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ABSTRACT
A new numerical methodology to solve the 3D Navier-Stokes equations for incompressible fluids
within complex boundaries and unstructured body-fitted tetrahedral mesh is presented and vali-
dated with three literature and one real-case tests. We apply a fractional time step procedure where
a predictor and a corrector problemare sequentially solved. The predictor step is solved applying the
MAST (Marching in Space and Time) procedure, which explicitly handles the non-linear terms in the
momentumequations, allowingnumerical stability for Courant number greater thanone. Correction
steps are solved by a Mixed Hybrid Finite Elements discretization that assumes positive distances
among tetrahedrons circumcentres. In 3D problems, non-Delaunay meshes are provided by most
of the mesh generators. To maintain good matrix properties for non-Delaunay meshes, a continu-
ity equation is integrated over each tetrahedron, but the momentum equations are integrated over
clusters of tetrahedrons, such that each external face shared by two clusters belongs to two tetrahe-
drons whose circumcentres have positive distance. A numerical procedure is proposed to compute
the velocities inside clusters with more than one tetrahedron. Model preserves mass balance at the
machine error and there is no need to compute pressure at each time iteration, but only at target
simulation times.
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1. Introduction

The Navier–Stokes Equations (NSEs) govern external
and internal flows in many real-life industrial, environ-
mental and biological problems (e.g. aircraft and ship
problems, rotomachinery blade applications, hemody-
namic and biological flows). The challenging research
topics involved in the numerical solution of such math-
ematical problems mainly concern the choice of the
velocity-pressure coupling algorithm and the design
of the computational mesh discretizing the physical
domain.

In compressible flows, pressure and density are linked
by the state algebraic equation. In contrast, in incom-
pressible flows, density is constant and pressure has to be
solved along with velocities from all the momentum and
continuity equations. With this motivation, the numer-
ical algorithms used to solve the NSEs can generally be
divided into density-based and pressure-based solvers
(Shyy & Mittal, 1998; Tao, 2001). Density-based solvers
are commonly applied to high-Ma compressible flows,
while pressure-based solvers were originally proposed for
incompressible flows, and then successfully extended to
compressible flows (Tao, 2001).

CONTACT Costanza Aricò costanza.arico@unipa.it

Two approaches are generally used in pressure-based
solvers, namely the direct (or coupled) approach and the
segregated approach (e.g. Mazhar, 2016 and cited refer-
ences). In the first case, the whole set of momentum and
continuity equations is solved simultaneously, resulting
in a strong coupling between pressure and velocity. The
main drawback is the large amount of required compu-
tational effort and computer memory, which makes this
approach unsuitable to facing many practical engineer-
ing applications (Darwish et al., 2015). In the segregated
approach, pressure and velocity are solved separately and
sequentially, using previously computed values of the
other dependent variable. The core of the problem is how
to update the pressure field so that the divergence-free
velocity field condition is satisfied.

Several numerical procedures can be distinguished
in the segregated approach, e.g. the projection method
(Chorin, 1968; Kim & Moin, 1985), the penalty method
(Braaten & Shyy, 1986; Hughes et al., 1979), the
artificial compressibility method (Harlow & Welch,
1965; Malan et al., 2002; Vrahliotis et al., 2012), and
the pressure-correction method (Ozoe & Tao, 2001;
Patankar, 1980).
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The fractional step projection method (Chorin, 1968;
Kim & Moin, 1985) and the SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations) pressure-
correction method (Patankar, 1980, 1981) have become
very popular. In both methodologies, a pressure cor-
rection is introduced to improve the velocities com-
puted from the solution of the momentum equations,
and to satisfy the continuity equation. Projection meth-
ods, commonly regarded as fractional-step methods, can
be classified into pressure-correction methods, velocity-
correction methods and consistent splitting methods
(Guermond et al., 2006). A sequence of decoupled ellip-
tic equations for velocity and pressure has to be solved
at each time step, and this represents one of the most
attractive features of such procedures, especially for sim-
ulations of large-scale problems (Guermond et al., 2006).
In the projectionmethod, the pressure correctionPoisson
equation is solved once per time step, while for the SIM-
PLE method, the momentum and pressure correction
equations are solved several times in each time step. For
these reasons, projectionmethods could handle unsteady
flow problems more easily than SIMPLE.

The SIMPLE-family algorithms (e.g. SIMPLER, SIM-
PLEC, SIMPLEX) are extensions of and improvements
to the SIMPLE algorithm. Other pressure correction
methods can be regarded as further extensions of the
SIMPLE-family models, for example PISO and CLEAR
(e.g. Aguerre et al., 2020 and cited works). Segregated
solvers like the SIMPLE-family algorithms have shown
poor convergence, especially when used for swirling flow
fields (Hanby& Silvester, 1996). In these problems, where
the coupling between radial and tangential momentum
equations is strong, the linearization of the momen-
tum equations leads to a sequential solution of these
equations, without accounting for the coupling between
the momentum equations and the velocity components
(Hanby & Silvester, 1996). Even though several ‘ad hoc’
procedures have been presented in order to overcome the
above-mentioned convergence problems (e.g. Gosman
et al., 1976), the need of parameter calibration for conver-
gence of the iterative procedure requires a high compu-
tational effort, which limits the application of these algo-
rithms. These reasons, along with the increase of com-
puter performance and memory, have motivated several
authors towards new coupled approaches (e.g. Darwish
et al., 2009 and cited references).

Other options have been proposed in the literature,
e.g. the vorticity-stream function methods, where pres-
sure is eliminated from the governing equations and
velocity and pressure are replaced by the vorticity and
the stream function (e.g. Calhoun, 2002 and cited ref-
erences). Two main reasons have limited their use: the
difficulty of handling wall boundary conditions and the

difficulties arising in the extension from 2D to 3D prob-
lems (Calhoun, 2002).

It is widely recognized that spatial discretization of the
incompressible flow equations on collocated grids leads
to unphysical odd–even coupling of the pressure (i.e. the
so-called spurious checkerboardmodes) (e.g. Dalal et al.,
2008; Perron et al., 2004). Staggered grids have been one
of the most common ways to overcome these problems,
where different grid points for velocity and pressure are
used (e.g. Harlow &Welch, 1965; Perot, 2000).

In the last decade, the use of unstructured grids has
become popular due to their capacity to discretize real
arbitrary domains and to easily get local refinement. Geo-
metric complexity is a drawback for a straightforward
extension of the staggered mesh to unstructured grids
and most solvers require the addition of terms which
could generate unphysical solutions and loss ofmass con-
servations (e.g. Perot, 2000). Moreover, the time step
limitation required by the Courant condition can become
very severe, due to the existence of few computational
elements much smaller than the average ones.

In the past few decades, Finite Volume Methods
(FVMs) (e.g. Kim&Choi, 2000; Mathur &Murthy, 1997;
Perron et al., 2004; Plana Fattori et al., 2013; Vidovic et al.,
2004) and Finite Element Methods (FEMs) (e.g. Bazilevs
et al., 2013; Fortin, 1981; Pai et al., 2013; Zienkiewicz
et al., 2013) have been preferred to other methods (e.g.
finite difference methods) in handling irregular bound-
aries, because they can use unstructured triangular or
tetrahedral meshes, which can easily discretize arbitrary
geometries. A large multitude of FVMs has been pro-
posed in the last few decades, with different choices
of control volumes, both for collocated and staggered
grids. Many of these proposed techniques suffer from
a ‘non-orthogonality condition’, as pointed out in (Gao
et al., 2012), in discretization of the second-order partial
derivative terms in the momentum equations and in the
pressure-correction Poisson equation. Hybrid FV/FEMs
(e.g. Busto et al., 2018; Gao et al., 2012) take advantage
of both FVMs and FEMs, discretizing the momentum
equations with the FVMs and the Poisson equation with
the FEMs. The Discontinuous Galerkin Finite Element
Methods (DG-FEMs) (e.g. Bassi & Rebay, 1997; Lehren-
feld & Schöberl, 2016 and cited references) combine the
performing features of the FEMs and FVMs. Like the
classical FEMs, the DG-FEMs achieve high-order accu-
racy using high-order polynomial approximation within
an element rather than using wide stencils, as in the case
of finite volume methods. The physics of wave propaga-
tion is however correctly accounted for by the solution of
a Riemann problem (e.g. Toro et al., 2020 and cited refer-
ences) arising from the discontinuous solution at element
interfaces, which makes them similar to FVMs (e.g. Toro
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& Vazquez-Cendon, 2012). The main drawback of DG-
FEMs, compared to the classical FEMs and FVMs, is that
they require solutions of systems of equations with more
unknowns for the same grids, and have been recognized
to be very demanding in terms of both computational
costs and storage requirements.

Recently, mesh-free methods have received increas-
ing attention from researchers, due to their ability to
solve flow problems with complex geometries or involv-
ing multi-phases fluids. The Smoothed Particle Hydro-
dynamics (SPH) method is a pure Lagrangian, mesh-free
procedure, originally proposed for the solution of astro-
physical problems (Gingold & Monaghan, 1977; Lucy,
1977). The fluid domain is discretized by a set of mov-
ing particles, and the governing equations are solved
for each of them. Each particle has a support domain
with a characteristic spatial distance over which their
physical properties (namely pressure and velocity) are
‘smoothed’ by means of a kernel function, generally with
a Gaussian-type shape. Thanks to its quite easy imple-
mentation, this procedure has largely been applied for the
solution of compressible and incompressible NSEs (e.g.
Oger et al., 2007 and cited references). One of the main
drawbacks of the Lagrangian schemes is that the rela-
tions among particles have to be updated at each time
step, and the topology setting of the matrix system of
the Poisson pressure-correction equations has to be per-
formed at each time iteration, as well as its factorization
operations.

During the last years, Virtual Elements Methods
(VEMs) (e.g. Beirão da Veiga et al., 2018, and cited ref-
erences) have been proposed as a new FEM paradigm
to solve Partial Differential Equations. VEMs construct
a conforming Galerkin FE scheme, dealing with gen-
eral polygonal/polyhedral mesh elements, also with non-
convex shape. VEMs have been recently applied for the
solution of theNSEs in 2D problems (e.g. Beirão da Veiga
et al., 2018, and cited references), but their extension
to 3D problems is still limited to very simple domain
geometries and boundary shapes (Liu & Chen, 2019).

In the present paper, we propose a new finite volume
solver for the solution of 3D incompressible NSEs over
unstructured tetrahedral meshes. We apply a fractional
time step procedure where a predictor and a corrector
problem are sequentially solved. The procedure presents
substantial differences compared to the fractional step
procedures presented in the literature, based upon the
common projection procedures (e.g. Guermond et al.,
2006; Perron et al., 2004). The predictor step (PS) is car-
ried out by applying the Eulerian Finite Volume MAST
(Marching in Space and Time) numerical procedure,
recently proposed for the solution of shallow waters and
groundwater problems (Aricò et al., 2007; Aricò et al.,

2011, 2012, 2013a, 2013b; Aricò & Tucciarelli, 2007a,
2007b, 2009). In this step, all the terms are retained
in the momentum equations. The major advantages of
MAST are the following: (1) it explicitly handles the non-
linear momentum terms in the momentum equations,
by means of the sequential solution of a three-variable
Ordinary Differential Equations (ODEs) system for each
computational cell, with a computational effort which is
simply proportional to the number of tetrahedral ele-
ments, (2) it provides numerical stability with respect
to large Courant–Friedrichs-Lewy (CFL) numbers, that
can be much greater than one, at a cost of local accuracy
reduction (Aricò et al., 2007; Aricò & Tucciarelli, 2007a,
2007b). The correction step is split into two parts, named
CS1 step and CS2 step. In CS1 step, three linear systems
are solved for the three velocity components (one system
for each velocity component), which update the viscous
terms in the momentum equations. In the second cor-
rector step (CS2), a single linear system is solved for the
pressure correction unknown. The matrices of the sys-
tems of CS1 and CS2 steps are well conditioned, as they
are sparse, symmetric and diagonally dominant, and lead
to a very fast solution of the associated systems by the
use of a preconditioned conjugated gradient solver. The
matrix coefficients are constant in time, computed and
factorized only once at the beginning of the numerical
simulation. This makes it possible to save a lot of compu-
tational time, compared to other numerical schemes (e.g.
Lagrangian schemes).

Both CS1 and CS2 steps are solved assuming a mass
lumping Mixed Hybrid Finite Element (MHFE) (e.g.
Auricchio et al., 2017, and cited references) discretiza-
tion inside each tetrahedron, similar to the one proposed
by Younes et al. (2006). The mass lumping option has
been chosen because it is easy to be used together with
tetrahedral elements. To maintain good convergence and
accuracy properties, our MHFE scheme assumes the dis-
tance among circumcenters to be positive, a condition
which is always satisfied in the Delaunay meshes. Unfor-
tunately, in 3D problems either bad-quality Delaunay or
non-Delaunay meshes are provided by most of the avail-
able mesh generators (Li & Teng, 2001). To cope with
this problem, and to use non-Delaunay meshes still sav-
ing the previously mentioned good matrix properties, in
the present procedure, a continuity equation is integrated
over each single tetrahedron, but the momentum equa-
tions are integrated over clusters of tetrahedrons, such
that each external face shared by two different clusters is
part of two tetrahedrons whose circumcenters have pos-
itive distance. To define the velocities inside each cluster
with more than one tetrahedron correctly, the minimum
energy condition is finally enforced for velocities inside
the clusters.
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In the proposed numerical solver, mass balance is
always preserved at the error machine precision, and
there is no need to update the pressure values at each time
iteration, because only the pressure gradient appear in the
NSEs. We compute the spatial pressure distribution only
at target simulation times.

The paper is organized as follows. In section 2.1,
we present the governing equations and the projection-
correction formulation of the problem and in section 2.2
the spatial discretization. In sections 3.1, 3.2, and 3.3, we
present the numerical details of the solution of respec-
tively the PS, CS1 and CS2 steps as defined in section
2.1. In section 4, we present the extension of the previous
algorithms to the real case of 3D non-Delaunay meshes
and in section 5, we show the model application to three
well-known literature tests and one real-life case, as well
as an analysis of the associated computational costs.

2. RT0 spatial discretization of the governing
equations

2.1. Governing equations and fractional time step
discretization

We solve the 3D Navier–Stokes Equations (NSEs) for a
real and incompressible fluid,

∂u
∂t

+ (u · ∇)u + ∇� − ν∇2u = 0 (1)

∇ · u = 0 (2)

where Equations (1) are the momentum conserva-
tion equations, Equation (2) is the mass conservation
equation, t is time, ν kinematic viscosity, u the velocity
vector whose components are u, v, and w, along the x, y
and z directions respectively, andψ is the kinematic pres-
sure p/ρ, where p is the fluid pressure and ρ is the fluid
density, constant in space and time for an incompressible
fluid. The governing equations are solved for the u andψ
unknowns.

The problem is well-posed if we correctly assign the
initial and boundary conditions (ICs and BCs, respec-
tively). With respect to the BCs, we assign either (a)
all the velocity components (essential BCs) or (b) the
stress vector (natural BCs) or (c) a combination of the
previous ones called free-slip BC. Let � be the compu-
tational domain and � its boundary surface, and let us
call �u, �σ and �m the three non-overlapping portions,
where BCs (a), (b) and (c) respectively apply, such that
� = �u +�σ+ �m. We formulate the BCs as

u(x) = g(x), x ∈ �u, t ≥ 0 (3a)

σ (x) =
(
� − 2ν

∂un
∂n

)
n − ν

(
∂un
∂τ1

+ ∂uτ1
∂n

)
t1

− ν

(
∂un
∂τ2

+ ∂uτ2
∂n

)
t2 , x ∈ �σ , t ≥ 0 (3b)

un(x) = 0 and τ (x) = 0, x ∈ �m, t ≥ 0 (3c)

where x is the coordinate position vector, g is the veloc-
ity vector assigned at the boundary, n is the unit outward
vector normal to the boundary, and t1 and t2 are two
other orthogonal unit vectors such that n, t1 and t2 give
the reference frame attached to the tetrahedron face, τ is
the stress tangent vector component in the t1-t2 plane, un,
uτ1 and uτ2 are the corresponding u components. In the
following sections, for simplicity’s sake we assume only
hydrostatic stress occurring along �σ , which is equiva-
lent to assuming the stress normal to the boundary plane
and to neglecting all the viscous terms in Equation (3b).

The assigned ICs on the system, in the �̄ ( �̄=� ∩
�) domain are

u = u0 with ∇ · u0 = 0 and � = �0 at t = 0
(4)

As mentioned in section 1, we apply a predic-
tor–corrector projection procedure, sequentially solving
one predictor and two corrector problems. The predic-
tor and the first corrector steps deal with the momentum
equations, while in the second corrector step we com-
bine the mass and momentum conservation equations to
enforce the divergence-free condition.

In the next sections, time levels tk, tk+1/3, tk+2/3, tk+1

represent the beginning of the generic time iteration,
the end of the prediction step, as well as the end of the
first and second corrector steps, respectively, and tk+1

also marks the end of the time iteration. Superscripts k,
k+1/3, k+2/3 and k+1 mark the values of the variables
(i.e. u and ψ) at the corresponding time levels.

In vector-matrix form, we write themomentumEqua-
tions (1) as

∂U
∂t

+ ∇ · F(U) = B(U)+ ∇ · E(U) (5a)

U = (
u v w

)T , F(U) = (
F1 F2 F3

)T ,
E(U) = (

E1 E2 E3
)T

B(U) = −(∇x� ∇y� ∇z�
)T (5b)

F1 =
⎛
⎝uu
uv
uw

⎞
⎠

T

,F2 =
⎛
⎝vu
vv
vw

⎞
⎠

T

,F3 =
⎛
⎝wu
wv
ww

⎞
⎠

T

(5c)

Ej =
(
ν
∂u
∂xj

ν
∂v
∂xj

ν
∂w
∂xj

)T

j = 1, 2, 3 x1 = x, x2 = y, x3 = z (5d)
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In the framework of a fractional time step procedure,
we set

E = Ek
−1/3 + (E − Ek

−1/3
) (6a)

B = Bk + (B − −Bk) (6b)

and we split Equation (5a) into

∂U
∂t

+ ∇ · F = ∇ · Ek−1/3 + Bk (7a)

∂U
∂t

= ∇ · E − ∇ · Ek−1/3 (7b)

∂U
∂t

= B − Bk (7c)

where Ek−1/3 marks the matrix E computed at the end
of the first correction system of the previous time iter-
ation and Bk marks the pressure gradient term at the
beginning of the new time step. Functional analysis easily
shows that, due to the stationarity of the pressure gradi-
ent term, Equation (7a) form a fully convective system,
with only one characteristic line passing through the (x,
t) point, while the systems in Equation (7b) and (7c) are
fully parabolic (Aricò et al., 2007; Aricò & Tucciarelli,
2009). Integrating in time, from Equation (7) we get

Uk+1/3 − Uk + ∇ ·
∫ �t

0
Fdt = ∇ · Ek−1/3�t + Bk�t

(8a)

Uk+2/3 − Uk+1/3 = ∇ · Ek+2/3�t − ∇ · Ek−1/3�t
(8b)

Uk+1 − Uk+2/3 = (Bk+1 − Bk)�t (8c)

where system (8a) is the prediction step (PS), (8b) and
(8c) are the first and second correction systems (CS1 and
CS2), respectively.

Summing systems (8), the integral of the original sys-
tem (1) is formally obtained. Further details on time
discretization will be given below in section 3.

2.2. RT0 spatial tetrahedral discretization of
pressure and velocity

We discretize the computational domain by means of
NT non-overlapping tetrahedrons (named also elements)
and assume the velocity field in each tetrahedron e,
ue(x) ∈ Xe, whereXe is the lowest-orderRaviart-Thomas
(RT0) space (Raviart & Thomas, 1977), such that

ue(x) =
∑
j=1,4

ωe
j Q

e
j with ω

e
j =

(x − xej )

3We
(9)

where ωe
j are the space basis functions of Xe, We is the

volume of tetrahedron e, xej is the coordinate vector of the

jth node of e, and Qe
j is the volumetric flux crossing the

face of e opposite to the jth node. Important properties
of the space Xe are that ∇ · ue is constant over e, ue · nj
is constant over each face j of e, and nj represents the
unit outward vector orthogonal to face j of tetrahedron
e (Raviart & Thomas, 1977). As a result of these proper-
ties, each velocity component of the RT0 discretization
is piece-wise linear inside each element, and a constant
velocity can occur only if the sum of the four fluxes is
equal to zero. In this case the divergence is zero inside
each element and mass continuity is both locally and
globally conserved if the fluxes of two neighboring ele-
ments are always opposite one another in the common
face.

In PS and CS1, the pressure gradient B is kept con-
stant. In CS2, its correction is computed as the solution
of a conservative problem, where the velocity is opposite
to the pressure gradient. We will show in the following
that, at the end of each step PS, CS1 and CS2, the com-
puted velocity is piece-wise constant in each element,
but the fluxes Qe

j in Equation (9) are opposite at the
common face of two neighboring elements only at the
end of CS2. Assuming a piece-wise linear pressure as
initial condition, because the CS2 velocity correction is
conservative with respect to the pressure correction, the
pressure gradient remains piece-wise constant in all the
steps. It can also be shown that the pressure correction
computed in CS2 step by the MHFE is continuous along
the element faces only in their circumcenters. Because
pressure changes only in CS2 step, the same condition
holds also for the pressure at the end of each time step.
See in Figure 1 the pressure contour lines inside the face
common to two neighboring tetrahedrons.

The presentation of the solution of each step in Equa-
tions (8) is restricted first to the hypothesis of a mesh
with an Extended Delaunay Property (EDP), as defined
in Aricò et al. (2011), and then generalized in section 4
to the case of totally irregular meshes. In an EDP mesh,
the circumsphere of any tetrahedron does not include
any other node inside it (Forsyth, 1991; Joe, 1986; Let-
niowski, 1992) and, with reference to Figure 2, the fol-
lowing conditions hold for two neighboring tetrahedrons
e and ep,

(v2 − v1) · v1 < 0 if |v1| > |v2| (10a)

(v1 − v2) · v2 < 0 if |v2| > |v1| (10b)

where vectors v1 and v2 are defined as

v1 = (xect − xe,epcf ), v2 = (xepct − xe,epcf ) (10c)

xe(ep)ct is the coordinate vector of the circumcenter of
tetrahedron e (ep), xe,epcf is the coordinate vector of the
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Figure 1. RT0 kinematic pressure contour lines in the face common to two tetrahedrons.

Figure 2. (a) The two tetrahedrons e and ep satisfy the EDP. (b)
The two tetrahedrons do not satisfy the EDP.

circumcenter of the face shared by tetrahedrons e and ep.
Moreover, the following condition holds for the bound-
ary elements e and the corresponding boundary face

v · n < 0 (11)

where n is the unit vector normal to the boundary face
and oriented in the outward direction, v is defined as

v = (xect − xecf ) (12)

and xecf is the coordinate vector of the circumcenter of
the boundary face. In Figure 2(a,b), tetrahedrons e and
ep satisfy and do not satisfy the EDP, respectively.

Wewill prove in the next sections that in an EDPmesh
the system matrix, associated with the solution of the
steps (8b) and (8c), is an M-matrix (Letniowski, 1992),
and this avoids nonphysical local extrema in the com-
puted solution (Forsyth, 1991; Letniowski, 1992). The
same matrix property will be saved in the more general
case of non-Delaunay meshes by changing the control
volumes of the momentum equations, as will be shown
in section 4.

3. MAST-RT0 solution in the case of Delaunay
meshes

3.1. Prediction step

The step (8a) is solved by assuming, in each tetrahedral
element, constant viscous and pressure gradient forces
and by integrating convective inertial terms according to
the MArching in Space and Time (MAST) procedure.
MAST computes the solution of convective problems,
with only one characteristic line passing through each (x,
t) point of the domain, in the framework of a fractional
time step procedure.

In MAST the three discretized momentum equations
are solved in each element, uncoupled from the other
ones. To this end, at the beginning of each kth time step,
all the elements are marked with an index Rk

e∈Rk, called
‘rank’. The rank of an element e is an integer which is
a unit greater than the ranks of all the neighboring ep
elements with a common face crossed by a flux entering
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element e from element ep. All the elements are initial-
ized at the beginning of each new time iterationwith rank
zero, and vectorRk is computed starting from the bound-
ary elements with all interior fluxes oriented outward,
which are set with rank 1. The rank is then computed
for the elements that are neighbors to elements with rank
greater than zero and have no interior faces crossed by
fluxes oriented inward. The procedure is continued until
all the elements of the computational domain have rank
greater than zero. After computation of Rk, all the ele-
ments are sorted according to increasing rank values and
solved one after the other.

During the solution of element e, the integral of the
velocity momentum is computed and the mean momen-
tum fluxes are added as external forces to the neigh-
boring elements ep with entering flux and higher rank.
TheMAST solution of the prediction problem along time
step k can be viewed as a reduction of the computational
domain carried out after the solution of each boundary
element, through extraction of the latter. This reduction
makes it possible to solve originally internal elements
according to the information carried on by character-
istic lines rooted at the boundary of internal elements
that behave like domain boundaries. In the example of
Figure 3, cell 1 is solved using the information at x0 car-
ried on by the first characteristic line. After interpolation
in time of the solution at the cell boundary in x1, the sec-
ond cell is solved using information carried on by the
second characteristic line rooted between tk and tk+1 at
x1. In this way, the sought after solution is not subject
to the Courant restriction on the maximum size of the
time step.

In Aricò et al. (2013b) it has been shown that the basic
requirement for the application of the MAST algorithm
is the existence of a continuous ‘anisotropic scalar poten-
tial’ P of the flow field, such that the velocity can be
computed as

u = −K0∇P (13)

Figure 3. Sketch of MAST algorithm in the 1D case.

whereK0 is a (3× 3) positive-definite tensor. In the same
paper it is shown that for any incompressible and vis-
cous fluid this potential always exists and streamlines are
always open but, due to numerical discretization, it is
possible in the computed velocity field to get one or more
loops where a single element without a flux entering from
other elements of the same loop does not exist. In this
condition the rank vector cannot be computed and, to
apply MAST, we need to select a ‘cut’ face between two
elements of the same loop with a small flux, which has to
be assumed constant during the time step and equal to
its initial value. See in Appendix 1 a very fast procedure,
namedOrder, aimed to compute theRk vector, where the
flux entering from the ‘cut’ face of a loop is treated as
a known boundary flux. After application of the Order
algorithm, an open source subroutine ‘QUICKSORT’ in
the package KB071 can be used to order the elements
according to their rank values.

After integration in space, the prediction step of
Equation (7a) can be written, for any element e, as∫

We

∂u
∂t

dw +
∫
We

u · ∇udw +
∫
We

∇�kdw

− ν

∫
We

∇2uk−1/3dw = 0 e = 1, . . . ,NT (14)

with the symbols specified as above. The first and second
terms on the l.h.s. of Equation (14) represent the local and
convective inertial terms, respectively, the third term is
the force over the element due to the gradient of the kine-
matic pressure and the last term accounts for the effect of
the viscous forces.

From now on we will call j (in the local element refer-
ence, j = 1, . . . , 4) the face that tetrahedron e shares with
its neighboring ep, and jp (in a local reference too) the
face that ep shares with e. The symbols σ e

j and nj repre-
sent the area and the unit outward orthogonal vector of
the jth face of tetrahedron e, respectively.

Due to the cell sorting operation at the beginning
of each time iteration, the solution of the momentum
Equation (14) for element e with rank Rke , depends (a)
on the incoming momentum fluxes from neighboring ep
elements with Rkep < Rke , (b) on the kinematic pressure
gradients and viscous terms, which are known from the
solution of the previous time step, and (c) on the initial
solution inside the element at the beginning of the new
time step. For these reasons, the PDEs system in Equation
(14) can be regarded as a small (3× 3)OrdinaryDifferen-
tial Equations (ODEs) system to be solved for the velocity
components in element e.

Starting from a piecewise constant in space (P0) and
divergence-free velocity distribution inside each tetra-
hedron e, uke ∈ Xe and uke ∈ P0,e, we assume that at the
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generic time τ inside the time step (0 ≤ τ ≤ �t) the
velocity value is

ue(τ ) = uke +�ufe(τ ) (15)

where �ufe(τ ) ∈ P0,e and �ufe(0)=0. Applying the
Green lemma to the second integral on the l.h.s. of
Equation (14), the equilibrium ODEs system for tetrahe-
dron e can be written as

d(�ufe)
dτ

We +
∑
j=1,4

ϕejM
e,out
j (τ )+

∑
j=1,4

(1 − ϕej )M
e,in
j

+ Sk� ,e + VFk−1/3
e = 0 e = 1, . . . ,NT (16)

where Me,out
j (τ ) is the leaving momentum flux from

tetrahedron e to the neighboring tetrahedron ep, Me,in
j

is the mean incoming momentum flux entering tetrahe-
dron e crossing the jth face, computed along with the
solution of the previous elements, ϕej = 1 for faces shared
by elements with higher rank or boundary faces with pos-
itive flux, otherwise ϕej = 0. Sk� ,e and VFk−1/3

e are the
sum of the kinematic pressure and the viscous forces over
the four faces of tetrahedron e, respectively, computed in
the previous time step as specified in sections 3.2 and 3.3.
ODEs systems (16) are sequentially solved, one for each
element, starting from the tetrahedrons with the small-
est Rke value, and proceeding to the tetrahedrons with
higher Rke values. We call this step MAST forward step
(MAST-fs). To solve system (16) from time 0 to time
�t, we use an explicit Runge–Kutta (RK) code (Brankin
et al., 1993). This code adopts an internal time sub-
grid, selected within the interval [0 – �t], on which the
approximate ODEs solution is computed. The position of
the nodes of the grid is automatically selected by the RK
code according to a local error estimation (Brankin et al.,
1993).

Due to the change of the velocity vector during the
ODEs system solution we could obtain, in intermediate
times between 0 and�t, momentum fluxes moving from
the element e into other ep elements with a lower rank
(Rk

ep < Rke). To avoid this, we approximate the leaving
momentum flux in the MAST-fs forward step as

Me,out
j (τ ) = σ e

j ue(τ )max[0,ue(τ ) · nj] (17)

with the symbols specified above. To restore the force
integral neglected in the integration of Equation (14) due
to the limit of the momentum flux assigned in Equation
(17), after the end of the forward step we again per-
form the solution of the 3-ODEs system in sequential
way, assuming as initial ue value the one computed at
the end of the MAST-fs forward step. In MAST back-
ward solution (MAST-bs) we start from the tetrahedrons

with the highestRk
e value and proceed to the tetrahedrons

with smaller Rke values, saving only the inertial terms of
Equation (14), that is:

d(�ube )
dτ

We +
∑
j=1,4

(1 − ϕej )M
e,out
j (τ )

+
∑
j=1,4

ϕejM
e,in
j = 0 (18a)

ue(τ ) = uke +�ufe(�t)+�ube (τ ) (18b)

where �ube (τ ) ∈ P0,e, �ube (0) = 0, and the momentum
fluxesMe,out

j (τ ) are computed as for the forward step.
During the solution of the ODEs system (16) or (18),

we compute the solution at nG selected number of Gauss
integration points chosen in the interval [0 –�t].

At the end of the solution of each ODEs system (16)
or (18), in theMAST-fs andMAST-bs problems we com-
pute the momentum fluxes coming into element e from
the neighboring ep tetrahedrons as

Me,in
j = −Mep,out

jp (19)

Mep,out
jp =

∑
l=1,nG

ϕ
ep
jp σ

ep
jp max[0,uep(τl) · nj]∑

m=1,4 {ϕepm σ ep
m max[0,uep(τl) · nm]}

× Mep,out
jp (τl)wl in MAST - fs (20a)

Mep,out
jp

=
∑

l=1,nG

(1 − ϕ
ep
jp ) σ

ep
jp max[0,uep(τl) · njp]∑

m=1,4 {(1 − ϕ
ep
m )σ

ep
m max[0,uep(τl) · nm]}

× Mep,out
jp (τl)wl in MAST - bs (20b)

where τ l and wl are the time and the weight associated
with the lth Gauss point, with 1 ≤ l ≤nG.

The final velocity uk+1/3 is computed by Equation
(18b) for τ =�t. uk+1/3 is piecewise constant and
divergence-free inside each tetrahedron (uk+1/3

e ∈ P0,e),
but the fluxes crossing the same face of two neighboring
elements will not be opposite for the two elements in the
computed solution and this disrupts mass conservation
at time level tk+1/3.

In the MAST-fs problem, we compute the boundary
momentum fluxes of tetrahedron e, different from zero,
as

Me,in
j (τ ) = σ e

j gj,e(τ )(gj,e(τ ) · nj)
if (gj,e(τ ) · nj ≤ 0 and j ∈ �u) (21a)

Me,in
j (τ ) = σ e

j ue(τ )min(0,ue(τ ) · nj)
if (uke · nj ≤ 0 and j ∈ �σ ) (21b)
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Me,out
j (τ ) = σ e

j ue(τ )max(0,ue(τ ) · nj) if (uke · nj ≥ 0
(21c)

where gj,e is the velocity vector assigned on the face j ∈
�u of element e.

In theMAST-bs problem, we compute the same fluxes
as

Me,in
j (τ ) = σ e

j ue(τ )min(0,ue(τ ) · nj)
if (uke · nj > 0 and j ∈ �σ ) (22a)

Me,out
j (τ ) = σ e

j ue(τ )max(0,ue(τ ) · nj) if uke · nj < 0
(22b)

3.1.1. Parallel solution of theMAST prediction step
The solution of the MAST PS in 1D problems is inher-
ently serial and cannot be achieved with parallel comput-
ing. On the opposite, in 2D and 3D problems it could be
possible to carry out simultaneously the solution of all the
elements with the same rank using several CPU physical
processors, just saving the average entering momentum
fluxes computed for each element in both the forward
and backward steps. See in Figure 4(a) the scheme of
the MAST-fs solution, for a computer with five proces-
sors, of a single time step of a model with 13 elements,
ordered in two groups of rank 1 (7 elements) and rank 2
(6 elements). The white circles represent the initial value
of the variables and the black circles the final one. TT is
the computational time required to each processor for the
solution of one element. Observe that, due to the need
of solving all the elements with rank 1, before proceed-
ing to the other ones, some processors have to solve 4
elements before moving to the next time step, where in
any traditional marching in time method (MTM) only
a maximum of 3 elements would be required, as shown
in Figure 4(b). An additional time ε is also required, for

each time step, for the rank computation and the element
ordering in the MAST-fs (see Figure 4(a)). These last
operations, as better specified in the tests run in section 5
with millions of elements, require a computational time
two or three order of magnitude smaller than TT .

For meshes with at least a few hundred thousand ele-
ments, the maximum number Nr,k of elements within
a single rank Rke at time step k is usually much larger
than the available physical processors in standard com-
puters. For test 3 (in section 5.3.3), we estimate Nr,k and
predict the corresponding computational time of paral-
lelization of the MAST algorithm for different number of
processors.

3.2. The CS1 correction step

By integrating Equation (8b) in space, we obtain the fol-
lowing system, to be solved for the three unknown veloc-
ity components uk+2/3

e ∈ P0,e, from time level tk+1/3 to
time level tk+2/3,

uk+2/3
e − uk+1/3

e

Δt
We −

∫
We

νΔ2u
k+2/3
e dw

= −
∫
We

νΔ2u
k−1/3
e dw e = 1, . . . ,NT (23)

Application of theGreen lemma to the volume integral
on the l.h.s. of Equation (23) leads to

−ν
∫
We

Δ2u
k+2/3
e dw = −ν

∑
j=1,4

σ e
j
∂uk+2/3

e

∂n

= ν
∑
j=1,4

σ e
j
uk+2/3
e − uk+2/3

ep

de,ep

(24)

Figure 4. Solutionof a single time step. (a) Schemeof theparallel solutionof theMAST-fs (orMAST-bs). (b) Schemeof theparallel solution
of traditional MArching in Time method (MTM).
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where ∂u
∂n is the derivative of the velocity vector along the

direction orthogonal to face σ e
j , de,ep is the distance of

the circumcenters of the two neighboring tetrahedrons e
and ep, computed as specified in Equation (25), and the
other symbols have already been defined. We compute
the distance as

de,ep = (|v1 − v2|)sign
where sign

= 1 if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

((v2 − v1) · v1
< 0 .and. |v1| > |v2|)

.or.
((v1 − v2) · v2
< 0 .and. |v2| > |v1|)

sign = −1
otherwise

(25)

where vectors v1 and v2 have been defined in Equation
(10c). For each tetrahedron e we set

�
�ue = uk+2/3

e − uk+1/3
e with��ue ∈ P0,e (26)

such that the r.h.s. of Equation (24) becomes,

ν σ e
j
uk+2/3
e − uk+2/3

ep

de,ep

= ν σ e
j

(
uk+1/3
e − uk+1/3

ep

de,ep
+ �

�ue −�
�uep

de,ep

)
(27)

On the r.h.s. of Equation (23) we assume

−ν
∫
We

Δ2u
k−1/3
e dw � −ν

∫
We

Δ2ukedw

= ν
∑
j=1,4

σ e
j
uke − ukep
de,ep

(28)

We set

�ũe = uk+1/3
e − uke with�ũe ∈ P0,e (29)

and merging Equation (29) with Equation (27) we get

ν σ e
j
uk+1/3
e − uk+1/3

ep

de,ep

= ν σ e
j

(
uke − ukep
de,ep

+ �ũe −�ũep
de,ep

)
(30)

According to Equations (26)-(30), system (30) can be
rewritten as

�
�ue
Δt

We + ν
∑
j=1,4

σ e
j
�
�ue −�

�uep
de,ep

= ν
∑
j=1,4

σ e
j
�ũe −�ũep

de,ep
(31)

and solved for the components of the velocity correction
�
�ue.
The matrix of system (31) is sparse, symmetric and

positive definite, with diagonal and off-diagonal coeffi-
cientsMCS1

e,e andMCS1
e,ep equal to

MCS1
e,e = We

Δt
+ ν

∑
j=1,4

σ e
j

1
de,ep

,MCS1
e,ep = −νσ e

j
1

de,ep
(32)

and the e-th element of the source term vector is the r.h.s.
of Equation (31).

For the boundary face j ∈ �u of tetrahedron e, the
velocity at the circumcenter of the neighboring tetrahe-
dron is replaced in the system of Equation (31) by the
boundary velocity at the circumcenter of the boundary
face and the distance de,ep with the distance dej between
the tetrahedron and the face circumcenter, defined as

dej = −v · n (33)

where v and n have been already defined in Equations
(11) and (12). If the boundary face belongs to�u and con-
dition gj,e(t

k+1/3) · nj ≤ 0 holds, the velocity correction
�
�uj at the boundary face, from tk+1/3 to tk+2/3, is

�
�uj = gj,e(t

k+2/3)− gj,e(t
k+1/3)

= gj,e(t
k +�t)− gj,e(t

k +�t) (34a)

equal to zero along with the corresponding off-diagonal
matrix coefficient in Equation (32), and the contribution
to the source term becomes

�ũj = gj,e(t
k+1/3)− gj,e(t

k) = gj,e(t
k +�t)− gj,e(t

k)

(34b)
If the boundary face belongs to �u and condition

gj,e(t
k+1/3) · nj > 0 holds, the boundary velocity at time

tk+1/3 is assumed to be the tetrahedral element velocity
uk+1/3
e , that implies��uj = gj,e(t

k +�t)− uk+1/3
e and

�ũj = uk+1/3
e − uke (35)

If the boundary face belongs to �σ or to �m, for sim-
plicity’s sakeweneglect the viscous tangent stress compo-
nents, alongwith the terms in Equation (31) proportional
to the viscosity.

If the EDP is satisfied (see section 2), due to Equations
(11)-(12), the diagonal and off-diagonal coefficients in
Equation (32) are positive and non-positive, respectively,
such that the M-matrix property of the matrix is always
guaranteed (Forsyth, 1991; Letniowski, 1992).
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Weadopt a preconditioned conjugate gradientmethod
to solve system (31), using incomplete Cholesky
factorization2 and a compressed row storage (CRS) for-
mat, which makes it possible to save a lot of computa-
tional memory allocation (we store the main diagonal
and the upper off-diagonal matrix coefficients). Since the
matrix coefficients only depend on the geometrical vari-
ables, as well as the value of the kinematic viscosity, the
matrix is only factorized once, before the time iterations
loop starts, and this makes it possible to save a lot of
computational effort.

After system (31) is solved, the velocity in each tetra-
hedron is updated according to Equation (26). At time
level tk+2/3 for each tetrahedron e we compute the sum
FVk+2/3

e of the viscous forces over its four faces as

FVk+2/3
e =

∑
j=1,4

ν σ e
j
uk+2/3
e − uk+2/3

ep

de,ep
(36)

and we neglect the change in it occurring along the next
CS2 correction step.

At the end of the CS1 problem, the continuity of the
fluxes crossing the same face of twoneighboring elements
e and ep is not yet restored, and, similarly to uk+1/3

e at the
end of the PS problem (section 3.1), uk+2/3

e ∈ P0,e, but
mass conservation is not satisfied.

The spatial discretization of the derivative ∂u
∂n pro-

posed in Equation (24) is similar to the one presented by
Younes et al. (2004, 2006) for the 2DMixedHybrid Finite
Elementmethod lumped in the circumcenter of triangles.
Unlike the formulation of the present work, Younes et al.
(2004) proved that their corresponding 3D discretiza-
tion exists only for regular tetrahedrons, and cannot be
extended to a general 3D tetrahedral discretization.

3.3. The CS2 correction step

Substituting Equations (5b) in Equations (8c), we get

uk+1 − uk+2/3

Δt
+ ∇(�k+1 −�k) = 0 (37)

which has to be solved to restore the flux continuity dis-
rupted in the prediction and in the first correction steps.
To this end we set

uk+1 − uk+2/3
RT0 = ∇η�t (38)

where η is an unknown function with the same dimen-
sions as ψ , and uk+2/3

RT0 ∈ Xe is the RT0 velocity at time
level tk+2/3 computed by Equation (9) in each tetra-
hedron e as function of the weight mean flux Fl

k+2/3
e,j

through face j of e, given by

Fl
k+2/3
j,e =

Flk+2/3
j,e Wep − Flk+2/3

jp,ep We

We + Wep
j, jp = 1, . . . , 4

(39)
where Flk+2/3

j,e is the flux due to velocity uk+2/3
e crossing

face j of e, and Flk+2/3
jp,ep is the flux due to velocity uk+2/3

ep
crossing the same face jp of ep. From Equation (39), flux
Fl

k+2/3
j,e is opposite for the two neighboring tetrahedrons

e and ep and the weight of each flux is inversely pro-
portional to the volume of the corresponding element.
Because the common face can be thought of as the basis
of the two tetrahedrons, this is equivalent to assuming
an inverse proportionality of the flux with respect to the
corresponding height of the tetrahedron. According to
Equation (9), we get

uk+2/3
e,RT0 =

∑
j=1,4

ωe
j Fl

k+2/3
j,e (40)

with the symbols already specified. Since the sum of the
four fluxes Flk+2/3

j,e j = 1, . . . , 4 is not zero, mass conser-

vation is not satisfied by the uk+2/3
RT0 velocity field in tetra-

hedron e, ∇ · uk+2/3
RT0 �= 0 and uk+2/3

RT0 ∈ P1,e (piecewise
linear inside the tetrahedrons), as explained in section
2.2. By subtracting uk from both members in Equation
(38), we get

∇η�t + uk+2/3
RT0 − uk = uk+1 − uk (41)

Taking the divergence of Equation (41), we get

�t∇2η + ∇ · (uk+2/3
RT0 − uk) = ∇ · (uk+1 − uk) (42)

Integration of Equation (42) and application of the
Green lemma leads to

�t
∑
j=4

σ e
j
ηe − ηep

de,ep
+
∑
j=4

(Fl
k+2/3
j,e − Flkj,e) = Fle (43)

where the first term is the flux of the vector uk+1 −
uk+2/3
RT0 , Fl

k+2/3
j,e is defined in Equation (39), Flkj,e is the flux

crossing face j of element e due to velocity uk ∈ Xe and
Fle is the total flux of the vector (uk+1-uk) crossing the
surface of element e. For the gradient of η we adopt the
spatial discretization already applied in section 3.2 for the
velocity gradient (see Equation (24)).

To compute η, we impose the condition that both uk+1

and uk are divergence-free, with uk+1 ∈ Xe and uk+1 ∈
P0,e, which implies that in Equation (43) the flux Fle of
the velocity (uk+1 – uk) crossing the total surface of the
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tetrahedron is zero (see in Figure 5 a 1D sketch of velocity
vectors inside tetrahedron e). The resulting system is

�t
∑
j=4

σ e
j
ηe − ηep

de,ep
+
∑
j=4

(Fl
k+2/3
j,e − Flkj,e) = 0 (44)

Equations (44) form a well-conditioned linear system
to be solved for the η unknowns. Thematrix of the system
is sparse, symmetric and positive-definite. Diagonal and
off-diagonal coefficientsMCS2

e,e andMCS2
e,ep are, respectively,

MCS2
e,e =

∑
j=1,4

σ e
j
�t
de,ep

,MCS2
e,ep = −σ ep

j
�t
de,ep

(45a)

and the sameM-property of the coefficients of thematrix
of the system of CS1 holds (see section 3.2). The e-th
coefficient of the source term vector is

StCS2e = −
∑
j=4

(Fl
k+2/3
j,e − Flkj,e) (45b)

The solution of system (44)-(45) is performed in the
same way as for system (31)-(32). In the present case
too, matrix coefficients only depend on the geometrical
variables and time step size, so that the system matrix is
factorized only once before the time iteration loop starts,
saving a lot of computational time.

We call

Flηj,e = �tσ e
j
ηe − ηep

de,ep
(46)

the flux crossing face j of e due to the gradient of η. This
flux is continuous for the two neighboring elements e and

Figure 5. 1D sketch of velocity vectors inside tetrahedron e.

ep, with Flηj,e = −Flηjp,ep. For the tetrahedron e we com-
pute the final velocity at time level tk+1 from the fluxes on
the l.h.s. of Equations (44), coupled with Equation (46),
as

uk+1
e =

∑
j=1,4

ωe
j (Fl

k+2/3
j,e + Flηj,e − Flkj,e)+ uke

=
∑
j=1,4

ωe
j (Fl

k+2/3
j,e + Flηj,e) (47)

Because the fluxes in the brackets of Equation (47) are
continuous, mass conservation is satisfied along all the
faces of each tetrahedron and inside each tetrahedron.

The pressure gradient at time level tk+1 is finally com-
puted from Equation (37) as

∇�k+1
e = uk+2/3

e − uk+1
e

Δt
+ ∇�k

e (48)

Observe, from Equation (38) and from the definition
of uk+2/3

e,RT0 ∈ P1,e given in Equation (40), that the gradi-
ent ∇η and η have respectively a linear and a quadratic
variation inside each element, while the pressure gradient
and the pressure correction in Equation (48) have respec-
tively a linear and a constant variation. From Equations
(48) and (38) we get

∇�k+1
e − ∇�k

e = uk+2/3
e − uk+2/3

RT0
Δt

− ∇η (49)

Equation (49) says that, inside the computational
domain, the gradient of the function η is different from
the gradient of the kinematic pressure correction�k+1

e −
�k

e . Integration of the divergence of both members of
Equation (49) would allow us to compute the pressure at
the element circumcenters. On the other hand, the kine-
matic pressure does not need to be known inside the
domain in order to proceed to the solution of the next
time steps. In section 5.2 we will show how to estimate
the kinematic pressure at the computational nodes only
at a given number of simulation times. If the velocity is
known at the circumcenter of a boundary face belong-
ing to �u, we can set Fl

k+2/3
j,e equal to the corresponding

flux, include it in the r.h.s. of Equation (44) and set the
corresponding flux Flηj,e equal to zero.

Observe that the tangent components of the velocity
computed by Equation (47) are not the same as those
used along the �u boundary surface to compute the vis-
cous boundary forces in the previous CS1 correction step.
This implies a small difference between the computed
boundary face and boundary element velocities.

At the circumcenter of the faces belonging to �σ ,
where the hydrostatic stress boundary condition is set,



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 65

the following Dirichlet type condition is finally assigned
to the corresponding equations

ηc = �k+1
c −�k

c (50)

and the boundary flux Fl
k+2/3
j,e − Flkj,e is computed ‘a pos-

teriori’ from the corresponding equation of system (44).
In all the other boundary faces the corrective flux Flηj,e is
set equal to zero.

After computation of ∇�k+1
e , the sum Sk+1

� ,e of the
kinematic pressure forces over the four faces of tetra-
hedron e, can be computed applying the Green lemma
as

Sk+1
� ,e =

∫
Ωe

n�k+1
e d� =

∫
We

∇�k+1
e dW = ∇�k+1

e We

(51)
Vector Sk+1

� ,e is assumed equal to Sk� ,e in the MAST PS in
the next time iteration (see Equation (16) in section 3.1).

Unfortunately, even if in the 2D case it is always pos-
sible to get a mesh satisfying the EDP as defined in
Equation (11), also for very irregular domain geometries
(Aricò et al., 2011; Aricò & Tucciarelli, 2013; Forsyth,
1991, and cited references), in 3D space it is almost
impossible to obtain a mesh satisfying the EDP and a 3D
Delaunay mesh always has very irregular elements inside
it (e.g. slivers, caps, skinny tetrahedrons, . . . ), which could
affect the stability of the numerical solution (Joe, 1986).
This implies the need to extend the methodology pre-
sented in all section 3 to the more general case of non-
Delaunay meshes.

3.4. TheMAST-RT0 pseudo code in the case of
Delaunaymeshes

(1) Compute model constants, including CS1 and CS2
matrix coefficients by means of Equations (32) and
(45a). Perform matrix factorization and set k=1

(2) Given uk and ∇�k at time tk, apply the MAST
prediction step (PS)
• Compute velocity variation �ufe(�t) and �ube
(�t) by solving Equations (16) and (18).

• Update uk+1/3
e = ue(�t) for each tetrahedron e

by means of Equation (18b)
(3) Apply the 1st corrective step (CS1)

• Solve system (31) for the��ue unknowns
• update velocity uk+2/3

e for each tetrahedron e by
means of Equation (26)

(4) Update the viscous forces FVk+2/3
e for each tetrahe-

dron e by means of Equation (36)
(5) Compute fluxes Fl

k+2/3
e,j (uk+2/3) for each face j

(j = 1, . . . , 4) of tetrahedron e by means of Equation
(39)

(6) Apply the 2nd corrective step (CS2)
• Compute ηe for each tetrahedron e by solving

system (44)
• Compute fluxes Flηj,e for each tetrahedron e by

means of Equation (46)
• Update the final velocity uk+1

e for each tetrahe-
dron e according to Equation (47)

(7) Update the gradient of the kinematic pressure
∇�k+1 according to Equation (48)

(8) Compute the kinematic pressure forces Sk+1
� ,e for each

tetrahedron e by means of Equation (51)
(9) Update k with k+1 and go back to point two for the

next time step

4. The numerical procedure for non-Delaunay
meshes

4.1. Tetrahedron clusters

The discretization of the second-order derivative terms
in CS1 and CS2 problems (i.e. Equations (31) and (44))
along a face of the computational mesh shared by two
tetrahedrons with negative distance, as defined in Equa-
tions (25) and (33), can lead to positive off-diagonal
matrix coefficientsMCS1

e,ep andM
CS2
e,ep and a negative contri-

bution to the corresponding diagonal coefficients MCS1
e,e

and MCS2
e,e (see Equations (31)-(32) and (44)-(45)), so

that the diagonal dominance and the M-property of the
matrix system could be lost (Forsyth, 1991; Joe, 1986;
Letniowski, 1992). Moreover, unphysical numerical solu-
tions could arise, corresponding to poorly oriented vis-
cous forces and pressure gradients. To avoid this prob-
lem, we propose the procedure described in the present
section to handle the PS, CS1 and CS2 steps in the case of
non-Delaunay meshes.

Let us consider irregular a face shared by two tetra-
hedrons with a negative distance de,ep between the corre-
sponding circumcenters, as defined in Equation (25). If
one or more irregular faces are present in the mesh, the
EDP condition is no longer satisfied (see section 2.2). We
group all the tetrahedrons in clusters. A cluster is to be
seen as a small non-empty group of neighboring tetrahe-
drons not sharing any irregular face with other clusters.
For example, the two tetrahedrons in Figure 2(b) form
a cluster. Each tetrahedron belongs to a single cluster. A
single tetrahedron e forms a cluster by itself if it has no
irregular faces. In the cluster, we distinguish the external
faces, shared by two tetrahedrons of different clusters,
and the other internal ones. According to the previous
assumptions, all external faces are regular, and in a cluster
composed of a single tetrahedron we do not have internal
faces.



66 C. ARICÒ ET AL.

Let NC be the number of clusters, with NC ≤ NT . The
general strategy is to write, instead of the dynamic equi-
librium of each single tetrahedron, the dynamic equilib-
rium of each cluster as a function of a single velocity
variation and finally to correct all the tetrahedron veloc-
ities inside the clusters, after the CS2 correction step, in
order to guarantee flux continuity through all the faces.

From now on, indices m and mp refer to two neigh-
boring clusters, NT ,m is the number of tetrahedrons e
belonging to the m-th cluster, Next

f ,m and Nint
f ,m are the

number of external and internal faces of the cluster m,
l and r are the local counters of the external and inter-
nal faces of the cluster, respectively (l = 1, . . . , Next

f ,m,
r = 1, . . . , Nint

f ,m), and Wm is the volume of the cluster,
Wm = ∑

e=1,NT,m
We (see also Figure 6).

4.2. The PS and CS1 problems for non-Delaunay
meshes

Solution of the MAST prediction step, as explained in
section 3.1, is not affected by the existence of irregular
faces. On the other hand, after solution of all tetrahe-
drons, we need to evaluate, for each cluster, a single
velocity variation corresponding to the cluster dynamic
equilibrium. Call upk+1/3

e ∈ P0,e the predicted tetrahe-
dron velocity computed at time tk+1/3 as described in
section 3.1 foruk+1/3

e in the case ofDelaunaymeshes, and
�ũm the unknown velocity variation between time levels
tk+1/3 and tk to be assigned to clusterm.

For each tetrahedron e of cluster m, we can write the
correction velocity upk+1/3

e − uke ∈ P0,e by summing the
time integrals of the ODEs system (16) and (18), to get

(upk+1/3
e − uke)We

= −
⎛
⎝∑

j=1,4
M̄e,out

j +
∑
j=1,4

Me,in
j + Sk� ,e + FVk−1/3

e

⎞
⎠

×�t (52)

where the symbols have been defined in section 3.1.
M̄e,out

j has been computed in the forward step if Rk
e < Rkep

and in the backward step otherwise, M̄e,in
j has been com-

puted in the forward step ifRk
e > Rkep and in the backward

step otherwise. Observe that, in all internal faces of the
cluster, the following condition holds

M̄e,out
j = −M̄ep,in

jp (53)

This implies that, summing the Equation (52) of all the
tetrahedrons of the same cluster, we get∑

e
(upk+1/3

e − uke)We

= −
∑
e

⎛
⎝∑

j=1,4
M̄e,out

j

+
∑
j=1,4

Me,in
j + Sk� ,e + FVk−1/3

e

⎞
⎠�t

Figure 6. (a) 2D sketch of case Nintf ,m = NT ,m – 1. (b) 2D sketch case of Nintf ,m = NT ,m. Blue solid lines are traces of the external faces of the
cluster, and red dashed lines are traces of the internal faces of the cluster.



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 67

e = 1, . . . ,NT ,m (54)

where all the momentum fluxes belonging to internal
faces as well as the corresponding viscous forces, sum
zero and can be deleted. Equation (54) can be seen as
the equilibrium equation of the cluster m, which can be
approximated by setting

�ũm =
∑

e (up
k+1/3
e − uke)We

Wm
with �ũm ∈ P0,m

(55)
and by replacing in each tetrahedron the previously com-
puted upk+1/3

e velocity with

uk+1/3
e = uke +�ũm e = 1, . . . ,NT ,m (56)

In the CS1 step, solution of Equation (31) in not EDP
meshes is hindered by the negative distances de,ep holding
between the two circumcenters of tetrahedrons sharing
an irregular face. To circumvent the problem,wewrite the
viscous forces equilibrium of the cluster, where the exter-
nal forces act always on regular external faces. Following
the same procedure applied in section 3.2, integrating in
space and time Equation (7b) and applying the Green
lemma, we get the following system,

∑
e=1,NT,m

uk+2/3
e − uk+1/3

e

Δt
We

+ ν
∑

l=1,Next
f ,m

σm
l
uk+2/3
e − uk+2/3

ep

de,ep

= ν
∑

l=1,Next
f ,m

σm
l
uk+1/3
e − uk+1/3

ep

de,ep
m = 1, . . . ,NC

(57)

where ep is the tetrahedronof cluster r, sharingwith tetra-
hedron e the l-th external face of clusterm, with area σm

l ,
distance de,ep is defined in Equation (25), and the other
symbols have been previously specified.

We set, for the tetrahedrons of clusterm

uk+2/3
e = uk+1/3

e +�
�um

e = 1, . . . ,NT ,m with��um ∈ P0,m (58)

and, substituting Equations (56) and (58) in Equation
(57), we obtain 3 systems, one for each of the unknown
components of��um,

�
�um
Δt

Wm + ν
∑

l=1,Next
f ,m

σm
l
�
�um −�

�ur
de,ep

= ν
∑

l=1,Next
f ,m

σm
l
�ũm −�ũr

de,ep
m = 1, . . . ,NC (59)

Matrix of system (59) has the same properties of
matrix of system (31), is symmetric and positive definite,
its diagonal and off-diagonal coefficientsMCS1

e,e andMCS1
e,ep

are, respectively,

MCS1
m,m = Wm

Δt
+ ν

∑
l=1,Next

f ,m

σm
l

1
de,ep

,MCS1
m,r = −νσm

l
1

de,ep

(60)
and the m-th coefficient of the source term vector is
the r.h.s. of Equation (57). Diagonal and off-diagonal
matrix coefficients in Equation (60) are positive and
non-positive, respectively, since all the distances de,ep are
positive.

We deal with the BCs of the CS1 problem as described
in section 3.2. Observe that the previously described pro-
cedure fails to guarantee in the clusters a positive distance
from a boundary element circumcenter and the circum-
center of its boundary face. On the other hand, to guaran-
tee a positive distance from the boundary we can simply
avoid any internal node with a distance from the circum-
center of each triangular boundary face smaller than the
radius of the circle passing through the three nodes of the
same boundary triangle. This can be easily done with a
methodology that will be shown in section 5.1.

After solution of system (59), the velocity in the tetra-
hedrons e of each cluster m is updated according to
Equation (58). At time level tk+2/3 we need to com-
pute for each tetrahedron e the sum FVk+2/3

e of the vis-
cous forces over its four faces, including the irregular
ones, needed for the next computational time step. To
do that we assume, coherently with the approximation of
Equation (58), the local inertia per unit volume in each
tetrahedron, to get

FVk+2/3
e = − (u

k+1/3
e − uke)
�t

We − Sk� ,e

−
∑
j=1,4

M̄e,out
j +

∑
j=1,4

Me,in
j (61)

where the symbols of the momentum fluxes are the same
used for the r.h.s of Equation (52).

As it happens for the CS1 problem in the EDP meshes
(section 3.2), at time level tk+2/3, the continuity of the
fluxes crossing the same face of two neighboring ele-
ments e and ep belonging to two different clusters, is not
yet restored, uk+2/3

e ∈ P0,e, and mass conservation is not
satisfied.
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4.3. The CS2 problem for non-Delaunaymeshes

In non-Delaunay meshes the solution of the CS2 prob-
lem is split into two sub-steps. In the first sub-step we
apply the procedure described in section 3.3, including
in the mass balance the fluxes crossing the external faces
of the cluster instead of the fluxes of the four faces of the
single tetrahedron (as in Equations (43) and (44)), and
assuming a single η value for the circumcenters of all the
tetrahedrons inside the cluster. System (44) becomes

�t
∑

l=1,Next
f ,m

σ e
l
ηm − ηmp

de,ep
+

∑
l=1,Next

f ,m

(Fl
k+2/3
l,e − Flkl,e)

= 0 m = 1, . . . ,NC (62)

with the symbols already specified and distance de,ep is

always positive according to section 4.1. We call Fl
k+2/3
l,e

the flux crossing face l as defined in Equation (39) over
face j (j = 1, . . . , 4) of e, and Flkl,e the flux due to velocity
uke ∈ Xe crossing the same face.

The diagonal and off-diagonal matrix coefficients for
system (62a)MCS2

m,m andMCS2
m,mp are, respectively,

MCS2
m,m =

∑
l=1,Next

f ,m

σ e
l
�t
de,ep

,MCS2
m,mp = −σm

l
�t
de,ep

(63a)

and the sameM-property of the coefficients of thematrix
of the system of CS1 holds (see section 3.2). The m-th
coefficient of the source term vector is

StCS2m = −
∑

l=1,Next
f ,m

(Fl
k+2/3
l,e − Flkl,e) (63b)

The solution of the system formed by Equations
(62)–(63) guarantees flux continuity on the external faces
and global mass conservation inside the cluster, but
because the velocitiesuk+1

e inside each cluster do not gen-
erally belong to a single RT0 space, it does not guarantee
zero divergence condition inside the cluster, unless the
cluster includes only one tetrahedron.

For clusters composed of more than one tetrahe-
dron, we apply the following procedure. We change, in
Equation (47), the fluxes (Fl

k+2/3
j,e + Flηj,e) crossing the

internal faces of the cluster, with the unknown flux Flintj,e ,
to get

uk+1
e =

∑
j=1,4

ωe
j [ϕ̃jFl

int
j,e + (1 − ϕ̃j)(Fl

η
j,e + Fl

k+2/3
j,e )]

(64)
where Flintj,e is the flux crossing face j of element e, which
is internal to the cluster, and ϕ̃j is 1 if face j is internal to

the cluster, and 0 if it is external. We also assume

Flintj,e = −Flintjp,ep (65)

and we look for the optimal set of internal fluxes that: (1)
guarantees the condition uk+1

e ∈ P0,e for all the elements
of the cluster and, as a consequence of constraint (65),
mass conservation too, (2) minimizes the kinetic energy
inside the cluster.

To get the required Flintj,e fluxes, in the second sub-
step of the CS2 problem, for each cluster we solve the
following linearly constrained quadratic minimization
problem,

Minimize 	

= 1
2

∑
e=1,NT,m

⎧⎨
⎩
⎡
⎣∑
j=1,4

ωe
j (ϕ̃jFl

int
j,e

+ (1 − ϕ̃j)(Fl
η
j,e + Fl

k+2/3
j,e ))

⎤
⎦
2

We

⎫⎬
⎭ (66)

subject to Equation (65) and∑
j=1,4

(ϕ̃jFlintj,e + (1 − ϕ̃j)(Fl
η
j,e + Fl

k+2/3
j,e ))

= 0e = 1, . . . ,NT,m−1 (67)

where functional 	 is the total kinetic energy of the clus-
ter, given by the sum of the kinetic energy of the single
tetrahedrons inside it, and the term in the square brack-
ets in Equation (66) is the velocity uk+1

e , according to
Equation (64). The last mass conservation Equation (67)
in tetrahedron NT,m has been skipped because solving
Equation (62) guarantees globalmass conservation inside
the cluster and this implies that any Equation (67) can be
written as a linear combination of all the other ones. A
very efficient way to solve problem (66)-(67) is to com-
pute the Lagrangian multipliers, along with the required
unknowns, as the solution of the following unconstrained
quadratic minimization problem,

MinimizeFI,λ 	

= 1
2

∑
e=1,NT,m

⎧⎪⎨
⎪⎩
∑
j=1,4

⎡
⎢⎣ωe

j

⎛
⎜⎝ϕ̃j ∑

s=1,Nint
f ,m

δse,jFIs

+ (1 − ϕ̃j)(Fl
η
j,e + Fl

k+2/3
j,e )

⎞
⎟⎠
⎤
⎥⎦
2

We

⎫⎪⎬
⎪⎭

+
∑

e=1,NT,m−1

⎧⎪⎨
⎪⎩λe

∑
j=1,4

⎛
⎜⎝ϕ̃j ∑

s=1,Nint
f ,m

δse,jFIs
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+ (1 − ϕ̃j)(Fl
η
j,e + Fl

k+2/3
j,e )

⎞
⎟⎠
⎫⎪⎬
⎪⎭ (68a)

where FIs is the sth internal flux, occurring between tetra-
hedrons e and ep of the same clusterm, assumed positive
if going from the element with the smallest index to the
element with the highest index, and

δse,j = 1 if face s belongs to element e and e < ep
(68b)

δse,j = −1 if faces belongs to element e and e > ep
(68c)

δse,j = 0 if face s does not belong to element e (68d)

and Flintj,e = δsj,eFIs, if s the index of the face between
elements e and ep. The unknowns λe are the so-called
Lagrangian multipliers. Setting at zero the derivatives of
functional 	 with respect to FIs and λe, we get the linear
system

∑
e=1,NT,m

⎧⎪⎨
⎪⎩
∑
j=1,4

⎡
⎢⎣∑
q=1,3

ωe
j,q

⎛
⎜⎝ϕ̃j ∑

s=1,.Nint
f ,m

δse,jFIs

+ (1 − ϕ̃j)(Fl
η
j,e + Fl

k+2/3
j,e )

⎞
⎟⎠ωe

j,q

⎤
⎥⎦ ϕ̃jδre,jWe

⎫⎪⎬
⎪⎭

+
∑

e=1,NT,m−1

⎧⎨
⎩λe

∑
j=1,4

(ϕ̃jδ
r
e,j)

⎫⎬
⎭

= 0 with r = 1, . . . ,Nint
f ,m (69a)

∑
j=1,4

⎛
⎝ϕ̃j ∑

s=1,...,NS,m

δse,jFIs + (1 − ϕ̃j)(Fl
η
j,e + Fl

k+2/3
j,e )

⎞
⎠

= 0 for e = 1, . . . ,NT,m−1 (69b)

Observe that Equation (69b) represent the mass con-
servation equations for all the tetrahedrons of cluster
m. Moreover, if Nint

f ,m = NT,m-1 (see the 2D sketch in
Figure 6(a)), system (69b) can be solved independently
of Equation (69a) and there is only one set of inter-
nal fluxes that satisfy the mass conservation equations.
If Nint

f ,m ≥ NT,m (see the 2D sketch in Figure 6(b)),
we also have to compute Equation (69a) along with
Equation (69b), because we need to select, among all
the sets of internal fluxes that satisfy mass conservation,

the one that minimizes the kinetic energy within the
cluster.

Equation system (69) has no special structure and has
to be solved with direct solvers, but it is small and only
includes a few tetrahedrons of the mesh, so its solution
requires a negligible computational burden.

After Equations (64)-(69) are solved, in non-Delaunay
meshes we cannot compute the gradient ∇�k+1

e of each
tetrahedron by applying Equation (48) with the com-
puted uk+1

e velocity. The reason is that, after the first sub-
step of the CS2 problem, the computed solution satisfies
the momentum and continuity equations of the clusters
(not of the single tetrahedrons) and only the fluxes cross-
ing the external faces of the clusters are computed under
these constraints. The fluxes crossing the internal faces of
each cluster are computed, during the second sub-step of
the CS2 problem, by satisfying the continuity equations
only. For these reasons, we compute ∇�k+1

e by applying
the following general procedure.

We look for a new velocity ucm common to all the
tetrahedrons of the cluster. Let 	′ be a scalar functional,
defined as

	′ =
∑

l=1,Next
f ,m

(ucm · nl − f lu,l)
2 (70a)

f lu,l = (Fl
k+2/3
l,e + Flηl,e)
σm
l

(70b)

where flu,l is the flux per unitary area crossing the l-th
external face of the cluster, nl is the unit outward vector
normal to face l, and all the other symbols have already
been defined. In the case of a cluster made up of a single
tetrahedron, according to Equation (47) flu,l is the flux
per unit area of the velocity uk+1

e crossing the external l
face.

The relationship of ucm with the pressure gradient
∇�k+1

e is given by Equation (48), where uk+1
e is replaced

by ucm in the case of NT,m > 1. Observe that the sec-
ond step of the CS2 problem does not change the fluxes
crossing the external faces and that the pressure gradi-
ent ∇�k+1

e is not affected by the corrected fluxes of the
internal faces. To compute ucm we minimize 	′, which is
equivalent to setting at zero the partial derivatives of the
functional with respect to the three components of ucm.
The size of the resulting system is (3× 3), it does not have
a special structure, and, as for system (69), is solved using
direct solvers.

Once ∇�k+1
e is computed, we obtain the kinematic

pressure force on each element of the cluster by setting
in all the elements

Sk+1
� ,e = ∇�k+1

e We (71)
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Vector Sk+1
� ,e is assumed equal to Sk� ,e in the MAST PS of

the next time iteration (see Equation (16) in section 3.1).

4.4. TheMAST-RT0 pseudo code in the case of
non-Delaunaymeshes

(1) Compute cluster geometry and model constants,
including CS1 and CS2 matrix coefficients by means
of Equations (60) and (63a). Perform matrix factor-
ization and set k = 1

(2) Given uk and ∇�k at time tk, apply the MAST
prediction step (PS)
(i) Compute velocity variation�ufe(�t) and�ube

(�t) by solving Equations (16) and (18) for
each tetrahedron e

(ii) update upk+1/3
e = ue(�t) for each tetrahedron

e by means of Equation (18b)
(iii) compute one velocity variation �ũm for each

clusterm according to Equation (55)
(iv) update velocity uk+1/3

e for each tetrahedron e
of each clusterm by means of Equation (56)

(3) Apply the 1st corrective step (CS1)
(i) Solve system (59) for the ��um unknown for

each clusterm
(ii) update velocity uk+2/3

e for each tetrahedron e of
each clusterm by means of Equation (58)

(4) Update the viscous forces FVk+2/3
e for each tetrahe-

dron e by means of Equation (61)
(5) Compute fluxes Fl

k+2/3
l,e (uk+2/3) for each external

face l of tetrahedron e of each cluster m, by means
of Equation (39)

(6) Apply the 2nd corrective step (CS2)
(i) Compute ηm for each clusterm by solving sys-

tem (62)
(ii) Compute the fluxes Flintj,e of the internal faces j

of tetrahedrons e of the cluster m according to
Equations (66)-(69)

(iii) Compute fluxes Flηj,e of the cluster external
faces by means of Equation (46)

(iv) Update the final velocity uk+1
e for each tetrahe-

dron e according to Equation (64)
(v) Compute ucm by solving the minimization

problem in Equations (70)
(7) Update the gradient of the kinematic pressure

∇�k+1 according to Equation (48), where uk+1
e is

replaced by ucm
(8) Compute the kinematic pressure forces Sk+1

� ,e
for each tetrahedron e by means of Equations
(70)–(71)

(9) Set k = k+1 and go to point 2 for the solution of the
next time step.

5. Model applications

5.1. Construction of the computational mesh and
preliminarymodel operations

As mentioned in section 3.3, in the 3D space it is almost
impossible to obtain a mesh satisfying the EDP given in
Equations (10)–(11) (Forsyth, 1991; Joe, 1986 and cited
references). Some algorithms exist (e.g. Qhull in Mat-
lab3), which generate a 3D tetrahedral mesh forming a
convex hull with arbitrary node location. Unfortunately,
the generated mesh has very irregular elements inside
it (e.g. slivers, caps, skinny tetrahedrons, . . . ), along with
several distances de,ep (see Equation (25)) strictly equal or
close to zero. These irregularities always lead to instability
and poor accuracy of the numerical solution (Letniowski,
1992).

The computational mesh used by the present solver is
created by an off-line procedure, using two open source
mesh generators, Netgen (Schöberl, 1997) and Tetgen
(Hang, 2015).

We discretize first the computational domain with
tetrahedrons using themesh generatorNetgen. The tetra-
hedral elements of the output mesh are quite regular
in shape and size, even if they do not satisfy the EDP.
Netgen also allows us to change the size of the tetra-
hedrons to discretize the internal subdomains prop-
erly, with quite smooth transitions of element size. Net-
gen also allows ‘user-friendly’ handling of the boundary
domain.

Let NNET be the number of nodes of the Netgen
mesh. For each boundary triangle bt we compute the
corresponding circumsphere �bt whose diametral plane
contains bt, and we check if any internal node (i.e. not
belonging to boundary faces) is internal to �bt . At the
end of this operation, we remove all the internal nodes
inside the circumsphere of the boundary triangles (usu-
ally 0.02-0.03% of NNET). We call the number of the
removed nodes Nr. The ensemble of the (NNET – Nr)
nodes is the input for the mesh generator TETGEN,
which regenerates the mesh domain starting from the
nodal positions of the (NNET –Nr) nodes, still preserving
the input domain boundaries. In order to optimize some
aspect-ratio and shape tetrahedrons conditions, Tetgen
can also insert additional Steiner nodes (Hang, 2015).
The present numerical solver uses as its input the Tetgen
output mesh.

Preliminary model operations concern (1) generation
of the topology of the tetrahedrons and clusters of tetra-
hedrons, saved in separate arrays, (2) calculation of the
matrix coefficients of systems (59)–(60) and (62), and
(3) their factorization before the time iterations loop
start.
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5.2. Computation of the kinematic pressureψ and
of the body forces

LetN be the number of nodes of the computationalmesh.
We approximate the function ψ according to a Galerkin
Finite Element approach,

� =
∑
i=1,N

wi�̃i (72)

where �̃i is the unknown nodal pressure value and wi
is the Galerkin shape function in node i. Once ∇�k+1

e
has been obtained inside each tetrahedron e as specified
in sections 3.3 and 4.3, we minimize the following scalar
functional,

	� =
∑

e=1,NT

(∇�̃k+1
e − ∇�k+1

e )
2

(73a)

rewritten as

	� =
∑

e=1,NT

⎡
⎣∑
q=1,3

{∑
i=1,N

(
∂wi

∂xq
�̃i − (∇xq�

k+1)e

)2
}⎤⎦

q =
⎧⎨
⎩
1
2
3

⇒ xq =
⎧⎨
⎩

x
y
z

(73b)

where (∇xq�
k+1)e is the q-th components of ∇�k+1 in

tetrahedron e, previously computed.	� is a convex func-
tion and its minimum is obtained by setting at zero the
partial derivatives of Equation (73b) with respect to the
nodal �̃k+1

i values,

∂	�
∂�k+1

i
= 0 i = 1, . . . ,N (74a)

Equation (74a) can be written, according to Equation
(72), as

∂	�
∂�̃k+1

i
=

∑
e=1,NT

⎡
⎣∑
q=1,3

⎧⎨
⎩
∑
l=1,N

(
−∂wi

∂xq
�̃l

− (∇xq�
k+1)e

)
∂wi

∂xq

⎫⎬
⎭
⎤
⎦ = 0 (74b)

Equation (74b) represents a linear system solved for
the �̃l unknowns, with an (N x N) system matrix that is
sparse, symmetric and positive-definite. Over the bound-
ary faces of �σ , we assign Dirichlet BCs for �̃l according
to the prescribed boundary values. The diagonal and

off-diagonal coefficients are

M�
i,i =

∑
q=1,3

∂wi

∂xq
∂wi

∂xq
,M�

i,l =
∑
q=1,3

∂wi

∂xq
∂wl

∂xq
(75a)

and the i-th coefficient of the source term vector is

S�i = −(∇xq�
k+1)e

∂wi

∂xq
(75b)

We solve system (74)–(75) as the previous ones in
sections 3.2, 3.3, or 4.2 and 4.3.

The forces over the bodies are easily computed as,

F = F� + Fν with F�

=
∑

b=1,Nbf

⎛
⎝σb

(∑
fb=1,2,3 �̃fb

)
nb

3

⎞
⎠ (76a)

and

Fν =
∑

b=1,Nbf

(
ν
(uk+1

e − gb)
dej

σb

)
if b ∈ �u (76b)

Fν = 0 if b ∈ �σ ∨ �m (76c)

where Nbf is the number of triangular faces of the body,
σ b and nb are the area of the b-th body face and the unit
normal vector coming into the body, respectively, �̃fb is
the value of the kinematic pressure at fb-th node of the
body face, gb is the velocity vector assigned to the face,
uk+1
e is the velocity vector in the tetrahedron e with the

b-th body face, and dej is the distance between the circum-
center of tetrahedron e and the circumcenter of the body
face, computed as in Equation (33).

5.3. Test cases

The proposed numerical solver was applied to four dif-
ferent numerical tests. In the first test we analyzed the
spatial and temporal accuracy of the model, as well as
the required computational costs. In tests 2 and 3 we
present two well-known literature applications, the lid
driven cavity and the flow past a fixed sphere, accord-
ing to different values of the Reynolds number. In the last
test the real case of hemodynamic blood flow inside an
abdominal aorta affected by an aneurysm is solved by the
model inside a very irregular boundary.

For post-processing of the model outputs, we used the
open source program Paraview.4

5.3.1. Taylor-Green vortices test
We first analyzed the accuracy of the proposed solver by
comparison of the computed results with the known ana-
lytical solution of the Taylor–Green vortex test (Taylor &
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Green, 1937). The velocity vector components and the
pressure field are (Taylor & Green, 1937),

u = cos(αx) sin(αy)e−βt

v = − sin(αx) cos(αy)e−βt w = 0

p = −cos(2αx)+ cos(2αy)
4

e−2βt

a = π

2
, β = 2νa2, ν = 0.01

m2

s
(77)

such that the r.h.s. of Equation (1) is always zero. The
initial conditions are found by setting t = 0 in Equation
(77). We solve this problem up to 2 s in the domain [−3,
3]2 x [0, 0.25], by setting time-dependent essential BCs
for the velocity, according to Equation (77), in the cir-
cumcenters of the boundary triangular faces of the lateral
walls of the domain (�uin section 2.1), as well as the
hydrostatic stress in the nodes of the upper and lower
wall (�σ in section 2.1). The initial velocity vectors are set
in the circumcenters of each tetrahedron, and assumed
piecewise constant, while the initial kinematic pressures
are set in the nodes. The initial values of the forces S0� ,e
andVF0e of the momentum equations of the MAST PS of
the first time iteration are analytically found as

S0� ,e = ∇�0
eWe (78a)

VF0e = νΔ2u0e We (78b)

where∇�0
e is computed fromEquation (77) in the center

of mass of tetrahedron e.
We discretize the domain using 5 meshes with mean

element characteristic size hl (l = 1, . . . , 5) ranging from
0.00996m to 0.066m. hl is the mean value of the length
of the sides of the tetrahedrons.

The discretized ICs uke = ue,0 do not satisfy the
momentum and continuity equations of each element at
time t = 0, as ue,0 ∈ P0,e, but the flux continuity through

each face is missing. In order to circumvent this problem,
before the beginning of the transient flow simulationwith
the BCs given by Equation (77), we compute the steady-
state asymptotic solution corresponding to the BCs at
t = 0 and we use it as ICs of the transient problem. We
assume that the steady-state solution is attained when the
L2 norm of the relative scatters of the computed u, v, w,
and ψ , compared with the ones of the previous iteration,
are small and the following tolerance holds√√√√ ∑

e=1,NT

(
u(v,w)k+1

e − u(v,w)ke
u(v,w)ke

)2

< 1e − 04 .and.

√√√√∑
i=1,N

(
�k+1

i −�k
i

�k
i

)2

< 1e − 04

(79)

See in Tables 1 and 2 the L2 and L∞ norms of the rela-
tive errors of the steady-state x and y velocity components
and kinematic pressure with respect to the values com-
puted at the face circumcenters according to Equation
(77), for meshes with different size. The error of the z
velocity component is negligible compared to the x and y
errors.

We also assume that the relative error errl, computed
for the mesh with mean element size hl, is proportional
to a power of hl,

errl = (hl)rc,s (80a)

where rc,s is the spatial rate of convergence, obtained by
comparing the relative errors of two sequential sizes hl
and hl+1 as

rc,s =
log

(
L2errl
L2errl+1

)
log

(
hl
hl+1

) (80b)

The rate of convergence is shown in Tables 1 and 2.
The computed rc,s of the velocity components are slightly

Table 1. Test 1. L2 norms of relative errors and spatial rate of convergence.

hl [m] L2 err u L2 err v L2 errψ rc ,su rc ,sv rc ,s ψ

6.60E–02 1.36E–02 1.37E–02 2.58E–02 – – –
2.47E–02 4.45E–03 4.47E–03 6.24E–03 1.14E+00 1.14E+00 1.45E+00
1.69E–02 2.82E–03 2.84E–03 3.50E–03 1.19E+00 1.18E+00 1.50E+00
1.28E–02 2.03E–03 2.05E–03 2.28E–03 1.18E+00 1.17E+00 1.55E+00
9.96E–03 1.50E–03 1.51E–03 1.53E–03 1.22E+00 1.21E+00 1.59E+00

Table 2. Test 1. L∞ norms of relative errors and spatial rate of convergence.

hl [m] L∞ err u L∞ err v L∞ errψ rc,s u rc,s v rc,s ψ

6.60E–02 3.04E–02 3.07E–02 5.77E–02 – – –
2.47E–02 9.98E–03 1.00E–02 1.40E–02 1.13E+00 1.14E+00 1.44E+00
1.69E–02 6.32E–03 6.35E–03 7.85E–03 1.19E+00 1.18E+00 1.50E+00
1.28E–02 4.56E–03 4.59E–03 5.10E–03 1.18E+00 1.17E+00 1.55E+00
9.96E–03 3.37E–03 3.39E–03 3.44E–03 1.22E+00 1.21E+00 1.59E+00
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Figure 7. Test 1. Iso-contours of the relative error of the norm of (a) u, (b)ψ .

Figure 8. Test 1. Investigation of the spatial and temporal accuracy. (a) Norms of relative errors vs. meanmesh size, (b) norms of relative
errors vs. time step size.

greater than 1 (ranging from 1.14–1.22) due to the piece-
wise approximation of u and v inside each tetrahedron.
The convergence rate obtained for the kinematic pres-
sure is greater (ranging from 1.45–1.59) and the rea-
son could be the nodal pressure distribution inside each
tetrahedron, as described in section 5.2. In Figure 7 we
plot the iso-contour lines, over a horizontal plane with
z = 0.125m, of the relative errors of the norm of u and
of ψ obtained for the coarsest mesh. Close to the lateral
boundary walls, the errors of the velocity decrease, due
to the imposed BCs. On the opposite, the highest val-
ues of the relative errors of the kinematic pressure are
close to the boundary lateral walls, since the Dirichlet
BCs of ψ have been imposed over the upper and lower
horizontal walls.

In Figure 8(a) we plot the norms of the relative errors,
along with the 1st order convergence line.

With this test we also analyzed the time convergence
rate of the algorithm. In order to cancel out the error
due to the spatial discretization, we assumed as the ref-
erence solution the one obtained over the finest mesh
(with mean size hl = 0.00996m), and a time step size
�t = 0.001 s. At simulation time 2 s, we compared with
the reference solution the numerical solutions obtained
over the same mesh, assuming five different �t values,
ranging from 0.0015 s to 0.02 s. The L2 and L∞ norms
of the relative errors are shown in Tables 3 and 4, along
with the time rate of convergence, rc,t, computed by com-
paring the relative errors of two sequential time step sizes
�tl and�tl+1
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Table 3. Test 1. L2 norms of relative errors and time rate of convergence.

�t [s] L2 err u L2 err v L2 errψ rc ,tu rc ,tv rc ,t ψ

0.02 1.50E–03 1.51E–03 1.53E–03 – – –
0.015 1.06E–03 1.06E–03 1.07E–03 1.20E+00 1.22E+00 1.26E+00
0.01 6.33E–04 6.33E–04 6.47E–04 1.28E+00 1.28E+00 1.24E+00
0.005 2.60E–04 2.61E–04 2.74E–04 1.28E+00 1.28E+00 1.24E+00
0.0025 1.08E–04 1.08E–04 1.16E–04 1.26E+00 1.27E+00 1.25E+00
0.001 3.39E–05 3.45E–05 3.63E–05 1.27E+00 1.25E+00 1.27E+00

Table 4. Test 1. L∞ norms of relative errors and time rate of convergence.

�t [s] L∞ err u L∞ err v L∞ errψ rc ,tu rc ,tv rc ,t ψ

0.02 3.37E–03 3.39E–03 3.44E–03 – – –
0.015 2.39E–03 2.38E–03 2.39E–03 1.19E+00 1.22E+00 1.26E+00
0.01 1.42E–03 1.42E–03 1.45E–03 1.29E+00 1.28E+00 1.24E+00
0.005 5.83E–04 5.84E–04 6.15E–04 1.28E+00 1.28E+00 1.24E+00
0.0025 2.44E–04 2.43E–04 2.59E–04 1.26E+00 1.27E+00 1.25E+00
0.001 7.62E–05 7.73E–05 8.12E–05 1.27E+00 1.25E+00 1.27E+00

rc,t =
log

(
L2errl
L2errl+1

)
log

(
�tl
�tl+1

) (80c)

The rate of convergence rc,t is always greater than 1,
ranging from 1.21–1.28, even if the model is 1st order
accurate in time. This could be due to a twofold reason
related to the MAST-PS, (1) the use of the internal time
sub-grid during the ODEs solution, and (2) a polyno-
mial time approximation order of the leavingmomentum
fluxes, using nG = 3 Gauss points. In Figure 8(b) we plot
the norms of the relative errors along with the 1st-order
convergence line.

For the finest mesh, for each time step adopted for
the time convergence rate analysis, we computed the
maximum CFL number, as

CFLmax = max
(
�t
3√We

||ue||
)

e = 1, . . . ,NT (81)

CFLmax ranges from 2.56 (for �t = 0.02) to 0.0128 (for
the reference solution).

We also investigated the computational (CPU) times
required by the different model steps, using a single
Intel Core i7 at 3.49GHz. Because computational times
strongly depends on the adopted computer and on the
specific algorithm coding, we focused on the correlation
existing between the the computational time of the single
step and the number of elements.We set the average CPU
time per iteration and per model step equal to

CPUstep = exp(c)NT
β (82a)

and we assumed that a single step is efficiently solved as
much as the β power exponent in the correlation 82(a) is
small and close to 1. Equation (82a) in logarithmic space

becomes

ln(CPUstep) = c + β ln(NT) (82b)

See in Figure 9 the CPUstep time required for the solu-
tion of the single model steps, i.e. cell sorting (CPUS),
solution of the MAST-PS step (CPUMPS), solution of the
CS1 and CS2 steps (CPUCS1 and CPUCS2, respectively),
as well as the kinematic pressure computation (CPU�).
MAST-PS is the most demanding one, but in this case
the CPU is simply proportional to NT , and in Equation
(82a) power β is equal to one. The CPU required by the
other model steps grows in the logarithm space more
than linearly with the number of tetrahedrons due to
their ‘non-explicit nature’, since solution of large linear
systems is involved, but β is smaller than 1.20 for the CS2
step, and smaller than 1.12 in all the other ones. The sort-
ing cell operation is the least demanding algorithm step
and its CPU time is 2–3 magnitude orders smaller than
the MAST-PS one.

5.3.2. Lid driven cavity flow at different Reynolds
numbers
In this test the flow is confined inside a square cavity, and
it is driven by the upper wall displacement in horizontal
direction. The set-up of the test is shown in Figure 10(a).
Cavity is [0, L] x [0, 0.2] x [0, L] with L = 1m. At the
east, west and bottom walls we set zero velocity with no
slip BCs (�u), while at the front and rear walls we set free
slip BCs (�m), andwe impose a constant in time horizon-
tal velocity equal to 1m/s over the top wall with no slip
BCs (�u). We set zero kinematic pressure in the lowest
left corner with coordinates (0, 0, 0), as shown in Figure
10(a). ICs are zero velocity and pressure inside domain.

Let the Reynolds number be

Re = vmaxL
ν

(83)
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Figure 9. Test 1. Computational time of model steps.

Figure 10. Test 2. (a) set-up of the numerical test and BCs. (b) section of the mesh with a cutting plane.

where vmax = 1m/s. We run simulations for Re = 100,
400 and 1000.

The imposedhorizontal velocity of the upper lid drives
the fluid inside the cavity into a vortical flow. The result-
ing complex flow structure shows a large central vortex
and small recirculating zones close to the cavity corners,
whose shape depends on the value of Re.

We discretize the domain with 87,740 tetrahedrons
and 17,388 nodes (see in Figure 10(b) an intersec-
tion of the mesh with a cutting plane), resulting
in 84,385 clusters. The time step size �t is set to
0.025 s, and the maximum computed CFL values
are 2.18, 2.08 and 1.96 for Re = 100, 400 ad 1000,
respectively.
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Figure 11. Test 2. Velocity streamlines (left panels), vorticity (ωz) (central panels), iso (kinematic) pressure (right panels). Top Re = 100,
middle Re = 400, bottom Re = 1000.

In Figure 11 we plot the streamlines, as well as the
vorticity and the iso-pressure fields. The minimum and
maximum pressures are computed respectively at the
upper-left and upper-right corners, where a discontinuity
in the boundary condition occurs. Observe that, because
of this singularity, no ad-hoc handling is required in the
model, unlike what is found in Botella and Peyret (1998),
Boppana and Gajjar (2010), Kuhlmann and Romanò
(2019), and cited references. The minimum pressure val-
ues are associated with the foci of the vortices, due to
the high centrifugal acceleration occurring around them.
We obtain good agreement with the literature results (e.g.
Dalal et al., 2008 and cited references), and the results
provided by the present solver match very well the ones
of the 2D benchmark solutions given byGhia et al. (1982)
and shown in Figure 12. The results in Figures 11 and 12

refer to the cutting plane (x-z) with y = 0.1m (i.e. the
diametral plane of the domain). The results obtained for
other cutting planes (x-z) are very similar to the previous
ones, and for brevity are not shown here.

Observe that the value of the vertical velocity compo-
nent computed forRe = 400 and x = 0.9063 provided by
Ghia et al. (1982) (wGhia = −0.23827) (see table 2 of the
referred paper) is quite different from the result obtained
by the present solver. On the other hand, the wGhia result
is missing in most of the papers where the lid-driven test
is used as bench mark, including the papers reporting
the solution by Ghia et al. (1982) for many other points
(e.g. Xue & Burton, 2013 and many others), whereas in
other papers the mentioned wGhia vertical velocity com-
ponent does not match the result, like in Dalal et al.
(2008).
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Figure 12. Test 2. x velocity component (top panel), z velocity component (bottom panel) (Nomenclature ‘Ref.’ are the results by Ghia
et al. 1982).

5.3.3. Flow past a stationary sphere at different
Reynolds numbers
In the past few decades, a plethora of experimental, the-
oretical and numerical studies of viscous flow past a sta-
tionary sphere S have been presented to investigate wake
structures. The Reynolds number, defined as

Re = U0Ds

ν
(84)

based on the uniform undisturbed flow velocity U0, on
the diameter of the sphere Ds, and on the surrounding

fluid viscosity ν, is used as a parameter to classify the
wake structure (e.g. Johnson & Patel, 1999; Ploumhans
et al., 2002; Sakamoto & Haniu, 1990, and cited refer-
ences). The wake structure has been a strongly debated
topic, and several controversial findings have been
obtained by authors in the literature studies (e.g. John-
son & Patel, 1999; Ploumhans et al., 2002; Sakamoto &
Haniu, 1990, and cited references). According to exper-
imental and numerical studies, above 270 < Re < 290,
the flowbecomes unsteady but periodic, and vortex shed-
ding starts around Re = 300 (e.g. Johnson & Patel, 1999;
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Figure 13. Test 3. Pattern of vortex shedding. Left panels Re = 300, (a) side view, (b) upper view. Right panel (c) 480 < Re < 800 (from
Sakamoto & Haniu 1990)).

Figure 14. Test 3. (a) 3D view of the domain. (b) setup and BCs of the numerical runs.

Ploumhans et al., 2002; Sakamoto & Haniu, 1990, and
cited references), with formation of hairpin vortices (as
shown in Figure 13, from the experimental studies by
Sakamoto andHaniu (1990)). By progressively increasing
Re, the vortices start to intertwine with each other, and
above Re = 500 periodicity is lost (e.g. Johnson & Patel,
1999; Ploumhans et al., 2002; Sakamoto & Haniu, 1990,
and cited references). For a more comprehensive review,
we refer the readers to the cited works.

In the research referred to here we investigated the
flow structures around a stationary sphere for Re = 300
and 600. The fluid is assumed to be water. In Figure
14 we plot the 3D view of the domain and the setup
of the numerical test. We assume the sphere S, with
Ds = 0.0254m, symmetrically placed inside a large
cylinder C with diameter DC = 0.3m (� 12 Ds) and
length 1.1m (� 43.5Ds). The center of S is located 0.15m
(� 6 Ds) downstream of the inflow upstream face of C.
At the upstream inflow section of C we set u uniform
and constant in time (U0, 0, 0), and the same velocity is

imposed at the lateral walls of C in such a way that the
flow around S is only weakly affected by the walls. Zero
pressure is assumed at the downstream outflow section.
Over the surface of S we assume no-slip BC. We assume
flow at rest and zero pressure inside C at t = 0.

The mesh size is refined in zone I (around S and
downstream of it, as shown in Figure 14(a)) in order to
reproduce the strong velocity gradients close to the sur-
face of S and the fluid vortices in the wake. A larger mesh
size is adopted for the rest of the domain (zone II in
Figure 14(a)). Themesh size (defined as in test 1) used for
zones I and II is 0.00055 and 0.0128m, respectively, with
a smooth transition between the two zones. The total
number of tetrahedrons in the mesh is 2,309,771, with
2,243,199 clusters and 392,850 nodes, and the surface of
S is discretized with 4332 triangles.

Unfortunately, description of initiation of vortex shed-
ding is most often ignored in numerical studies. In
physical experiments, initiation of vortex shedding is
generated by flow instabilities amplifying small flow
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disturbances (Sungsu, 2000). Such disturbances include,
among others, asymmetric domain geometry, vibrations
of the pipe, non-uniformity and turbulence of the inflow
velocity, non-uniform roughness of the pipe walls and
sphere surface, . . . (Sungsu, 2000). All these sources are
missing in numerical experiments, and, for a station-
ary sphere inside a symmetric domain, symmetric steady
solution are attained even for Reynolds numbers at
which experimental unsteady vortex shedding has been
detected (Sungsu, 2000). In numerical experiments, vor-
tex shedding could be generated by (1) computational
truncation and round-off errors, strongly dependent on
the characteristics of the numerical solver and the com-
puter, or (2) specifically introduced numerical perturba-
tions (Sungsu, 2000). Examples of such numerical per-
turbations can be found, for example, in Ploumhans et al.
(2002), Sungsu (2000) and cited references.

We performed a first series of simulations at Re = 300
without numerical perturbations, with an impulsive start
of the inflow velocity. After rapid changes during the
early stages of the process, the flow characteristics con-
verted to a stationary solution. In Figure 15 we plot
the streamlines of the stationary flow field in the (x-y)
plane. After the early transient process due to the impul-
sive flow start, we computed the stationary values of
drag and lift coefficients CD and CL listed in Table 5.
These were obtained as CD = Fx/(1/2ρU0πD2

S/4) and

CL = Fy/(1/2ρU0πD2
S/4), where Fx and Fy are the x

and y components of the total force, sum of the pres-
sure and the viscous forces. The streamlines in the
(x-z) plane are almost symmetrical, and the mean-in-
time value of the side coefficient CS, obtained as CS =
Fz/(1/2ρU0πD2

S/4), is 1.34e-05.
It is important to underline that CD and CL are in very

good agreement with the mean in time values provided
by literature studies, which are reported in Table 5.

Similarly to Ploumhans et al. (2002), the most effi-
cient method for the present solver to trigger vortices has
been, after the impulsive flow start, to set the y velocity
component

v = sin(π(τ ∗ −3))
U0

4
with τ∗ = tU0/DS (85)

in the interval 3 ≤ τ∗ ≤ 4, along the inflow section and
the lateral walls of C. The time step size used for the sim-
ulations is 0.05 s and the maximum computed value of
the CFL number is 3.5.

In Figure 16 we plot the 3D view of the vorticity struc-
tures identified by the Q-criterium (Hunt et al., 1988).
In Figures 17 and 18 we show the velocity streamlines
and the iso-contour lines of the kinematic pressure in the
(x-y) and (x-z) planes, respectively. The time difference
among the panels is one quarter of a period, and after
the fourth panel (3/4 of period), the cycle repeats again.

Figure 15. Test 3, Re = 300. Velocity streamlines in the (x–y) plane, stationary case.

Table 5. Test 3. Values of the drag and lift coefficients.

CD [–] CL [–]

Mean value Amplitude value Mean value Amplitude value

Present solver without perturbation 0.67043 – −0.0675 –
Present solver with perturbation (Equation (85)) 0.6678 2.91E-03 −0.06061 1.47E-02
Ploumhans et al. (2002) 0.683 2.50E-03 −0.061 1.40E-02
Johnson and Patel (1999) 0.656 3.50E-03 −0.069 1.60E-02
Tomboulides (1993) 0.671 2.80E-03 not reported not reported
Roos and Willmarth (1971) 0.629 not reported not reported not reported
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Figure 16. Test 3, Re = 300. 3D periodic time evolution of the vortical structures.

The present model satisfactorily reproduces the hairpin
shapes of the vortical structure. Observe that, due to the
strong pressure gradients feeding the movement of the
vortices, the pressure minima in this case do not match
their foci.

After a rapid transient phase, due to the impulsive start
and to the imposednumerical perturbation, the time evo-
lution of the CD and CL coefficients becomes periodic
in time. The mean and amplitude values are listed in
Table 5, and compared with the results provided by other
literature works.

We also simulate the case with Re = 600. Accord-
ing to experimental observations, the shedding vortices
become irregular for Re > 480 (Sakamoto & Haniu,
1990). In Figure 13(c) we have previously shown the
pattern of vortex shedding for 480 < Re < 800 (from

Sakamoto & Haniu, 1990). The setting of the ICs and
BCs is the same as for Re = 300, as is the impulsive
flow start. In this case, perturbation for generating vor-
tex shedding was not necessary. The time step size used
for the numerical runs was 0.025 s and the maximum
value of the CFL number attained during the simulations
was 3.12.

In Figure 19(a) we show the 3D vortical structure
at τ∗ = 35, where τ∗ is defined in Equation (85) and
the irregularity of the hairpin vortices and their inter-
twining with each other is evident, as experimentally
observed by Sakamoto andHaniu (1990). In Figure 19(b)
we plot the time histories of the drag lift and side coef-
ficients. As expected, we lost the periodic trend of CD
and CL observed for Re = 300, and the value of the side
coefficient is of the same order as CL.
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Figure 17. Test 3, Re = 300. Periodic time evolution of the velocity streamlines (left panels) and kinematic pressure (right panels), (x–z)
plane.

As mentioned in section 3.1.1, for the case of
Re = 300, we estimate Nr,k and predict the correspond-
ing computational time of parallelization of the MAST
algorithm assuming different Np number of processors.
The maximum Nr,k is 3847. Neglecting the time ε and
the other parallelization costs, the MAST solution time
TMAST would be equal to

TMAST =
∑

i=1,Niter

⎛
⎝ ∑

r=1,NR,k

(
Int

(
Nr,k

Np

)
+ 1

)⎞⎠2TT

(86)

where Niter is the number of time steps and NR,k is the
number of ranks at iteration k. This time is of course
larger than the timeTmin computed assuming all available
processors working together, because Nr ,i can be smaller
than Np and the ratio between TMAST and Tmin grows
along with Np.

See in Table 6 the ratios TMAST / TT and TMAST /
Tmin computed in the simulation of test 3, with a mesh
of 2,309,771 tetrahedrons, assuming a number of proces-
sors in the range 4-250, at the present time corresponding
to small-medium workstations. You can observe that the
ratio TMAST / Tmin attains a maximum value of 1.4 with
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Figure 18. Test 3, Re = 300. Periodic time evolution of the velocity streamlines (left panels) and kinematic pressure (right panels), (x–y)
plane.

Figure 19. Test 3, Re = 600. (a) 3D vortical structure at τ∗ = 35. (b) Time evolution of the drag, lift and side coefficients.
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Table 6. MAST solution time vs. no. of processors.

Np Tmin/TT TMAST/TT TMAST /Tmin

4 676,184,582 680,355,106 1.006
12 225,394,080 229,004,379 1.016
40 67,618,224 71,041,472 1.051
50 54,094,345 57,521,651 1.063
100 27,046,587 30,304,361 1.120
150 18,031,058 20,938,102 1.161
200 13,522,708 16,347,121 1.209
250 10,818,869 15,173,010 1.402

themaximumnumber of 250 processors. Thismeans that
parallelization should work very well with this type of
very popular computers even with large size problems.

5.3.4. Simulation of blood flow inside aneurism
In this test, we simulated the hemodynamic flow con-
ditions inside a real abdominal aorta affected by a
large aneurysm without thrombus in the lumen. The
computational domain was computed starting from the
kinematic field of a real (44-year-old female) patient-
specific aortic wall, obtained from the data recorded
by an electrocardiogram-gated computer tomography

angiography (CTA) during a stabilized cardiac cycle, as
described in (Aricò et al., 2020 and cited references).

Besides the CTA images, additional input data were
the measurements, in a resting condition, of pressure (on
the left arm) and aorta volumetric flow rate (in the carotid
artery), during a stabilized cardiac cycle (Aricò et al.,
2020). The cardiac cycle Tc of the patient was 0.83333 s.

The real aortic segment was approximately 0.16m
long (see Figure 20(a)). The computational domain was
extended with respect to the real one by means of two
transition stretches, and the real cross-sections were lin-
early morphed into circles of equivalent radii r = √

A/π
(Figure 20(a)). The diameters of the inflow and outflow
artificial sections, Di and Do, are 0.03213 and 0.0256m,
respectively, and the two stretches were approximatelyDi
long.

For the numerical model simulations, we set an inflow
velocity profile and a uniform spatial pressure distri-
bution along the upstream and downstream sections of
the computational domain, respectively. The BCs of the
present model were obtained as described in Aricò et al.
(2020) and cited references.

Figure 20. (a) Test 4. Real and computational domain. (b) computational mesh. (c) Section of the mesh with a generic plane.
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Figure 21. Test 4. (a) waveforms of mean-in-time inflow velocity and outlet pressure. (b) Womersley inflow velocity profiles at four
significant times (from Aricò et al., 2020).

Figure 22. Test 4. Computed velocity vectors and kinematic pressure at the significant times in Figure 21.
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In Figure 21(a) we plot the waveforms of the inflow
velocity (obtained by dividing the waveform of the flow
rate by the area of the inflow cross-section), and the outlet
pressure. The ‘time of the diastolic (systolic) pressure’ is
the time corresponding to the minimal (maximal) aortic
pressure – tdp (tsp) in Figure 21. tdp and tsp were com-
puted to be 0.0589 and 0.2946 s after the start of the cycle
(Nagy et al., 2015).

A Womersley velocity profile of the pulsatile flow
(Womersley, 1955) was analytically computed for the
diameter Di, as described in Aricò et al. (2020), and
assigned to the upstream boundary of the computational
domain. TheWomersley numberα can be regarded as the
ratio between the unsteady inertial forces and the viscous
forces, and it is defined as (Womersley, 1955)

α = R
√
ω

ν
with ω = 1/Tc (87)

whereR is the radius of the vessel at the boundary section.
We set ν = 3.77× 10−6 m2/s (blood kinematic viscos-
ity). The original Poiseuille velocity profile is flattened
proportionally to the α number. In the present case α is
around 24, and Figure 21(b) shows the profiles computed
for the significant times listed in the table of Figure 21(a).

The maximum value of the Reynolds number attained
during the simulations was approximately 1200, which
implies a fully laminar flow.

The computational domain corresponds to the fixed-
in-time geometry computed, at the tsp time, applying
the procedure proposed in Nagy et al. (2015). The com-
putational mesh had 790,346 tetrahedrons and 146,995
nodes, and the number of cluster is 729,038. The mesh
size ranged from 1.e-04m to 1e-03m. In Figure 20(b,c)
we show the mesh and a zoom of a cutting generic plane.
The time step size was 0.01 s and the maximum value
of the CFL number computed during the simulations
was 3.45.

In Figure 22, for the significant times listed in Figure
21(b), we show the computed velocity and the kine-
matic pressure fields. The black arrow indicates the
main upstream-downstream flow direction. At tdp, the
pressure gradient is oriented according to the main
upstream-downstream direction. The velocity profile in
the upstream portion of the studied reach is almost uni-
form along the radial vessel direction, and, close to the
walls, recirculating flow zones arise (see the zoom in
Figure 23). These recirculating flows could be generated
by the inflow velocity computed in the most lateral part

Figure 23. Test 4. Zoom of the velocity fields for tdp and 0.54 Tc .
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Figure 24. Test 4. Velocity components computed along the axis shown in Figure 25, for two meshes.

of the Womersley profile (see Figure 21(b)). The blood
flow decelerates in the central region of the aorta, due to
the enlargement of the vessel because of the aneurysm,
and accelerates downstream of the aneurysm, due to the
reduction of the section of the vessel. Due to the reduc-
tion of the inflow velocity assigned at the inflow section,
from time 0.25 Tc to tsp, and the corresponding increase
of the assigned outlet pressure in the same time interval
(see Figure 21), the pressure gradient along the princi-
pal flow direction changes sign, becoming downstream-
upstream oriented. The recirculating flow velocity zones
close to the lateral walls then disappear, since the bound-
ary Womersley velocities assigned at the inflow section
are inward oriented. At time 0.54 Tc, the flow recircula-
tion close to the vessel walls is stronger than at tdp. The
size of the portion of the inflow section where the leaving
Womersley velocities are set is similar to the one where
the incoming velocities are assigned, and their norm is
comparable to (or greater than) the values of the inflow
velocity norm (see Figure 21(b)). Vorticities also arise in
the central and downstream portions of the aortic vessel,
as shown in the zoom of the velocity vector (Figure 22).

In Figure 24 we plot the values of the velocity compo-
nents computed along the axis of the aneurism, shown
in Figure 25, at four different times. The origin of the
coordinates along the axis is also shown in Figure 25.
These results are marked as ‘u (v, w) m1’. In Figure 24,

Figure 25. Test 4. Initial and final axis position.

we also superimpose the results obtained using a refined
mesh, with 3,361,925 tetrahedrons, 599,988 nodes, and
3,116,998 clusters, marked as ‘u (v, w) m2’. The scatters
between the two solutions are almost negligible.

6. Conclusions

A new algorithm for the numerical solution of the
3D Navier–Stokes equations for incompressible fluids
has been presented and validated with synthetic tests.
The algorithm is radically new and is based on the
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Raviart-Thomas first order spatial discretization of pres-
sure and velocity. The convective termswere solved using
the Marching in Space and Time (MAST) technique,
previously applied only to groundwater transport and
shallow water problems. The algorithm has the follow-
ing merits with respect to the many other competitors:
(1) It can be applied to any tetrahedral, unstructured and
non-Delaunay mesh, generated inside irregular bound-
aries; (2) it fully preservesmass conservation, (3) the time
step size is not constrained by the CFL limit, (4) the CPU
time required for the solution of a single time step, with
a single physical processor, grows with a β power almost
equal to 1.1, due to the solution of linear systems with
matrices that are always positive-definite, holding theM-
property, factorized only once at the beginning of the first
time step.

Code parallelization and introduction of a turbu-
lence model to solve the turbulence structures within
the element scale would make MAST-RT0 model ready
to solve also many other problems of great interest, like
Fluid-Structure Interactions (FSI), flows around moving
boundaries (e.g. swimming fishes) (e.g. Salih et al., 2019),
sloshing tanks (e.g. Ghalandari et al., 2019) and many
others.

Notes

1. www.hsl.rl.ac.uk/catalogue/kb07.html, 1962.
2. hsl.rl.ac.uk/catalogue/mi21.html, 2013.
3. www.qhull.org/html/index.htm, 2020, and cited refer-

ences.
4. www.paraview.org, 2020.
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Appendix 1. The Order subroutine

Call ET (j,k) the index of the jth tetrahedron neighbor to tetra-
hedron k and Fl (j,k) the flux between tetrahedrons k and ET
(j,k). ET (j,k) = 0 if the jth face of tetrahedron k is a boundary
face. Flux FL (j,k) is positive if it goes from k to ET (j,k), negative
otherwise. We assume the fluxes of two neighbor tetrahedrons
k and kp to have the same norm and opposite sign in the shared

face. The Order input are the integer matrices ET, FL and the
initial IORD vector.

Call INV(k) the position m of tetrahedron k in the IORD
vector, such that INV(IORD(m)) = m. Vector INV is initial-
ized according to the input IORD vector. Initialize also two
other auxiliary vectors AUX and BACK and one auxiliary
matrix JC with size[4,NT], whereNT is the number of tetrahe-
drons. All vectors RANK, BACK and JC are initialized with 0.

The Order algorithm computes the vector RANK and
updates the vector IORD. The output vector IORD provides,
for each index m, the tetrahedron k = IORD(m) with the
following properties:

(RANK(ET(j, k)) > 0 or JC (j, k) �= 0) if (FL (j, k)

< 0 and ET (j, k) > 0)j = 1, . . . , 4 (A1)

(RANK(k) > RANK (ET(j, k)) or JC (j, k) �= 0)

if (FL (j, k) < 0 and ET (j, k) > 0)

Figure A1. Flow-chart of the Order subroutine.
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Figure A2. Flow-chart of the Search subroutine.

j = 1, . . . , 4 (A2)

(INV(ET(j, k)) < INV (k) or JC (j, k) �= 0)

if (FL (j, k) < 0 and ET(j, k) > 0)

for any value k

= iord (s) and 0 < s < m (A3)

The general strategy is to compute the mth tetrahedron of
IORD and its rank RANK(IORD(m)) after the computation
of the previous tetrahedrons IORD(1), . . . , IORD (m–1) and
their rank.Order adopts the following subroutines, where apex
imarks input variables and apex omarks output variables:

A1.1. Subroutine Switch

Input: nx, AUX, IORD, INV, FL, ET, RANK
Output: RANK, IORD, INV
Given the known index r = AUX(nx) of a tetrahedron

which satisfies constraints A1 and has RANKi(r) = 0, com-
pute the new rank of r as the maximum rank of the neighbor
tetrahedrons that satisfy constraint (A1), plus one. This allows

tetrahedron r to satisfy also requirement A2. Switch the posi-
tion of tetrahedrons r and IORDi(m) in the IORDo vector, by
setting: s = INVi(r), IORDo(m) = r, IORDo(s) = IORDi(,m),
INVo(r) =m, INVo(IORDi(m)) = s. See the flow-chart in
Figure A1.

A1.2. Subroutine Search

Input: nx, AUX, IORD, INV, FL, ET, RANK, BACK, JC
Output: nx, AUX, BACK, RANK, IORD, INV, JC
Call BACK(k) the neighbor of tetrahedron k with RANK(k)

= 0 and RANK(BACK(k)) = 0 with the maximum flux going
from to BACK(k) to k. Given a length nxi ≥ 1, check if con-
straint (A1) is satisfied for k = AUX(nx). If it is satisfied, apply
Switch and set nxo = nxi – 1. Otherwise, select the neighbor
tetrahedron kp with the minimum (maximum absolute value)
entering flux smaller than zero and with RANKi(kp) = 0. If
BACK(kp) �= 0, we have a loop. In this case apply subroutine
Cut and iterate the check. If constraint (A1) is not satisfied,
select the neighbor tetrahedron kp with RANK(kp) = 0 and
minimum entering flux, set BACK(k) = kp, update nxo with
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Figure A3. Flow-chart of the Cut subroutine.

nxi+ 1, set AUX(nxo) = kp, and iterate until constraint (A1) is
satisfied. See the flow-chart in Figure A2.

A1.3. Subroutine Cut

Input: nx, AUX, BACK, JC, FL, ET
Output: nx, BACK, JC
If a loop is found, compute the index mb and the tetrahe-

dron kb = AUXi (mb) corresponding to the minimum pos-
itive flux going from BACK (AUXi (m)) to AUXi (m) for
mp ≤ m ≤ nxi, where AUXi (mp) = BACK (AUXi (nxi)). Set
nxo = mb and BACKo (AUXi (m)) = 0, for mb ≤ m ≤ nxi.
Set ka = BACK0i (kb), JCo (n1,ka) = kb and JCo (n2,kb) = ka,
where n1 and n2 are the local indices of the face common to
tetrahedrons ka and kb. See the flow-chart in Figure A3.

InOrderwe loop the index p from 1 to nel. At each iteration,
if nx > 0 we apply Search. If nx = 0, we test the tetrahedron

k = IORD(p). If constraint (A1) is satisfied, we apply Switch.
If it is not satisfied, we set nx = 1, AUX(nx) = k and apply
Search. See the flow-chart in Figure A4.

Observe that, if zero loops and zero flux sign changes occur,
the solution obtained in the MAST procedure is the same with
any adopted sorting rule providing a sequence vector IORD
also different from the vector computed in the Order subrou-
tine, if constraint (A3) is satisfied for all the tetrahedrons. Due
to loop cuts and flux sign changes, this is not true and a much
better solution turns out to be the one obtained by solving
sequentially all the tetrahedrons with the same rank, starting
from 1, also using parallel computing if available. Any open
source subroutine, like QUICKSORT, can be used to order all
the tetrahedrons according to their rank value after the RANK
solution of Order is found.

See the flow-chart of the Order, Search, Cut and Switch
subroutines in Figures A1–A4.
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Figure A4. Flow-chart of the Switch subroutine.
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