
use the semitrivial ideal extension to describe the prime ideals which are a semitriv-
ial ideal extension of a prime ideal of R and also we give a complete description of
the maximal ideals. In the last section, we compute the trace of the canonical mod-
ule and we characterize the semitrivial extensions that are generically Gorenstein
and nearly Gorenstein.
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Chapter 1

The canonical module

In the following, the rings considered will be always commutative and with unity.
In this chapter we present and study the canonical module. As it has been done

in [9], we use a homological approach, therefore in the first section we give some
basic results about the theory of injective module and develop some useful homo-
logical tool. In the second section, firstly, we define the canonical module for zerodi-
mensional rings, then we give the definition for rings of any dimension. In the last
section we define the trace of a module, we give some basic properties and, using
the trace of the canonical module, we define nearly Gorenstein rings.

1.1 Injective modules

In this section, we present some basic results of the theory of injective modules. In
the first part, we prove that every module can be embedded in an injective module.
In the second part, we give the definition of essential extension of modules. Finally,
we present the notion of injective hull and minimal resolution for a module. Most of
the proofs of this section can be found in [9, Appendix 3.4], otherwise we will give
the specific reference.

Let R be a ring.

Definition 1.1. A R-module Q is said to be injective if for any monomorpshim of R-modules
α : N → M and for every homomorphism of R-modules β : N → Q, there exists a
homomorphism of R-modules γ : M → Q such that β = γα.

N M

Q

α

β
γ

In order to determine that a module is injective, it is enough to check the case
where α is the inclusion of an ideal of R.

Lemma 1.2. Let Q be an R-module. If for every ideal I ⊂ R, every homomorphism β : I →
Q extends to R, then Q is injective.

I R

Q

β

⊆

γ

Injective Z-modules (that is, injective abelian groups) are easy to describe:
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Proposition 1.3. An abelian group Q is injective if and only if it is divisible in the sense
that for every q ∈ Q and every 0 ̸= n ∈ Z there exists q′ ∈ Q such that nq′ = q.

Corollary 1.4. If Q is an injective abelian group, and K is any subgroup, then Q/K is an
injective abelian group.

Corollary 1.5. Every abelian group can be embedded in an injective abelian group.

Lemma 1.6. If R is an S-algebra, and Q′ is an injective S-module, then Q := HomS(R, Q′)
is an injective R-module (the R-module structure comes via the action of R on the first factor
of HomS(R, Q′)).

Corollary 1.7. Every R-module can be embedded to an injective R-module.

Let M be an R-module; by Corollary 1.7, it follows that there exists an injective
module Q0 such that M can be embedded in Q0. We may then embed the coker-
nel, Q0/M, in an injective module Q1. Continuing in this way, we get an injective
resolution

0 M Q0 Q1 Q2 . . .

of M; that is, an exact sequence of the given form in which all the Qi are injective. In
the final part of this section, we will show that every module has a minimal injective
resolution; to this end, we need a preliminary definition.

Definition 1.8. Let E be a R-module. We say that any submodule M ⊆ E is essential, or
that M ⊆ E is an essential extension of M, if every nonzero submodule of E intersects M
nontrivially.

Proposition 1.9. Let M ⊆ F an extension of modules.

1. There exists a maximal submodule E of F containing M such that M ⊆ F is essential.

2. If F is injective, then so is E.

3. There is, up to isomorphism, a unique essential extension E of M that is an injective
R-module.

Thanks to previous proposition, we can give the following definition.

Definition 1.10. Let M be a R-module. We define the injective envelope of M the injective
module IR(M) such that the extension M ⊆ IR(M) is essential.

Definition 1.11. We say that the injective resolution

0 M Q0 Q1 Q2 . . .
f0 f1 f2

is a minimal injective resolution of M if:

• Qn+1 = E(coker fn−1)

• fn = πnin, where πn : Qn → coker fn−1 is the canonical surjection and in :
coker fn−1 → E(coker fn−1) is the canonical immersion.

As an immediate consequence of Proposition 1.9, we have:

Corollary 1.12. Any R-module M has a unique minimal injective resolution.

Definition 1.13. We define the injective dimension of M, denoted with idR(M), the lenght
of an injective minimal resolution.
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1.2 Definition of canonical module

There are many ways to introduce the canonical module; in this section we follow
closely the method used in [9], which uses a homological approach. Most of the
proofs of this section can be found in [9, Chapter 21], otherwise we will give the
specific reference.

Definition 1.14. Let R be a ring. On the category of the R-modules, a functor D is said to
be dualizing if the following hold:

1. D is controvariant;

2. D is R-linear;

3. D is exact;

4. D2(M) ∼= M for every R-module M.

In the category of the finitely generated vector spaces over a field k, it is well
known that D := Homk(·, k) is dualizing. However, that is not true in general; e.g.
for a finitely generated module M over a zero-dimensional local ring A, the equality
HomA(HomA(M, A), A) = M may not hold.

Proposition 1.15. Let R be a ring and let D be a dualizing functor on the category of R-
modules. Then:

1. If M is a simple module, then D(M) is simple.

2. For any module M, M and D(M) have the same lenght.

3. For any module M, (0 : M) = (0 : D(M)).

4. For any modules M and N, HomR(M, N) ∼= HomR(D(N), D(M)). In particular,
End(D(R)) ∼= R.

Proposition 1.16. Let (A,m) be a local zero-dimensional ring. If D is any dualizing functor
from the category of finitely generated R-module to itself, then there is an isomorphism of
functors D(·) ∼= HomA(·, D(A)). Further, D(A) is isomorphic to the injective hull of
A/m. Thus there is up to isomorphism at most one dualizing functor.

Motivated by previous proposition, we give the following:

Definition 1.17. Let A be a zero-dimensional local ring. We define the canonical module
ωA of A to be the injective hull of the residue class field of A.

Proposition 1.18. If A is a zero-dimensional local ring, then the functor

D(M) := HomA(M, ωA)

is dualizing on the category of finitely generated A-modules.

Corollary 1.19. If A is local Artinian ring, then the annihilator of ωA is 0; the lenght of
ωA is the same as the lenght of A; and the endomorphism ring of ωA is A.

Let B be a ring, if A is a B-algebra, then HomB(A, ·) can be naturally regarded as
an A-module just by taking the action of the first component.
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Proposition 1.20. Let A be a zero-dimensional local ring. Suppose that for some local ring
B, A is a B-algebra that is finitely generated as B-module and the maximal ideal of B maps
into that of A. If E is the injective hull of the residue class field of B, then

ωA = HomB(A, E).

In particular, if B is also zero-dimensional, then ωA = HomB(A, ωB).

From the point of view of the duality, the simplest case is the following:

Definition 1.21. A zero-dimensional local ring A is Gorenstein if A ∼= ωA.

Well known examples of Gorenstein rings are fields and complete intersections.

We recall that the socle of a finitely generated module R-module M, denoted by
Soc(M), is defined as the sum of all the simple submodules of M. If R is a noetherian
local ring with maximal ideal m and residule class field k, then Soc(M) = (0 :M m) =
HomR(k, M). Let x = (x1, . . . , xm) be a maximal M-sequence, we define the type of
M to be the integer

dimk(Soc(M/xM)) = dimk(HomR(k, M/xM)) = dimk(Extm
R (k, R))

In particular, the type of an artinian ring is equal to the dimension as k-space of
Soc(R).

Property 5 and 6 of the following proposition are not in [9, Proposition 21.5],
however the implications 3 ⇒ 5, 5 ⇒ 6 and 6 ⇒ 3 are easy to prove.

Proposition 1.22. Let A be a zero-dimensional local ring. The followings are equivalent:

1. A is Gorenstein.

2. A is injective as an A-module.

3. The socle of A is simple.

4. ωA can be generated by one element.

5. The zero ideal is irriducible.

6. t(A) = 1.

We now extend the definition of canonical module for Cohen-Macaulay rings not
necessarily zero-dimensional. Following closely [9], we give a definition in terms of
reduction to quotients.

Definition 1.23. Let A be a local Cohen-Macaulay ring. A finitely generated A-module ωA
is a canonical module for A if there is a nonzerodivisor x ∈ A, that is also a nonzerodivisor
on ωA, such that ωA/xωA is a canonical module for A/(x). The ring A is Gorenstein if A
is itself a canonical module; that is, A is Gorenstein if there is a nonzerodivisor x ∈ A such
that A/(x) is Gorenstein.

The induction implicit in this definition terminates because dimA/(x) = dimA−
1. We may easily give an equivalent definition without the induction: ωA is a canon-
ical module for A if there is a maximal regular sequence x1, . . . , xd on A that is also
an ωA-sequence, and ωA/(x1, . . . , xd)ωA is the injective hull of the residue class field
of A/(x1, . . . , xd). Similarly, A is Gorenstein if and only if A/(x1, . . . , xd) is a zero-
dimensional Gorenstein ring.
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Remark 1.24. There are three issues with these notions. First, it may seem that
the definition of canonical module depends on the nonzerodivisor x. Second, the
uniqueness of ωA is not clear. Finally, by the definition, it is not obvious that a
canonical module should exist. This last issue does not have positive answer in the
general case. However, there are results to this matter which show that virtually
every ring of interest in algebraic geometry and number theory have a canonical
module.

For a simple example, it is easy to prove that any regular local ring is Gorenstein.

Proposition 1.25. Any regular local ring A has canonical module, which is the ring itself.
In particular, every regular local ring is Gorenstein.

Proposition 1.26. Let (A,m) be a local ring of dimension d, and let M be a finitely gener-
ated A-module. The following conditions are equivalent:

1. Every system of parameters in A is an M-sequence.

2. Some system of parameters in A is an M-sequence.

3. depthM = d.

If these conditions are satisfied, we say that M is a maximal Cohen-Macaulay module over
A. Every element outside the minimal primes of A is a nonzerodivisor on M.

All finitely generated modules over a local zero-dimensional ring are maximal
Cohen-macaulay modules. Moreover, if A is a local regular ring, by the Auslander-
Buchsbaum formula, the maximal Cohen-Macaulay A-modules are exactly the free
A-modules.

Proposition 1.27. Let A be a local Cohen-Macaulay ring. If M is a maximal Cohen-
Macaulay module of finite injective dimension, then idA M = dimA. In addition, if dimA =
0, then M is a direct sum of copies of ωA, and M ∼= ωA if and only if End(M) = A.

Proposition 1.28. Let A be a local Cohen-Macaulay ring of dimension d, and let M be a
maximal Cohen-Macaulay module of finite injective dimension.

1. If N is a finitely generated module of depth e, then Extj
A(N, M) = 0 for j > d − e.

2. If x is a nonzerodivisor on M, then x is a nonzerodivisor on HomA(N, M). If N is
also a maximal Cohen-Macaulay module, then

HomA(N, M)/xHomA(N, M) ∼= HomA/x(N/xN, M/xM).

by the homomorphism defined sending the class of a map φ : N → M to the map
N/xN → M/xM induced by φ.

Proposition 1.29. Let A be a local ring, and let M and N be finitely generated modules.
Suppose that x is a nonzerodivisor on M and that x is in the maximal ideal of A. If φ : N →
M is a map and ψ : N/xN → M/xM is the map induced by φ, then:

1. If ψ is surjective, then φ is surjective.

2. If ψ is injective, then φ is injective.

Furthermore, if M and N are maximal Cohen-Macaulay modules, M has finite injective
dimension, and ψ : N/xN → M/xM is any map, then there is a map inducing ψ.
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The following theorem resolves the first two issues of Remark 1.24.

Theorem 1.30. Let A be a local Cohen-Macaulay ring of dimension d, and let W be finitely
generated A-module. W is a canonical module for A if and only if

1. depthW = d

2. W is a module of finite injective dimension (necessarily equal to d).

3. End(W) = A

Corollary 1.31. Let A be a local Cohen-Macaulay ring with a canonical module W. If M
is any finitely generated maximal Cohen-Macaulay A-module of finite injective dimension,
then M is a direct sum of copies of W. In particular, any two canonical modules of A are
isomorphic.

Henceforth we shall write ωA for a canonical module of A (if one exists).

A proof for the following proposition, can be found in [6, Proposition 3.3.11].

Proposition 1.32. Let A be a local and Cohen-Macaulay ring, and let ωA be a canonical
module. Denoted ν(ωA) the cardinality of a minimal set of generators of ωA, we have:

ν(ωA) = t(A).

An immediate consequence of the previous proposition is the following:

Proposition 1.33. Let A be a local and Cohen-Macaulay ring. The following facts are
equivalent:

1. A is Gorenstein

2. t(A) = 1

We now come to the question of existence.
Let R be an A-algebra, M a R-module and N an A-module. We endow HomR(M, N)

with an A-module structure through the following product:

· : R × HomR(M, N) → HomR(M, N)

r · f (x) 7→ f (rx),

for every x ∈ M.

Theorem 1.34. Let R be a local Cohen-Macaulay ring with canonical module ωR. If A is
a local R-algebra that is finitely generated as R-module, and A is Cohen-Macaulay, then A
has a canonical module. In fact, if c = dimR − dimA, then

ωA
∼= Extc

R(A, ωR)

is a canonical module for A.

Proposition 1.35. Let A be a local Cohen-Macaulay ring with canonical module ωA. If p is
a prime ideal of A, then (ωA)p is a canonical module of Ap; in particular, if A is Gorenstein,
then Ap is Gorenstein.

A proof of the following theorem can be found in [6, Theorem 3.3.6].
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Theorem 1.36. A local and Cohen-Macaulay ring has a canonical module if and only if is
the homomorphic image of a Gorenstein ring.

One could ask when a canonical module is isomorphic to an ideal of the ring, in
order to answer this question we give the following

Definition 1.37. A local and Cohen-Macaulay ring is said to be generically Gorenstein if
the localization at any minimal prime ideal is Gorenstein.

A proof of the following proposition can be found in [6, Proposition 3.3.18].

Proposition 1.38. The canonical module of a local and Cohen-Macaulay ring A is isomor-
phic to an ideal if and only if A is generically Gorenstein.

As an immediate consequence of the previous proposition, we get that any local
and Cohen-Macaulay domain with canonical module has a canonical ideal.

1.3 Trace of the canonical module and nearly Gorenstein rings

In this section, we present the definitions of trace of a module and of nearly Goren-
stein rings. Originally, the latter definition was introduced in [14], and all of the
proofs of this section can be found there.

Let R be a ring.

Definition 1.39. Let M be a R-module. We define the trace of M, denoted TrR(M), as the
sum of the ideals φ(M) with φ ∈ HomR(M, R). Thus,

TrR(M) = ∑
φ∈HomR(M,R)

φ(M).

When there is no risk of confusion about the ring we simply write Tr(M).

Proposition 1.40. The trace satisfies the following properties:

1. If M1 and M2 are isomorphic R-modules, then Tr(M1) ∼= Tr(M2).

2. If M is an R-module of finite presentation, then Tr(M)RP = Tr(MP), for every prime
ideal of R.

Let I ⊆ R be an ideal of positive depth; we set

I−1 = {x ∈ Q(R) | xI ⊆ R},

where Q(R) is the total fraction ring.

Lemma 1.41. Let I ⊆ R be an ideal of positive depth; then Tr(I) = I · I−1. Moreover, if R
is noetherian and depth(I) ≥ 2, then Tr(I) = I.

Proposition 1.42. Let M and N be two R-modules. Then

Tr(M)Tr(N) ⊆ Tr(M ⊗R N) ⊆ Tr(M) ∩ Tr(N).

Proposition 1.43. Let I and J be ideals of R of positive depth. Then

Tr(I)Tr(J) ⊆ Tr(I J) ⊆ Tr(I) ∩ Tr(J).
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Proposition 1.44. Let φ : R′ → R a ring homomorphism, M an R-module and N an
R′-module. Then:

1. If φ is surjective, then (TrR′(M))R ⊆ TrR(M);

2. (TrR′(N))R ⊆ TrR(N ⊗R′ R);

Let (R,m) be a local Cohen-Macaulay ring with canonical module ωR. The trace
of the canonical module describes the non-Gorenstein locus of R, i.e. those prime
ideals p such that the localizations of R at p are not Gorenstein

Lemma 1.45. Let p be a prime ideal of R. Then Rp is not Gorenstein if and only if Tr(ωR) ⊆
p.

Definition 1.46. A local and Cohen-Macaulay ring R with canonical module ωR is said to
be nearly Gorenstein if Tr(ωR) contains the maximal ideal of R.

Clearly, Gorenstein rings are nearly Gorenstein.

Proposition 1.47. Let R be a nearly Gorenstein ring. Then:

a. Rp is Gorenstein for every prime ideal p not maximal.

b. Let I = (x1, . . . , xh) be a regular sequence of R; then R/I is nearly Gorenstein.
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Chapter 2

Numerical semigroups

In this chapter, we give some basic results about numerical semigroups. In partic-
ular, in the second section, we specialize the notion of canonical module and trace,
given in Chapter 1, for numerical semigroups.

2.1 Definition of numerical semigroups and basic properties

In this section, we present some basic notions and results about numerical semi-
groups. Most of the proofs in this section can be found in [1], otherwise we will give
specific reference.

Definition 2.1. An additive submonoid S ⊆ N is said to be a numerical semigroup if
|N \ S| < ∞.

We denote G(S) = N \ S and we call the elements of G(S) the gaps of the numer-
ical semigroup. The maximum of G(S) is called Frobenius number and it is denoted
f (S). Clearly, for any z ∈ Z, if z ≥ f (S)+ 1, then z ∈ S; the number f (S)+ 1 is called
conductor number and the set C(S) = {z ∈ Z | z ≥ f + 1} is called the conductor
ideal. It is easy to prove that, if s ∈ S, then f (S)− s /∈ S.

Definition 2.2. A numerical semigroup S is said to be symmetric if, for every s ∈ Z, we
have

s ∈ S ⇔ f (S)− s /∈ S.

A gap g is said to be a gap of the first type if f (S)− g ∈ S \ {0}, otherwise it is
called of the second type. Among the gaps of the second type, we have:

Definition 2.3. A gap g is said to be pseudo-frobenius if, for every s ∈ S \ {0}, g + s ∈ S.

We denote PF(S) the set of the pseudo-frobenius numbers of S, and we define
the type of S, denoted t(S), to be the cardinality of PF(S).

Let s1, . . . , sd ∈ N, we denote (s1, . . . , sd) = {∑ nisi | ni ∈ N}, the monoid gener-
ated by the elements s1 . . . , sd. Any submonoid of (N,+) is finitely generated. For a
numerical semigroup we have:

Proposition 2.4. Every numerical semigroup is finitely generated and has an unique set of
minimal generators. Moreover, if S = (s1, . . . , sd), then

S is a numerical semigroup ⇔ gcd(s1, . . . , sd) = 1.
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In the following, when we write S = (s1, . . . , sd), we will always assume that
(s1 . . . , sd) is the minimal set of generators of S, and s1 < . . . < sd. The number s1
is the multiplicity of S, while d is the embedding-dimension. Clearly, s1 ≤ d and, if
the equality holds, S is said to be of minimal multiplicity (or maximal embedding-
dimension).

Definition 2.5. A subset I of Z is said to be a relative ideal of S if, for every s ∈ S, s+ I ⊆ I,
and there exists z ∈ S such that z + I ⊆ S. If I ⊆ S, then I is said to be an ideal of S.

The maximal ideal M(S) = S \ {0} and C(S) are easy examples of ideals of S. We
can operate with relative ideals obtaining again relative ideals: if I and J are relative
ideals of S, then I + J = {i + j | i ∈ I, j ∈ J} and I − J = {z ∈ Z | z + j ∈ I, ∀j ∈ J}
are relative ideals. Moreover, the union and intersection of relative ideals still give
relative ideals. If I is a relative ideal of S, we define m(I)=min I, f (I) = max(Z \ I)
(it is well defined since m(I) + C(S) ⊆ I), C(I) = { f (I) + 1,→} the conductor ideal
of I and g(I) = |(Z \ I) ∩ {m(I), m(I) + 1, . . . , f (I)}| (note that, if I ⊆ N, then
|N \ I| = g(I) + m(I)). One can always shift a relative ideal I by adding to it an
integer z: z + I = {z + i | i ∈ I}. It is obvious that the relation I ∼ I′ ⇔ I′ = z + I for
some z ∈ Z, is an equivalence relation. In every equivalence class there is exactly
one representative Ĩ such that f ( Ĩ) = f (S). This representative Ĩ is obtained by
adding f (S)− f (I) to I. For all ideals I, we have that C(S) ⊆ Ĩ ⊆ N. We now list
some useful properties of the operations between relative ideals, whose proof is not
difficult to check.

Lemma 2.6. Let I, J, and H be relative ideals of S and z ∈ Z. The following statements are
true:

1. If I ⊆ J, then I − H ⊆ J − H and H − J ⊆ H − I;

2. (I − J) + (J − H) ⊆ I − H;

3. (I − J) + H ⊆ (I + H)− J;

4. I − (J + H) = (I − J)− H;

5. I − (J ∪ H) = (I − J) ∩ (I − H);

6. I + (J ∪ H) = (I + J) ∪ (I + H);

7. (I \ J) + z = (I + z) \ (J + z);

8. (I ∩ J) + z = (I + z) ∩ (J + z).

2.2 Definition of canonical ideal, trace of a numerical semi-
group and ring semigroups

The set {z ∈ Z | f (S)− z /∈ S}, denoted by K(S), is a relative ideal of S. The follow-
ing well-known result is usually referred as Jäger Lemma, see [16, Hilfssatz 5].

Lemma 2.7. For every relative ideal I of S,

K(S)− I = {x ∈ Z | f (S)− x /∈ I}.
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Some consequences of Jäger Lemma are the following:

Corollary 2.8. The following properties hold for every numerical semigroup:

1. For every relative ideal I of S, K(S)− (K(S)− I) = I;

2. K(S)− K(S) = S;

3. K(S)− S = K(S);

4. If I and J are relative ideals such that I ⊆ J, then K(S)− J ⊆ K(S)− I;

5. If I and J are relative ideals such that I ⊆ J, then |J \ I| = |(K(S)− I) \ (K(S)− J)|.

Definition 2.9. A relative ideal I of S is said to be canonical if there exists x ∈ Z such that
I = x + K(S).

The relative ideal K(S) is called the standard canonical ideal of S, and it is in fact
the representative ideal of the canonical class [K(S)] such that f (K(S)) = f (S). It is
straightforward to prove that S ⊆ K(S) ⊆ N and that S is symmetric if and only if
K(S) = S. It can be proven (see [1, Theorem 3]) that a relative ideal I is canonical if
and only if I − (I − J) = J, for every relative ideal J of S.

Let S = (s1, . . . , sd) be a numerical semigroup and let k be an arbitrary field.
Denoted by k[[x]] the ring of formal power series, we define the semigroup ring
associated to S as the ring k[[S]] = k[[{xs | s ∈ S]] = k[[xs1 , . . . , xsd ]] ⊆ k[[x]]. Let
v be the discrete valuation of k[[x]], then v(k[[S]] \ {0}) = S and the valuations of
fractional ideals of K[[S]] are relative ideals of S.

It is not hard to prove that the extension k[[S]] ⊆ k[[x]] is integral; by this fact,
it follows that k[[S]] is one-dimensional, local and Cohen-Macaulay with maximal
m = (xs1 , . . . , xsd)k[[S]], where v(m) = M(S); moreover, since S is a numerical semi-
group and hence it has a conductor, the field of fractions of k[[S]] is k((x)). However,
despite being Cohen-Macaulay, k[[S]] is not regular (in fact it may not be even Goren-
stein) unless S = N. In [12], it is proven that the multiplicity and the embedding-
dimension of the numerical semigroup coincide with the ones of the semigroup ring.

Since k[[S]] is a homomorphic image of k[[x1, . . . , xd]] which is a regular ring, by
Theorem 1.34, k[[S]] has a canonical module ω and, by Proposition 1.38, it is an ideal.
By [9, Exercise 21.11], we have that ω can be generated by the elements x−g, where
g ∈ PF(S) and v(ω) = K(S)− f (S). Hence, type(R) = type(S) and we get

Theorem 2.10. S is symmetric if and only if k[[S]] is Gorenstein.

The original proof of the previous theorem can be found in [17].
By Lemma 1.41, Tr(ω) = ωω−1 and, since the trace is independent of shifts, we

get that v(Tr(ω)) = K(S) + (S − K(S)). Hence, we define the trace of a numerical
semigroup as Tr(S) = K(S) + K(S)−1, where K(S)−1 = S − K(S) and it is usually
called the anticanonical ideal.

Definition 2.11. A numerical semigroup S is said to be nearly Gorenstein if its associated
semigroup ring k[[S]] is nearly Gorenstein. Hence, S is nearly Gorenstein if and only if
M(S) ⊆ K(S) + K(S)−1.

Since Gorenstein rings are nearly Gorenstein, we have that symmetric numerical
semigroups are nearly Gorenstein.
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Chapter 3

The Ideal duplication

Let S be a numerical semigroup, E ⊂ S an ideal of S and b ∈ S an odd element of S.
In [8, p. 153], the authors define the numerical duplication, S ⋊⋉b E, of S with respect
to E and b as the following subset of N:

S ⋊⋉b E = 2 · S ∪ (2 · E + b).

It is straightforward to prove that S ⋊⋉b E is a numerical semigroup and f (S ⋊⋉b

E) = 2 f (E) + b. It is also true that S ⋊⋉b E is symmetric if and only if E is a canonical
ideal of S (see [8, Proposition 3.1.3]).

In this chapter, we define the ideal duplication, an operation between two rela-
tive ideals of S which gives, under specific assumptions, a relative ideal of the nu-
merical duplication S ⋊⋉b E. We will prove that every relative ideal of S ⋊⋉b E can be
written, in a unique way, as the ideal duplication of two ideals of S. Thanks to this
representation we will be able to better understand how the basic operations among
relative ideals of S ⋊⋉b E work. Futhermore, we will characterize the ideals such that
the duplication S ⋊⋉b E is nearly Gorenstein.

The results of this chapter are contained in the paper [20].

3.1 Definition of ideal duplication and basic results

In this section, we give the notations that we will use for the rest of the chapter
and we prove some preliminaries results. After that, we give the definition of ideal
duplication and we prove that every relative ideal of the duplication can be written
as the ideal duplication of two ideals of S.

Notations
We fix the notation that we will use in this chapter: S is a numerical semigroup,

f its Frobenius number, s1 its multiplicity, b ∈ S is an odd number, E is a proper
ideal of S (i.e. an ideal such that E ̸= S or equivalently 0 /∈ E), e = f (E) − f ,
Ẽ = E − e, K is the standard canonical ideal of S, while M and C are respectively the
maximal ideal and the conductor ideal of S. For any subset A ⊆ Z, we also define
2 · A = {2a | a ∈ A} (note that 2 · S ̸= 2S = S + S and 2 · E ̸= 2E = E + E).

The following proposition will be useful later; for its proof we refer to [1, p. 34].

Proposition 3.1. The following equality holds:

K − M(S) = K ∪ { f (S)}.
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Some later proofs will make use of the following facts that we did not find in the
literature:

Lemma 3.2. Let I and J be two relative ideals of S. Then:

1. m(I + J) = m(I) + m(J);

2. f (I − J) = f (I)− m(J).

Moreover, we have:
m(K − I) = f (S)− f (I)

Proof.
Property 1 is trivial. As for Property 2, notice that f (I) − m(J) /∈ I − J, but at the
same time if x > 0, then f (I) − m(J) + x ∈ I − J. For the last part, using Lemma
2.7, we have f (S) − f (I) ∈ K − I; also, if z ∈ K − I, then f (S) − z ≤ f (I), so
f (S)− f (I) ≤ z.

Proposition 3.3. Let I and J be two relative ideals of S. The following equality holds:

I − J = (K − J)− (K − I).

Proof.
By Property 1 of Corollary 2.8 and by Property 4 of Lemma 2.6 we have:

I − J = (K − (K − I))− J = K − ((K − I) + J) = (K − J)− (K − I).

Corollary 3.4. Let I be a relative ideal of S. The following equality holds:

S − (K − I) = I − K.

Proof.
Using Proposition 3.3 and both Property 1 and 3 of Corollary 2.8, it follows that

S − (K − I) = ((K − (K − I))− (K − S)) = I − K.

Corollary 3.5. Let I be a relative ideal of S. Then, K − Ĩ is a numerical semigroup if and
only if K − Ĩ = I − I.

Proof.
If K − Ĩ is a numerical semigroup, using Proposition 3.3 we get:

K − Ĩ = (K − Ĩ)− (K − Ĩ) = Ĩ − Ĩ = I − I.

The converse statement is trivial.

Definition 3.6. Let E1 and E2 be two relative ideals of S satisfying the following:

1. E1 + E ⊆ E2;

2. E2 + b + E ⊆ E1.
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We define the ideal duplication of E1 and E2 with respect to b the following set:

E1 ⋊⋉b E2 := 2 · E1 ∪ (2 · E2 + b).

In the following, when we write E1 ⋊⋉b E2, we will always assume that E1 and E2
(the order is important) satisfy the conditions in Definition 3.6.

Proposition 3.7. The ideal duplication E1 ⋊⋉b E2 is a relative ideal of S ⋊⋉b E. Moreover, if
E1 and E2 are proper ideals of S with E2 ⊆ E, then E1 ⋊⋉b E2 is a proper ideal of S ⋊⋉b E.

Proof.
Let x ∈ E1 ⋊⋉b E2 and y ∈ S ⋊⋉b E. There are four possibilities:

i) Let x = 2e1, with e1 ∈ E1 and y = 2s, with s ∈ S. We have:

2e1 + 2s = 2(e1 + s) ⇒ 2e1 + 2s ∈ 2 · E1 ⊆ E1 ⋊⋉b E2.

ii) Let x = 2e2 + b, with e2 ∈ E2 and y = 2s, with s ∈ S. We have:

2e2 + b + 2s = 2(e2 + s) + b ⇒ 2e2 + b + 2s ∈ 2 · E2 + b ⊆ E1 ⋊⋉b E2.

iii) Let x = 2e1, with e1 ∈ E1, and y = 2e + b, with e ∈ E.

2e1 + 2e + b = 2(e1 + e) + b ⇒ 2e1 + 2e + b ∈ 2 · E2 + b ⊆ E1 ⋊⋉b E2;

the fact that e1 + e ∈ E2 follows from Property 1 of Definition 3.6.

iv) Let x = 2e2 + b, with e1 ∈ E1, and y = 2e + b, with e ∈ E. We have:

2e2 + b + 2e + b = 2(e2 + e + b) ⇒ 2e2 + b + 2e + b ∈ 2 · E1 ⊆ E1 ⋊⋉b E2;

the fact that e2 + e + b ∈ E1 follows from Property 2 of Definition 3.6.

Since E1 and E2 are relative ideals, they both have a minimum, hence 2 · E1 ∪ (2 ·
E2 + b) has a minimum too. Since S ⋊⋉b E has a conductor, it follows trivially that
(E1 ⋊⋉b E2) + s ⊆ S ⋊⋉b E, for some s ∈ S ⋊⋉b E.

Example 3.8. Let S = {0, 3, 6,→}, E = {7, 8, 10,→}, b = 7. We have

S ⋊⋉7 E = {0, 6, 12, 14, 16, 18, 20, 21, 22, 23, 24, 26,→}.

The sets E1 = {3, 6, 9,→} and E2 = {−2, 1, 4,→} are relative ideals of S.

• E1 ⋊⋉7 E2 = {3, 6, 9, 12, 15, 17,→},

• E2 ⋊⋉7 E1 = {−4, 2, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 24,→}.

E1 ⋊⋉7 E2 is a relative ideal of S ⋊⋉7 E, but E2 ⋊⋉7 E1 is not (e.g. −4 + 21 = 17 /∈ E2 ⋊⋉7

E1). We deduce that, in general, in the ideal duplication the order is important.

If P ⊂ Z is a subset of even numbers, we call P
2 the set of the halves of the

numbers in P. More precisely

P
2
= {z ∈ Z | 2z ∈ P}.
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Theorem 3.9. Let H be a relative ideal of S ⋊⋉b E, then there exist and are unique E1 and
E2 relative ideals of S such that:

H = E1 ⋊⋉b E2.

Moreover, if H is a proper ideal of S ⋊⋉b E, then E1 and E2 are proper ideals of S with E2 ⊆ E.

Proof.
Let P be the set of even numbers of H and let D be the set of odd numbers of H. It is
trivial to prove:

H = 2 · P
2
∪ (2 · D − b

2
+ b).

We want to prove the thesis for E1 = P
2 and E2 = D−b

2 .
We need to show that P

2 is a relative ideal of S. Let e1 ∈ P
2 and s ∈ S; we have:

e1 + s ∈ P
2
⇔ 2(e1 + s) ∈ P ⇔ 2e1 + 2s ∈ P,

and the last relation is true since P ⊂ H, H is an ideal of S ⋊⋉b E and 2e1 + 2s
is even. Since E1 is a relative ideal of S, it has a minimum, and therefore P

2 has a
minimum too. Since S ⋊⋉b E has a conductor, it follows that P

2 + s ⊆ S ⋊⋉b E for some
s ∈ S ⋊⋉b E.

We show now that D−b
2 is a relative ideal of S. Let e2 ∈ D−b

2 and s ∈ S, we have:

e2 + s ∈ D − b
2

⇔ 2e2 + 2s + b ∈ D,

and the last relation is true since 2e2 + b ∈ D. Arguing similarly as we did for P
2 , we

get that D−b
2 + s ⊆ S ⋊⋉b E, for some s ∈ S ⋊⋉b E.

We prove now that P
2 and D−b

2 satisfy Properties 1 and 2 of Definition 3.6. If e1 ∈
P
2 and e ∈ E, then 2e1 + (2e+ b) is an odd element of H, hence 2e1 + 2e+ b ∈ D and it
follows that e1 + e ∈ D−b

2 , so Property 1 is proven. If e2 ∈ E2, then 2e2 + b + 2e + b is
an even element of H. Hence 2e2 + b + 2e + b ∈ P and it follows that e2 + b + e ∈ P

2 ,
so Property 2 is proven.

Finally we prove the unicity of E1 and E2. Let E′
1 and E′

2 be relative ideals of S
such that H = E′

1 ⋊⋉b E′
2. If e′1 ∈ E′

1, then 2e′1 is an even element of H, so e′1 ∈ P
2 . If

instead e1 ∈ P
2 , then 2e1 is an even element of H, so e1 ∈ E′

1. Similarly we prove that
E′

2 = D−b
2 .

In the following, if H is a relative ideal of S ⋊⋉b E, then we will denote by E1(H)
and E2(H), the unique relative ideals of S such that H = E1(H) ⋊⋉b E2(H), and we
will call them the even and the odd component respectively. If there is not risk of
misunderstanding, we will not write H within the brackets.

If we want to compute the even component of a relative ideal of S ⋊⋉b E, we have
to take the even numbers of the ideal and divide them by 2. Similarly, to compute
the odd component, we have to take the odd numbers, subtract b and then divide
them by 2; by Theorem 3.9 they are indeed relative ideals of S. With this mindset,
it is trivial to compute M(S ⋊⋉b E) = M ⋊⋉b E and C(S ⋊⋉b E) = (C(E) + b−1

2 ) ⋊⋉b

C(E). It is fairly more interesting though to compute the components of the standard
canonical ideal of S ⋊⋉b E. The following result was originally proven in [11, Lemma
2.2] without using the ideal duplication.
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Proposition 3.10. The following equality holds:

K(S ⋊⋉b E) = (K − Ẽ) ⋊⋉b (K + e).

Proof.
Let x be even. We have:

x ∈ K(S ⋊⋉b E) ⇔ 2 f (E) + b − x /∈ 2 · E + b ⇔ 2 f − x /∈ 2 · Ẽ ⇔ f − x
2

/∈ Ẽ.

Since K − Ẽ = {x ∈ Z | f − x /∈ Ẽ}, we get x
2 ∈ K − Ẽ.

Let x be odd. We have:

x ∈ K(S ⋊⋉b E) ⇔ 2 f (E) + b− x /∈ 2 · S ⇔ 2 f − (x − b− 2e) /∈ 2 · S ⇔ x − b
2

∈ K + e,

that is the thesis.

We see now how the components behave under the basic operations between ideals.

Proposition 3.11. Let I and J be two relative ideals of S ⋊⋉b E. The following facts are true:

a. If I ⊆ J, then Ei(I) ⊆ Ei(J), i = 1, 2;

b. Ei(I ∪ J) = Ei(I) ∪ Ei(J), i = 1, 2;

c. Ei(I ∩ J) = Ei(I) ∩ Ei(J), i = 1, 2.

Proof.
a is trivial.

The proofs of b and c are similar, so we prove b as an example:

E1(I ∪ J) =
P(I) ∪ P(J)

2
=

P(I)
2

∪ P(J)
2

= E1(I) ∪ E1(J),

where P(I) and P(J) are the even elements of I and J respectively. The proof for the
odd component is similar.

Proposition 3.12. Let x ∈ Z be and let H be a relative ideal of S ⋊⋉b E. If x is even, then

E1(H + x) = E1(H) +
x
2

and E2(H + x) = E2(H) +
x
2

.

If x is odd, then

E1(H + x) = E2(H) +
x + b

2
and E2(H + x) = E1(H) +

x − b
2

.

Proof.
Let x be an even number and let y ∈ E1(H + x); this means that there exists h ∈ H
even such that 2y = h + x, therefore y = h

2 + x
2 . Let y ∈ E2(H + x); this means that

there exists h ∈ H odd such that 2y + b = h + x, therefore y = h−b
2 + x

2 .
Let x be an odd number and let y ∈ E1(H + x); this means that there exists h ∈ H

odd such that 2y = h + x, hence y = h−b
2 + x+b

2 . Let y ∈ E2(H + x); this means that
there exists h ∈ H even such that 2y + b = h + x, therefore y = h

2 +
x−b

2 .
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Proposition 3.13. Let I and J be two ideals of S ⋊⋉b E, then the following equalities hold:

E1(I − J) =
(
(E1(I)− E1(J)

)
∩
(
E2(I)− E2(J)

)
and

E2(I − J) =
(
E2(I)− E1(J)

)
∩
(
E1(I)− (E2(J) + b)

)
.

Proof.
Let x ∈ E1(I − J); we first show that x ∈ E1(I)− E1(J). For every e1 ∈ E1(J), we
have:

x + e1 ∈ E1(I) ⇔ 2x + 2e1 ∈ I.

The last relation is true since 2x ∈ I − J and 2e1 ∈ J . Similarly we prove that
x ∈ E2(I)− E2(J).

Conversely let x ∈
(
E1(I)− E1(J)

)
∩
(
E2(I)− E2(J)

)
and j ∈ J.

i) If j = 2e1, with e1 ∈ E1(J), we have:

2x + j = 2x + 2e1 = 2(x + e1) ∈ I ⇔ 2x ∈ I − J ⇔ x ∈ E1(I − J);

ii) If j = 2e2 + b, with e2 ∈ E2(J), we have:

2x + j = 2x + 2e2 + b = 2(x + e2) + b ∈ I ⇔ 2x ∈ I − J ⇔ x ∈ E1(I − J).

The proof for the odd component is similar.

Proposition 3.14. Let I and J be two relative ideals of S ⋊⋉b E, the following equalities hold:

E1(I + J) =
(
E1(I) + E1(J)

)
∪
(
E2(I) + E2(J) + b

)
and

E2(I + J) =
(
E1(I) + E2(J)

)
∪
(
E2(I) + E1(J)

)
.

Proof.
Using Property 6 of Lemma 2.6, we get:

I + J =
[
2 · E1(I) ∪ (2 · E2(I) + b)

]
+
[
2 · E1(J) ∪ (2 · E2(J) + b)

]
=

=
[
2 · (E1(I) + E1(J))

]
∪
[
2 · (E2(I) + E2(J) + b)

]
∪

∪
[
2 · (E1(I) + E2(J)) + b

]
∪
[
2 · (E2(I) + E1(J)) + b

]
.

Since all the even numbers of the sum are within the first and the second set of
the union and the odd numbers are within the last two sets of the union, we obtain
the thesis.

Proposition 3.15. Let I and J be two relative ideals of S ⋊⋉b E; then the following equality
holds:

I \ J = 2 ·
(
E1(I) \ E1(J)

)
∪
(
2 · (E2(I) \ E2(J)) + b

)
.

In particular, the cardinality of I \ J is:

|E1(I) \ E1(J)|+ |E2(I) \ E2(J)|.
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Proof.
Let x ∈ I \ J. If x is even, then x

2 ∈ E1(I), and at the same time, since x /∈ J, it follows
that x

2 /∈ E1(J). If x is odd the proof is similar.
For the last part of the thesis it suffices to notice that the functions z 7→ 2z and

z 7→ 2z + b, defined in Z, are injective.

The following result was originally proven in [8, Proposition 3.1.2] without using
the ideal duplication.

Corollary 3.16. The following equality holds:

g(S ⋊⋉b E) = g(S) + g(E) + m(E) +
b − 1

2

Proof.
Since N = C(S ⋊⋉b E) − (2 f (E) + b + 1), by Proposition 3.12 we get N = N ⋊⋉b

(N − b−1
2 ). We have that N − b−1

2 = B ∪ N, where B = {− b−1
2 , . . . ,−1}; moreover,

2 · B + b is equal to the set of odd numbers between 1 and b. By Proposition 3.15 we
have:

N \ (S ⋊⋉b E) = 2 · (N \ S) ∪ {1, 3, . . . , 2h + 1, . . . , b, 2g1 + b, . . . , 2gn + b},

where N \ E = {g1, . . . , gn} and n = g(E) + m(E).

3.2 Nearly Gorenstein duplication and application of the ideal
duplication

In the first part of this section, we present a characterization for S ⋊⋉b E to be nearly
Gorenstein; furthermore we apply this result to study the nearly Gorensteinness for
numerical duplications obtained by some particular classes of ideals.

In the last part, after introducing the definition of almost symmetric semigroup,
we describe the pseudo-Frobenius numbers of the numerical duplication. This al-
lows to produce a new characterization for S ⋊⋉b E to be almost symmetric. For the
rest of this section, we exclude the trivial case S = N.

Let I be a relative ideal of S. We define the trace of I the following ideal:

TrS(I) = I + (S − I).

This definition is a specialization, for numerical semigroups, of the definition of trace
given in Definition 1.39. The trace of S is defined as the trace of its standard canonical
ideal, Tr(S) = TrS(K) = K + (S − K).

Theorem 3.17. The following equalities hold:

E1
(
Tr(S ⋊⋉b E)

)
= (K − E) + (E − K)

and

E2
(
Tr(S ⋊⋉b E)

)
=
(
(K − E) + (E − (K − E))

)
∪
(
K + (E − K)

)
.



24 Chapter 3. The Ideal duplication

Proof.
First of all we prove that E − (K − E) ⊆ S − (K + b). We have:(

E − (K − E)
)
+
(
K + b

)
⊆ (E − K) + (K + b) ⊆ E + b ⊆ S.

Using this fact, Proposition 3.5 and Proposition 3.13 we have:

S ⋊⋉b E − K(S ⋊⋉b E) = (Ẽ − K) ⋊⋉b (E − (K − Ẽ)).

It is straightforward to prove that (K + b) + (E − (K − E)) ⊆ (K − E) + (E − K).
Using this fact, Property 8 of Lemma 2.6, and Proposition 3.14, we get:

E1
(
Tr(S ⋊⋉b E)

)
= (K − E) + (E − K).

With a similar argument, we can prove the equality for the odd component.

As direct consequence of Theorem 3.17, we get the following characterization.

Corollary 3.18. S ⋊⋉b E is nearly Gorenstein if and only if:

M ⊆ (K − E) + (E − K)

and

E =
(
(K − E) + (E − (K − E))

)
∪
(
K + (E − K)

)
.

In particular, the nearly Gorensteinness of S ⋊⋉b E does not depend on b or on shifts of E.

Example 3.19.

1. Let S = {0, 3, 5, 6, 8 →}, E = {10, 13,→}. We have:

(K − E) + (E − K) = {5, 6, 8,→} ⊂ M,

but

((K − E) + (E − (K − E))) ∪ (K + (E − K)) = {10, 13 →} = E.

Hence, the first condition of Corollary 3.18 is independent of the second one.

2. Let S = {0, 4, 7, 8, 10,→}, E = {4, 8, 11, 12, 14,→}. We have:

(K − E) + (E − K) = {4, 7, 8, 10,→} = M;

but

((K − E) + (E − (K − E))) ∪ (K + (E − K)) = {8, 11, 12, 14,→} ⊂ E,

Hence, the second condition of Corollary 3.18 is independent of the first one.

Proposition 3.20. If M ⊆ (K − E) + (E − K), then:

1. M − M ⊇ (E − K)− (E − K);
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2. K − M ⊇ E − (E − K).

In particular, E − E ⊆ M − M.

Proof.
Both statements 1 and 2 are consequence of Property 4 of Lemma 2.6, Property 1 of
Corollary 2.8 and Proposition 3.3. The last part is true since:

E − E ⊆ E − (K + (E − K)) = (E − K)− (E − K) ⊆ M − M.

It is worth noticing that if M = (K − E) + (E − K), then both 1 and 2 of the
previous proposition become equalities.

We recall that s1 denotes the multiplicity of S, i.e. the minimum of M.

Lemma 3.21. If S ⋊⋉b E is nearly Gorenstein and not symmetric, then s1 = m(Ẽ − K), i.e.
s1 + K ⊂ Ẽ ⊂ K.

Proof.
Clearly s1 = m(K − Ẽ) + m(Ẽ − K). Using Lemma 3.2, we get m(K − Ẽ) = f (K)−
f (Ẽ) = f − f = 0.

Note that, if Ẽ ̸= K, then s1 ∈ Ẽ − K if and only if s1 = m(Ẽ − K).

We now apply the above results to some particular cases.

Corollary 3.22. If S is symmetric, then:

Tr(S ⋊⋉b E) = [(S − E) + E] ⋊⋉b E.

In particular, if S is symmetric, then S ⋊⋉b E is nearly Gorenstein if and only if TrS(E) ⊇ M.

Proof.
By Theorem 3.17, we see that E − K ⊆ E2(Tr(S ⋊⋉b E)) ⊆ E. Since S is symmetric,
then E − K = E − S = E, that is the thesis.

Corollary 3.23. If K − Ẽ is a numerical semigroup, then:

Tr(S ⋊⋉b E) = TrS(E − E) ⋊⋉b E.

Proof.
Using Theorem 3.17, by Corollary 3.4 and Corollary 3.5, if follows easily that

E1(Tr(S ⋊⋉b E)) = (E − E) + (S − (E − E)).

Using Theorem 3.17 to compute the odd component of Tr(S ⋊⋉b E), it suffices to
show that Corollary 3.5 implies that:

(K − Ẽ) + (E − (K − Ẽ)) = (E − E) + (E − (E − E)) = E.
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Proposition 3.24. The following equality holds:

Tr(S ⋊⋉b M) = (Tr(S) ∩ M) ⋊⋉b (Tr(S) ∩ M).

In particular, S ⋊⋉b M is nearly Gorenstein if and only if S is nearly Gorenstein.

Proof.
If S is symmetric, then, by Corollary 3.22, we get:

Tr(S ⋊⋉b M) = ((S − M) + M) ⋊⋉b M = M ⋊⋉b M = (Tr(S) ∩ M) ⋊⋉b (Tr(S) ∩ M).

Assume S to be not symmetric, hence S − K = M − K. In fact, let x ∈ S − K and
y ∈ K. If x + y = 0, then x < 0 which is a contradiction because S − K ⊂ S. By
Theorem 3.17, using Property 6 of Lemma 2.6 and Proposition 3.1, we get:

E1(Tr(S ⋊⋉b M)) = (K − M) + (M − K) = (K ∪ { f }) + (M − K) =

= (K + (M − K)) ∪ ((M − K) + f ).

Since (M − K) + f ⊆ C ⊆ K + (M − K) and M − K = S − K, we get:

E1(Tr(S ⋊⋉b M)) = K + (M − K) = K + (S − K) = Tr(S) = Tr(S) ∩ M.

With a similar argument done at the beginning of the proof, we can prove that
M− (K− M) = S− (K− M) (this equality holds also in the case that S is symmetric).
Using this fact, Corollary 3.4 and using Theorem 3.17 to compute the odd component
of the trace of S ⋊⋉b M, we get:

E2(Tr(S ⋊⋉b M)) = ((K − M) + (M − K)) ∪ (K + (M − K)) =

= (K − M) + (M − K) = E1(Tr(S ⋊⋉b M)).

The following definition is a specialization of the notion of integrally closed ideal
for numerical semigroup rings.

Definition 3.25. An ideal I is said to be integrally closed if there exists a ∈ S such that

I = {s ∈ M | s ≥ a}.

The maximal ideal M is clearly integrally closed.

Theorem 3.26. If E is integrally closed and not maximal, then S ⋊⋉b E is nearly Gorenstein
if and only if s1 = f + 1.

Proof.
Assume s1 ̸= f + 1. If E = {s ∈ M | s ≥ a}, we have two possibilities:

1. If a ≤ f + 1, then Ẽ = E. Since s1 /∈ E, by Lemma 3.21, S ⋊⋉b E is not nearly
Gorenstein.
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2. If a > f + 1, then Ẽ = E − e. We show now that s1 + e /∈ E. If a = f + 1 + x,
with x > 0, then e = f + x− f = x. If we suppose that s1 + x ∈ E, then s1 + x ≥
f + 1+ x, and hence s1 ≥ f + 1; it follows that s1 = f + 1, a contradiction. Since
s1 + e /∈ E, we get s1 /∈ E − e, and once again, by Lemma 3.21, S ⋊⋉b E is not
nearly Gorenstein.

Conversely if s1 = f + 1 we can write S = {0, s1,→} and, since E is integrally
closed, E is a shift of the maximal ideal. It is straightforward to prove that S is nearly
Gorenstein, so by Proposition 3.24 and using the fact that the nearly Gorensteinness
is independent of shifts of E, we have that S ⋊⋉b E is nearly Gorenstein.

By the definition of pseudo-Frobenius numbers, it is obvious that

PF(S) = (S − M) \ S.

If S ̸= N, then S − M = M − M, hence the pseudo-Frobenius numbers are exactly
the numbers in (M − M) \ S.

Theorem 3.27. The following equality holds:

PF(S ⋊⋉b E) = 2 ·
[
((M − M) ∩ (E − E)) \ S

]
∪
[
2 · ((E − M) \ E) + b

]
.

In particular, t(S ⋊⋉b E) = |(M − M) ∩ (E − E)|+ |(E − M) \ E|.

Proof.
Since E − M ⊆ (S − E)− b, by Proposition 3.13 it follows

(S ⋊⋉b E)− (M ⋊⋉b E) =
(
(M − M) ∩ (E − E)

)
⋊⋉b (E − M).

By Proposition 3.15 it follows

((S ⋊⋉b E)− (M ⋊⋉b E)) \ (S ⋊⋉b E) = 2 ·
[
((M− M)∩ (E−E)) \S

]
∪
[
2 · ((E− M) \E)+ b

]
.

The formula for the type of S ⋊⋉b E was originally proven in [8, Proposition 3.5]
without using the ideal duplication.

S is said to be almost symmetric if PF(S) = (K − M) \ S (i.e. K − M is a numerical
semigroup). This definition was originally introduced in [5] with the aim to gener-
alize the notion of symmetric semigroups and consequently, with the introduction
of almost Gorenstein rings, the notion of Gorenstein rings. In fact every symmetric
semigroup is almost symmetric. Moreover, in [14, Proposition 6.1] the authors show
that any one-dimensional almost Gorenstein ring is nearly Gorenstein, and therefore
any almost symmetric semigroup is nearly Gorenstein.

Corollary 3.28. S ⋊⋉b E is almost symmetric if and only if:

K − Ẽ = (M − M) ∩ (E − E)
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and

K − M = Ẽ − M.

In particular, the almost symmetry of S does not depend on b or shifts of S.

Proof.
Since

(K(S ⋊⋉b E)− M(S ⋊⋉b E)) \ (S ⋊⋉b E) = 2 ·
(
(K − Ẽ) \ S

)
∪
(
2 · ((K + e)− M) + b

)
,

by Theorem 3.27 and the definition of almost symmetric semigroup, the statement
follows.

The following result was originally proven in [8, Theorem 4.3]. We present an
alternative proof using Corollary 3.28.

Theorem 3.29. S ⋊⋉b E is almost symmetric if and only if

K − (M − M) ⊆ Ẽ ⊆ K

and

K − Ẽ is a numerical semigroup.

In particular, the almost symmetry of S ⋊⋉b E does not depend on b or shifts of E.

Proof.
If S ⋊⋉b E is almost symmetric, then, by the first equality of Corollary 3.28, K − Ẽ is
a numerical semigroup; furthermore, by Corollary 3.5, it is also true that K − Ẽ =
E − E. Hence K − Ẽ ⊆ M − M, and therefore K − (M − M) ⊆ Ẽ ⊆ K.

Conversely, we want to prove that S ⋊⋉b E is almost symmetric using Corollary
3.28. Since K − Ẽ is a numerical semigroup and K − (M − M) ⊆ Ẽ, by Corollary
3.5, it follows that E − E ⊆ M − M, therefore K − Ẽ = (M − M) ∩ (E − E). Since
Ẽ − M ⊆ K − M is easily proven, we only need to show the converse inclusion. By
Property 5 of Lemma 2.6, we get:

K − M ⊆ K − ((M − M) + M) ⊆ (K − (M − M))− M ⊆ Ẽ − M.

Using Theorem 3.29, it is trivial to prove the following:

Corollary 3.30. S ⋊⋉b M is almost symmetric if and only if S is almost symmetric.

In the case of almost symmetric numerical duplication, we are able to describe
the pseudo-Frobenius numbers of S ⋊⋉b E with a greater degree of precision.

Theorem 3.31. Suppose S ⋊⋉b E to be almost symmetric. Then, the following is true:

PF(S ⋊⋉b E) = 2 ·
[
(E − E) \ S

]
∪
[
2 · ((K + e) \ E) + b

]
∪ {2 f (E) + b}.

Moreover, if Ẽ ̸= K, then S ⋊⋉b E always has at least one even pseudo-Frobenius number,
and the even pseudo-Frobenius numbers do not depend on b or shifts of E.
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Proof.
Using Property 7 of Lemma 2.6, by Corollary 3.28 and Proposition 3.1 we get:

(E− M) \ E = ((K − M) \ Ẽ) + e = ((K + e)∪ { f (E)}) \ E = ((K + e) \ E)∪ { f (E)}.

Using Theorem 3.27 and Proposition 3.20, we get the thesis.
For the last part, the only non-trivial thing to prove is that, if Ẽ ̸= K, then E− E ̸=

S. In fact, if E − E = S, by Theorem 3.29 and Corollary 3.5, we would get that
K = K − (E − E) = K − (K − Ẽ) = Ẽ.

The following result was originally proven in [8, Proposition 4.8]; we present an
alternative proof using Theorem 3.31.

Corollary 3.32. Suppose S ⋊⋉b E to be almost symmetric. Then we have:

t(S ⋊⋉b E) = 2|(E − E) \ S|+ 1 = 2|K \ Ẽ|+ 1.

In particular, the type of S ⋊⋉b E is always odd and 1 ≤ t(S) ≤ 2t(S) + 1.

Proof.
By Property 7 of Corollary 2.6, we get that |2 · ((K + e) \ E) + b| = |K \ Ẽ|. Moreover,
by Property 5 of Corollary 2.8 and Corollary 3.5, it follows that |(E − E) \ S| = |K \
Ẽ|. Using Theorem 3.31, we get

t(S ⋊⋉b E) = |(E − E) \ S|+ |K \ Ẽ|+ 1 = 2|K \ Ẽ|+ 1.

The last part follows from the fact that, by Proposition 3.20, if S ⋊⋉b E is almost
symmetric (or also if it is nearly Gorenstein), then E − E ⊆ M − M.

In [8, p.159], the authors prove that it is possible to obtain any odd integer x =
2m + 1 in the range described in the previous corollary.

Example 3.33. The previous corollary states that, in almost symmetric numerical
duplications, the type is always odd; hence, it is natural to ask if this fact is true in
the nearly Gorenstein case. In general this is not the case, in fact take for example S =
{0, 4, 7, 8, 10,→} and E = {3, 6, 7, 10, 11, 13,→}. Then S ⋊⋉b E is nearly Gorenstein,
but t(S ⋊⋉b E) = 2. Furthermore, since E − E = S, the pseudo-Frobenius numbers
are all odd.

Proposition 3.34. Let E be a principal ideal (i.e. E = s + S, with s ∈ S). The following
facts are equivalent:

1. S is symmetric;

2. S ⋊⋉b E is symmetric;

3. S ⋊⋉b E is almost symmetric;

4. S ⋊⋉b E is nearly Gorenstein.

Proof.
The relations 1⇒ 2, 2 ⇒ 3 and 3 ⇒ 4 are trivial; we only need to prove that 4 ⇒ 1.
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If S ⋊⋉b E is nearly Gorenstein, using Theorem 3.17 to compute the trace, we get:

Tr(S ⋊⋉b E) = Tr(S) ⋊⋉b (s + Tr(S)) ⊇ M ⋊⋉b (s + S).

Therefore Tr(S) = S, and hence S is symmetric.

Example 3.35. We proved that, if E is principal, then S ⋊⋉b E is almost symmetric if
and only if it is nearly Gorenstein. However, the claim is false for any 2-generated
ideal.

Let S = {0, 6, 7, 9, 12, 13, 14, 15, 16, 18,→} and E = {6, 12, 13, 15, 18,→} = (6, 23)+
S. Since S is symmetric, using Corollary 3.22 to compute the trace, we get that S ⋊⋉b E
is nearly Gorenstein. On the other hand, since Ẽ = E ⊂ M = K − (M − M), by The-
orem 3.29, S is not almost symmetric.

Example 3.36. Let S = {0, 4, 7, 8, 10,→}. We have K = {0, 3, 4, 6, 7, 8, 10,→} and
K − (M − M) = M. All the ideals between M and K are listed below:

• Ẽ0 = M,

• Ẽ1 = {0, 4, 7, 8, 10,→} = S,

• Ẽ2 = {3, 4, 7, 8, 10,→},

• Ẽ3 = {4, 6, 7, 8, 10,→},

• Ẽ4 = {0, 3, 4, 7, 8, 10,→},

• Ẽ5 = {0, 4, 6, 7, 8, 10,→},

• Ẽ6 = {3, 4, 6, 7, 8, 10,→},

• Ẽ7 = K.

Among these ideals, only Ẽ1 and Ẽ2 do not give rise to nearly Gorenstein numeri-
cal duplications. While Ẽ4 is the only one that gives rise to nearly Gorenstein nu-
merical duplication but not almost symmetric (because K − Ẽ4 is not a numerical
semigroup).

Unfortunately, it is much harder to determinate the family of class of shifts for the
nearly Gorensteinness of the numerical duplication. Thanks to Lemma 3.21, we can
say that Ẽ must be between s1 + K ⊂ Ẽ ⊆ K (do note that s1 + K ⊂ K − (M − M)).
In the example, since s1 + K = M \ {13}, we can say that we already found all the
possible classes of shifts for which S ⋊⋉b E is nearly Gorenstein.
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Chapter 4

Semitrivial ideal extension

In this chapter we want to generalize the idea behind the ideal duplication, to rings.
To this aim, we will need to work within the class of Z2-graded ring (and more in
general Z2-graded modules).

The results of this chapter are contained in [21].

4.1 Z2-graded modules

In this section we introduce some basic facts about Z2-graded modules and we fix
the notation, which will be useful for the whole chapter. Although most of the re-
sults are a specialization of the general graded case, we didn’t find much about this
subject in the literature.

Some useful notions before starting. Let I be a monoid, we recall that a ring A is
said to be I-graded if the underlying additive group is a direct sum of abelian groups
Ai such that Ai Aj ⊆ Ai+j for every i, j ∈ I. Similarly, a module M over an I-graded
ring A is said to be I-graded if M is the direct sum of abelian groups Mi such that
Ai Mj = Mi+j for every i, j ∈ I. The direct sum decomposition is usually referred to
as grading.
Notation

In a Z2-graded module M over a Z2-graded ring A, for any element m ∈ M,
we denote by m0 ∈ M0 the homogeneous component of degree 0 and by m1 ∈ M1
the homogeneous component of degree 1. Let G ⊆ M; then we set G0 = {g0 | ∃g ∈
G : g = g0 + g1} and G1 = {g1 | ∃g ∈ G : g = g0 + g1}; clearly, it is true that
G ∩ M0 ⊆ G0 and G ∩ M1 ⊆ G1, while the converse may not be true. G is said to
be homogeneous if, for every g ∈ G, both g0 ∈ G and g1 ∈ G. Obviously, if G is an
additive subgroup of M, then G is homogeneous if and only if G ∩ M0 + G ∩ M1 =
G = G0 + G1, and, if G is also a submodule of M, then G is homogeneous if and only
if it is a graded submodule of M.

Since A0 is a subring of A, M is an A0-module in the natural way, and M ∼=
M0 ⊕ M1 as A0-modules. Let m ∈ M; the functions m 7→ m0 and m 7→ m1 are the
canonical projection of M (as an A0-module) to M0 and M1 respectevely, moreover,
for every a ∈ A, (am)0 = a0m0 + a1m1 and (am)1 = a0m1 + a1m0.

Example 4.1.

1. Any N-graded ring A can be endowed with a natural Z2-grading; A = A0 +
A1, where A0 = ⊕h∈NB2h and A1 = ⊕h∈NB2h+1.

2. Let M be an R-module. We recall that the Nagata’s idealization of R by M,
denoted by R ⋉ M, is defined as the ring obtained from the abelian additive
group R ⊕ M with product (r, m)(r′, m′) = (rr′, rm′ + r′m). It is easy to prove
that R ⋉ M is a Z2-graded ring with grading R ⊕ M.
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We recall that a module M over a ring A is said to be torsion-free if, for every
nonzero divisor element r, rm = 0 implies m = 0 for every m ∈ M. Also, let a be
an element of A, then a is said to be M-regular if am = 0 implies m = 0 for every
m ∈ M. An A-regular element is called regular.

Proposition 4.2. Let M be a Z2-graded module over a Z2-graded graded ring A. Assume
that M1 is a torsion-free module over A0 (we treat M1 as an A0-module in the obvious way)
and take a nonzero divisor element a0 ∈ A0. Then, a0 is M0-regular if and only if it is
M-regular.

Proof. Let m = m0 +m1 ∈ M; then a0m = 0 implies that a0m0 = a0m1 = 0 and hence,
by hypothesis, m0 = m1 = 0.

The converse statement is trivial.

Remark 4.3. Let M be a Z2-graded module over a Z2-graded graded ring A. Let
G ⊆ A be an additive subgroup of A and let N, N′ ⊆ M be additive subgroups of M.
We denote by GN the additive subgroup of M generated by the elements of the form
gn with g ∈ G and n ∈ N. If G is an A0-submodule of A and N is an A0-submodule
of M, then GN is an A0-submodule of M. We set (N :A N′) = {a ∈ A | aN′ ⊆ N},
which is an additive subgroup of A. If N and N′ are A0-submodules M, then (N :A
N′) is an A0-submodule of M. Also, we denote (N :A0 N′) = (N :A N′) ∩ A0 and
(N :A1 N′) = (N :A N′) ∩ A1. If N and N′ are A0-modules, then (N :A0 N′) is an
ideal of A0 and (N :A1 N′) is a submodule of A1 over A0.

Proposition 4.4. Let I ⊆ A be a homogeneous additive subgroup of A and let N, N′ ⊆ M
be homogeneous additive subgroups of M. Then N + N′, N ∩ N′ and IN are homogeneous
additive subgroups of M; also (N :A N′) is a homogeneous additive subgroup of A. More-
over:

1. (N + N′)0 = N0 + N′
0 and (N + N′)1 = N1 + N′

1.

2. (N ∩ N′)0 = N0 ∩ N′
0 and (N ∩ N′)1 = N1 ∩ N′

1.

3. (IN)0 = I0N0 + I1N1 and (IN)1 = I0N1 + I1N0.

4. (N :A N′)0 = (N0 :A0 N′
0)∩ (N1 :A0 N′

1) and (N :A N′)1 = (N0 :A1 N′
1)∩ (N1 :A1

N′
0).

Proof. The only non-trivial thing to prove is that (N :A N′) is homogeneous. Let
a ∈ (N :A N′) and n′ ∈ N′; since both N and N′ are homogeneous, we get:

a0n′ = a0n′
0 + a0n′

1 = (an′
0)0 + (an′

1)1 ∈ N.

Since (N :A N′) is an additive subgroup of A, a1 ∈ (N :A N′), hence (N :A N′) is
homogeneous.

Proposition 4.5. Let M be a Z2-graded module over a Z2-graded ring A and let R ⊆ A
be a homogeneous subring. An R-module N ⊆ M is homogeneous if and only if it can be
generated by a homogeneous set.

Proof. Let G be a set of generators for N, then, since N is homogenoeus, G0 ∪G1 ⊆ N,
and this is a homogeneous set of generators for N.

The converse is trivial.

Proposition 4.6. Let M and N be Z2-graded modules over a Z2-graded ring A. Denoted
by H = HomA0(M, N), H0 = { f ∈ H | f (Mi) ⊆ Ni} and H1 = { f ∈ H | f (Mi) ⊆
Ni+1}, then H is a Z2-graded module over A with grading H0 ⊕ H1. Moreover:
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1. H0 ∼= HomA0(M0, N0)⊕ HomA0(M1, N1) as A0-modules.

2. H1
∼= HomA0(M0, N1)⊕ HomA0(M1, N0) as A0-modules.

Proof. Clearly, H0 and H1 are additive subgroups of H such that H0 ∩ H1 = 0, also
Ai Hj ⊆ Hi+j, with i, j ∈ Z2. The only non-trivial thing left to prove is that H =
H0 + H1. Let f ∈ H; we define the maps:

f0 : M → N,

m 7→ ( f (m0))0 + ( f (m1))1

and
f1 : M → N,

m 7→ ( f (m0))1 + ( f (m1))0;

it is easy to check that f0 ∈ H0, f1 ∈ H1 and f = f0 + f1.
To prove Property 1, consider the isomorphism:

H0 → HomA0(M0, N0)⊕ HomA0(M1, N1),

f 7→ ( f |M0 , f |M1).

A similar argument can be used to prove Property 2.

The A0-module HomA0(M, N) can be Z2-graded even if N is not Z2-graded.

Proposition 4.7. Let M be a Z2-graded module over a Z2-graded ring A and N an A0-
module. Denoted by G = HomA0(M, N), G0 = { f ∈ G | f (M1) = 0} and G1 = { f ∈
H | f (M0) = 0}, then G is a Z2-graded module over A with grading G0 ⊕ G1. Moreover:

1. G0 ∼= HomA0(M0, N) as A0-modules.

2. G1
∼= HomA0(M1, N) as A0-modules.

Proof. Clearly, G0 and G1 are additive subgroups of G such that G0 ∩ G1 = 0, also
AiGj ⊆ Gi+j, with i, j ∈ Z2. The only non-trivial thing left to prove is that G =
G0 + G1. Let f ∈ G; we define the maps:

f0 : M → N,

m 7→ f |M0(m0)

and
f1 : M → N,

m 7→ f |M1(m1);

it is easy to check that f0 ∈ G0, f1 ∈ G1 and f = f0 + f1.
To prove Property 1, consider the isomorphism:

G0 → HomA0(M0, N),

f 7→ f |M0 .

A similar argument can be used to prove Property 2.
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Remark 4.8. Let M be a Z2-graded module over Z2-graded ring A. Hence M0 ⊕ M1
is by definition a module over A0 and A, the latter with the product:

a · (m0, m1) = (a0m0 + a1m1, a1m1 + a1m0),

for every a ∈ A, m0 ∈ M0 and m1 ∈ M1. If we suppose that M0 and M1 are isomor-
phic to respectevily to N0 and N1 as A0-module, then we can endow an A-module
structure to N0 ⊕ N1 through the following action:

a • (n0, n1) := ( f (a0m0 + a1m1), g(a0m1 + a1m0)),

where f : M0 → N0 and g : M1 → N1 are isomorphisms. It is not hard to prove that
(N0 ⊕ N1, •) is Z2-graded over A, and M ∼= N0 ⊕ N1 as graded A-modules.

Let a = a0 + a1 ∈ A be an element of a Z2-graded ring A; then we denote by a =
a0 − a1 the conjugate of a. If G is a subset of A, then we denote by G = {g | g ∈ G}
the the conjugate of G, and G is said to be conjugable if G = G. It is not hard to prove
that if G is conjugable, then also A \ G is conjugable. If G is a graded subgroup of
A, then G is conjugable, while the converse may be false. The function f : A → A
defined as f (a) = a0 − a1, is a graded isomorphism such that f 2 = idA. Hence, the
conjugate of a prime (maximal) ideal is still a prime (maximal) ideal; also, the sets of
all zerodivisors and units are conjugable.

It is interesting to study the case of conjugable prime ideals which are not homo-
geneous.

Proposition 4.9. Let p be a prime ideal of A. Then p is conjugable if and only one and only
one of the following is true:

1. p is homogeneous;

2. p is not homogeneous and char(A/p) = 2.

Proof. Suppose that p is not homogeneous. Take x + y ∈ p with x ∈ A0, y ∈ A1 and
assume that x /∈ p. Since p is conjugable, x − y ∈ p, hence x + x = 2x ∈ p, that
is 2 ∈ p. We proved that char(A/p) = 2. If we suppose that y /∈ p, with a similar
argument, we arrive at the same conclusion.

Conversely, if p is homogeneous, then p is conjugable. Assume p not homoge-
neous and such that ch(A/p) = 2. Let a ∈ p, then a + a = a0 + a0 ∈ p, hence
a ∈ p.

We define the modulus of an element a ∈ A as |a| := aa = a2
0 − a2

1 ∈ A0. Clearly,
a is a unit of A if and only if |a| is a unit of A0. If |a| is a zerodivisor of A0, then a is
a zerodivisor of A. If a is a regular element, then |a| is a regular element of A0. If A1
is a torsion-free module over A0, by Proposition 4.2, the converse statements hold:

Lemma 4.10. Let A be a Z2-graded ring such that A1 is a torsion-free module over A0.
Then, for every a ∈ A, a is a regular (zerodivisor) element of A if and only if |a| is a regular
(zerodivisor) element of A0.

We see now how the grading of a Z2-graded module behaves under the usual
operations.

Proposition 4.11. Let M be a Z2-graded module over a Z2-graded ring A and let N ⊆ M
be a homogeneous submodule of M. Then M/N is a Z2-graded module over A with grading:

M0/N0 ⊕ M1/N1.
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Proof. Consider the subgroups G0 = {g0 + N | g0 ∈ M0} and G1 = {g1 + N | g1 ∈
M1}. Clearly, M/N = G0 ⊕ G1, moreover G0 ∼= M0/N0 and G1

∼= M1/N1 as A0-
modules. The thesis is a consequence of Remark 4.8.

To an extent, we can do the same thing for the localization: let T be a multiplica-
tive closed set of A0, then it is easy to prove that T−1M is a Z2-graded module over
T−1 A0 (here the ring is considered trivially graded) with grading:

T−1M0 ⊕ T−1M1.

In particular, if M = A and A1 ̸= 0, then T−1A is a Z2-graded ring with grading
T−1 A0 ⊕ T−1A1. This form of localization, however, is not sharp enough for what
we will need, thus some more assumptions are necessary.

Proposition 4.12. Let A be a Z2-graded ring and S ⊆ A a conjugable multiplicatively
closed set of A. Then S−1A is a Z2-graded ring with grading:

(S ∩ A0)
−1A0 ⊕ (S ∩ A0)

−1A1.

Proof. We need to prove that S and S ∩ A0 have the same saturation in A. To this
end, it suffices to show that for every s ∈ S, there exists t ∈ A such that st ∈ S ∩ A0.
Since S is conjugable, s ∈ S, hence ss = |s| ∈ S ∩ A0.

Proposition 4.13. Let M be a Z2-graded module over a Z2-graded ring A and let S ⊆ A
be a conjugable multiplicatively closed set of A. Then S−1M is a Z2-graded module over the
Z2-graded ring S−1A (endowed with the grading of Proposition 4.12) with grading:

(S ∩ A0)
−1M0 ⊕ (S ∩ A0)

−1M1.

Proof. Using Proposition 4.12, we get:

S−1M = S−1A ⊗A M = (S ∩ A0)
−1A ⊗A M = (S ∩ A0)

−1M.

Remark 4.14. For any homogeneous ideal a of a Z2-graded ring A, the canonical
surjection π : A → A/a, is a graded homomorphism where A/a is endowed with
the Z2-grading of Proposition 4.11.

For any conjugable multiplicatively closed set S of A, the homomorphism f :
A → S−1A, defined as f (a) = a

1 , is a graded homomorphism where S−1A is en-
dowed with the Z2-grading of Proposition 4.12.

Corollary 4.15. Let A be a ring and Q(A) its total fraction ring. If A is a Z2-graded ring,
Q(A) is also a Z2-graded ring. Moreover, for any multiplicatively closed set S conjugable
and composed of nonzero divisor elements, the ring S−1A is a homogeneous subring of Q(A).

Proof. Since the set of nonzero divisors of A is conjugable, by Proposition 4.12, fol-
lows that Q(A) is Z2-graded.

Let M be a Z2-graded module over a Z2-graded ring A. The following definition
will be useful later.

Definition 4.16. Let N ⊆ M be a submodule, we define the homogeneous body of N,
denoted with B(N), the largest homogeneous A-module cointained in N.
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The homogeneous body does exist because, by Proposition 4.5, the module gen-
erated by union of homogeneous sets is homogeneous. Also, it is easy to prove that
B(N) = N ∩ M0 + N ∩ M1.

4.2 General properties of the semitrivial extension

With the purpose of giving a natural generalization of the idealization of Nagata,
it is introduced the class of semitrivial extensions (see [19] or [22]). In this section
we give some generalities about this construction, that we will use in the rest of the
chapter.

Definition 4.17. Let R be a commutative ring with unity, M an R-module and let ϕ :
M ⊗R M → R be an symmetric and associative R-module homomorphism, that is,

ϕ(m ⊗ m)′ = ϕ(m′ ⊗ m)

and
mϕ(m′ ⊗ m′′) = ϕ(m ⊗ m′)m′′

for every m, m′, m′′ ∈ M. Then, we define the semitrivial extension of R by M and ϕ,
denoted by R ⋉ϕ M, the ring obtained from the abelian additive group R ⊕ M, endowed
with the product:

(r, m)(r′, m′) = (rr′ + ϕ(m ⊗ m), rm′ + r′m).

It is clear that R⋉ϕ M is a commutative ring with unity (1, 0) and, since R ⊆ R⋉ϕ

M is integral, they have the same Krull dimension. Trivial extensions correspond to
the special case ϕ = 0. If ϕ ̸= 0, then 0 ⊕ M ⊆ R ⋉ϕ M is not an ideal of R ⋉ϕ M; the
ideal generated by 0 ⊕ M is Imϕ ⊕ M.

Any semitrivial extension is a Z2-graded ring, and in fact the two concepts are
essentially the same thing. This is true beacuse any Z2-graded ring is the semitrivial
extension of the subring composed of the homogeneous elements of degree zero by
the module composed of the homogeneous elements of degree 1 and the product
of A. In symbols, any Z2-graded ring A can be written as A = A0 ⋉ϕ A1, where
ϕ ∈ HomA0(A1 ⊗A0 A1, A0) is the product in A.

Example 4.18.

1. The semitrivial extension of a ring R with itself is isomorphic to R[t]/(t2 + r),
for some r ∈ R. To prove this, note that HomR(R ⊗R R, R) ∼= R, thus ϕ can
be indentified with a element of R, say rϕ, and ϕ(r1 ⊗ r2) = r1r2rϕ for every
r1, r2 ∈ R. Consider the homomorphism:

f : R ⋉ϕ R → R[t]/(t2 − rϕ),

(r1, r2) 7→ r1 + r2t∗,

where t∗ = t + (t2 − rϕ). Since t∗2 = rϕ, it follows easily that f is an isomor-
phism.

2. Let R be a ring and I an ideal of R; if a, b ∈ R, denoting by R+ =
⊕

n≥0 Intn,
we set

R(I)a,b = R+/I2(t2 + at + b),
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where I2(t2 + at + b) is the contraction to R+ of the ideal generated by t2 +
at + b in R[t], the quadratic quotient of the Rees algebra of R associated to I.
R(I)0,b is clearly the semitrivial extension of R by I and ϕ, where ϕ is defined
as ϕ(i ⊗ i′) = −ii′b.

Let R be a ring and M a module over R. We denote:

Φ(M) = {ϕ ∈ HomR(M ⊗ M, R) | ϕ is symmetric and associative }.

Obviously Φ(M) is a submodule of HomR(M ⊗R M, R). It is hardly surprising that
semitrivial extensions are bound to be more subtle and complicated than trivial ex-
tensions, especially concerning the nature of the homomorphism ϕ and the relations
that it brings between M and R. Thus, assuming Φ(M) ̸= 0 will inevitably cause M
to be less "general" with respect to the case of the Nagata’s idealization. An impor-
tant first example is the following lemma, which was originally proved in [22]:

Lemma 4.19. If Φ(M) ̸= 0 and M is free, then M ∼= R.

Proof. Let {mi | i ∈ I} be a base of M. Consider mi ̸= mj and take the linear combi-
nation

ϕ(mi ⊗ mj)mi − ϕ(mi ⊗ mi)mj = ϕ(mi ⊗ mj)mi − ϕ(mi ⊗ mj)mi = 0.

This implies that ϕ(mi ⊗ mj) = ϕ(mi ⊗ mi) = 0, hence the thesis.

An obvious consequence of the previous lemma is that if R is a field and Φ(M) ̸=
0, then M ∼= R.

Lemma 4.20. If the following conditions are satisfied:

1. M is torsion-free,

2. For some ϕ ∈ Φ(M), Im(ϕ) contains a nonzero divisor,

then there exists n ∈ N such that M is isomorphic to a submodule of Rn. In particular, if
the following condition holds:

2’. There exists x ⊗ y ∈ M ⊗ M such that ϕ(x ⊗ y) is a nonzero divisor of R,

then M is isomorphic to an ideal of R.

Proof. Let a = x1 ⊗ y1 + . . . + xn ⊗ yn ∈ M ⊗ M such that ϕ(a) is a nonzero divisor
of R. Consider the following homomorphism:

f(y1,...,yn) : M → Rn,

m 7→ (ϕ(m ⊗ y1), . . . , ϕ(m ⊗ yn)).

Suppose that f(y1,...,yn)(m) = 0; then ϕ(m ⊗ yi) = 0 and 0 = ϕ(m ⊗ yi)xi = ϕ(xi ⊗
yi)m for i = 1, . . . , n. Hence, ϕ(a)m = (∑n

i=1 ϕ(xi ⊗ yi))m = 0, that is m = 0.
If 2’ is true, then a = x ⊗ y, and we can chose the injective homomorphism

fy : M → R,

m 7→ ϕ(m ⊗ y).
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The previous Lemma allows us to say that the semitrivial extensions of R by a
torsion-free module over a domain are essentially the semitrivial extensions of R by
an ideal.

Remark 4.21. The following general fact is well-known: if I an J are ideals of a
commutative ring A with unity and depthI > 0, then

HomA(I, J) ∼= (J :Q(A) I),

where (J :Q(A) I) = {x ∈ Q(A) | xI ⊆ J} is a fractional ideal of A. The equality still
holds even if I and J are both fractional ideals of A.

Assume that M ∼= I for some ideal of R and that I has positive depth. Then

HomR(I ⊗R I, R) = HomR(I, HomR(I, R)) = HomR(I, I−1) = (I−1 :Q(R) I).

We conclude that ϕ can be indentified with the multiplication by an element x ∈
(I−1 :Q(R) I) and ϕ(i ⊗ i′) = ii′x.

Proposition 4.22. Assume that R is a noetherian domain. If ϕ ∈ Φ(M) \ {0} and M is
torsione-free with depth(M) ≥ 2, then M ∼= I for some ideal I of R and R⋉ϕ M ∼= R(I)0,r
for some r ∈ R.

Proof. By Lemma 4.20, we get that M is isomorphic to some ideal I of R. Since
depth(M) ≥ 2, by [Exercise 1.2.24, 6], HomR(I ⊗ I, R) = HomR(I, HomR(I, R)) =
HomR(I, R) = R. Hence, ϕ is the multiplication by some element r of R, proving the
thesis.

If we assume that ϕ is surjective, using the same homomorphism defined in the
proof of Lemma 4.20, we get that M is a submodule of Rn, for some n ∈ N. More-
over:

Lemma 4.23. Assume that for some ϕ ∈ Φ(M), Imϕ = R. Then, if R is local, M ∼= R.

Proof. Let a = x1 ⊗ y1 + . . . + xn ⊗ yn ∈ M ⊗ M be an element such that ϕ(a) is a
unit of R. Since R is local, there must be a xi ⊗ yi such that ϕ(xi ⊗ yi) is a unit. Let
u be the inverse of ϕ(xi ⊗ yi) and consider the injection fyi defined in the proof of
Lemma 4.20. We claim that fyi is also surjective. Let r ∈ R, then r = rϕ(xi ⊗ yi)u =
ϕ(ruxi ⊗ yi) = fyi(ruxi).

The following result is proved in [Proposition 1, 19]:

Proposition 4.24. R⋉ϕ M is noetherian (Artinian) if and only if R is noetherian (artinian)
and M is finitely generated.

Theorem 4.25. Assume Φ(M) ̸= 0. Then R ⋉ϕ M is a domain if and only if:

1. R is a domain,

2. M is isomorphic to an ideal of R.

3. For every x ∈ R ⋉ϕ M, |x| = 0 implies x = 0.

Proof. Since R⋉ϕ M is a domain, it follows easily that R is a domain. Let r ∈ R \ {0}
and m ∈ M, then rm = 0 implies that (r, 0)(0, m) = 0 and hence m = 0, proving that
M is torsion-free. Using Proposition 4.20, we prove 2. Property 3 is a consequence
of Lemma 4.10.
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Conversely, let (r, m) ∈ R ⋉ϕ M be a zerodivisor. Since M is isomorphic to an
ideal of R, it is torsion-free, consequently, by Lemma 4.10, |(r, m)| is a zerodivisor
of R. Since R is a domain, it follows that |(r, m)| = 0 and Property 3 implies that
(r, m) = 0.

The following Theorem was originally prove in [22] using a different proof.

Theorem 4.26. Assume Φ(M) ̸= 0. Then R ⋉ϕ M is a field if and only if:

1. R is a field (hence M ∼= R).

2. For every r ∈ R, |(r, 1)| ̸= 0.

Proof. Since R ⋉ϕ M is a field, then R is a domain and, since R ⊆ R ⋉ϕ M is an
integral extension, it follows that R is a field. Therefore, by Proposition 4.19, M ∼= R.
Property 3 of Proposition 4.25 implies Property 2.

Conversely, let (r, r′) ∈ R ⋉ϕ R a non zero element. If r′ = 0, then Property 1
implies that (r, r′) is an unit. Assume r′ ̸= 0, and let u ∈ R be its inverse. Then,
using Property 2, we get:

|(r, r′)(u, 0)| = |(ru, 1)| ̸= 0.

Since R is a field, |(ru, 1)| is a unit of R and hence (r, r′) is an unit of R ⋉ϕ R.

4.3 The semitrivial ideal extension

With the goal in mind to generalize the ideal duplication for rings, it seems that the
most natural occurence of it is in the case of semitrival extensions. Thus, in this
section, we define the semitrivial ideal extension, and using this tool we study the
homogeneous ideals of R ⋉ϕ M and their operations.

Let I ⊆ R be an ideal of R and let N ⊆ M be a submodule of M. It is natural to
ask on what conditions the additive subgroup I ⊕ N ⊆ R ⊕ M is an ideal of R⋉ϕ M.
We denote N⊥,ϕ I = {n ∈ N | ϕ(n ⊗ M) ∈ I}. If N⊥,ϕ I = N, then we say that N is
ϕ-perpendicular to I. If I = (0), then we shall write N⊥,ϕ instead. If M⊥,ϕ = 0, we
say that ϕ is non-degenerate. An easy check shows that:

Proposition 4.27. Let I ⊆ R be an ideal of R and let N ⊆ M be a submodule of M. Then
I ⊕ N is an ideal of R ⋉ϕ M if and only if the following properties are satisfied:

1. IM ⊆ N;

2. N is ϕ-pependicular to I.

In the following, when I and N satisfy the properties of the previous proposi-
tion, we shall write I ⋉ϕ N instead of I ⊕ N, and we will call it the semitrivial ideal
extension of I by N and ϕ.

Let J be an ideal of R ⋉ϕ M, then we say that J is a semitrivial ideal extension of
some ideal I of R, if there exists a submodule of M, say N, such that J = I ⋉ϕ N the
semitrivial ideal extension of I by N and ϕ.

Any homogeneous ideal H of R ⋉ϕ M can be written as H = H ∩ R ⊕ H ∩ M;
denote I = H ∩ R and N = H ∩ M, we have that H = I ⋉ϕ N where IM ⊆ N and N
is ϕ-perpendicular to I.
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Example 4.28. Let R = k[[S]] where k is a field, the semigroup ring associated to S,
M a monomial ideal of R and ϕm is the multiplication by the monomial xm, where
m ∈ S is odd. By [Theorem 3.4, 3], R ⋉ϕm M = R(M)0,−xm is a numerical semigroup
ring vith valuation v(R) ⋊⋉m v(M). Let I1 and I2 be ideals of R such that:

1. I1M ⊆ I2,

2. I2 is ϕm-perpendicular to I1.

Denote E1 = v(I1) and E2 = v(I2), it is easy to prove that they satisfy the following:

1’ E1 + v(M) ⊆ E2,

2’ E2 + v(M) + m ⊆ E1.

Also we get v(I1 ⋉ϕm I2) = E1 ⋊⋉m E2, i.e. the ideal duplication of the valuation
ideals.

Let N1 and N2 be submodules of M; we denote N1 ·ϕ N2 the ideal of R generated
by the elements of the form ϕ(n1 ⊗ n2) where n1 ∈ N1 and n2 ∈ N2. Let I be an
ideal of R and N a R-submodule of M. We denote (I :ϕ N) = {m ∈ M | ϕ(m ⊗
N) ∈ I}. The following proposition is essentially a rewrite of Proposition 4.4 for the
semitrivial extension case.

Proposition 4.29. Let I1, I2 be ideals of R and N1, N2 submodule of M. Then:

1. I1 ⋉ϕ N1 + I2 ⋉ϕ N2 = (I1 + I2)⋉ϕ (N1 + N2).

2. I1 ⋉ϕ N1 ∩ I2 ⋉ϕ N2 = (I1 ∩ I2)⋉ϕ (N1 ∩ N2).

3. (I1 ⋉ϕ N1)(I2 ⋉ϕ N2) = (I1 I2 + N1 ·ϕ N2)⋉ϕ (I1N2 + I2N1).

4. (I1 ⋉ϕ N1) : (I2 ⋉ϕ N2) =
(
(I1 :R I2)∩ (N1 :R N2)

)
⋉ϕ

(
(I1 :ϕ N2)∩ (N1 :M I2)

)
.

Proof. Property 1 and 2 are trivial. To prove Property 3 note that N1N2, as defined in
Remark 4.3, is equal to N1 ·ϕ N2. To prove Property 4 note that (I1 :M N2), as defined
in Remark 4.3, is equal to (I1 :ϕ N2).

Proposition 4.30. Let S ⊆ R ⋉ϕ M a conjugable multiplicatively closed set of R ⋉ϕ M,
denote T = S ∩ R, we have:

S−1(R ⋉ϕ M) = T−1R ⋉T−1ϕ T−1M,

where T−1ϕ : (T−1R ⊗R M)⊗R M → T−1R is the homomorphism defined as T−1ϕ(m
t ⊗

m′) = ϕ(m⊗m′)
t , for every m, m′ ∈ M and t ∈ T. Moreover, Im(T−1ϕ) = T−1(Imϕ).

Proof. By Proposition 4.12, S−1(R ⋉ϕ M) = T−1(R ⋉ϕ M) is a Z2-graded ring with
grading T−1R ⊕ T−1M. It is a standard exercise to prove that the following function

T−1(R ⋉ϕ M) → T−1R ⋉T−1ϕ T−1M,

(r, m)

(t, 0)
7→
(

r
t
,

m
t

)
,

is an isomorphism.
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Corollary 4.31. Assume M to be torsion-free, then

Q(R ⋉ϕ M) = Q(R)⋉Q(ϕ) (Q(R)⊗R M),

where Q(ϕ) : (Q(R)⊗R M)⊗R M → Q(R) is the homomorphism defined in Proposition
4.30.

Proof. To prove the thesis is enough to show that, if S denotes the set of the nonzero
divisors of R ⋉ϕ M, then T = S ∩ R is the set of nonzero divisors of R. Since M is
torsion-free, this is easily seen.

Denote Q(M) = Q(R)⊗R M. The previous Corollary states that if M is torsion-
free, then Q(R ⋉ϕ M) = Q(R)⋉Q(ϕ) Q(M). Let I ⊆ Q(R) a R-submodule of Q(R)
and N ⊆ Q(M) a R-submodule of Q(M); we ask on what conditions I ⊕ N is a
fractional ideal of R ⋉ϕ M.

Proposition 4.32. Assume that M is torsion-free. Let I ⊆ Q(R) be an R-submodule of
Q(R) and let N ⊆ Q(M) be an R-submodule of Q(M). Then I ⊕ N is a fractional ideal of
R ⋉ϕ M if and only if the following properties are satisfied:

1. IM ⊆ N,

2. For every n ∈ N, Q(ϕ)(n ⊗ M) ∈ I.

3. I is a fractional ideal of R,

4. There exists a nonzero divisor r ∈ R such that rN ⊆ M.

Proof. It is easy to check that I ⊕ N is a R-submodule of Q(R)⋉Q(ϕ) Q(M) if and only
if Properties 1 and 2 are satisfied. Suppose that I ⊕ N is a fractional ideal of R ⋉ϕ M,
then there exists a nonzero divisor x ∈ R ⋉ϕ M such that x(I ⊕ N) ⊆ R ⋉ϕ M.
Consequently, it is true that |x|(I ⊕ N) = |x|I ⊕ |x|N ⊆ R ⋉ϕ M. By Lemma 4.10,
both Property 3 R and Property 4 follow.

Conversely, let r1, r2 ∈ R be nonzero divisors such that r1 I ⊆ R and r2N ⊆ M.
Then r1r2 ∈ R is a nonzero divisor such that r1r2(I ⊕ N) = r2(r1 I) ⊕ r1(r2N) ⊆
R ⋉ϕ M.

In the following, when I and N satisfy the properties of the previous proposition,
we shall write I ⋉ϕ N instead of I ⊕ N. Note that this notation is not ambiguos
because, if I is an ideal of R and N is a submodule of M, then I is an R-submodule
of Q(R) and N is R-submodule of M.

The following Proposition is a generalization of Proposition 4.29.

Proposition 4.33. Assume that M is torsion-free. Let I1, I2 be fractional ideals of R and
N1, N2 submodule of M such that there exist x1, x2 ∈ R nonzero divisors element of R such
that x1N, x2N ⊆ M. Then:

1. I1 ⋉ϕ N1 + I2 ⋉ϕ N2 = (I1 + I2)⋉ϕ (N1 + N2).

2. I1 ⋉ϕ N1 ∩ I2 ⋉ϕ N2 = (I1 ∩ I2)⋉ϕ (N1 ∩ N2).

3. (I1 ⋉ϕ N1)(I2 ⋉ϕ N2) = (I1 I2 + N1 ·Q(ϕ) N2)⋉ϕ (I1N2 + I2N1).

4. (I1 ⋉ϕ N1) :Q(R)⋉Q(ϕ)Q(M) (I2 ⋉ϕ N2) =

=
(
(I1 :Q(R) I2) ∩ (N1 :Q(R) N2)

)
⋉Q(ϕ)

(
(I1 :Q(ϕ) N2) ∩ (N1 :Q(M) I2)

)
.
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Proof. Then proof is a rewrite of Proposition 4.4. Similarly as we did for the proof
of Proposition 4.29, note that N1N2 (as defined in Remark 4.3) is equal to N1 ·Q(ϕ) N2
and (I1 :Q(M) N2) (as defined in Remark 4.3) is equal to (I1 :Q(ϕ) N2).

The following proposition is essentially a rewrite of Proposition 4.11

Proposition 4.34. Let H = I ⋉ϕ N be a semitrivial ideal extension of I, then

R ⋉ϕ M
I ⋉ϕ N

= R/I ⋉ϕH M/N,

where ϕH : M/N ⊗R/I M/N → R/I is defined as ϕH((m + N)⊗ (m′ + N)) = ϕ(m ⊗
m′) + I.

Proof. By Proposition 4.11, (R ⋉ϕ M)/(I ⋉ϕ N) is a Z2-graded ring with grading
R/I ⊕ M/N. It is a standard exercise to prove that the following function

R ⋉ϕ M
I ⋉ϕ N

→ R/I ⋉ϕH M/N,

(r, m) + I ⋉ϕ N 7→ (r + I, m + N),

is an isomorphism.

4.4 The primes of the semitrivial extension

In this section, we use the semitrivial ideal extension to describe the homogeneous
primes of the semitrivial extension, and we find under which conditions a prime
ideal of the semitrivial extension is homogeneous. Also, we give a complete de-
scription of the maximal ideals.

Let R be a commutative ring with unity, M an R-module and ϕ ∈ Φ(M) \ {0}.
Let I be an ideal of R, then we denote with Eϕ(I) ⊆ R ⋉ϕ M the family of all the
semitrivial ideal extensions of I.

Proposition 4.35. The family Eϕ(I) has a minimum and maximum with respect to the
inclusion; they are:

min(Eϕ(I)) = I ⋉ϕ IM and max(Eϕ(I)) = I ⋉ϕ M⊥,ϕ I.

Proof. An easy computation shows that I(R ⋉ϕ M) = I ⋉ϕ IM, thus I ⋉ϕ IM is nec-
essarily the minimum of Eϕ(I). Let I ⋉ϕ N ∈ Eϕ(I), then N = N⊥,ϕ I ⊆ M⊥,ϕ I,
proving the thesis.

In the following, for the sake of simplicity, we shall denote M(I) = max(Eϕ(I)).
Let H be an ideal of R⋉ϕ M. We recall that the homogeneous body of H, denoted

by B(H), is the largest homogeneous ideal of R ⋉ϕ M contained in H and it is equal
to H ∩ R ⊕ H ∩ M.

Proposition 4.36. Let p be a prime ideal of R and q a prime ideal of R⋉ϕ M. Then q∩R = p

if and only if B(q) = M(p) = p⋉ϕ M⊥,ϕp.

Proof. Since B(q) = q ∩ R ⊕ q ∩ M = p⊕ q ∩ M, then B(q) ∈ Eϕ(p), that is B(q) ⊆
M(p). Let m ∈ M⊥,ϕp, we get:

(0, m)2 = (ϕ(m ⊗ m), 0) ∈ M(p) ∩ R = p = q∩ R ⊆ q ⇒ (0, m) ∈ q.
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The inclusion M(p) ⊆ B(q) follows immediately.
Conversely, since B(q) ∩ R = M(p) ∩ R, follows that q ∩ R = B(q) ∩ R =

M(p) ∩ R = p.

Theorem 4.37. Let p be a prime ideal of R and let q be a prime ideal R ⋉ϕ M. If q is a
semitrivial ideal extension of p, then we have

q = p⋉ϕ M⊥,ϕp.

Proof. Since q is a semitrivial ideal extension, q is a homogeneous ideal and hence
q = B(q).

Proposition 4.38. Assume R to be local with maximal ideal m and residue class field k. If
Imϕ ⊆ m, then R⋉ϕ M is local with homogeneous maximal ideal m⋉ϕ M and residue class
field k.

Proof. It easy to prove that the condition Imϕ ⊆ I is equivalent to M⊥,ϕ I = M,
for every ideal I of R. By Proposition 4.34, (R ⋉ϕ M)/M(m) = k, hence M(m) is
maximal. Let n be a maximal ideal of R ⋉ϕ M; since R is local and R ⊆ R ⋉ϕ M is
integral, n lies over m, therefore, by Proposition 4.36, it follows that M(m) ⊆ n, that
is the thesis.

Proposition 4.39. Let p be a prime ideal of R. Then there are at most two prime ideals (one
the conjugate of the other) of R ⋉ϕ M whose contraction on R is p.

Proof. First, we prove the thesis for the maximal ideal m in the R local case. Since
R ⊆ R⋉ϕ M is integral, there exists a maximal ideal n of R⋉ϕ M such that n∩ R = m.
Denote S = R ⋉ϕ M \ (n∪ n), by Proposition 4.30, we get:

S−1(R ⋉ϕ M) = Rm ⋉ϕm Mm = R ⋉ϕ M,

where the last equality is true because R is local. From this follows that S is contained
in the set of units of R ⋉ϕ M, hence n and n are the only possible maximal ideals of
R ⋉ϕ M.

Let F be the family of all the prime ideals of R ⋉ϕ M lying over p. Denote S =
R ⋉ϕ M \ ∪F , ∪F is conjugable because, if q is a prime lying over p, then this is also
true for q. Denote T = S∩ R = R \ p, once again by Proposition 4.30, S−1(R⋉ϕ M) =
Rp⋉ϕp Mp. Since Rp is local, by the first part of the proof, we get that S−1(R⋉ϕ M) is
a ring with at most two maximal ideals, hence the cardinality of F is at most two.

Remark 4.40. Let p be a prime ideal of R. Let q and q be the prime ideals of R ⋉ϕ M
which lie over p, then we denote Sp = R ⋉ϕ M \ (q∪ q) and ϕp = S−1

p ϕ defined as in
Proposition 4.30. The set Sp is multiplicatively closed and conjugable; also

S−1
p (R ⋉ϕ M) = Rp ⋉ϕp Mp

is a semilocal ring with at most two maximal ideals: S−1
p q and S−1

p q. Moreover, the
following equalities hold:

1. (S−1
p (R ⋉ϕ M))S−1

p q = (R ⋉ϕ M)p ,

2. (S−1
p (R ⋉ϕ M))S−1

p q = (R ⋉ϕ M)q.
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If Imϕ ⊈ p, then ϕp is surjective and, by Proposition 4.23, S−1
p (R ⋉ϕ M) = Rp ⋉ϕp Rp.

If instead Imϕ ⊆ p, by Proposition 4.38, it follows that S−1
p (R ⋉ϕ M) is local with

homogeneous maximal ideal pRp ⋉ϕp Mp.

Clearly, a prime ideal of R ⋉ϕ M may not be homogeneous: e.g. R[t]/(t2 − 2) =
R ⋉φ2 R (where φ2 is the product by 2) has two maximal ideals (t −

√
2) and (t +√

2), which are not homogeneous.

Remark 4.41. Let p a prime ideal of R, we denote p) = Rp/pRp = Q(R/p). Assume
Imϕ ⊆ p, this is equivalent to say that M⊥,ϕp = M. By Proposition 4.34, we get:

(R ⋉ϕ M)/M(p) = R/p,

in particular M(p) is prime and Q((R ⋉ϕ M)/M(p)) = k(p).
If Imϕ ⊈ p, then M/M⊥,ϕp is a torsion-free module over R/p. In fact, let 0 ̸=

r + p ∈ R/p and m + M⊥,ϕp ∈ M/M⊥,ϕp. If (r + p)(m + M⊥,ϕp) = 0, then rϕ(m ⊗
M) ∈ p, hence m ∈ M⊥,ϕp. By Proposition 4.20, M/M⊥,ϕp is isomorphic to an ideal
of R/p. We denote ϕp = ϕM(p) the homomorphism defined in Corollary 4.31 and
φp = Q(ϕp) the homomorphism defined in Proposition 4.11. By Proposition 4.11,
we get:

Q((R ⋉ϕ M)/M(p)) = k(p)⋉φp k(p) ,

Note that φp ∈ Homk(p)(k(p), k(p)) = k(p). In the following, φp indicates, with slight
abuse, the product by φp and an element of k(p); thus k(p)⋉φp k(p) ∼= k(p)[t]/(t2 −
φp).

The previous remark allows us to state the following proposition:

Proposition 4.42. Let p be a prime ideal of R, then we have:

1. If Imϕ ⊆ p, then

Q
(

R ⋉ϕ M
M(p)

)
= k(p).

2. If Imϕ ⊈ p, then

Q
(

R ⋉ϕ M
M(p)

)
= k(p)⋉φp (p)

∼= k(p)[t]/(t2 − φp).

Theorem 4.43. Let p be a prime ideal of R and let q be a prime ideal of R ⋉ϕ M which lies
over p. Then q is a semitrivial ideal extension of p if and only if the equation t2 − φp = 0
has no nonzero solutions in k(p).

Proof. We recall that, by Proposition 4.36 and by the hypothesis, it follows that M(p) ⊆
q. We have two possibilities:

1. If Imϕ ⊆ p, by Remark 4.41, M(p) is prime, then by incomparability, q =
M(p). Therefore, q is a semitrivial ideal extension of p and at the same time,
by Remark 4.41, φp = 0.

2. If Imϕ ⊈ p, then by Proposition 4.42, we get:

q = M(p) ⇔ Q
(

R ⋉ϕ M
M(p)

)
∼= k(p)[t]/(t2 − φp) is a field .
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We are able to give a complete description of the maximal ideals of R ⋉ϕ M.

Theorem 4.44. Let n be a maximal ideal of R ⋉ϕ M and assume that it is not a semitrivial
ideal extension of m = n ∩ R. Then

n = M(m) + ((α, m)),

where α +M(m) ∈ k(m) is a solution of t2 − φm = 0 and m ∈ M is such that m ≡ 1
(mod M⊥,ϕm).

Proof. Let n be a maximal ideal of R⋉ϕ M and assume that it is not a semitrivial ideal
extension of n ∩ R = m. By Remark 4.41, (R ⋉ϕ M)/M(m) ∼= k(m)[t]/(t2 − φm).
By Theorem 4.43, there exists α + M(m) ∈ k(m) such that (α + M(m))2 = φm;
futhermore (α − t) and and (α + t) are the maximal (not necessarily distinct) ide-
als of k(m)[t]/(t2 − φm). Let m ∈ M such that m ≡ 1 (mod M⊥,ϕm), since the
ideals M(m) + ((α, m)) and M(m) + ((α,−m)) project to the maximal ideals of
k(m)[t]/(t2 − φm) respectively, they are exactly n and n.

In the last part of this section, we want to give a precise description of the semitriv-
ial ideal extensions of R ⋉ϕ R, in the case that R is a PID (which is, up to isomor-
phism, the only semitrivial extension by a torsion-free module).

Let U be the set of units of R. In R we define the following relation:

r ∼ r′ ⇔ r′ = ur for some u ∈ U .

It is easy to prove that ∼ is an equivalence relation and, for every r ∈ R, the equiva-
lence class of r is [r] = {ur | u ∈ U}; clearly [0] = {0} and [1] = U .

Let r ∈ R \ {0}; we define

Div(r) =
{
[x] | x ∈ R : x divides r

}
and we denote by d(r) = |Div(r)|. Note that d(r) ≥ 1; also note that d(r) = 1 if and
only if r is a unit and d(r) = 2 if and only if r is irreducible.

We recall that, if R is an UFD, then

(r1 :R r2) =

(
r1

gcd(r1, r2)

)
for every r1, r2 ∈ R \ {0}.

Theorem 4.45. Assume that R is a PID and that ϕ is the multiplication by some ele-
ment b ∈ R \ {0}. Consider the semitrivial extension R ⋉ϕ R and take I = (r) ̸=
(0) an ideal of R. Denoted by gr = gcd(r, b) and ar = r

gr
; if Div(gr) = {[λ1] =

[gr], [λ2], . . . , [λn−1], [λn] = [1]}, then

Eϕ(I) = {I ⋉ϕ I, I ⋉ϕ (arλ2), . . . , I ⋉ϕ (arλn−1), I ⋉ϕ (ar)}.

In particular, |Eϕ(I)| = d(gr). Moreover, let p = (p) be a prime ideal of R, we have:

1. If p divides b, then Eϕ(p) = {p⋉ϕ p, p⋉ϕ R}, and p⋉ϕ R is the only prime ideal of
R ⋉ϕ R lying over p.
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2. If p does not divide b, then Eϕ(p) = {p⋉ϕ p}, and p⋉ϕ p is the only prime ideal
of R ⋉ϕ R lying over p if and only if the equation t2 − (b + p) = 0 has no nonzero
solutions in k(p). Otherwise, if α + p ∈ k(p) is such solution, then p⋉ϕ p+ ((α, 1))
and its conjugate are the only prime ideals lying over p.

Proof. Let J = (x) an ideal of R such that I ⋉ϕ J ∈ Eϕ(I), by Proposition 4.27, it
follows that I ⊆ J and J⊥,ϕ I = (I :R b) ∩ J = (r :R b) ∩ J = (ar) ∩ J = J; hence x
divides r and ar divides x. We claim that this is equivalent to say that x ∼ arλi, for
some i ∈ {1, . . . , n}. In fact, since ar divides x, it follows that x = arλ for some λ ∈ R
and, since x divides r, it follows that r = µx for some µ ∈ R; hence gr = (r/x)λ =
µλ, that is [λ] ∈ Div(gr). Conversely, if x = uarλi with u ∈ U and i ∈ {1, . . . , n},
then ar divides x and, since r = u−1(gr/λi)x, it follows that x divides r.

We prove now the last part of the theorem:

1. If p divides b, then gp = p and ap = 1; hence Eϕ(p) = {p⋉ϕ p, p⋉ϕ R}. The
thesis is a consequence of Theorem 4.43.

2. If p does not divide b, then gp = 1 and ap = p; hence Eϕ(p) = {p⋉ϕ p}. The
thesis is a consequence of Theorem 4.43 and Theorem 4.44.

4.5 The generically Gorenstein and nearly Gorenstein prop-
erties

Let (R,m, k) be a noetherian local ring, M a finitely generated module over R and
ϕ ∈ Φ(M) \ {0} such that Imϕ ⊆ m (if Imϕ ⊈ m, then M ∼= R). By Proposition 4.24
and 4.38, R⋉ϕ M is a noetherian local ring with maximal m⋉ϕ M. In this section, we
want to find the conditions such that R ⋉ϕ M is generically Gorenstein and nearly
Gorenstein. However, in this generality, the question is not well posed, since canon-
ical modules are defined for Cohen-Macaulay rings, thus we first need to find the
conditions such that R ⋉ϕ M is Cohen-Macaulay. A proof of the following proposi-
tion can be found in [Corollary 5.3, 22].

Proposition 4.46. R ⋉ϕ M is Cohen-Macaulay if and only if R is Cohen-Macaulay and M
is maximal Cohen-Macaulay.

If R has canonical module ωR and M is maximal Cohen-Macaulay, then, by
Proposition 1.34, R ⋉ϕ M has a canonical module C which is isomorphic as R ⋉ϕ M-
modules to:

C ∼= HomR(R ⋉ϕ M, ωR).

Therefore, since R ⋉ϕ M = R ⊕ M, by Proposition 4.7 and Remark 4.8, we get:

Proposition 4.47. Assume that R has canonical module ωR and M is maximal Cohen-
Macaulay. The canonical module C of R ⋉ϕ M is a Z2-graded module with grading:

ωR ⊕ HomR(M, ωR).

Let (r′, m′) ∈ R ⋉ϕ M and let f = ( f0, f1) ∈ HomR(R ⋉ϕ M, ωR), where f0 ∈
HomR(R, ωR) and f1 ∈ HomR(M, ωR). Note that, by Remark 4.8,

(r′, m′) · f = (r′, m′) · ( f0, f1) = (r′ · f0 + m′ · f1, r′ · f1 + m′ · f0),
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where (m′ · f1)(r) = f1(rm′) for every r ∈ R and (m′ · f0)(m) = f0(ϕ(m ⊗ m′)) for
every m ∈ M.

Proposition 4.48. Let R be Cohen-Macaulay, assume that M is maximal Cohen-Macaulay
and Imϕ can be generated by a regular sequence. If R ⋉ϕ M has a canonical module C, then
R/Imϕ has a canonical module ωR/Imϕ. In fact, if c = depth(Imϕ), then

ωR/Imϕ
∼= Extc

R⋉ϕ M(R/Imϕ, C).

Proof. Note that R/Imϕ can be endowed with a R ⋉ϕ M-algebra structure through
the following action:

(r1, m) • (r2 + Imϕ) := r1r2 + Imϕ,

for every (r1, m) ∈ R ⋉ϕ M and r2 + Imϕ ∈ R/Imϕ. Since R/Imϕ is a local Cohen-
Macaulay R-algebra whose Krull dimension is equal to dimR − c, by Theorem 1.34,
it follows the thesis.

A complete characterization for the artinian semitrivial extensions which are
Gorenstein is given in [22, Theorem 4.3].

Theorem 4.49. Assume that R is artinian. R ⋉ϕ M is Gorenstein if and only if either:

1. M ∼= IR(k) or

2. R is Gorenstein and ϕ is non-degenerate.

Let M∗ = HomR(M, R). We define the adjoint of ϕ, denoted ϕa, as following:

ϕa : M → M∗

m 7→ ϕa(m),

where ϕa(m)(m′) = ϕ(m ⊗ m′) for every m′ ∈ M.

The proof of the following theorem can be found in [22, Corollary 5.11]:

Theorem 4.50. R ⋉ϕ M is Gorenstein if and only if either:

1. R ⋉ M is Gorenstein or

2. R is Gorenstein, M is maximal Cohen-Macaulay and ϕa is an isomorphism.

We now characterize generically Gorenstein semitrivial extensions.

Theorem 4.51. Assume that R is Cohen-Macaulay and M is maximal Cohen-Macaulay.
R ⋉ϕ M is generically Gorenstein if and only if, for every p ∈ AssR(0), either one of the
following is satisfied:

1. If p ⊉ Imϕ, then Rp is Gorenstein.

2. If p ⊇ Imϕ, then Mp = I(k(p)) or Rp is Gorenstein and ϕp is non degenerate.

Proof. Let q a prime ideal of R ⋉ϕ M such that q ∩ R = p, by incomparability, q is
also a minimal prime ideal of R ⋉ϕ M. If p ⊉ Imϕ, then Imϕp = ImϕRp = Rp

and, by Lemma 4.23, Mp
∼= Rp; hence, S−1

p (R ⋉ϕ M) = Rp ⋉ϕp Rp. By Remark 4.40,
(S−1

p (R ⋉ϕ M))S−1
p q = (R ⋉ϕ M)q and (S−1

p (R ⋉ϕ M))S−1
p q = (R ⋉ϕ M)q, therefore
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Rp ⋉ϕp Rp = Rp[t]/(t2 + r) is Gorenstein for some r ∈ R, that is, by [Remark 4.5, 22],
Rp is Gorenstein. If p ⊇ Imϕ, then, by Remark 4.40, S−1

p (R ⋉ϕ M) = Rp ⋉ϕ Mp is a
local artinian ring. Using Theorem 4.49, we get the thesis.

Conversely, let q be a minimal prime ideal of R ⋉ϕ M and let p = q ∩ R, by
incomparability p is a minimal prime of R. If p ⊉ Imϕ, then Imϕp = ImϕRp = Rp

and, using Lemma 4.23, we get that Mp
∼= Rp. Hence, S−1

p (R ⋉ϕ M) = Rp ⋉ϕp Rp.
By Remark 4.40, (S−1

p (R ⋉ϕ M))S−1
p q = (R ⋉ϕ M)q and (S−1

p (R ⋉ϕ M))S−1
p q = (R ⋉ϕ

M)q, therefore, since Rp is Gorenstein, it follows that Rp ⋉ϕ Rp = Rp[t]/(t2 + r) is
Gorenstein for some r ∈ R, hence both (R ⋉ϕ M)q and (R ⋉ϕ M)q are Gorenstein. If
p ⊇ Imϕ, then, by Remark 4.40, S−1

p (R ⋉ϕ M) = Rp ⋉ϕ Mp is a local artinian ring.
Using Theorem 4.49, we get the thesis.

Corollary 4.52. In the same hypothesis of Theorem 4.51. If depth(Imϕ) > 0, then R is
Generically Gorenstein if and only if R ⋉ϕ M is generically Gorenstein.

Proof. If depth(Imϕ) > 0, then there are no associated primes of 0 that contain Imϕ.

Proposition 4.53. Assume that R is Cohen-Macaulay of positive Krull dimension with
canonical module ωR and M is maximal Cohen-Macaulay. If R ⋉ϕ M is generically Goren-
stein, then R is generically Gorenstein.

Proof. Let C be the canonical module of R ⋉ϕ M, by Proposition 1.34, C ∼= ωR ⊕
HomR(M, ωR). Since R ⋉ϕ M is generically Gorenstein, C must be isomorphic to an
ideal of R⋉ϕ M. We recall that HomR⋉ϕ M(C, C′) = R⋉ϕ M for any canonical module
C′ of R ⋉ϕ M, therefore there must be a regular element x ∈ R ⋉ϕ M such that the
multiplication by x is an injective homomorphism and xC is an ideal of R ⋉ϕ M.
From this fact follows that |x|C is also a canonical ideal of R ⋉ϕ M and,

|x|C = |x|ωR ⋉ϕ |x|HomR(M, ωR).

By Lemma 4.10, the multiplication by |x| is an injective R-linear and R ⋉ϕ M-linear
map, therefore we get that ωR is isomorphic to an ideal of R.

Proposition 4.54. Assume that R is Cohen-Macaulay of positive Krull dimension with
canonical ideal ωR and assume that M is isomorphic to a maximal Cohen-Macaulay ideal of
R, say I. Then R ⋉ϕ I is generically Gorenstein and the canonical module is isomorphic to
the fractional ideal:

C = ωR ⋉ϕ (ωR :Q(R) I).

Proof. Since I is maximal Cohen-Macaulay and R has positive Krull-dimension, I
has positive depth. By Remark 4.21, it follows HomR(I, ωR) ∼= (ωR :Q(R) I).

We now characterize nearly Gorenstein semitrivial extensions.

Theorem 4.55. Assume that R is Cohen-Macaulay and M is maximal Cohen-Macaulay.
R ⋉ϕ M is nearly Gorenstein if and only if for every prime ideal p not maximal, one of the
following conditions is satisifed:

1. If p ⊉ Imϕ, then Rp[t]/(t2 − rϕp) is Gorenstein, where rϕp is the identification of ϕp

as an element of Rp.

2. If p ⊇ Imϕ, then either Rp ⋉ Mp is Gorenstein or Rp is Gorenstein and ϕa
p is an

isomorphism.
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Proof. The thesis can be proven with a similar argument done for the proof of Theo-
rem 4.51 and using Theorem 4.50.

Let N be a Z2-graded module over A = R⋉ϕ M, in the same notations of Propo-
sition 4.6, we have

TrA(N) = ∑
h∈HomA(N,A)

h(N) = ∑
h0∈H0

h0(N)⊕ ∑
h1∈H1

h1(N) =

=

(
∑

h0∈H0

h0(N0)⊕ ∑
h0∈H0

h0(N1)

)
⊕
(

∑
h1∈H1

h1(N0)⊕ ∑
h1∈H1

h1(N1)

)
=

=

(
∑

h0∈H0

h0(N0)⊕ ∑
h1∈H1

h1(N1)

)
⋉ϕ

(
∑

h1∈H1

h1(N0)⊕ ∑
h0∈H0

h0(N1)

)
.

Hence, we deduce that the trace of a Z2-graded module is a semitrivial ideal
extension by some ideal of R and this ideal will be denoted as

tN = ∑
h0∈H0

h0(N0)⊕ ∑
h1∈H1

h1(N1);

we also denote TN = ∑h1∈H1
h1(N0) ⊕ ∑h0∈H0

h0(N1), clearly T⊥,ϕ
N tN = TN . We

proved the following proposition:

Proposition 4.56. Let N be a Z2-graded module over a semitrivial extension A = R⋉ϕ M.
We have

TrA(N) = tN ⋉ϕ TN .

Using the previous proposition, we give another characteritazion of nearly Goren-
stein semitrivial extensions.

Theorem 4.57. Assume that R is Cohen-Macaulay and M is maximal Cohen-Macaulay.
R ⋉ϕ M is nearly Gorenstein if and only if m ⊆ tω and M = Tω.

Let I and J be two fractional ideals of R; for the sake of simplicity, in the sequel,
we will write (I : J) instead of (I :Q(R) J).

Proposition 4.58. Let ωR be a canonical ideal of R and let I, J1, J2 fractional ideals of R.
Then the followings hold:

1. (J1 : J2) = (ωR : J2) : (ωR : J1)

2. R : (ωR : I) = (I : ωR).

Proof. Property 1 is a simple generalization of Proposition 3.3 that uses [Exercise 1.12,
2] for the case of fractional ideals. Using Property 1, similarly as we did for the proof
of Proposition 3.4, we can prove Property 2.

Theorem 4.59. Assume that R is Cohen-Macaulay of positive Krull dimension with canon-
ical module and M is isomorphic to a maximal Cohen-Macaulay ideal of R, say I. Suppose
that ϕ is the multiplication by some element b ∈ R. Then R ⋉ϕ I = R(I)0,−b is nearly
Gorenstein if and only if the following conditions are true:

1. R is generically Gorenstein,
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2. For any canonical ideal ω of R, we have:

m ⊆ ω(I : (ω : I)) + b(ω : I)(I : ω)

and

I = ω(I : ω) + (ω : I)(I : (ω : I)).

Proof. Since R ⋉ϕ I is nearly Gorenstein an of positive Krull dimension, it follows
that it is generically Gorenstein. By Proposition 4.53, R is generically Gorenstein.
Let ω a canonical ideal of R, using Proposition 4.33 we now compute the trace of
the canonical module like we did for the numerical semigroup case. Note that, by
definition of ϕ, we have that for any fractional ideal J1 and J2 of R, J1 ·ϕ J2 = J1 J2b
and (J1 :ϕ J2) = (J1 : bJ2). Let C = ω ⋉ϕ (ω : I) a canonical fractional ideal of
R ⋉ϕ I, since the trace is invariant by shifts (note that any canonical ideal has depth
1), TrR(C) = CC−1. By Property 2 of Proposition 4.58, we have:

- (I : (ω : I)) ⊆ (R : (ω : I)) = (I : ω) ⊆ ω−1;

- (I : ω) = (R : (ω : I)) ⊆ (R : (bω : I)).

Consequently, we get:
C−1 =

(
I : (ω : I)

)
⋉ϕ (I : ω).

Using the formula of the product of Proposition 4.33, we get:

CC−1 =

=
[
ω(I : (ω : I)) + b(ω : I)(I : ω)

]
⋉ϕ

[
ω(I : ω) + (ω : I)(I : (ω : I))

]
.

Since m⋉ϕ I is the maximal ideal of R ⋉ϕ I, it follows the thesis.

Remark 4.60. One could note that the nearly Gorensteiness of R(I)0,−b is dependent
on b ∈ R, which is different from the numerical duplication case. It seems that, if
we want that the nearly Gorensteiness does not depend on b, we need to add some
more hypotheses.

Assume that R is a one-dimensional Cohen-Macaulay ring with canonical mod-
ule isomorphic to a fractional ideal ω such that R ⊆ ω ⊆ R, where R is the integral
closure of R and let I be a maximal Cohen-Macaulay ideal. In [4], the authors show
that, if zR is the minimal reduction of (ω : I), then R(I)0,−b has canonical module
isomorphic to C = 1

z (ω : I)⋉ϕ
1
z ω and it is such that R(I)0,−b ⊆ C ⊆ R(I)0,−b. With

a proof which is virtually identical to the proof of 3.18, using Proposition 4.33, one
can prove the following

Theorem 4.61. In the same notations of Remark 4.60, R(I)0,−b is nearly Gorenstein if and
only if, for any canonical ideal ω the following conditions are true:

m ⊆ (ω : I)(I : ω)

and

I = ω(I : ω) + (ω : I)(I : (ω : I)).

In particular, the nearly Gorensteiness of R(I)0,−b does not depend on b.
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