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ABSTRACT: The effect of electron−phonon coupling in
materials can be interpreted as a dressing of the electronic
structure by the lattice vibration, leading to vibrational replicas
and hybridization of electronic states. In solids, a resonantly
excited coherent phonon leads to a periodic oscillation of the
atomic lattice in a crystal structure bringing the material into a
nonequilibrium electronic configuration. Periodically oscillat-
ing quantum systems can be understood in terms of Floquet
theory, which has a long tradition in the study of semiclassical
light-matter interaction. Here, we show that the concepts of
Floquet analysis can be applied to coherent lattice vibrations. This coupling leads to phonon-dressed quasi-particles imprinting
specific signatures in the spectrum of the electronic structure. Such dressed electronic states can be detected by time- and
angular-resolved photoelectron spectroscopy (ARPES) manifesting as sidebands to the equilibrium band structure. Taking
graphene as a paradigmatic material with strong electron−phonon interaction and nontrivial topology, we show how the phonon-
dressed states display an intricate sideband structure revealing the electron−phonon coupling at the Brillouin zone center and
topological ordering of the Dirac bands. We demonstrate that if time-reversal symmetry is broken by the coherent lattice
perturbations a topological phase transition can be induced. This work establishes that the recently demonstrated concept of
light-induced nonequilibrium Floquet phases can also be applied when using coherent phonon modes for the dynamical control
of material properties.

KEYWORDS: First-principles calculations, photoelectron spectroscopy, nonequilibrium bandstructure, pumpprobe spectroscopy,
Floquet theory, electron−phonon coupling

Interaction of electrons and bosons in solids and molecules
often leads to satellite features in the electronic structure

resulting from harmonics of the boson mode. A well-known
example are plasma oscillations in solids that are detectable as
satellites in the photoelectron spectrum.1,2 Another one is the
effect of vibrational motion of ions that provides an intrinsic
mode of the material that is detectable in the electronic
structure, most prominently as vibrational sidebands in optical
absorption spectroscopy of molecules.3 In equilibrium, a strong
electron−phonon coupling can result in a dressed electronic
structure where the dressing creates observable replica
bands4−10 or kinks11−13 in the electronic spectrum. In such a
strongly coupled material, a few phonon quanta have a large
effect on the electrons, whereas in a weaker coupled system one
needs more quanta to achieve a similar effect. Creating more
quanta of a boson mode means that one has to excite it
coherently, thereby driving the system out of its equilibrium.
The controlled excitation of lattice vibrations as coherent

phonon modes14 has been shown to provide an avenue toward
engineering long-lived, transient nonequilibrium states, such as
light-enhanced15 and light-induced superconductivity,16 vibra-
tionally controlled17,18 and induced19 magnetism, and phonon

control of ferroelectricity20 among others. This kind of
nonequilibrium boson driven phases might also be used to
affect exciton-21 and polariton-condensates22 and Higgs-modes
superconductors.23,24 In particular, the proposed ability to
induce a superconducting phase in materials that are ordinary
conductors in equilibrium by optically exciting coherent
phonons16,25−27 has spurred theoretical investigations into the
electronic properties of materials under such nonequilibrium
conditions.28−30 Recently, the possibility to affect spin-polar-
ization and magnetization through phonon-driving has been
proposed for transition metal dichalcogenides.31

We show how the electronic structure together with the
time-periodic ionic potential created by a coherent phonon
mode can be interpreted as a steady state, quasi-static system
when observed for times longer than the phonon time-scale.
Such a Floquet state where the coherent phonon dresses the
electronic states represents a distinct nonequilibrium phase
with a fundamentally altered electronic structure. This kind of
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nonequilibrium steady state picture of a dressed electronic
structure has a long tradition when considering light-matter
interaction, going back all the way to the idea of electrons being
dressed by photons in the optical Stark effect.32−37 However,
recently there has been considerable activity in the theoretical
framework of Floquet theory for light-driven matter following
the proposal of the Floquet topological insulator.38−43 The
Floquet−phonon framework proposed here can be used as a
paradigm to treat vibrationally excited systems and is thus, for
example, also applicable for shaken optical lattices, where
instead of a phonon mode a macroscopic vibration is applied.44

It is equally applicable to the interpretation of vibrational
spectroscopy in molecules, where the phonon-dressed side-
bands occur as a series of vibrational peaks. Moreover, we posit
that this framework is transferable to other coherent bosonic
excitations that can be expressed as semiclassical fields such as
plasmons or magnons.
In contrast to the interaction of optical light with electrons,

where the massless photons dress the electrons with fast
oscillating fields, the picture is reversed when considering the
effect of a coherent phonon on the electronic structure. The
relatively slow movement of the much heavier ions allows for
the electrons to follow this movement almost instantaneously.
Indeed, this picture gives rise to the frozen phonon
approximation, where one assumes that the electrons
experience any given ionic configuration of the lattice as if
the lattice was fixed. While this approximation has been used
successfully in a wide range of applications,45−52 we show that it
fails to accurately represent the electronic structure under the
Floquet−phonon conditions. The frozen phonon approxima-
tion cannot account for the dynamical dressing effect that the
coherently oscillating lattice supplies to the electronic structure.
By using a first-principles Floquet description we show that one
can define observable band structures of the dynamical system
that are fundamentally different from the frozen phonon
approach.
The failure of the frozen phonon approximation to correctly

describe dynamical effects of the electron−phonon coupling in
graphene has been pointed out before.53 The lattice vibration
dynamically changes the electronic structure, which in turn
leads to a large renormalization of phonon modes. The
Floquet−phonon approach presented here can serve as a
starting point to compute such a dynamical renormalization of
phonon energies, resulting in a nonequilibrium phonon
bandstructure.
We present results obtained from two different comple-

mentary types of first-principles calculations, by first computing
the real-time propagation of a quantum mechanical electronic
system together with classical movement of the ions. In a
second approach, we analyze the periodic oscillation induced by
this motion with Floquet theory, thereby obtaining a quasi-
static representation of the dynamics which allows us to explain
in detail spectroscopic features of the time-evolution and
analyze them in terms of the underlying multiphonon band
structure. In this work, we are considering the in-plane double
degenerate optical phonon of graphene as a paradigm for a
coherently driven phonon system. While these modes are not
infrared active in monolayer graphene, they can become active
in bilayer graphene54 and thus the features discussed here could
be observed in this material. The features we discuss are generic
for any semimetal and thus have readily transferable
implications for driven charge-density wave and electron−
phonon superconductors. The topology of the Dirac bands on

the other hand is specific to topological systems and our results
represent a general dynamically induced topological phase
transition.

Results. To observe the effect of a coherent lattice motion
on the electronic structure of graphene, we calculate the time-
and angular-resolved photoelectron spectroscopy (ARPES)
spectrum by using time-dependent density functional theory
(TDDFT)55,56 coupled to Ehrenfest molecular dynamics for
the classical motion of the ions according to the optical E2g
mode of graphene, c.f. Figure 1 and Materials and Methods for

technical details. We assume that after an initial excitation of
the coherent phonon the pump laser is switched off, but the
phonon mode maintains its coherence for some time in which
the system is probed. In our simulations, we use probe times of
up to 160 fs which is well below reported coherence times for
phonon modes of about 1 ps.57 The resulting photoemission
spectrum for a probe pulse longer than the E2g phonon period
of 20.6 fs, corresponding to the frequency of this mode at the
Γ-point of the phonon-Brillouin zone, is shown in Figure 1a.

Figure 1. Time-resolved ARPES of graphene under different
fundamental excitations: (a) The computed time-resolved ARPES
spectrum of graphene under driving by a coherent the E2g optical
phonon. In red is shown the frozen phonon band structure averaged
over a phonon cycle (see text). (b) Under only optical excitations with
fixed ions the time-resolved ARPES specturm displays a similar
sideband splitting as the phonon-dressed system throughout the
Brillouin zone but the strongly interacting pattern at the Γ-point is
absent. In red is shown the ground-state bandstructure. The inset to
(a) shows the path in momentum space that is chosen to cross the
second Brillouin zone, because it provides a stronger photoelectron
signal.
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We show photoelectron spectra for the second Brilluoin zone
throughout this paper, because they display a stronger
photoelectron signal. For comparison with the first Brillouion
zone, see SI Figure S3. The frozen phonon picture assumes that
at any given time the electrons are in the equilibrium
corresponding to the lattice configuration at that time. This
suggests, as an ad hoc approximation for the time-resolved
ARPES spectrum, to take the average the different frozen-
phonon band structures over the time of measurement. Such a
time-averaged frozen-phonon band structure is shown for
comparison with the time-resolved ARPES result in Figure 1a.
By contrast, we show in Figure 1b the corresponding time-
resolved ARPES spectrum where only an optical pump pulse is
used and the ions are kept fixed in their equilibrium positions
so that only the effect of photodressing is observed. The
different behavior of the electronic structure is most striking at
the Γ-point of the Brillouin zone. Overall the two different
dressing mechanisms result in a similar structure that is
characterized by an equally spaced stacking of sidebands around

an equilibrium band. The degenerate top valence band at Γ,
known as the σ-bands, however, display a qualitatively different
behavior as becomes clear in Figure 2a. The photoelectron
spectrum shows an apparent split electronic bands around the
degenerate ground-state bands which seems to be in agreement
with the cycle averaged frozen phonon band structure. This
agreement, however, is deceptive and the underlying
mechanism is more involved, as will become clear below, by
considering the Floquet spectrum. Above all, we point out that
a frozen phonon description lifts the degeneracy of the top
valence band, which is clearly not observed in the photo-
electron spectrum, where the position of the ground-state
bands is preserved. Whereas in these calculations we consider
only the specific lattice vibration associated with the coherent
E2g phonon, we have also performed calculations with an
additional random (thermal) distribution of ionic motion and
find the same photoelectron spectrum (c.f SI Figure S1).
Although the cycle-averaged frozen-phonon bands seemingly

capture the redistribution of the photoelectron spectral weights

Figure 2. Time-resolved ARPES of graphene at the Γ-point with a coherent phonon: (a) Computed time-resolved ARPES spectrum of for a small
path in the Γ-K direction of the Brillouin zone (see inset). An intricate sideband structure originating from the coherent phonon excitation is visible.
(b) Band structure computed from Floquet analysis of the first-principles time-dependent Hamiltonian. In red is shown the time averaged frozen
phonon band structure (see text) that can be seen failing to give the essential spectral features. (c,d) Vertical cuts through the time-resolved ARPES
spectrum shown as dashed lines in (a) together with the Floquet energy levels taken at the same position, as indicated by the dashed lines in (b). In
(c), the Floquet bands are indexed according to their phonon-multiplicity and the position of the original band is indicated by a triangle. Both cuts
show the excellent agreement between the Floquet bands and the time-resolved ARPES spectrum. The low intensity of the first sidebands of the σ-
bands at the Γ-point is due to weak photoelectron matrix elements. The cycle averaged frozen phonon bands (red) do not coincide either with
Floquet levels nor with peaks in the calculated time-resolved ARPES spectrum.
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qualitatively correctly, they do not contain any information
about the sideband structure and fail to account for the central
band in the photoelectron spectrum. To obtain the electronic
structure underlying the bands observed in the photoemission
spectrum we use Floquet analysis of the time-dependent
Hamiltonian generated by the TDDFT calculation.43 In this
method, a stationary state is expanded into a basis of Fourier
components of multiples of the mode frequency Ω: |Ψα(t)⟩ =
∑m exp(−i(ϵα + mΩ)t)|um⟩, where ϵα is the quasi-static Floquet
band. With this ansatz, the time-dependent Schrödinger
e q u a t i o n b e c o m e s a n e i g e n v a l u e p r o b l e m
∑ | ⟩ = ϵ | ⟩αu un

mn
n m of the static Floquet Hamiltonian

∫ δ= + Ω
π π

Ω
Ω

− Ωte H t md ( )mn i m n t
mn2 2 /

( ) . The eigenstates

of this Hamiltonian span a Hilbert space with the dimension
of the original electronic Hilbert space times the multimode
(photon or phonon) dimension. The contribution of the latter

is in principle infinite but can be truncated to a number large
enough to capture the interaction between sidebands (see, for
instance, SI Figure S2). The spectrum of this Hamiltonian gives
the band structure of the dressed quasiparticles.
Floquet theory provides the correct way of performing the

quantum-mechanical time-average over a cycle period of a
steady state oscillating system and thus represents the finite
time duration of the ARPES probe.39,58 We note that in order
to include the time-dependent Hamiltonian of a system with
moving ions into the Floquet integrals it is essential to use a
generic representation, such as real-space grids or plane-waves.
A local basis, like atomic-centered orbitals, or the Kohn−Sham
eigenstate representation of the Hamiltonian cannot be used
here, because it precludes the possibility to perform an integral
over the Hamiltonian at different times. We also note that
because of the low energy of the dressing field, we cannot use a
high-frequency expansion that is otherwise convenient for

Figure 3. Time-resolved ARPES of graphene at the K-point with linearly polarized pumping. (a) The coherent phonon motion depicted in the
sketch leads to a time-resolved ARPES spectrum that is very well described by the corresponding TDDFT−Floquet band structures. In particular,
the degeneracy of the Dirac bands at the Dirac point can be seen to be preserved by Floquet theory (see inset). By contrast in (c) is shown the
ARPES spectrum of a corresponding electronic structure where the ions are fixed and only the effect of a photon pump is included. Except for
differences in the photoelectron intensities, the two dressing mechanism result in the same nonequilibrium electronic structure. The dynamical effect
of the lattice perturbation on the electronic structure can be described by an effective gauge field, indicated by Au, that plays the same role as the
physical electromagnetic vector potential Aγ of the photon field. Panel (b) indicates how to identify the sidebands in the band diagrams, as
originating from a regular mesh of shited Dirac bands.

Figure 4. Time-resolved ARPES of graphene at the K-point with circularly polarized pumping. (a) The coherent phonon motion depicted in the
sketch leads to a time-resolved ARPES spectrum that is very well described by the corresponding TDDFT−Floquet band structures. In particular the
degeneracy of the Dirac points is lifted (see inset) and the system is in a nontrivial topological phase. (c) The corresponding time-resolved ARPES
spectra where the ions are fixed and only the effect of photon-dressing is shown. While the time-resolved ARPES show different intensity patterns
than for the corresponding phonon-dressed case, the Floquet band structures reveal that for the Dirac point the phonon- and the photon-dressing
create the same kind of nonequilibrium phase. The dynamical effect of the lattice perturbation on the electronic structure can be described by an
effective gauge field, indicated by Au, that plays the same role as the physical electromagnetic vector potential Aγ of the photon field. Panel (b)
indicates how to identify the sidebands in the band diagrams, as originating from a regular mesh of shited Dirac bands and the induced opening of a
gap at band crossing points.
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analytic treatments. The results of the Floquet−TDDFT
calculation of the coherent-phonon excited electronic system
is shown in Figure 2b and the excellent agreement between the
Floquet bands and the time-resolved ARPES spectrum of
Figure 2a is apparent.
The sidebands of the σ-bands does not follow an underlying

splitting of the bands, contrary to what the ad hoc frozen
phonon approximation suggests. Instead of a splitting of the
bands, the degeneracy is preserved even for the sidebands and
comparison with the Floquet spectrum reveals that the first two
sidebands are surpressed by photoelectron matrix elements. In
Figure 2c,d, the time-resolved ARPES intensity for these bands
around Γ is given in more detail, showing the excellent
quantitative agreement between Floquet theory and the time-
resolved ARPES spectrum, as well the failure of the frozen-
phonon approximation to quantitatively reproduce even the
splitting of the spectral weight.
The necessity of Floquet theory to correctly describe the

dynamical dressing becomes even clearer when looking at the
K-point of the Brillouin zone. In graphene, the Dirac point at K
is of particular interest because here the electronic structure can
be represented by the two-level Dirac Hamiltonian, reflecting
the particular topological properties of the material. Figures 3
and 4 show an enlarged view of differently (phonon and
photon) dressed electronic structures around K. By comparing
the Floquet band structure of the E2g mode, Figure 3a with the
one of a linearly polarized photon field, Figure 3c, we find that
by choosing the appropriate amplitudes one can obtain
identical band structures for both types of excitation. This
remarkable agreement is a consequence of the same nature of
the underlying electron-boson coupling. The insets in Figure
3a,c show that neither the photon nor the phonon perturbation
leads to the creation of a bandgap at the Dirac point.
The analogy of photon and phonon dressing at the K-point

can be further exploited by considering a coherent phonon
excitation that is a linear combination of the two degenerate
longitudinal (LO) and transverse (TO) modes of E2g to create
a circular, time-reversal symmetry breaking motion in analogy
to a circularly polarized electromagnetic (photon) field. Indeed,
as shown in Figure 4a,c both circular excitations result again in
identical band structures. In this case, as shown by the insets of
Figure 4a,c, the perturbation leads to the creation of a
dynamical gap. Such an excitation is described by the Haldane
model59 and can be associated with a topological phase
transition. This dynamical opening of the gap is a general
feature of a Floquet topological phase39 in graphene which, as
will become clear below, is also a property of the coherent
lattice excited state. Here, we point out that the apparent
similarity of the nonequilibrium electronic structure at the K-
point of graphene for different bosonic excitations is a
consequence the same underlying coupling mechanism of the
Dirac bands.
Discussion. Using Floquet theory the similarities of the

dressed electronic structure at the Dirac point can be traced
back to the coupling between the electrons and the coherent
boson fields. The coupling for the phonon case is described by
electron−phonon matrix elements60 of the E2g mode, while for
the photon case is mediated by dipole matrix elements with
polarization corresponding to the pump laser. To first order the
coupling of electrons to a coherent boson field is given by the
Hamiltonian H(t) = ∑iϵici

†ci + ∑imi,jci
†cjF̂(t) where c

† and c are
the Fermionic creation and annihilation operators, ϵ are the
energies of the uncoupled electrons, and m are the electron-

boson coupling matrix elements. F̂ = a† + a is the coherent
boson field, which corresponds to the classical limit of the
quantized field, oscillating with the frequency Ω. In the case of
phonons, this is the time-dependent lattice displacement, F̂(t) =
sin(Ωt) along oscillation direction u of the phonon, whereas for
photons it is the classical vector potential of the laser polarized
in Aγ direction.
For the Dirac bands around K, the ground-state Hamiltonian

can be written as a two level system H0
D=vF(kxσx + kyσy), where

σi are Pauli matrices and ki are the in-plane components of the
crystal momentum centered at the Dirac point.59 Expanding the
time-dependent (boson coupled) Hamiltonian in the eigenbasis
of the ground-state Hamiltonian yields (c.f SI for details)

σ θ σ θ σ= | | + + ΩH t v m tk( ) [cos( ) sin( ) ]sin( )z z yk k k
D

F (1)

The angle θk is the angle between the polarization of the
vector potential Aγ and the k-vector for the electromagnetic
(photon) excitation. For the phonon case instead, θk is the
angle between k and a vector Au that is perpendicular to the
phonon-polarization, that is, Au·u = 0. The Hamiltonian eq 1 is
a particular representation of the Peierl’s substitution describing
weak coupling to a classical field, that is, where k → k−Ai. This
becomes evident when considering the eigenvalues of this
operator for fixed time: E[t]

± = ±vF|k − A[t]
i |. Here we have

parametrized the time-dependence to emphasize that such
instantaneous eigenvalues do not have any physical meaning for
a vector potential. Nevertheless, it shows the effect of the
dressing field, either photonic or phononic, on the electronic
Hamiltonian as an effective gauge field in minimal coupling
(Peierl’s substitution) form. In particular, it shows that the
lattice deformation induced by the phonon displacement u can
be described by an effective gauge field Au that plays precisely
the same role in the time-dependent phonon-coupled
Hamiltonian as the physical vector potential does for the
photon coupling. Because the instantaneous eigenvalues of eq 1
do not have physical meaning, one has to turn to Floquet
theory to relate these two different gauge fields to observable
quantities. Indeed, performing Floquet analysis of the time-
dependent Hamiltonian eq 1 gives a Floquet spectrum that is
identical for the two bosonic excitations. They both only
depend on m, the respective effective coupling strength.
It has been noted before that a lattice deformation of

graphene can be described with an effective gauge field around
the Dirac point53,61,62 and the present work shows that this
property also holds for dynamical phonons. By comparing the
ARPES and Floquet spectra of the phonon-dressed electronic
structure to the equivalent photon-dressed band structure in
Figures 3 and 4 we find indeed that the different dressing
mechanisms result in the same spectra. Most importantly, the
results reported in Figure 4 show that such an effective gauge
field creates the same nonequilibrium electronic structure as a
physical vector potential. The coherent phonon modes we are
considering here are Γ-phonons which implies that the gauge
field that they induce is uniform across the crystal. This is in
analogy to the dipole approximation used here to describe the
photons via a uniform vector potential. However, the Floquet
framework also holds for excitations with finite momentum
transfers, that is, lattice vibrations that induce spatial variations
larger than the unit cell.
The implications of the equivalent behavior are most striking

when considering an excitation that breaks time-reversal
symmetry. The Haldane model59 predicts that the breaking
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of time-reversal symmetry in graphene leads to the emergence
of nontrivial topology, a Chern insulator. It has been shown
that such a phase can indeed be created by circularly polarized
lasers and the changes in the topological structure, Chern
numbers, of the Dirac points have been identified with Floquet
theory.39 Figure 4a,c shows the time-resolved ARPES and
Floquet band structure for circularly polarized phonons and
photons. Agreement for the two different excitations is
observed underlining the fact that both dressed electronic
structures originate from the same kind of Dirac Hamiltonian
and implying that circularly polarized coherent phonons can
induce the same kind of change in the topological order as
photon fields.
Having shown how Floquet analysis is required to under-

stand the bosonic electron dressing at the Dirac point, we now
consider what happens at the Γ-point, where the phonon-
dressed electronic structure results in a strongly modified
ARPES spectrum when compared to the equilibrium, c.f. Figure
2a. The apparent agreement of the cycle-averaged frozen
phonon bands with the ARPES spectrum is misleading, because
it wrongly displays a splitting of the degenerate σ-bands. In fact,
as can be seen from the photoelectron spectrum and the
underlying Floquet band structure, Figure 2a,b, there is no such
splitting, but instead, the nonequilibrium bands are spread out
in the usual sideband pattern, that is common for Floquet
bands. Nevertheless, the phonon-quasiparticle dressing at this
point is not a trivial process. The strong splitting of the cycle
averaged frozen phonon bands at Γ originates from a strong
electron−phonon coupling. In the Floquet−phonon average,
however, this does not result in a splitting of bands but instead
the bands appear around the equilibrium position. The
fractional occupations of the Floquet sidebands, that is, the
time-averaged projections of the Floquet-state on the ground-
state,63 for these bands is spread across a region of ∼10
sidebands (c.f. SI Figure S2a). That means that despite the
appearance around the equilibrium position, there is a large
interaction between the levels, corresponding to the large
electron−phonon coupling. This results in the observed
widespread of spectral weight, thus mimicking the frozen
phonon positions. Indeed, the agreement of the frozen phonon
bands with the time-resolved ARPES spectrum is purely
coincidental and a result of photoelectron matrix elements. In
an optical absorption experiment, the sidebands would appear
as a series of satellite peaks, which the frozen phonon
approximation would not be able to describe.
The classical trajectory approach we have chosen here to

describe the phonon motion is appropriate for coherently
excited phonons. When instead the electronic structure is
dressed by quantized phonons, similar features could be
observed, provided there is a strong electron−phonon coupling.
The observations would be qualitatively similar, except that the
quantum interaction does not result in uniformly distributed
sidebands, similar to what is known for photon-dressed states in
quantum optics.64 The treatment of photons as classical lattice
motion, also implies that in our calculation we are not
completely accounting for electronic lifetime effects due to
electron−phonon coupling. Similarly, our real-time propagation
scheme also does not account for the long-range part of the
electron−electron scattering. Thus, one can expect that in
experimentally observed ARPES spectra the sidebands could
display a larger broadening. Reported theoretical values for
electron−electron and electron−phonon scattering mediated
lifetime broadening are in the range of at most few tenths of

millielectronvolts for graphene65 and should therefore not
impede observation of the sidebands. In general and for other
materials, if lifetimes are short compared to the phonon energy
the states would be difficult to observe.

Conclusion. We have demonstrated that the interacting
electronic structure in the presence of a coherent phonon gives
rise to complex photoelectron spectra that reflect a non-
equilibrium state of the system that can be fundamentally
different from the ground state. The underlying dynamical
dressing process where the slow lattice motion creates
additional energy levels for the electrons cannot be described
by the frozen phonon approach despite the relatively large
time-scale of the motion. Instead, the correct way to approach
the electronic structure of such a system is Floquet theory,
where the time-average of the measurement process is
performed while accounting for the quantum-mechanical
nature of the dynamical interactions. The Floquet−phonon
approach shows that the dynamical effect of a coherent phonon
can be the same as the perturbation with an photon field,
showing the fundamental equivalence between the two bosonic
excitations. From such a treatment of graphene emerges a rich
sideband structure that reveals the strong electron−phonon
coupling at the Brillouin zone center and nontrivial topology of
the nonequilibrium phase. The access to the nonequilibrium
electronic structure provided by this approach can serve as a
starting point for further first-principles investigations of
nonequilibrium effects of electron phonon coupling, for
example, giving access to nonequilibrium phonon bandstruc-
tures.
Here, we have considered the example case of graphene to

demonstrate the basic mechanism but the present approach is
designed to investigate other semimetal systems, where the low
energy splittings of phonon-dressing alters the Fermi-surface
leading to complex changes in the material properties, for
example by creating charge-density waves through finite
momentum phonons or creating a nonequilibrium topological
phase. Having shown the equivalence between photon and
phonon excitations within this Floquet interpretation it can be
expected that this general framework also applies to the
coherent limit of other bosonic excitations such as magnons,
plasmons, or excitons.
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